• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "Simplify.h"
9 
10 #undef SkASSERT
11 #define SkASSERT(cond) while (!(cond)) { sk_throw(); }
12 
13 // FIXME: remove once debugging is complete
14 #if 01 // set to 1 for no debugging whatsoever
15 
16 //const bool gRunTestsInOneThread = false;
17 
18 #define DEBUG_ACTIVE_LESS_THAN 0
19 #define DEBUG_ADD 0
20 #define DEBUG_ADD_BOTTOM_TS 0
21 #define DEBUG_ADD_INTERSECTING_TS 0
22 #define DEBUG_ADJUST_COINCIDENT 0
23 #define DEBUG_ASSEMBLE 0
24 #define DEBUG_BOTTOM 0
25 #define DEBUG_BRIDGE 0
26 #define DEBUG_DUMP 0
27 #define DEBUG_SORT_HORIZONTAL 0
28 #define DEBUG_OUT 0
29 #define DEBUG_OUT_LESS_THAN 0
30 #define DEBUG_SPLIT 0
31 #define DEBUG_STITCH_EDGE 0
32 #define DEBUG_TRIM_LINE 0
33 
34 #else
35 
36 //const bool gRunTestsInOneThread = true;
37 
38 #define DEBUG_ACTIVE_LESS_THAN 0
39 #define DEBUG_ADD 01
40 #define DEBUG_ADD_BOTTOM_TS 0
41 #define DEBUG_ADD_INTERSECTING_TS 0
42 #define DEBUG_ADJUST_COINCIDENT 1
43 #define DEBUG_ASSEMBLE 1
44 #define DEBUG_BOTTOM 0
45 #define DEBUG_BRIDGE 1
46 #define DEBUG_DUMP 1
47 #define DEBUG_SORT_HORIZONTAL 01
48 #define DEBUG_OUT 01
49 #define DEBUG_OUT_LESS_THAN 0
50 #define DEBUG_SPLIT 1
51 #define DEBUG_STITCH_EDGE 1
52 #define DEBUG_TRIM_LINE 1
53 
54 #endif
55 
56 #if DEBUG_ASSEMBLE || DEBUG_BRIDGE
57 static const char* kLVerbStr[] = {"", "line", "quad", "cubic"};
58 #endif
59 #if DEBUG_STITCH_EDGE
60 static const char* kUVerbStr[] = {"", "Line", "Quad", "Cubic"};
61 #endif
62 
LineIntersect(const SkPoint a[2],const SkPoint b[2],Intersections & intersections)63 static int LineIntersect(const SkPoint a[2], const SkPoint b[2],
64         Intersections& intersections) {
65     const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
66     const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}};
67     return intersect(aLine, bLine, intersections);
68 }
69 
QuadLineIntersect(const SkPoint a[3],const SkPoint b[2],Intersections & intersections)70 static int QuadLineIntersect(const SkPoint a[3], const SkPoint b[2],
71         Intersections& intersections) {
72     const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
73     const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}};
74     intersect(aQuad, bLine, intersections);
75     return intersections.fUsed;
76 }
77 
CubicLineIntersect(const SkPoint a[2],const SkPoint b[3],Intersections & intersections)78 static int CubicLineIntersect(const SkPoint a[2], const SkPoint b[3],
79         Intersections& intersections) {
80     const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
81             {a[3].fX, a[3].fY}};
82     const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}};
83     return intersect(aCubic, bLine, intersections);
84 }
85 
QuadIntersect(const SkPoint a[3],const SkPoint b[3],Intersections & intersections)86 static int QuadIntersect(const SkPoint a[3], const SkPoint b[3],
87         Intersections& intersections) {
88     const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
89     const Quadratic bQuad = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}, {b[2].fX, b[2].fY}};
90     intersect2(aQuad, bQuad, intersections);
91     return intersections.fUsed;
92 }
93 
CubicIntersect(const SkPoint a[4],const SkPoint b[4],Intersections & intersections)94 static int CubicIntersect(const SkPoint a[4], const SkPoint b[4],
95         Intersections& intersections) {
96     const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
97             {a[3].fX, a[3].fY}};
98     const Cubic bCubic = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}, {b[2].fX, b[2].fY},
99             {b[3].fX, b[3].fY}};
100     intersect(aCubic, bCubic, intersections);
101     return intersections.fUsed;
102 }
103 
LineIntersect(const SkPoint a[2],SkScalar left,SkScalar right,SkScalar y,double aRange[2])104 static int LineIntersect(const SkPoint a[2], SkScalar left, SkScalar right,
105         SkScalar y, double aRange[2]) {
106     const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
107     return horizontalLineIntersect(aLine, left, right, y, aRange);
108 }
109 
QuadIntersect(const SkPoint a[3],SkScalar left,SkScalar right,SkScalar y,double aRange[3])110 static int QuadIntersect(const SkPoint a[3], SkScalar left, SkScalar right,
111         SkScalar y, double aRange[3]) {
112     const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
113     return horizontalIntersect(aQuad, left, right, y, aRange);
114 }
115 
CubicIntersect(const SkPoint a[4],SkScalar left,SkScalar right,SkScalar y,double aRange[4])116 static int CubicIntersect(const SkPoint a[4], SkScalar left, SkScalar right,
117         SkScalar y, double aRange[4]) {
118     const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
119             {a[3].fX, a[3].fY}};
120     return horizontalIntersect(aCubic, left, right, y, aRange);
121 }
122 
LineXYAtT(const SkPoint a[2],double t,SkPoint * out)123 static void LineXYAtT(const SkPoint a[2], double t, SkPoint* out) {
124     const _Line line = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
125     double x, y;
126     xy_at_t(line, t, x, y);
127     out->fX = SkDoubleToScalar(x);
128     out->fY = SkDoubleToScalar(y);
129 }
130 
QuadXYAtT(const SkPoint a[3],double t,SkPoint * out)131 static void QuadXYAtT(const SkPoint a[3], double t, SkPoint* out) {
132     const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
133     double x, y;
134     xy_at_t(quad, t, x, y);
135     out->fX = SkDoubleToScalar(x);
136     out->fY = SkDoubleToScalar(y);
137 }
138 
CubicXYAtT(const SkPoint a[4],double t,SkPoint * out)139 static void CubicXYAtT(const SkPoint a[4], double t, SkPoint* out) {
140     const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
141             {a[3].fX, a[3].fY}};
142     double x, y;
143     xy_at_t(cubic, t, x, y);
144     out->fX = SkDoubleToScalar(x);
145     out->fY = SkDoubleToScalar(y);
146 }
147 
LineYAtT(const SkPoint a[2],double t)148 static SkScalar LineYAtT(const SkPoint a[2], double t) {
149     const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
150     double y;
151     xy_at_t(aLine, t, *(double*) 0, y);
152     return SkDoubleToScalar(y);
153 }
154 
QuadYAtT(const SkPoint a[3],double t)155 static SkScalar QuadYAtT(const SkPoint a[3], double t) {
156     const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}};
157     double y;
158     xy_at_t(quad, t, *(double*) 0, y);
159     return SkDoubleToScalar(y);
160 }
161 
CubicYAtT(const SkPoint a[4],double t)162 static SkScalar CubicYAtT(const SkPoint a[4], double t) {
163     const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY},
164             {a[3].fX, a[3].fY}};
165     double y;
166     xy_at_t(cubic, t, *(double*) 0, y);
167     return SkDoubleToScalar(y);
168 }
169 
LineSubDivide(const SkPoint a[2],double startT,double endT,SkPoint sub[2])170 static void LineSubDivide(const SkPoint a[2], double startT, double endT,
171         SkPoint sub[2]) {
172     const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
173     _Line dst;
174     sub_divide(aLine, startT, endT, dst);
175     sub[0].fX = SkDoubleToScalar(dst[0].x);
176     sub[0].fY = SkDoubleToScalar(dst[0].y);
177     sub[1].fX = SkDoubleToScalar(dst[1].x);
178     sub[1].fY = SkDoubleToScalar(dst[1].y);
179 }
180 
QuadSubDivide(const SkPoint a[3],double startT,double endT,SkPoint sub[3])181 static void QuadSubDivide(const SkPoint a[3], double startT, double endT,
182         SkPoint sub[3]) {
183     const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
184             {a[2].fX, a[2].fY}};
185     Quadratic dst;
186     sub_divide(aQuad, startT, endT, dst);
187     sub[0].fX = SkDoubleToScalar(dst[0].x);
188     sub[0].fY = SkDoubleToScalar(dst[0].y);
189     sub[1].fX = SkDoubleToScalar(dst[1].x);
190     sub[1].fY = SkDoubleToScalar(dst[1].y);
191     sub[2].fX = SkDoubleToScalar(dst[2].x);
192     sub[2].fY = SkDoubleToScalar(dst[2].y);
193 }
194 
CubicSubDivide(const SkPoint a[4],double startT,double endT,SkPoint sub[4])195 static void CubicSubDivide(const SkPoint a[4], double startT, double endT,
196         SkPoint sub[4]) {
197     const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
198             {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
199     Cubic dst;
200     sub_divide(aCubic, startT, endT, dst);
201     sub[0].fX = SkDoubleToScalar(dst[0].x);
202     sub[0].fY = SkDoubleToScalar(dst[0].y);
203     sub[1].fX = SkDoubleToScalar(dst[1].x);
204     sub[1].fY = SkDoubleToScalar(dst[1].y);
205     sub[2].fX = SkDoubleToScalar(dst[2].x);
206     sub[2].fY = SkDoubleToScalar(dst[2].y);
207     sub[3].fX = SkDoubleToScalar(dst[3].x);
208     sub[3].fY = SkDoubleToScalar(dst[3].y);
209 }
210 
QuadSubBounds(const SkPoint a[3],double startT,double endT,SkRect & bounds)211 static void QuadSubBounds(const SkPoint a[3], double startT, double endT,
212         SkRect& bounds) {
213     SkPoint dst[3];
214     QuadSubDivide(a, startT, endT, dst);
215     bounds.fLeft = bounds.fRight = dst[0].fX;
216     bounds.fTop = bounds.fBottom = dst[0].fY;
217     for (int index = 1; index < 3; ++index) {
218         bounds.growToInclude(dst[index].fX, dst[index].fY);
219     }
220 }
221 
CubicSubBounds(const SkPoint a[4],double startT,double endT,SkRect & bounds)222 static void CubicSubBounds(const SkPoint a[4], double startT, double endT,
223         SkRect& bounds) {
224     SkPoint dst[4];
225     CubicSubDivide(a, startT, endT, dst);
226     bounds.fLeft = bounds.fRight = dst[0].fX;
227     bounds.fTop = bounds.fBottom = dst[0].fY;
228     for (int index = 1; index < 4; ++index) {
229         bounds.growToInclude(dst[index].fX, dst[index].fY);
230     }
231 }
232 
QuadReduceOrder(SkPoint a[4])233 static SkPath::Verb QuadReduceOrder(SkPoint a[4]) {
234     const Quadratic aQuad =  {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
235             {a[2].fX, a[2].fY}};
236     Quadratic dst;
237     int order = reduceOrder(aQuad, dst, kReduceOrder_TreatAsFill);
238     for (int index = 0; index < order; ++index) {
239         a[index].fX = SkDoubleToScalar(dst[index].x);
240         a[index].fY = SkDoubleToScalar(dst[index].y);
241     }
242     if (order == 1) { // FIXME: allow returning points, caller should discard
243         a[1] = a[0];
244         return (SkPath::Verb) order;
245     }
246     return (SkPath::Verb) (order - 1);
247 }
248 
CubicReduceOrder(SkPoint a[4])249 static SkPath::Verb CubicReduceOrder(SkPoint a[4]) {
250     const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY},
251             {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}};
252     Cubic dst;
253     int order = reduceOrder(aCubic, dst, kReduceOrder_QuadraticsAllowed, kReduceOrder_TreatAsFill);
254     for (int index = 0; index < order; ++index) {
255         a[index].fX = SkDoubleToScalar(dst[index].x);
256         a[index].fY = SkDoubleToScalar(dst[index].y);
257     }
258     if (order == 1) { // FIXME: allow returning points, caller should discard
259         a[1] = a[0];
260         return (SkPath::Verb) order;
261     }
262     return (SkPath::Verb) (order - 1);
263 }
264 
IsCoincident(const SkPoint a[2],const SkPoint & above,const SkPoint & below)265 static bool IsCoincident(const SkPoint a[2], const SkPoint& above,
266         const SkPoint& below) {
267     const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
268     const _Line bLine = {{above.fX, above.fY}, {below.fX, below.fY}};
269     return implicit_matches_ulps(aLine, bLine, 32);
270 }
271 
272 /*
273 list of edges
274 bounds for edge
275 sort
276 active T
277 
278 if a contour's bounds is outside of the active area, no need to create edges
279 */
280 
281 /* given one or more paths,
282  find the bounds of each contour, select the active contours
283  for each active contour, compute a set of edges
284  each edge corresponds to one or more lines and curves
285  leave edges unbroken as long as possible
286  when breaking edges, compute the t at the break but leave the control points alone
287 
288  */
289 
contourBounds(const SkPath & path,SkTDArray<SkRect> & boundsArray)290 void contourBounds(const SkPath& path, SkTDArray<SkRect>& boundsArray) {
291     SkPath::Iter iter(path, false);
292     SkPoint pts[4];
293     SkPath::Verb verb;
294     SkRect bounds;
295     bounds.setEmpty();
296     int count = 0;
297     while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
298         switch (verb) {
299             case SkPath::kMove_Verb:
300                 if (!bounds.isEmpty()) {
301                     *boundsArray.append() = bounds;
302                 }
303                 bounds.set(pts[0].fX, pts[0].fY, pts[0].fX, pts[0].fY);
304                 count = 0;
305                 break;
306             case SkPath::kLine_Verb:
307                 count = 1;
308                 break;
309             case SkPath::kQuad_Verb:
310                 count = 2;
311                 break;
312             case SkPath::kCubic_Verb:
313                 count = 3;
314                 break;
315             case SkPath::kClose_Verb:
316                 count = 0;
317                 break;
318             default:
319                 SkDEBUGFAIL("bad verb");
320                 return;
321         }
322         for (int i = 1; i <= count; ++i) {
323             bounds.growToInclude(pts[i].fX, pts[i].fY);
324         }
325     }
326 }
327 
extendLine(const SkPoint line[2],const SkPoint & add)328 static bool extendLine(const SkPoint line[2], const SkPoint& add) {
329     // FIXME: allow this to extend lines that have slopes that are nearly equal
330     SkScalar dx1 = line[1].fX - line[0].fX;
331     SkScalar dy1 = line[1].fY - line[0].fY;
332     SkScalar dx2 = add.fX - line[0].fX;
333     SkScalar dy2 = add.fY - line[0].fY;
334     return dx1 * dy2 == dx2 * dy1;
335 }
336 
337 // OPTIMIZATION: this should point to a list of input data rather than duplicating
338 // the line data here. This would reduce the need to assemble the results.
339 struct OutEdge {
operator <OutEdge340     bool operator<(const OutEdge& rh) const {
341         const SkPoint& first = fPts[0];
342         const SkPoint& rhFirst = rh.fPts[0];
343         return first.fY == rhFirst.fY
344                 ? first.fX < rhFirst.fX
345                 : first.fY < rhFirst.fY;
346     }
347 
348     SkPoint fPts[4];
349     int fID; // id of edge generating data
350     uint8_t fVerb; // FIXME: not read from everywhere
351     bool fCloseCall; // edge is trimmable if not originally coincident
352 };
353 
354 class OutEdgeBuilder {
355 public:
OutEdgeBuilder(bool fill)356     OutEdgeBuilder(bool fill)
357         : fFill(fill) {
358         }
359 
addCurve(const SkPoint line[4],SkPath::Verb verb,int id,bool closeCall)360     void addCurve(const SkPoint line[4], SkPath::Verb verb, int id,
361             bool closeCall) {
362         OutEdge& newEdge = fEdges.push_back();
363         memcpy(newEdge.fPts, line, (verb + 1) * sizeof(SkPoint));
364         newEdge.fVerb = verb;
365         newEdge.fID = id;
366         newEdge.fCloseCall = closeCall;
367     }
368 
trimLine(SkScalar y,int id)369     bool trimLine(SkScalar y, int id) {
370         size_t count = fEdges.count();
371         while (count-- != 0) {
372             OutEdge& edge = fEdges[count];
373             if (edge.fID != id) {
374                 continue;
375             }
376             if (edge.fCloseCall) {
377                 return false;
378             }
379             SkASSERT(edge.fPts[0].fY <= y);
380             if (edge.fPts[1].fY <= y) {
381                 continue;
382             }
383             edge.fPts[1].fX = edge.fPts[0].fX + (y - edge.fPts[0].fY)
384                     * (edge.fPts[1].fX - edge.fPts[0].fX)
385                     / (edge.fPts[1].fY - edge.fPts[0].fY);
386             edge.fPts[1].fY = y;
387 #if DEBUG_TRIM_LINE
388             SkDebugf("%s edge=%d %1.9g,%1.9g\n", __FUNCTION__, id,
389                     edge.fPts[1].fX, y);
390 #endif
391             return true;
392         }
393         return false;
394     }
395 
assemble(SkPath & simple)396     void assemble(SkPath& simple) {
397         size_t listCount = fEdges.count();
398         if (listCount == 0) {
399             return;
400         }
401         do {
402             size_t listIndex = 0;
403             int advance = 1;
404             while (listIndex < listCount && fTops[listIndex] == 0) {
405                 ++listIndex;
406             }
407             if (listIndex >= listCount) {
408                 break;
409             }
410             int closeEdgeIndex = -listIndex - 1;
411             // the curve is deferred and not added right away because the
412             // following edge may extend the first curve.
413             SkPoint firstPt, lastCurve[4];
414             uint8_t lastVerb;
415 #if DEBUG_ASSEMBLE
416             int firstIndex, lastIndex;
417             const int tab = 8;
418 #endif
419             bool doMove = true;
420             int edgeIndex;
421             do {
422                 SkPoint* ptArray = fEdges[listIndex].fPts;
423                 uint8_t verb = fEdges[listIndex].fVerb;
424                 SkPoint* curve[4];
425                 if (advance < 0) {
426                     curve[0] = &ptArray[verb];
427                     if (verb == SkPath::kCubic_Verb) {
428                         curve[1] = &ptArray[2];
429                         curve[2] = &ptArray[1];
430                     }
431                     curve[verb] = &ptArray[0];
432                 } else {
433                     curve[0] = &ptArray[0];
434                     if (verb == SkPath::kCubic_Verb) {
435                         curve[1] = &ptArray[1];
436                         curve[2] = &ptArray[2];
437                     }
438                     curve[verb] = &ptArray[verb];
439                 }
440                 if (verb == SkPath::kQuad_Verb) {
441                     curve[1] = &ptArray[1];
442                 }
443                 if (doMove) {
444                     firstPt = *curve[0];
445                     simple.moveTo(curve[0]->fX, curve[0]->fY);
446 #if DEBUG_ASSEMBLE
447                     SkDebugf("%s %d moveTo (%g,%g)\n", __FUNCTION__,
448                             listIndex + 1, curve[0]->fX, curve[0]->fY);
449                     firstIndex = listIndex;
450 #endif
451                     for (int index = 0; index <= verb; ++index) {
452                         lastCurve[index] = *curve[index];
453                     }
454                     doMove = false;
455                 } else {
456                     bool gap = lastCurve[lastVerb] != *curve[0];
457                     if (gap || lastVerb != SkPath::kLine_Verb) { // output the accumulated curve before the gap
458                         // FIXME: see comment in bridge -- this probably
459                         // conceals errors
460                         SkASSERT(fFill && UlpsDiff(lastCurve[lastVerb].fY,
461                                 curve[0]->fY) <= 10);
462                         switch (lastVerb) {
463                             case SkPath::kLine_Verb:
464                                 simple.lineTo(lastCurve[1].fX, lastCurve[1].fY);
465                                 break;
466                             case SkPath::kQuad_Verb:
467                                 simple.quadTo(lastCurve[1].fX, lastCurve[1].fY,
468                                         lastCurve[2].fX, lastCurve[2].fY);
469                                 break;
470                             case SkPath::kCubic_Verb:
471                                 simple.cubicTo(lastCurve[1].fX, lastCurve[1].fY,
472                                         lastCurve[2].fX, lastCurve[2].fY,
473                                         lastCurve[3].fX, lastCurve[3].fY);
474                                 break;
475                         }
476 #if DEBUG_ASSEMBLE
477                         SkDebugf("%*s %d %sTo (%g,%g)\n", tab, "", lastIndex + 1,
478                                 kLVerbStr[lastVerb], lastCurve[lastVerb].fX,
479                                 lastCurve[lastVerb].fY);
480 #endif
481                     }
482                     int firstCopy = 1;
483                     if (gap || (lastVerb == SkPath::kLine_Verb
484                              && (verb != SkPath::kLine_Verb
485                              || !extendLine(lastCurve, *curve[verb])))) {
486                         // FIXME: see comment in bridge -- this probably
487                         // conceals errors
488                         SkASSERT(lastCurve[lastVerb] == *curve[0] ||
489                                 (fFill && UlpsDiff(lastCurve[lastVerb].fY,
490                                 curve[0]->fY) <= 10));
491                         simple.lineTo(curve[0]->fX, curve[0]->fY);
492 #if DEBUG_ASSEMBLE
493                         SkDebugf("%*s %d gap lineTo (%g,%g)\n", tab, "",
494                                 lastIndex + 1, curve[0]->fX, curve[0]->fY);
495 #endif
496                         firstCopy = 0;
497                     } else if (lastVerb != SkPath::kLine_Verb) {
498                         firstCopy = 0;
499                     }
500                     for (int index = firstCopy; index <= verb; ++index) {
501                         lastCurve[index] = *curve[index];
502                     }
503                 }
504                 lastVerb = verb;
505 #if DEBUG_ASSEMBLE
506                 lastIndex = listIndex;
507 #endif
508                 if (advance < 0) {
509                     edgeIndex = fTops[listIndex];
510                     fTops[listIndex] = 0;
511                 } else {
512                     edgeIndex = fBottoms[listIndex];
513                     fBottoms[listIndex] = 0;
514                 }
515                 if (edgeIndex) {
516                     listIndex = abs(edgeIndex) - 1;
517                     if (edgeIndex < 0) {
518                         fTops[listIndex] = 0;
519                     } else {
520                         fBottoms[listIndex] = 0;
521                     }
522                 }
523                 if (edgeIndex == closeEdgeIndex || edgeIndex == 0) {
524                     switch (lastVerb) {
525                         case SkPath::kLine_Verb:
526                             simple.lineTo(lastCurve[1].fX, lastCurve[1].fY);
527                             break;
528                         case SkPath::kQuad_Verb:
529                             simple.quadTo(lastCurve[1].fX, lastCurve[1].fY,
530                                     lastCurve[2].fX, lastCurve[2].fY);
531                             break;
532                         case SkPath::kCubic_Verb:
533                             simple.cubicTo(lastCurve[1].fX, lastCurve[1].fY,
534                                     lastCurve[2].fX, lastCurve[2].fY,
535                                     lastCurve[3].fX, lastCurve[3].fY);
536                             break;
537                     }
538 #if DEBUG_ASSEMBLE
539                     SkDebugf("%*s %d %sTo last (%g, %g)\n", tab, "",
540                             lastIndex + 1, kLVerbStr[lastVerb],
541                             lastCurve[lastVerb].fX, lastCurve[lastVerb].fY);
542 #endif
543                     if (lastCurve[lastVerb] != firstPt) {
544                         simple.lineTo(firstPt.fX, firstPt.fY);
545 #if DEBUG_ASSEMBLE
546                         SkDebugf("%*s %d final line (%g, %g)\n", tab, "",
547                                 firstIndex + 1, firstPt.fX, firstPt.fY);
548 #endif
549                     }
550                     simple.close();
551 #if DEBUG_ASSEMBLE
552                     SkDebugf("%*s   close\n", tab, "");
553 #endif
554                     break;
555                 }
556                 // if this and next edge go different directions
557 #if DEBUG_ASSEMBLE
558                 SkDebugf("%*s   advance=%d edgeIndex=%d flip=%s\n", tab, "",
559                         advance, edgeIndex, advance > 0 ^ edgeIndex < 0 ?
560                         "true" : "false");
561 #endif
562                 if (advance > 0 ^ edgeIndex < 0) {
563                     advance = -advance;
564                 }
565             } while (edgeIndex);
566         } while (true);
567     }
568 
569     // sort points by y, then x
570     // if x/y is identical, sort bottoms before tops
571     // if identical and both tops/bottoms, sort by angle
lessThan(SkTArray<OutEdge> & edges,const int one,const int two)572     static bool lessThan(SkTArray<OutEdge>& edges, const int one,
573             const int two) {
574         const OutEdge& oneEdge = edges[abs(one) - 1];
575         int oneIndex = one < 0 ? 0 : oneEdge.fVerb;
576         const SkPoint& startPt1 = oneEdge.fPts[oneIndex];
577         const OutEdge& twoEdge = edges[abs(two) - 1];
578         int twoIndex = two < 0 ? 0 : twoEdge.fVerb;
579         const SkPoint& startPt2 = twoEdge.fPts[twoIndex];
580         if (startPt1.fY != startPt2.fY) {
581     #if DEBUG_OUT_LESS_THAN
582             SkDebugf("%s %d<%d (%g,%g) %s startPt1.fY < startPt2.fY\n", __FUNCTION__,
583                     one, two, startPt1.fY, startPt2.fY,
584                     startPt1.fY < startPt2.fY ? "true" : "false");
585     #endif
586             return startPt1.fY < startPt2.fY;
587         }
588         if (startPt1.fX != startPt2.fX) {
589     #if DEBUG_OUT_LESS_THAN
590             SkDebugf("%s %d<%d (%g,%g) %s startPt1.fX < startPt2.fX\n", __FUNCTION__,
591                     one, two, startPt1.fX, startPt2.fX,
592                     startPt1.fX < startPt2.fX ? "true" : "false");
593     #endif
594             return startPt1.fX < startPt2.fX;
595         }
596         const SkPoint& endPt1 = oneEdge.fPts[oneIndex ^ oneEdge.fVerb];
597         const SkPoint& endPt2 = twoEdge.fPts[twoIndex ^ twoEdge.fVerb];
598         SkScalar dy1 = startPt1.fY - endPt1.fY;
599         SkScalar dy2 = startPt2.fY - endPt2.fY;
600         SkScalar dy1y2 = dy1 * dy2;
601         if (dy1y2 < 0) { // different signs
602     #if DEBUG_OUT_LESS_THAN
603                 SkDebugf("%s %d<%d %s dy1 > 0\n", __FUNCTION__, one, two,
604                         dy1 > 0 ? "true" : "false");
605     #endif
606             return dy1 > 0; // one < two if one goes up and two goes down
607         }
608         if (dy1y2 == 0) {
609     #if DEBUG_OUT_LESS_THAN
610             SkDebugf("%s %d<%d %s endPt1.fX < endPt2.fX\n", __FUNCTION__,
611                     one, two, endPt1.fX < endPt2.fX ? "true" : "false");
612     #endif
613             return endPt1.fX < endPt2.fX;
614         }
615         SkScalar dx1y2 = (startPt1.fX - endPt1.fX) * dy2;
616         SkScalar dx2y1 = (startPt2.fX - endPt2.fX) * dy1;
617     #if DEBUG_OUT_LESS_THAN
618         SkDebugf("%s %d<%d %s dy2 < 0 ^ dx1y2 < dx2y1\n", __FUNCTION__,
619                 one, two, dy2 < 0 ^ dx1y2 < dx2y1 ? "true" : "false");
620     #endif
621         return dy2 > 0 ^ dx1y2 < dx2y1;
622     }
623 
624     // Sort the indices of paired points and then create more indices so
625     // assemble() can find the next edge and connect the top or bottom
bridge()626     void bridge() {
627         size_t index;
628         size_t count = fEdges.count();
629         if (!count) {
630             return;
631         }
632         SkASSERT(!fFill || count > 1);
633         fTops.setCount(count);
634         sk_bzero(fTops.begin(), sizeof(fTops[0]) * count);
635         fBottoms.setCount(count);
636         sk_bzero(fBottoms.begin(), sizeof(fBottoms[0]) * count);
637         SkTDArray<int> order;
638         for (index = 1; index <= count; ++index) {
639             *order.append() = -index;
640         }
641         for (index = 1; index <= count; ++index) {
642             *order.append() = index;
643         }
644         QSort<SkTArray<OutEdge>, int>(fEdges, order.begin(), order.end() - 1, lessThan);
645         int* lastPtr = order.end() - 1;
646         int* leftPtr = order.begin();
647         while (leftPtr < lastPtr) {
648             int leftIndex = *leftPtr;
649             int leftOutIndex = abs(leftIndex) - 1;
650             const OutEdge& left = fEdges[leftOutIndex];
651             int* rightPtr = leftPtr + 1;
652             int rightIndex = *rightPtr;
653             int rightOutIndex = abs(rightIndex) - 1;
654             const OutEdge& right = fEdges[rightOutIndex];
655             bool pairUp = fFill;
656             if (!pairUp) {
657                 const SkPoint& leftMatch =
658                         left.fPts[leftIndex < 0 ? 0 : left.fVerb];
659                 const SkPoint& rightMatch =
660                         right.fPts[rightIndex < 0 ? 0 : right.fVerb];
661                 pairUp = leftMatch == rightMatch;
662             } else {
663         #if DEBUG_OUT
664         // FIXME : not happy that error in low bit is allowed
665         // this probably conceals error elsewhere
666                 if (UlpsDiff(left.fPts[leftIndex < 0 ? 0 : left.fVerb].fY,
667                         right.fPts[rightIndex < 0 ? 0 : right.fVerb].fY) > 1) {
668                     *fMismatches.append() = leftIndex;
669                     if (rightPtr == lastPtr) {
670                         *fMismatches.append() = rightIndex;
671                     }
672                     pairUp = false;
673                 }
674         #else
675                 SkASSERT(UlpsDiff(left.fPts[leftIndex < 0 ? 0 : left.fVerb].fY,
676                         right.fPts[rightIndex < 0 ? 0 : right.fVerb].fY) <= 10);
677         #endif
678             }
679             if (pairUp) {
680                 if (leftIndex < 0) {
681                     fTops[leftOutIndex] = rightIndex;
682                 } else {
683                     fBottoms[leftOutIndex] = rightIndex;
684                 }
685                 if (rightIndex < 0) {
686                     fTops[rightOutIndex] = leftIndex;
687                 } else {
688                     fBottoms[rightOutIndex] = leftIndex;
689                 }
690                 ++rightPtr;
691             }
692             leftPtr = rightPtr;
693         }
694 #if DEBUG_OUT
695         int* mismatch = fMismatches.begin();
696         while (mismatch != fMismatches.end()) {
697             int leftIndex = *mismatch++;
698             int leftOutIndex = abs(leftIndex) - 1;
699             const OutEdge& left = fEdges[leftOutIndex];
700             const SkPoint& leftPt = left.fPts[leftIndex < 0 ? 0 : left.fVerb];
701             SkDebugf("%s left=%d %s (%1.9g,%1.9g)\n",
702                     __FUNCTION__, left.fID, leftIndex < 0 ? "top" : "bot",
703                     leftPt.fX, leftPt.fY);
704         }
705         SkASSERT(fMismatches.count() == 0);
706 #endif
707 #if DEBUG_BRIDGE
708     for (index = 0; index < count; ++index) {
709         const OutEdge& edge = fEdges[index];
710         uint8_t verb = edge.fVerb;
711         SkDebugf("%s %d edge=%d %s (%1.9g,%1.9g) (%1.9g,%1.9g)\n",
712                 index == 0 ? __FUNCTION__ : "      ",
713                 index + 1, edge.fID, kLVerbStr[verb], edge.fPts[0].fX,
714                 edge.fPts[0].fY, edge.fPts[verb].fX, edge.fPts[verb].fY);
715     }
716     for (index = 0; index < count; ++index) {
717         SkDebugf("       top    of % 2d connects to %s of % 2d\n", index + 1,
718                 fTops[index] < 0 ? "top   " : "bottom", abs(fTops[index]));
719         SkDebugf("       bottom of % 2d connects to %s of % 2d\n", index + 1,
720                 fBottoms[index] < 0 ? "top   " : "bottom", abs(fBottoms[index]));
721     }
722 #endif
723     }
724 
725 protected:
726     SkTArray<OutEdge> fEdges;
727     SkTDArray<int> fTops;
728     SkTDArray<int> fBottoms;
729     bool fFill;
730 #if DEBUG_OUT
731     SkTDArray<int> fMismatches;
732 #endif
733 };
734 
735 // Bounds, unlike Rect, does not consider a vertical line to be empty.
736 struct Bounds : public SkRect {
IntersectsBounds737     static bool Intersects(const Bounds& a, const Bounds& b) {
738         return a.fLeft <= b.fRight && b.fLeft <= a.fRight &&
739                 a.fTop <= b.fBottom && b.fTop <= a.fBottom;
740     }
741 
isEmptyBounds742     bool isEmpty() {
743         return fLeft > fRight || fTop > fBottom
744                 || (fLeft == fRight && fTop == fBottom)
745                 || isnan(fLeft) || isnan(fRight)
746                 || isnan(fTop) || isnan(fBottom);
747     }
748 };
749 
750 class Intercepts {
751 public:
Intercepts()752     Intercepts()
753         : fTopIntercepts(0)
754         , fBottomIntercepts(0)
755         , fExplicit(false) {
756     }
757 
operator =(const Intercepts & src)758     Intercepts& operator=(const Intercepts& src) {
759         fTs = src.fTs;
760         fTopIntercepts = src.fTopIntercepts;
761         fBottomIntercepts = src.fBottomIntercepts;
762         return *this;
763     }
764 
765     // OPTIMIZATION: remove this function if it's never called
t(int tIndex) const766     double t(int tIndex) const {
767         if (tIndex == 0) {
768             return 0;
769         }
770         if (tIndex > fTs.count()) {
771             return 1;
772         }
773         return fTs[tIndex - 1];
774     }
775 
776 #if DEBUG_DUMP
dump(const SkPoint * pts,SkPath::Verb verb)777     void dump(const SkPoint* pts, SkPath::Verb verb) {
778         const char className[] = "Intercepts";
779         const int tab = 8;
780         for (int i = 0; i < fTs.count(); ++i) {
781             SkPoint out;
782             switch (verb) {
783                 case SkPath::kLine_Verb:
784                     LineXYAtT(pts, fTs[i], &out);
785                     break;
786                 case SkPath::kQuad_Verb:
787                     QuadXYAtT(pts, fTs[i], &out);
788                     break;
789                 case SkPath::kCubic_Verb:
790                     CubicXYAtT(pts, fTs[i], &out);
791                     break;
792                 default:
793                     SkASSERT(0);
794             }
795             SkDebugf("%*s.fTs[%d]=%1.9g (%1.9g,%1.9g)\n", tab + sizeof(className),
796                     className, i, fTs[i], out.fX, out.fY);
797         }
798         SkDebugf("%*s.fTopIntercepts=%u\n", tab + sizeof(className),
799                 className, fTopIntercepts);
800         SkDebugf("%*s.fBottomIntercepts=%u\n", tab + sizeof(className),
801                 className, fBottomIntercepts);
802         SkDebugf("%*s.fExplicit=%d\n", tab + sizeof(className),
803                 className, fExplicit);
804     }
805 #endif
806 
807     SkTDArray<double> fTs;
808     unsigned char fTopIntercepts; // 0=init state 1=1 edge >1=multiple edges
809     unsigned char fBottomIntercepts;
810     bool fExplicit; // if set, suppress 0 and 1
811 
812 };
813 
814 struct HorizontalEdge {
operator <HorizontalEdge815     bool operator<(const HorizontalEdge& rh) const {
816         return fY == rh.fY ? fLeft == rh.fLeft ? fRight < rh.fRight
817                 : fLeft < rh.fLeft : fY < rh.fY;
818     }
819 
820 #if DEBUG_DUMP
dumpHorizontalEdge821     void dump() {
822         const char className[] = "HorizontalEdge";
823         const int tab = 4;
824         SkDebugf("%*s.fLeft=%1.9g\n", tab + sizeof(className), className, fLeft);
825         SkDebugf("%*s.fRight=%1.9g\n", tab + sizeof(className), className, fRight);
826         SkDebugf("%*s.fY=%1.9g\n", tab + sizeof(className), className, fY);
827     }
828 #endif
829 
830     SkScalar fLeft;
831     SkScalar fRight;
832     SkScalar fY;
833 };
834 
835 struct InEdge {
operator <InEdge836     bool operator<(const InEdge& rh) const {
837         return fBounds.fTop == rh.fBounds.fTop
838                 ? fBounds.fLeft < rh.fBounds.fLeft
839                 : fBounds.fTop < rh.fBounds.fTop;
840     }
841 
842     // Avoid collapsing t values that are close to the same since
843     // we walk ts to describe consecutive intersections. Since a pair of ts can
844     // be nearly equal, any problems caused by this should be taken care
845     // of later.
addInEdge846     int add(double* ts, size_t count, ptrdiff_t verbIndex) {
847         // FIXME: in the pathological case where there is a ton of intercepts, binary search?
848         bool foundIntercept = false;
849         int insertedAt = -1;
850         Intercepts& intercepts = fIntercepts[verbIndex];
851         for (size_t index = 0; index < count; ++index) {
852             double t = ts[index];
853             if (t <= 0) {
854                 intercepts.fTopIntercepts <<= 1;
855                 fContainsIntercepts |= ++intercepts.fTopIntercepts > 1;
856                 continue;
857             }
858             if (t >= 1) {
859                 intercepts.fBottomIntercepts <<= 1;
860                 fContainsIntercepts |= ++intercepts.fBottomIntercepts > 1;
861                 continue;
862             }
863             fIntersected = true;
864             foundIntercept = true;
865             size_t tCount = intercepts.fTs.count();
866             double delta;
867             for (size_t idx2 = 0; idx2 < tCount; ++idx2) {
868                 if (t <= intercepts.fTs[idx2]) {
869                     // FIXME: ?  if (t < intercepts.fTs[idx2]) // failed
870                     delta = intercepts.fTs[idx2] - t;
871                     if (delta > 0) {
872                         insertedAt = idx2;
873                         *intercepts.fTs.insert(idx2) = t;
874                     }
875                     goto nextPt;
876                 }
877             }
878             if (tCount == 0 || (delta = t - intercepts.fTs[tCount - 1]) > 0) {
879                 insertedAt = tCount;
880                 *intercepts.fTs.append() = t;
881             }
882     nextPt:
883             ;
884         }
885         fContainsIntercepts |= foundIntercept;
886         return insertedAt;
887     }
888 
addPartialInEdge889     void addPartial(SkTArray<InEdge>& edges, int ptStart, int ptEnd,
890             int verbStart, int verbEnd) {
891         InEdge* edge = edges.push_back_n(1);
892         int verbCount = verbEnd - verbStart;
893         edge->fIntercepts.push_back_n(verbCount);
894      //   uint8_t* verbs = &fVerbs[verbStart];
895         for (int ceptIdx = 0; ceptIdx < verbCount; ++ceptIdx) {
896             edge->fIntercepts[ceptIdx] = fIntercepts[verbStart + ceptIdx];
897         }
898         edge->fPts.append(ptEnd - ptStart, &fPts[ptStart]);
899         edge->fVerbs.append(verbCount, &fVerbs[verbStart]);
900         edge->setBounds();
901         edge->fWinding = fWinding;
902         edge->fContainsIntercepts = fContainsIntercepts; // FIXME: may not be correct -- but do we need to know?
903     }
904 
addSplitInEdge905     void addSplit(SkTArray<InEdge>& edges, SkPoint* pts, uint8_t verb,
906             Intercepts& intercepts, int firstT, int lastT, bool flipped) {
907         InEdge* edge = edges.push_back_n(1);
908         edge->fIntercepts.push_back_n(1);
909         if (firstT == 0) {
910             *edge->fIntercepts[0].fTs.append() = 0;
911         } else {
912             *edge->fIntercepts[0].fTs.append() = intercepts.fTs[firstT - 1];
913         }
914         bool add1 = lastT == intercepts.fTs.count();
915         edge->fIntercepts[0].fTs.append(lastT - firstT, &intercepts.fTs[firstT]);
916         if (add1) {
917             *edge->fIntercepts[0].fTs.append() = 1;
918         }
919         edge->fIntercepts[0].fExplicit = true;
920         edge->fPts.append(verb + 1, pts);
921         edge->fVerbs.append(1, &verb);
922         // FIXME: bounds could be better for partial Ts
923         edge->setSubBounds();
924         edge->fContainsIntercepts = fContainsIntercepts; // FIXME: may not be correct -- but do we need to know?
925         if (flipped) {
926             edge->flipTs();
927             edge->fWinding = -fWinding;
928         } else {
929             edge->fWinding = fWinding;
930         }
931     }
932 
cachedInEdge933     bool cached(const InEdge* edge) {
934         // FIXME: in the pathological case where there is a ton of edges, binary search?
935         size_t count = fCached.count();
936         for (size_t index = 0; index < count; ++index) {
937             if (edge == fCached[index]) {
938                 return true;
939             }
940             if (edge < fCached[index]) {
941                 *fCached.insert(index) = edge;
942                 return false;
943             }
944         }
945         *fCached.append() = edge;
946         return false;
947     }
948 
completeInEdge949     void complete(signed char winding) {
950         setBounds();
951         fIntercepts.push_back_n(fVerbs.count());
952         if ((fWinding = winding) < 0) { // reverse verbs, pts, if bottom to top
953             flip();
954         }
955         fContainsIntercepts = fIntersected = false;
956     }
957 
flipInEdge958     void flip() {
959         size_t index;
960         size_t last = fPts.count() - 1;
961         for (index = 0; index < last; ++index, --last) {
962             SkTSwap<SkPoint>(fPts[index], fPts[last]);
963         }
964         last = fVerbs.count() - 1;
965         for (index = 0; index < last; ++index, --last) {
966             SkTSwap<uint8_t>(fVerbs[index], fVerbs[last]);
967         }
968     }
969 
flipTsInEdge970     void flipTs() {
971         SkASSERT(fIntercepts.count() == 1);
972         Intercepts& intercepts = fIntercepts[0];
973         SkASSERT(intercepts.fExplicit);
974         SkTDArray<double>& ts = intercepts.fTs;
975         size_t index;
976         size_t last = ts.count() - 1;
977         for (index = 0; index < last; ++index, --last) {
978             SkTSwap<double>(ts[index], ts[last]);
979         }
980     }
981 
resetInEdge982     void reset() {
983         fCached.reset();
984         fIntercepts.reset();
985         fPts.reset();
986         fVerbs.reset();
987         fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax);
988         fWinding = 0;
989         fContainsIntercepts = false;
990         fIntersected = false;
991     }
992 
setBoundsInEdge993     void setBounds() {
994         SkPoint* ptPtr = fPts.begin();
995         SkPoint* ptLast = fPts.end();
996         if (ptPtr == ptLast) {
997             SkDebugf("%s empty edge\n", __FUNCTION__);
998             SkASSERT(0);
999             // FIXME: delete empty edge?
1000             return;
1001         }
1002         fBounds.set(ptPtr->fX, ptPtr->fY, ptPtr->fX, ptPtr->fY);
1003         ++ptPtr;
1004         while (ptPtr != ptLast) {
1005             fBounds.growToInclude(ptPtr->fX, ptPtr->fY);
1006             ++ptPtr;
1007         }
1008     }
1009 
1010     // recompute bounds based on subrange of T values
setSubBoundsInEdge1011     void setSubBounds() {
1012         SkASSERT(fIntercepts.count() == 1);
1013         Intercepts& intercepts = fIntercepts[0];
1014         SkASSERT(intercepts.fExplicit);
1015         SkASSERT(fVerbs.count() == 1);
1016         SkTDArray<double>& ts = intercepts.fTs;
1017         if (fVerbs[0] == SkPath::kQuad_Verb) {
1018             SkASSERT(fPts.count() == 3);
1019             QuadSubBounds(fPts.begin(), ts[0], ts[ts.count() - 1], fBounds);
1020         } else {
1021             SkASSERT(fVerbs[0] == SkPath::kCubic_Verb);
1022             SkASSERT(fPts.count() == 4);
1023             CubicSubBounds(fPts.begin(), ts[0], ts[ts.count() - 1], fBounds);
1024         }
1025     }
1026 
splitInflectionPtsInEdge1027     void splitInflectionPts(SkTArray<InEdge>& edges) {
1028         if (!fIntersected) {
1029             return;
1030         }
1031         uint8_t* verbs = fVerbs.begin();
1032         SkPoint* pts = fPts.begin();
1033         int lastVerb = 0;
1034         int lastPt = 0;
1035         uint8_t verb;
1036         bool edgeSplit = false;
1037         for (int ceptIdx = 0; ceptIdx < fIntercepts.count(); ++ceptIdx, pts += verb) {
1038             Intercepts& intercepts = fIntercepts[ceptIdx];
1039             verb = *verbs++;
1040             if (verb <= SkPath::kLine_Verb) {
1041                 continue;
1042             }
1043             size_t tCount = intercepts.fTs.count();
1044             if (!tCount) {
1045                 continue;
1046             }
1047             size_t tIndex = (size_t) -1;
1048             SkScalar y = pts[0].fY;
1049             int lastSplit = 0;
1050             int firstSplit = -1;
1051             bool curveSplit = false;
1052             while (++tIndex < tCount) {
1053                 double nextT = intercepts.fTs[tIndex];
1054                 SkScalar nextY = verb == SkPath::kQuad_Verb
1055                         ? QuadYAtT(pts, nextT) : CubicYAtT(pts, nextT);
1056                 if (nextY < y) {
1057                     edgeSplit = curveSplit = true;
1058                     if (firstSplit < 0) {
1059                         firstSplit = tIndex;
1060                         int nextPt = pts - fPts.begin();
1061                         int nextVerb = verbs - 1 - fVerbs.begin();
1062                         if (lastVerb < nextVerb) {
1063                             addPartial(edges, lastPt, nextPt, lastVerb, nextVerb);
1064             #if DEBUG_SPLIT
1065                             SkDebugf("%s addPartial 1\n", __FUNCTION__);
1066             #endif
1067                         }
1068                         lastPt = nextPt;
1069                         lastVerb = nextVerb;
1070                     }
1071                 } else {
1072                     if (firstSplit >= 0) {
1073                         if (lastSplit < firstSplit) {
1074                             addSplit(edges, pts, verb, intercepts,
1075                                     lastSplit, firstSplit, false);
1076             #if DEBUG_SPLIT
1077                             SkDebugf("%s addSplit 1 tIndex=%d,%d\n",
1078                                     __FUNCTION__, lastSplit, firstSplit);
1079             #endif
1080                         }
1081                         addSplit(edges, pts, verb, intercepts,
1082                                 firstSplit, tIndex, true);
1083             #if DEBUG_SPLIT
1084                         SkDebugf("%s addSplit 2 tIndex=%d,%d flip\n",
1085                                 __FUNCTION__, firstSplit, tIndex);
1086             #endif
1087                         lastSplit = tIndex;
1088                         firstSplit = -1;
1089                     }
1090                 }
1091                 y = nextY;
1092             }
1093             if (curveSplit) {
1094                 if (firstSplit < 0) {
1095                     firstSplit = lastSplit;
1096                 } else {
1097                     addSplit(edges, pts, verb, intercepts, lastSplit,
1098                             firstSplit, false);
1099             #if DEBUG_SPLIT
1100                     SkDebugf("%s addSplit 3 tIndex=%d,%d\n", __FUNCTION__,
1101                             lastSplit, firstSplit);
1102             #endif
1103                 }
1104                 addSplit(edges, pts, verb, intercepts, firstSplit,
1105                         tIndex, pts[verb].fY < y);
1106             #if DEBUG_SPLIT
1107                 SkDebugf("%s addSplit 4 tIndex=%d,%d %s\n", __FUNCTION__,
1108                         firstSplit, tIndex, pts[verb].fY < y ? "flip" : "");
1109             #endif
1110             }
1111         }
1112         // collapse remainder -- if there's nothing left, clear it somehow?
1113         if (edgeSplit) {
1114             int nextVerb = verbs - 1 - fVerbs.begin();
1115             if (lastVerb < nextVerb) {
1116                 int nextPt = pts - fPts.begin();
1117                 addPartial(edges, lastPt, nextPt, lastVerb, nextVerb);
1118             #if DEBUG_SPLIT
1119                 SkDebugf("%s addPartial 2\n", __FUNCTION__);
1120             #endif
1121             }
1122             // OPTIMIZATION: reuse the edge instead of marking it empty
1123             reset();
1124         }
1125     }
1126 
1127 #if DEBUG_DUMP
dumpInEdge1128     void dump() {
1129         int i;
1130         const char className[] = "InEdge";
1131         const int tab = 4;
1132         SkDebugf("InEdge %p (edge=%d)\n", this, fID);
1133         for (i = 0; i < fCached.count(); ++i) {
1134             SkDebugf("%*s.fCached[%d]=0x%08x\n", tab + sizeof(className),
1135                     className, i, fCached[i]);
1136         }
1137         uint8_t* verbs = fVerbs.begin();
1138         SkPoint* pts = fPts.begin();
1139         for (i = 0; i < fIntercepts.count(); ++i) {
1140             SkDebugf("%*s.fIntercepts[%d]:\n", tab + sizeof(className),
1141                     className, i);
1142             fIntercepts[i].dump(pts, (SkPath::Verb) *verbs);
1143             pts += *verbs++;
1144         }
1145         for (i = 0; i < fPts.count(); ++i) {
1146             SkDebugf("%*s.fPts[%d]=(%1.9g,%1.9g)\n", tab + sizeof(className),
1147                     className, i, fPts[i].fX, fPts[i].fY);
1148         }
1149         for (i = 0; i < fVerbs.count(); ++i) {
1150             SkDebugf("%*s.fVerbs[%d]=%d\n", tab + sizeof(className),
1151                     className, i, fVerbs[i]);
1152         }
1153         SkDebugf("%*s.fBounds=(%1.9g, %1.9g, %1.9g, %1.9g)\n", tab + sizeof(className),
1154                 className, fBounds.fLeft, fBounds.fTop,
1155                 fBounds.fRight, fBounds.fBottom);
1156         SkDebugf("%*s.fWinding=%d\n", tab + sizeof(className), className,
1157                 fWinding);
1158         SkDebugf("%*s.fContainsIntercepts=%d\n", tab + sizeof(className),
1159                 className, fContainsIntercepts);
1160         SkDebugf("%*s.fIntersected=%d\n", tab + sizeof(className),
1161                 className, fIntersected);
1162     }
1163 #endif
1164 
1165     // FIXME: temporary data : move this to a separate struct?
1166     SkTDArray<const InEdge*> fCached; // list of edges already intercepted
1167     SkTArray<Intercepts> fIntercepts; // one per verb
1168 
1169     // persistent data
1170     SkTDArray<SkPoint> fPts;
1171     SkTDArray<uint8_t> fVerbs;
1172     Bounds fBounds;
1173     int fID;
1174     signed char fWinding;
1175     bool fContainsIntercepts;
1176     bool fIntersected;
1177 };
1178 
1179 class InEdgeBuilder {
1180 public:
1181 
InEdgeBuilder(const SkPath & path,bool ignoreHorizontal,SkTArray<InEdge> & edges,SkTDArray<HorizontalEdge> & horizontalEdges)1182 InEdgeBuilder(const SkPath& path, bool ignoreHorizontal, SkTArray<InEdge>& edges,
1183         SkTDArray<HorizontalEdge>& horizontalEdges)
1184     : fPath(path)
1185     , fCurrentEdge(NULL)
1186     , fEdges(edges)
1187     , fHorizontalEdges(horizontalEdges)
1188     , fIgnoreHorizontal(ignoreHorizontal)
1189     , fContainsCurves(false)
1190 {
1191     walk();
1192 }
1193 
containsCurves() const1194 bool containsCurves() const {
1195     return fContainsCurves;
1196 }
1197 
1198 protected:
1199 
addEdge()1200 void addEdge() {
1201     SkASSERT(fCurrentEdge);
1202     fCurrentEdge->fPts.append(fPtCount - fPtOffset, &fPts[fPtOffset]);
1203     fPtOffset = 1;
1204     *fCurrentEdge->fVerbs.append() = fVerb;
1205 }
1206 
complete()1207 bool complete() {
1208     if (fCurrentEdge && fCurrentEdge->fVerbs.count()) {
1209         fCurrentEdge->complete(fWinding);
1210         fCurrentEdge = NULL;
1211         return true;
1212     }
1213     return false;
1214 }
1215 
direction(SkPath::Verb verb)1216 int direction(SkPath::Verb verb) {
1217     fPtCount = verb + 1;
1218     if (fIgnoreHorizontal && isHorizontal()) {
1219         return 0;
1220     }
1221     return fPts[0].fY == fPts[verb].fY
1222             ? fPts[0].fX == fPts[verb].fX ? 0 : fPts[0].fX < fPts[verb].fX
1223             ? 1 : -1 : fPts[0].fY < fPts[verb].fY ? 1 : -1;
1224 }
1225 
isHorizontal()1226 bool isHorizontal() {
1227     SkScalar y = fPts[0].fY;
1228     for (int i = 1; i < fPtCount; ++i) {
1229         if (fPts[i].fY != y) {
1230             return false;
1231         }
1232     }
1233     return true;
1234 }
1235 
startEdge()1236 void startEdge() {
1237     if (!fCurrentEdge) {
1238         fCurrentEdge = fEdges.push_back_n(1);
1239     }
1240     fWinding = 0;
1241     fPtOffset = 0;
1242 }
1243 
walk()1244 void walk() {
1245     SkPath::Iter iter(fPath, true);
1246     int winding = 0;
1247     while ((fVerb = iter.next(fPts)) != SkPath::kDone_Verb) {
1248         switch (fVerb) {
1249             case SkPath::kMove_Verb:
1250                 startEdge();
1251                 continue;
1252             case SkPath::kLine_Verb:
1253                 winding = direction(SkPath::kLine_Verb);
1254                 break;
1255             case SkPath::kQuad_Verb:
1256                 fVerb = QuadReduceOrder(fPts);
1257                 winding = direction(fVerb);
1258                 fContainsCurves |= fVerb == SkPath::kQuad_Verb;
1259                 break;
1260             case SkPath::kCubic_Verb:
1261                 fVerb = CubicReduceOrder(fPts);
1262                 winding = direction(fVerb);
1263                 fContainsCurves |= fVerb >= SkPath::kQuad_Verb;
1264                 break;
1265             case SkPath::kClose_Verb:
1266                 SkASSERT(fCurrentEdge);
1267                 complete();
1268                 continue;
1269             default:
1270                 SkDEBUGFAIL("bad verb");
1271                 return;
1272         }
1273         if (winding == 0) {
1274             HorizontalEdge* horizontalEdge = fHorizontalEdges.append();
1275             // FIXME: for degenerate quads and cubics, compute x extremes
1276             horizontalEdge->fLeft = fPts[0].fX;
1277             horizontalEdge->fRight = fPts[fVerb].fX;
1278             horizontalEdge->fY = fPts[0].fY;
1279             if (horizontalEdge->fLeft > horizontalEdge->fRight) {
1280                 SkTSwap<SkScalar>(horizontalEdge->fLeft, horizontalEdge->fRight);
1281             }
1282             if (complete()) {
1283                 startEdge();
1284             }
1285             continue;
1286         }
1287         if (fWinding + winding == 0) {
1288             // FIXME: if prior verb or this verb is a horizontal line, reverse
1289             // it instead of starting a new edge
1290             SkASSERT(fCurrentEdge);
1291             if (complete()) {
1292                 startEdge();
1293             }
1294         }
1295         fWinding = winding;
1296         addEdge();
1297     }
1298     if (!complete()) {
1299         if (fCurrentEdge) {
1300             fEdges.pop_back();
1301         }
1302     }
1303 }
1304 
1305 private:
1306     const SkPath& fPath;
1307     InEdge* fCurrentEdge;
1308     SkTArray<InEdge>& fEdges;
1309     SkTDArray<HorizontalEdge>& fHorizontalEdges;
1310     SkPoint fPts[4];
1311     SkPath::Verb fVerb;
1312     int fPtCount;
1313     int fPtOffset;
1314     int8_t fWinding;
1315     bool fIgnoreHorizontal;
1316     bool fContainsCurves;
1317 };
1318 
1319 struct WorkEdge {
bottomWorkEdge1320     SkScalar bottom() const {
1321         return fPts[verb()].fY;
1322     }
1323 
initWorkEdge1324     void init(const InEdge* edge) {
1325         fEdge = edge;
1326         fPts = edge->fPts.begin();
1327         fVerb = edge->fVerbs.begin();
1328     }
1329 
advanceWorkEdge1330     bool advance() {
1331         SkASSERT(fVerb < fEdge->fVerbs.end());
1332         fPts += *fVerb++;
1333         return fVerb != fEdge->fVerbs.end();
1334     }
1335 
lastPointsWorkEdge1336     const SkPoint* lastPoints() const {
1337         SkASSERT(fPts >= fEdge->fPts.begin() + lastVerb());
1338         return &fPts[-lastVerb()];
1339     }
1340 
lastVerbWorkEdge1341     SkPath::Verb lastVerb() const {
1342         SkASSERT(fVerb > fEdge->fVerbs.begin());
1343         return (SkPath::Verb) fVerb[-1];
1344     }
1345 
pointsWorkEdge1346     const SkPoint* points() const {
1347         return fPts;
1348     }
1349 
verbWorkEdge1350     SkPath::Verb verb() const {
1351         return (SkPath::Verb) *fVerb;
1352     }
1353 
verbIndexWorkEdge1354     ptrdiff_t verbIndex() const {
1355         return fVerb - fEdge->fVerbs.begin();
1356     }
1357 
windingWorkEdge1358     int winding() const {
1359         return fEdge->fWinding;
1360     }
1361 
1362     const InEdge* fEdge;
1363     const SkPoint* fPts;
1364     const uint8_t* fVerb;
1365 };
1366 
1367 // always constructed with SkTDArray because new edges are inserted
1368 // this may be a inappropriate optimization, suggesting that a separate array of
1369 // ActiveEdge* may be faster to insert and search
1370 
1371 // OPTIMIZATION: Brian suggests that global sorting should be unnecessary, since
1372 // as active edges are introduced, only local sorting should be required
1373 class ActiveEdge {
1374 public:
1375     // this logic must be kept in sync with tooCloseToCall
1376     // callers expect this to only read fAbove, fTangent
operator <(const ActiveEdge & rh) const1377     bool operator<(const ActiveEdge& rh) const {
1378         if (fVerb == rh.fVerb) {
1379             // FIXME: don't know what to do if verb is quad, cubic
1380             return abCompare(fAbove, fBelow, rh.fAbove, rh.fBelow);
1381         }
1382         // figure out which is quad, line
1383         // if cached data says line did not intersect quad, use top/bottom
1384         if (fVerb != SkPath::kLine_Verb ? noIntersect(rh) : rh.noIntersect(*this)) {
1385             return abCompare(fAbove, fBelow, rh.fAbove, rh.fBelow);
1386         }
1387         // use whichever of top/tangent tangent/bottom overlaps more
1388         // with line top/bot
1389         // assumes quad/cubic can already be upconverted to cubic/cubic
1390         const SkPoint* line[2];
1391         const SkPoint* curve[4];
1392         if (fVerb != SkPath::kLine_Verb) {
1393             line[0] = &rh.fAbove;
1394             line[1] = &rh.fBelow;
1395             curve[0] = &fAbove;
1396             curve[1] = &fTangent;
1397             curve[2] = &fBelow;
1398         } else {
1399             line[0] = &fAbove;
1400             line[1] = &fBelow;
1401             curve[0] = &rh.fAbove;
1402             curve[1] = &rh.fTangent;
1403             curve[2] = &rh.fBelow;
1404         }
1405         // FIXME: code has been abandoned, incomplete....
1406         return false;
1407     }
1408 
abCompare(const SkPoint & a1,const SkPoint & a2,const SkPoint & b1,const SkPoint & b2) const1409     bool abCompare(const SkPoint& a1, const SkPoint& a2, const SkPoint& b1,
1410             const SkPoint& b2) const {
1411         double topD = a1.fX - b1.fX;
1412         if (b1.fY < a1.fY) {
1413             topD = (b2.fY - b1.fY) * topD - (a1.fY - b1.fY) * (b2.fX - b1.fX);
1414         } else if (b1.fY > a1.fY) {
1415             topD = (a2.fY - a1.fY) * topD + (b1.fY - a1.fY) * (a2.fX - a1.fX);
1416         }
1417         double botD = a2.fX - b2.fX;
1418         if (b2.fY > a2.fY) {
1419             botD = (b2.fY - b1.fY) * botD - (a2.fY - b2.fY) * (b2.fX - b1.fX);
1420         } else if (b2.fY < a2.fY) {
1421             botD = (a2.fY - a1.fY) * botD + (b2.fY - a2.fY) * (a2.fX - a1.fX);
1422         }
1423         // return sign of greater absolute value
1424         return (fabs(topD) > fabs(botD) ? topD : botD) < 0;
1425     }
1426 
1427     // If a pair of edges are nearly coincident for some span, add a T in the
1428     // edge so it can be shortened to match the other edge. Note that another
1429     // approach is to trim the edge after it is added to the OutBuilder list --
1430     // FIXME: since this has no effect if the edge is already done (i.e.,
1431     // fYBottom >= y) maybe this can only be done by calling trimLine later.
addTatYBelow(SkScalar y)1432     void addTatYBelow(SkScalar y) {
1433         if (fBelow.fY <= y || fYBottom >= y) {
1434             return;
1435         }
1436         addTatYInner(y);
1437         fFixBelow = true;
1438     }
1439 
addTatYAbove(SkScalar y)1440     void addTatYAbove(SkScalar y) {
1441         if (fBelow.fY <= y) {
1442             return;
1443         }
1444         addTatYInner(y);
1445     }
1446 
addTatYInner(SkScalar y)1447     void addTatYInner(SkScalar y) {
1448         if (fWorkEdge.fPts[0].fY > y) {
1449             backup(y);
1450         }
1451         SkScalar left = fWorkEdge.fPts[0].fX;
1452         SkScalar right = fWorkEdge.fPts[1].fX;
1453         if (left > right) {
1454             SkTSwap(left, right);
1455         }
1456         double ts[2];
1457         SkASSERT(fWorkEdge.fVerb[0] == SkPath::kLine_Verb);
1458         int pts = LineIntersect(fWorkEdge.fPts, left, right, y, ts);
1459         SkASSERT(pts == 1);
1460         // An ActiveEdge or WorkEdge has no need to modify the T values computed
1461         // in the InEdge, except in the following case. If a pair of edges are
1462         // nearly coincident, this may not be detected when the edges are
1463         // intersected. Later, when sorted, and this near-coincidence is found,
1464         // an additional t value must be added, requiring the cast below.
1465         InEdge* writable = const_cast<InEdge*>(fWorkEdge.fEdge);
1466         int insertedAt = writable->add(ts, pts, fWorkEdge.verbIndex());
1467     #if DEBUG_ADJUST_COINCIDENT
1468         SkDebugf("%s edge=%d y=%1.9g t=%1.9g\n", __FUNCTION__, ID(), y, ts[0]);
1469     #endif
1470         if (insertedAt >= 0) {
1471             if (insertedAt + 1 < fTIndex) {
1472                 SkASSERT(insertedAt + 2 == fTIndex);
1473                 --fTIndex;
1474             }
1475         }
1476     }
1477 
advanceT()1478     bool advanceT() {
1479         SkASSERT(fTIndex <= fTs->count() - fExplicitTs);
1480         return ++fTIndex <= fTs->count() - fExplicitTs;
1481     }
1482 
advance()1483     bool advance() {
1484     // FIXME: flip sense of next
1485         bool result = fWorkEdge.advance();
1486         fDone = !result;
1487         initT();
1488         return result;
1489     }
1490 
backup(SkScalar y)1491     void backup(SkScalar y) {
1492         do {
1493             SkASSERT(fWorkEdge.fEdge->fVerbs.begin() < fWorkEdge.fVerb);
1494             fWorkEdge.fPts -= *--fWorkEdge.fVerb;
1495             SkASSERT(fWorkEdge.fEdge->fPts.begin() <= fWorkEdge.fPts);
1496         } while (fWorkEdge.fPts[0].fY >= y);
1497         initT();
1498         SkASSERT(!fExplicitTs);
1499         fTIndex = fTs->count() + 1;
1500     }
1501 
calcAboveBelow(double tAbove,double tBelow)1502     void calcAboveBelow(double tAbove, double tBelow) {
1503         fVerb = fWorkEdge.verb();
1504         switch (fVerb) {
1505             case SkPath::kLine_Verb:
1506                 LineXYAtT(fWorkEdge.fPts, tAbove, &fAbove);
1507                 LineXYAtT(fWorkEdge.fPts, tBelow, &fTangent);
1508                 fBelow = fTangent;
1509                 break;
1510             case SkPath::kQuad_Verb:
1511                 // FIXME: put array in struct to avoid copy?
1512                 SkPoint quad[3];
1513                 QuadSubDivide(fWorkEdge.fPts, tAbove, tBelow, quad);
1514                 fAbove = quad[0];
1515                 fTangent = quad[0] != quad[1] ? quad[1] : quad[2];
1516                 fBelow = quad[2];
1517                 break;
1518             case SkPath::kCubic_Verb:
1519                 SkPoint cubic[3];
1520                 CubicSubDivide(fWorkEdge.fPts, tAbove, tBelow, cubic);
1521                 fAbove = cubic[0];
1522                 // FIXME: can't see how quad logic for how tangent is used
1523                 // extends to cubic
1524                 fTangent = cubic[0] != cubic[1] ? cubic[1]
1525                         : cubic[0] != cubic[2] ? cubic[2] : cubic[3];
1526                 fBelow = cubic[3];
1527                 break;
1528             default:
1529                 SkASSERT(0);
1530         }
1531     }
1532 
calcLeft(SkScalar y)1533     void calcLeft(SkScalar y) {
1534         // OPTIMIZE: put a kDone_Verb at the end of the verb list?
1535         if (fDone || fBelow.fY > y) {
1536             return; // nothing to do; use last
1537         }
1538         calcLeft();
1539         if (fAbove.fY == fBelow.fY) {
1540             SkDebugf("%s edge=%d fAbove.fY != fBelow.fY %1.9g\n", __FUNCTION__,
1541                     ID(), fAbove.fY);
1542         }
1543     }
1544 
calcLeft()1545     void calcLeft() {
1546         int add = (fTIndex <= fTs->count() - fExplicitTs) - 1;
1547         double tAbove = t(fTIndex + add);
1548         double tBelow = t(fTIndex - ~add);
1549         // OPTIMIZATION: if fAbove, fBelow have already been computed
1550         //  for the fTIndex, don't do it again
1551         calcAboveBelow(tAbove, tBelow);
1552         // For identical x, this lets us know which edge is first.
1553         // If both edges have T values < 1, check x at next T (fBelow).
1554         SkASSERT(tAbove != tBelow);
1555         // FIXME: this can loop forever
1556         // need a break if we hit the end
1557         // FIXME: in unit test, figure out how explicit Ts work as well
1558         while (fAbove.fY == fBelow.fY) {
1559             if (add < 0 || fTIndex == fTs->count()) {
1560                 add -= 1;
1561                 SkASSERT(fTIndex + add >= 0);
1562                 tAbove = t(fTIndex + add);
1563             } else {
1564                 add += 1;
1565                 SkASSERT(fTIndex - ~add <= fTs->count() + 1);
1566                 tBelow = t(fTIndex - ~add);
1567             }
1568             calcAboveBelow(tAbove, tBelow);
1569         }
1570         fTAbove = tAbove;
1571         fTBelow = tBelow;
1572     }
1573 
done(SkScalar bottom) const1574     bool done(SkScalar bottom) const {
1575         return fDone || fYBottom >= bottom;
1576     }
1577 
fixBelow()1578     void fixBelow() {
1579         if (fFixBelow) {
1580             fTBelow = nextT();
1581             calcAboveBelow(fTAbove, fTBelow);
1582             fFixBelow = false;
1583         }
1584     }
1585 
init(const InEdge * edge)1586     void init(const InEdge* edge) {
1587         fWorkEdge.init(edge);
1588         fDone = false;
1589         initT();
1590         fBelow.fY = SK_ScalarMin;
1591         fYBottom = SK_ScalarMin;
1592     }
1593 
initT()1594     void initT() {
1595         const Intercepts& intercepts = fWorkEdge.fEdge->fIntercepts.front();
1596         SkASSERT(fWorkEdge.verbIndex() <= fWorkEdge.fEdge->fIntercepts.count());
1597         const Intercepts* interceptPtr = &intercepts + fWorkEdge.verbIndex();
1598         fTs = &interceptPtr->fTs;
1599         fExplicitTs = interceptPtr->fExplicit;
1600   //  the above is conceptually the same as
1601   //    fTs = &fWorkEdge.fEdge->fIntercepts[fWorkEdge.verbIndex()].fTs;
1602   //  but templated arrays don't allow returning a pointer to the end() element
1603         fTIndex = 0;
1604         if (!fDone) {
1605             fVerb = fWorkEdge.verb();
1606         }
1607         SkASSERT(fVerb > SkPath::kMove_Verb);
1608     }
1609 
1610     // OPTIMIZATION: record if two edges are coincident when the are intersected
1611     // It's unclear how to do this -- seems more complicated than recording the
1612     // t values, since the same t values could exist intersecting non-coincident
1613     // edges.
isCoincidentWith(const ActiveEdge * edge) const1614     bool isCoincidentWith(const ActiveEdge* edge) const {
1615         if (fAbove != edge->fAbove || fBelow != edge->fBelow) {
1616             return false;
1617         }
1618         if (fVerb != edge->fVerb) {
1619             return false;
1620         }
1621         switch (fVerb) {
1622             case SkPath::kLine_Verb:
1623                 return true;
1624             default:
1625                 // FIXME: add support for quads, cubics
1626                 SkASSERT(0);
1627                 return false;
1628         }
1629         return false;
1630     }
1631 
isUnordered(const ActiveEdge * edge) const1632     bool isUnordered(const ActiveEdge* edge) const {
1633         return fAbove == edge->fAbove && fBelow == edge->fBelow;
1634     }
1635 
1636 //    SkPath::Verb lastVerb() const {
1637 //        return fDone ? fWorkEdge.lastVerb() : fWorkEdge.verb();
1638 //    }
1639 
lastPoints() const1640     const SkPoint* lastPoints() const {
1641         return fDone ? fWorkEdge.lastPoints() : fWorkEdge.points();
1642     }
1643 
noIntersect(const ActiveEdge &) const1644     bool noIntersect(const ActiveEdge& ) const {
1645         // incomplete
1646         return false;
1647     }
1648 
1649     // The shortest close call edge should be moved into a position where
1650     // it contributes if the winding is transitioning to or from zero.
swapClose(const ActiveEdge * next,int prev,int wind,int mask) const1651     bool swapClose(const ActiveEdge* next, int prev, int wind, int mask) const {
1652 #if DEBUG_ADJUST_COINCIDENT
1653         SkDebugf("%s edge=%d (%g) next=%d (%g) prev=%d wind=%d nextWind=%d\n",
1654                 __FUNCTION__, ID(), fBelow.fY, next->ID(), next->fBelow.fY,
1655                 prev, wind, wind + next->fWorkEdge.winding());
1656 #endif
1657         if ((prev & mask) == 0 || (wind & mask) == 0) {
1658             return next->fBelow.fY < fBelow.fY;
1659         }
1660         int nextWinding = wind + next->fWorkEdge.winding();
1661         if ((nextWinding & mask) == 0) {
1662             return fBelow.fY < next->fBelow.fY;
1663         }
1664         return false;
1665     }
1666 
swapCoincident(const ActiveEdge * edge,SkScalar bottom) const1667     bool swapCoincident(const ActiveEdge* edge, SkScalar bottom) const {
1668         if (fBelow.fY >= bottom || fDone || edge->fDone) {
1669             return false;
1670         }
1671         ActiveEdge thisWork = *this;
1672         ActiveEdge edgeWork = *edge;
1673         while ((thisWork.advanceT() || thisWork.advance())
1674                 && (edgeWork.advanceT() || edgeWork.advance())) {
1675             thisWork.calcLeft();
1676             edgeWork.calcLeft();
1677             if (thisWork < edgeWork) {
1678                 return false;
1679             }
1680             if (edgeWork < thisWork) {
1681                 return true;
1682             }
1683         }
1684         return false;
1685     }
1686 
swapUnordered(const ActiveEdge * edge,SkScalar) const1687     bool swapUnordered(const ActiveEdge* edge, SkScalar /* bottom */) const {
1688         SkASSERT(fVerb != SkPath::kLine_Verb
1689                 || edge->fVerb != SkPath::kLine_Verb);
1690         if (fDone || edge->fDone) {
1691             return false;
1692         }
1693         ActiveEdge thisWork, edgeWork;
1694         extractAboveBelow(thisWork);
1695         edge->extractAboveBelow(edgeWork);
1696         return edgeWork < thisWork;
1697     }
1698 
tooCloseToCall(const ActiveEdge * edge) const1699     bool tooCloseToCall(const ActiveEdge* edge) const {
1700         int ulps;
1701         double t1, t2, b1, b2;
1702         // This logic must be kept in sync with operator <
1703         if (edge->fAbove.fY < fAbove.fY) {
1704             t1 = (edge->fTangent.fY - edge->fAbove.fY) * (fAbove.fX - edge->fAbove.fX);
1705             t2 = (fAbove.fY - edge->fAbove.fY) * (edge->fTangent.fX - edge->fAbove.fX);
1706         } else if (edge->fAbove.fY > fAbove.fY) {
1707             t1 = (fTangent.fY - fAbove.fY) * (fAbove.fX - edge->fAbove.fX);
1708             t2 = (fAbove.fY - edge->fAbove.fY) * (fTangent.fX - fAbove.fX);
1709         } else {
1710             t1 = fAbove.fX;
1711             t2 = edge->fAbove.fX;
1712         }
1713         if (edge->fTangent.fY > fTangent.fY) {
1714             b1 = (edge->fTangent.fY - edge->fAbove.fY) * (fTangent.fX - edge->fTangent.fX);
1715             b2 = (fTangent.fY - edge->fTangent.fY) * (edge->fTangent.fX - edge->fAbove.fX);
1716         } else if (edge->fTangent.fY < fTangent.fY) {
1717             b1 = (fTangent.fY - fAbove.fY) * (fTangent.fX - edge->fTangent.fX);
1718             b2 = (fTangent.fY - edge->fTangent.fY) * (fTangent.fX - fAbove.fX);
1719         } else {
1720             b1 = fTangent.fX;
1721             b2 = edge->fTangent.fX;
1722         }
1723         if (fabs(t1 - t2) > fabs(b1 - b2)) {
1724             ulps = UlpsDiff((float) t1, (float) t2);
1725         } else {
1726             ulps = UlpsDiff((float) b1, (float) b2);
1727         }
1728 #if DEBUG_ADJUST_COINCIDENT
1729         SkDebugf("%s this=%d edge=%d ulps=%d\n", __FUNCTION__, ID(), edge->ID(),
1730                 ulps);
1731 #endif
1732         if (ulps < 0 || ulps > 32) {
1733             return false;
1734         }
1735         if (fVerb == SkPath::kLine_Verb && edge->fVerb == SkPath::kLine_Verb) {
1736             return true;
1737         }
1738         if (fVerb != SkPath::kLine_Verb && edge->fVerb != SkPath::kLine_Verb) {
1739             return false;
1740         }
1741 
1742         double ts[2];
1743         bool isLine = true;
1744         bool curveQuad = true;
1745         if (fVerb == SkPath::kCubic_Verb) {
1746             ts[0] = (fTAbove * 2 + fTBelow) / 3;
1747             ts[1] = (fTAbove + fTBelow * 2) / 3;
1748             curveQuad = isLine = false;
1749         } else if (edge->fVerb == SkPath::kCubic_Verb) {
1750             ts[0] = (edge->fTAbove * 2 + edge->fTBelow) / 3;
1751             ts[1] = (edge->fTAbove + edge->fTBelow * 2) / 3;
1752             curveQuad = false;
1753         } else if (fVerb == SkPath::kQuad_Verb) {
1754                 ts[0] = fTAbove;
1755                 ts[1] = (fTAbove + fTBelow) / 2;
1756                 isLine = false;
1757         } else {
1758             SkASSERT(edge->fVerb == SkPath::kQuad_Verb);
1759             ts[0] = edge->fTAbove;
1760             ts[1] = (edge->fTAbove + edge->fTBelow) / 2;
1761         }
1762         const SkPoint* curvePts = isLine ? edge->lastPoints() : lastPoints();
1763         const ActiveEdge* lineEdge = isLine ? this : edge;
1764         SkPoint curveSample[2];
1765         for (int index = 0; index < 2; ++index) {
1766             if (curveQuad) {
1767                 QuadXYAtT(curvePts, ts[index], &curveSample[index]);
1768             } else {
1769                 CubicXYAtT(curvePts, ts[index], &curveSample[index]);
1770             }
1771         }
1772         return IsCoincident(curveSample, lineEdge->fAbove, lineEdge->fBelow);
1773     }
1774 
nextT() const1775     double nextT() const {
1776         SkASSERT(fTIndex <= fTs->count() - fExplicitTs);
1777         return t(fTIndex + 1);
1778     }
1779 
t() const1780     double t() const {
1781         return t(fTIndex);
1782     }
1783 
t(int tIndex) const1784     double t(int tIndex) const {
1785         if (fExplicitTs) {
1786             SkASSERT(tIndex < fTs->count());
1787             return (*fTs)[tIndex];
1788         }
1789         if (tIndex == 0) {
1790             return 0;
1791         }
1792         if (tIndex > fTs->count()) {
1793             return 1;
1794         }
1795         return (*fTs)[tIndex - 1];
1796     }
1797 
1798     // FIXME: debugging only
ID() const1799     int ID() const {
1800         return fWorkEdge.fEdge->fID;
1801     }
1802 
1803 private:
1804     // utility used only by swapUnordered
extractAboveBelow(ActiveEdge & extracted) const1805     void extractAboveBelow(ActiveEdge& extracted) const {
1806         SkPoint curve[4];
1807         switch (fVerb) {
1808             case SkPath::kLine_Verb:
1809                 extracted.fAbove = fAbove;
1810                 extracted.fTangent = fTangent;
1811                 return;
1812             case SkPath::kQuad_Verb:
1813                 QuadSubDivide(lastPoints(), fTAbove, fTBelow, curve);
1814                 break;
1815             case SkPath::kCubic_Verb:
1816                 CubicSubDivide(lastPoints(), fTAbove, fTBelow, curve);
1817                 break;
1818             default:
1819                 SkASSERT(0);
1820         }
1821         extracted.fAbove = curve[0];
1822         extracted.fTangent = curve[1];
1823     }
1824 
1825 public:
1826     WorkEdge fWorkEdge;
1827     const SkTDArray<double>* fTs;
1828     SkPoint fAbove;
1829     SkPoint fTangent;
1830     SkPoint fBelow;
1831     double fTAbove; // OPTIMIZATION: only required if edge has quads or cubics
1832     double fTBelow;
1833     SkScalar fYBottom;
1834     int fCoincident;
1835     int fTIndex;
1836     SkPath::Verb fVerb;
1837     bool fSkip; // OPTIMIZATION: use bitfields?
1838     bool fCloseCall;
1839     bool fDone;
1840     bool fFixBelow;
1841     bool fExplicitTs;
1842 };
1843 
addToActive(SkTDArray<ActiveEdge> & activeEdges,const InEdge * edge)1844 static void addToActive(SkTDArray<ActiveEdge>& activeEdges, const InEdge* edge) {
1845     size_t count = activeEdges.count();
1846     for (size_t index = 0; index < count; ++index) {
1847         if (edge == activeEdges[index].fWorkEdge.fEdge) {
1848             return;
1849         }
1850     }
1851     ActiveEdge* active = activeEdges.append();
1852     active->init(edge);
1853 }
1854 
1855 // Find any intersections in the range of active edges. A pair of edges, on
1856 // either side of another edge, may change the winding contribution for part of
1857 // the edge.
1858 // Keep horizontal edges just for
1859 // the purpose of computing when edges change their winding contribution, since
1860 // this is essentially computing the horizontal intersection.
addBottomT(InEdge ** currentPtr,InEdge ** lastPtr,HorizontalEdge ** horizontal)1861 static void addBottomT(InEdge** currentPtr, InEdge** lastPtr,
1862         HorizontalEdge** horizontal) {
1863     InEdge** testPtr = currentPtr - 1;
1864     HorizontalEdge* horzEdge = *horizontal;
1865     SkScalar left = horzEdge->fLeft;
1866     SkScalar bottom = horzEdge->fY;
1867     while (++testPtr != lastPtr) {
1868         InEdge* test = *testPtr;
1869         if (test->fBounds.fBottom <= bottom || test->fBounds.fRight <= left) {
1870             continue;
1871         }
1872         WorkEdge wt;
1873         wt.init(test);
1874         do {
1875             HorizontalEdge** sorted = horizontal;
1876             horzEdge = *sorted;
1877             do {
1878                 double wtTs[4];
1879                 int pts;
1880                 uint8_t verb = wt.verb();
1881                 switch (verb) {
1882                     case SkPath::kLine_Verb:
1883                         pts = LineIntersect(wt.fPts, horzEdge->fLeft,
1884                                 horzEdge->fRight, horzEdge->fY, wtTs);
1885                         break;
1886                     case SkPath::kQuad_Verb:
1887                         pts = QuadIntersect(wt.fPts, horzEdge->fLeft,
1888                                 horzEdge->fRight, horzEdge->fY, wtTs);
1889                         break;
1890                     case SkPath::kCubic_Verb:
1891                         pts = CubicIntersect(wt.fPts, horzEdge->fLeft,
1892                                 horzEdge->fRight, horzEdge->fY, wtTs);
1893                         break;
1894                 }
1895                 if (pts) {
1896 #if DEBUG_ADD_BOTTOM_TS
1897                     for (int x = 0; x < pts; ++x) {
1898                         SkDebugf("%s y=%g wtTs[0]=%g (%g,%g", __FUNCTION__,
1899                                 horzEdge->fY, wtTs[x], wt.fPts[0].fX, wt.fPts[0].fY);
1900                         for (int y = 0; y < verb; ++y) {
1901                             SkDebugf(" %g,%g", wt.fPts[y + 1].fX, wt.fPts[y + 1].fY));
1902                         }
1903                         SkDebugf(")\n");
1904                     }
1905                     if (pts > verb) {
1906                         SkASSERT(0); // FIXME ? should this work?
1907                         SkDebugf("%s wtTs[1]=%g\n", __FUNCTION__, wtTs[1]);
1908                     }
1909 #endif
1910                     test->add(wtTs, pts, wt.verbIndex());
1911                 }
1912                 horzEdge = *++sorted;
1913             } while (horzEdge->fY == bottom
1914                     && horzEdge->fLeft <= test->fBounds.fRight);
1915         } while (wt.advance());
1916     }
1917 }
1918 
1919 #if DEBUG_ADD_INTERSECTING_TS
debugShowLineIntersection(int pts,const WorkEdge & wt,const WorkEdge & wn,const double wtTs[2],const double wnTs[2])1920 static void debugShowLineIntersection(int pts, const WorkEdge& wt,
1921         const WorkEdge& wn, const double wtTs[2], const double wnTs[2]) {
1922     if (!pts) {
1923         return;
1924     }
1925     SkPoint wtOutPt, wnOutPt;
1926     LineXYAtT(wt.fPts, wtTs[0], &wtOutPt);
1927     LineXYAtT(wn.fPts, wnTs[0], &wnOutPt);
1928     SkDebugf("%s wtTs[0]=%g (%g,%g, %g,%g) (%g,%g)\n",
1929             __FUNCTION__,
1930             wtTs[0], wt.fPts[0].fX, wt.fPts[0].fY,
1931             wt.fPts[1].fX, wt.fPts[1].fY, wtOutPt.fX, wtOutPt.fY);
1932     if (pts == 2) {
1933         SkDebugf("%s wtTs[1]=%g\n", __FUNCTION__, wtTs[1]);
1934     }
1935     SkDebugf("%s wnTs[0]=%g (%g,%g, %g,%g) (%g,%g)\n",
1936             __FUNCTION__,
1937             wnTs[0], wn.fPts[0].fX, wn.fPts[0].fY,
1938             wn.fPts[1].fX, wn.fPts[1].fY, wnOutPt.fX, wnOutPt.fY);
1939     if (pts == 2) {
1940         SkDebugf("%s wnTs[1]=%g\n", __FUNCTION__, wnTs[1]);
1941     }
1942 }
1943 #else
debugShowLineIntersection(int,const WorkEdge &,const WorkEdge &,const double[2],const double[2])1944 static void debugShowLineIntersection(int , const WorkEdge& ,
1945         const WorkEdge& , const double [2], const double [2]) {
1946 }
1947 #endif
1948 
addIntersectingTs(InEdge ** currentPtr,InEdge ** lastPtr)1949 static void addIntersectingTs(InEdge** currentPtr, InEdge** lastPtr) {
1950     InEdge** testPtr = currentPtr - 1;
1951     // FIXME: lastPtr should be past the point of interest, so
1952     // test below should be  lastPtr - 2
1953     // that breaks testSimplifyTriangle22, so further investigation is needed
1954     while (++testPtr != lastPtr - 1) {
1955         InEdge* test = *testPtr;
1956         InEdge** nextPtr = testPtr;
1957         do {
1958             InEdge* next = *++nextPtr;
1959             // FIXME: this compares against the sentinel sometimes
1960             // OPTIMIZATION: this may never be needed since this gets called
1961             // in two passes now. Verify that double hits are appropriate.
1962             if (test->cached(next)) {
1963                 continue;
1964             }
1965             if (!Bounds::Intersects(test->fBounds, next->fBounds)) {
1966                 continue;
1967             }
1968             WorkEdge wt, wn;
1969             wt.init(test);
1970             wn.init(next);
1971             do {
1972                 int pts;
1973                 Intersections ts;
1974                 bool swap = false;
1975                 switch (wt.verb()) {
1976                     case SkPath::kLine_Verb:
1977                         switch (wn.verb()) {
1978                             case SkPath::kLine_Verb: {
1979                                 pts = LineIntersect(wt.fPts, wn.fPts, ts);
1980                                 debugShowLineIntersection(pts, wt, wn,
1981                                         ts.fT[0], ts.fT[1]);
1982                                 break;
1983                             }
1984                             case SkPath::kQuad_Verb: {
1985                                 swap = true;
1986                                 pts = QuadLineIntersect(wn.fPts, wt.fPts, ts);
1987                                 break;
1988                             }
1989                             case SkPath::kCubic_Verb: {
1990                                 swap = true;
1991                                 pts = CubicLineIntersect(wn.fPts, wt.fPts, ts);
1992                                 break;
1993                             }
1994                             default:
1995                                 SkASSERT(0);
1996                         }
1997                         break;
1998                     case SkPath::kQuad_Verb:
1999                         switch (wn.verb()) {
2000                             case SkPath::kLine_Verb: {
2001                                 pts = QuadLineIntersect(wt.fPts, wn.fPts, ts);
2002                                 break;
2003                             }
2004                             case SkPath::kQuad_Verb: {
2005                                 pts = QuadIntersect(wt.fPts, wn.fPts, ts);
2006                                 break;
2007                             }
2008                             case SkPath::kCubic_Verb: {
2009                                 // FIXME: promote quad to cubic
2010                                 pts = CubicIntersect(wt.fPts, wn.fPts, ts);
2011                                 break;
2012                             }
2013                             default:
2014                                 SkASSERT(0);
2015                         }
2016                         break;
2017                     case SkPath::kCubic_Verb:
2018                         switch (wn.verb()) {
2019                             case SkPath::kLine_Verb: {
2020                                 pts = CubicLineIntersect(wt.fPts, wn.fPts, ts);
2021                                 break;
2022                             }
2023                             case SkPath::kQuad_Verb: {
2024                                  // FIXME: promote quad to cubic
2025                                 pts = CubicIntersect(wt.fPts, wn.fPts, ts);
2026                                 break;
2027                             }
2028                             case SkPath::kCubic_Verb: {
2029                                 pts = CubicIntersect(wt.fPts, wn.fPts, ts);
2030                                 break;
2031                             }
2032                             default:
2033                                 SkASSERT(0);
2034                         }
2035                         break;
2036                     default:
2037                         SkASSERT(0);
2038                 }
2039                 test->add(ts.fT[swap], pts, wt.verbIndex());
2040                 next->add(ts.fT[!swap], pts, wn.verbIndex());
2041             } while (wt.bottom() <= wn.bottom() ? wt.advance() : wn.advance());
2042         } while (nextPtr != lastPtr);
2043     }
2044 }
2045 
advanceEdges(SkTDArray<ActiveEdge> * activeEdges,InEdge ** currentPtr,InEdge ** lastPtr,SkScalar y)2046 static InEdge** advanceEdges(SkTDArray<ActiveEdge>* activeEdges,
2047         InEdge** currentPtr, InEdge** lastPtr,  SkScalar y) {
2048     InEdge** testPtr = currentPtr - 1;
2049     while (++testPtr != lastPtr) {
2050         if ((*testPtr)->fBounds.fBottom > y) {
2051             continue;
2052         }
2053         if (activeEdges) {
2054             InEdge* test = *testPtr;
2055             ActiveEdge* activePtr = activeEdges->begin() - 1;
2056             ActiveEdge* lastActive = activeEdges->end();
2057             while (++activePtr != lastActive) {
2058                 if (activePtr->fWorkEdge.fEdge == test) {
2059                     activeEdges->remove(activePtr - activeEdges->begin());
2060                     break;
2061                 }
2062             }
2063         }
2064         if (testPtr == currentPtr) {
2065             ++currentPtr;
2066         }
2067     }
2068     return currentPtr;
2069 }
2070 
2071 // OPTIMIZE: inline?
advanceHorizontal(HorizontalEdge ** edge,SkScalar y)2072 static HorizontalEdge** advanceHorizontal(HorizontalEdge** edge, SkScalar y) {
2073     while ((*edge)->fY < y) {
2074         ++edge;
2075     }
2076     return edge;
2077 }
2078 
2079 // compute bottom taking into account any intersected edges
computeInterceptBottom(SkTDArray<ActiveEdge> & activeEdges,SkScalar y,SkScalar bottom)2080 static SkScalar computeInterceptBottom(SkTDArray<ActiveEdge>& activeEdges,
2081         SkScalar y, SkScalar bottom) {
2082     ActiveEdge* activePtr = activeEdges.begin() - 1;
2083     ActiveEdge* lastActive = activeEdges.end();
2084     while (++activePtr != lastActive) {
2085         const InEdge* test = activePtr->fWorkEdge.fEdge;
2086         if (!test->fContainsIntercepts) {
2087             continue;
2088         }
2089         WorkEdge wt;
2090         wt.init(test);
2091         do {
2092             const Intercepts& intercepts = test->fIntercepts[wt.verbIndex()];
2093             if (intercepts.fTopIntercepts > 1) {
2094                 SkScalar yTop = wt.fPts[0].fY;
2095                 if (yTop > y && bottom > yTop) {
2096                     bottom = yTop;
2097                 }
2098             }
2099             if (intercepts.fBottomIntercepts > 1) {
2100                 SkScalar yBottom = wt.fPts[wt.verb()].fY;
2101                 if (yBottom > y && bottom > yBottom) {
2102                     bottom = yBottom;
2103                 }
2104             }
2105             const SkTDArray<double>& fTs = intercepts.fTs;
2106             size_t count = fTs.count();
2107             for (size_t index = 0; index < count; ++index) {
2108                 SkScalar yIntercept;
2109                 switch (wt.verb()) {
2110                     case SkPath::kLine_Verb: {
2111                         yIntercept = LineYAtT(wt.fPts, fTs[index]);
2112                         break;
2113                     }
2114                     case SkPath::kQuad_Verb: {
2115                         yIntercept = QuadYAtT(wt.fPts, fTs[index]);
2116                         break;
2117                     }
2118                     case SkPath::kCubic_Verb: {
2119                         yIntercept = CubicYAtT(wt.fPts, fTs[index]);
2120                         break;
2121                     }
2122                     default:
2123                         SkASSERT(0); // should never get here
2124                 }
2125                 if (yIntercept > y && bottom > yIntercept) {
2126                     bottom = yIntercept;
2127                 }
2128             }
2129         } while (wt.advance());
2130     }
2131 #if DEBUG_BOTTOM
2132     SkDebugf("%s bottom=%1.9g\n", __FUNCTION__, bottom);
2133 #endif
2134     return bottom;
2135 }
2136 
findBottom(InEdge ** currentPtr,InEdge ** edgeListEnd,SkTDArray<ActiveEdge> * activeEdges,SkScalar y,bool,InEdge ** & testPtr)2137 static SkScalar findBottom(InEdge** currentPtr,
2138         InEdge** edgeListEnd, SkTDArray<ActiveEdge>* activeEdges, SkScalar y,
2139         bool /*asFill*/, InEdge**& testPtr) {
2140     InEdge* current = *currentPtr;
2141     SkScalar bottom = current->fBounds.fBottom;
2142 
2143     // find the list of edges that cross y
2144     InEdge* test = *testPtr;
2145     while (testPtr != edgeListEnd) {
2146         SkScalar testTop = test->fBounds.fTop;
2147         if (bottom <= testTop) {
2148             break;
2149         }
2150         SkScalar testBottom = test->fBounds.fBottom;
2151         // OPTIMIZATION: Shortening the bottom is only interesting when filling
2152         // and when the edge is to the left of a longer edge. If it's a framing
2153         // edge, or part of the right, it won't effect the longer edges.
2154         if (testTop > y) {
2155             bottom = testTop;
2156             break;
2157         }
2158         if (y < testBottom) {
2159             if (bottom > testBottom) {
2160                 bottom = testBottom;
2161             }
2162             if (activeEdges) {
2163                 addToActive(*activeEdges, test);
2164             }
2165         }
2166         test = *++testPtr;
2167     }
2168 #if DEBUG_BOTTOM
2169     SkDebugf("%s %d bottom=%1.9g\n", __FUNCTION__, activeEdges ? 2 : 1, bottom);
2170 #endif
2171     return bottom;
2172 }
2173 
makeEdgeList(SkTArray<InEdge> & edges,InEdge & edgeSentinel,SkTDArray<InEdge * > & edgeList)2174 static void makeEdgeList(SkTArray<InEdge>& edges, InEdge& edgeSentinel,
2175         SkTDArray<InEdge*>& edgeList) {
2176     size_t edgeCount = edges.count();
2177     if (edgeCount == 0) {
2178         return;
2179     }
2180     int id = 0;
2181     for (size_t index = 0; index < edgeCount; ++index) {
2182         InEdge& edge = edges[index];
2183         if (!edge.fWinding) {
2184             continue;
2185         }
2186         edge.fID = ++id;
2187         *edgeList.append() = &edge;
2188     }
2189     *edgeList.append() = &edgeSentinel;
2190     QSort<InEdge>(edgeList.begin(), edgeList.end() - 1);
2191 }
2192 
makeHorizontalList(SkTDArray<HorizontalEdge> & edges,HorizontalEdge & edgeSentinel,SkTDArray<HorizontalEdge * > & edgeList)2193 static void makeHorizontalList(SkTDArray<HorizontalEdge>& edges,
2194         HorizontalEdge& edgeSentinel, SkTDArray<HorizontalEdge*>& edgeList) {
2195     size_t edgeCount = edges.count();
2196     if (edgeCount == 0) {
2197         return;
2198     }
2199     for (size_t index = 0; index < edgeCount; ++index) {
2200         *edgeList.append() = &edges[index];
2201     }
2202     edgeSentinel.fLeft = edgeSentinel.fRight = edgeSentinel.fY = SK_ScalarMax;
2203     *edgeList.append() = &edgeSentinel;
2204     QSort<HorizontalEdge>(edgeList.begin(), edgeList.end() - 1);
2205 }
2206 
skipCoincidence(int lastWinding,int winding,int windingMask,ActiveEdge * activePtr,ActiveEdge * firstCoincident)2207 static void skipCoincidence(int lastWinding, int winding, int windingMask,
2208             ActiveEdge* activePtr, ActiveEdge* firstCoincident) {
2209     if (((lastWinding & windingMask) == 0) ^ ((winding & windingMask) != 0)) {
2210         return;
2211     }
2212     // FIXME: ? shouldn't this be if (lastWinding & windingMask) ?
2213     if (lastWinding) {
2214 #if DEBUG_ADJUST_COINCIDENT
2215         SkDebugf("%s edge=%d 1 set skip=false\n", __FUNCTION__, activePtr->ID());
2216 #endif
2217         activePtr->fSkip = false;
2218     } else {
2219 #if DEBUG_ADJUST_COINCIDENT
2220         SkDebugf("%s edge=%d 2 set skip=false\n", __FUNCTION__, firstCoincident->ID());
2221 #endif
2222         firstCoincident->fSkip = false;
2223     }
2224 }
2225 
sortHorizontal(SkTDArray<ActiveEdge> & activeEdges,SkTDArray<ActiveEdge * > & edgeList,SkScalar y)2226 static void sortHorizontal(SkTDArray<ActiveEdge>& activeEdges,
2227         SkTDArray<ActiveEdge*>& edgeList, SkScalar y) {
2228     size_t edgeCount = activeEdges.count();
2229     if (edgeCount == 0) {
2230         return;
2231     }
2232 #if DEBUG_SORT_HORIZONTAL
2233     const int tab = 3; // FIXME: debugging only
2234     SkDebugf("%s y=%1.9g\n", __FUNCTION__, y);
2235 #endif
2236     size_t index;
2237     for (index = 0; index < edgeCount; ++index) {
2238         ActiveEdge& activeEdge = activeEdges[index];
2239         do {
2240             activeEdge.calcLeft(y);
2241             // skip segments that don't span y
2242             if (activeEdge.fAbove != activeEdge.fBelow) {
2243                 break;
2244             }
2245             if (activeEdge.fDone) {
2246 #if DEBUG_SORT_HORIZONTAL
2247                 SkDebugf("%*s edge=%d done\n", tab, "", activeEdge.ID());
2248 #endif
2249                 goto nextEdge;
2250             }
2251 #if DEBUG_SORT_HORIZONTAL
2252             SkDebugf("%*s edge=%d above==below\n", tab, "", activeEdge.ID());
2253 #endif
2254         } while (activeEdge.advanceT() || activeEdge.advance());
2255 #if DEBUG_SORT_HORIZONTAL
2256         SkDebugf("%*s edge=%d above=(%1.9g,%1.9g) (%1.9g) below=(%1.9g,%1.9g)"
2257                 " (%1.9g)\n", tab, "", activeEdge.ID(),
2258                 activeEdge.fAbove.fX, activeEdge.fAbove.fY, activeEdge.fTAbove,
2259                 activeEdge.fBelow.fX, activeEdge.fBelow.fY, activeEdge.fTBelow);
2260 #endif
2261         activeEdge.fSkip = activeEdge.fCloseCall = activeEdge.fFixBelow = false;
2262         *edgeList.append() = &activeEdge;
2263 nextEdge:
2264         ;
2265     }
2266     QSort<ActiveEdge>(edgeList.begin(), edgeList.end() - 1);
2267 }
2268 
2269 // remove coincident edges
2270 // OPTIMIZE: remove edges? This is tricky because the current logic expects
2271 // the winding count to be maintained while skipping coincident edges. In
2272 // addition to removing the coincident edges, the remaining edges would need
2273 // to have a different winding value, possibly different per intercept span.
adjustCoincident(SkTDArray<ActiveEdge * > & edgeList,int windingMask,SkScalar y,SkScalar bottom,OutEdgeBuilder & outBuilder)2274 static SkScalar adjustCoincident(SkTDArray<ActiveEdge*>& edgeList,
2275         int windingMask, SkScalar y, SkScalar bottom, OutEdgeBuilder& outBuilder)
2276 {
2277 #if DEBUG_ADJUST_COINCIDENT
2278     SkDebugf("%s y=%1.9g bottom=%1.9g\n", __FUNCTION__, y, bottom);
2279 #endif
2280     size_t edgeCount = edgeList.count();
2281     if (edgeCount == 0) {
2282         return bottom;
2283     }
2284     ActiveEdge* activePtr, * nextPtr = edgeList[0];
2285     size_t index;
2286     bool foundCoincident = false;
2287     size_t firstIndex = 0;
2288     for (index = 1; index < edgeCount; ++index) {
2289         activePtr = nextPtr;
2290         nextPtr = edgeList[index];
2291         if (firstIndex != index - 1 && activePtr->fVerb > SkPath::kLine_Verb
2292                 && nextPtr->fVerb == SkPath::kLine_Verb
2293                 && activePtr->isUnordered(nextPtr)) {
2294             // swap the line with the curve
2295             // back up to the previous edge and retest
2296             SkTSwap<ActiveEdge*>(edgeList[index - 1], edgeList[index]);
2297             SkASSERT(index > 1);
2298             index -= 2;
2299             nextPtr = edgeList[index];
2300             continue;
2301         }
2302         bool closeCall = false;
2303         activePtr->fCoincident = firstIndex;
2304         if (activePtr->isCoincidentWith(nextPtr)
2305                 || (closeCall = activePtr->tooCloseToCall(nextPtr))) {
2306             activePtr->fSkip = nextPtr->fSkip = foundCoincident = true;
2307             activePtr->fCloseCall = nextPtr->fCloseCall = closeCall;
2308         } else if (activePtr->isUnordered(nextPtr)) {
2309             foundCoincident = true;
2310         } else {
2311             firstIndex = index;
2312         }
2313     }
2314     nextPtr->fCoincident = firstIndex;
2315     if (!foundCoincident) {
2316         return bottom;
2317     }
2318     int winding = 0;
2319     nextPtr = edgeList[0];
2320     for (index = 1; index < edgeCount; ++index) {
2321         int priorWinding = winding;
2322         winding += activePtr->fWorkEdge.winding();
2323         activePtr = nextPtr;
2324         nextPtr = edgeList[index];
2325         SkASSERT(activePtr == edgeList[index - 1]);
2326         SkASSERT(nextPtr == edgeList[index]);
2327         if (activePtr->fCoincident != nextPtr->fCoincident) {
2328             continue;
2329         }
2330         // the coincident edges may not have been sorted above -- advance
2331         // the edges and resort if needed
2332         // OPTIMIZE: if sorting is done incrementally as new edges are added
2333         // and not all at once as is done here, fold this test into the
2334         // current less than test.
2335         while ((!activePtr->fSkip || !nextPtr->fSkip)
2336                 && activePtr->fCoincident == nextPtr->fCoincident) {
2337             if (activePtr->swapUnordered(nextPtr, bottom)) {
2338                 winding -= activePtr->fWorkEdge.winding();
2339                 SkASSERT(activePtr == edgeList[index - 1]);
2340                 SkASSERT(nextPtr == edgeList[index]);
2341                 SkTSwap<ActiveEdge*>(edgeList[index - 1], edgeList[index]);
2342                 if (--index == 0) {
2343                     winding += activePtr->fWorkEdge.winding();
2344                     break;
2345                 }
2346                 // back up one
2347                 activePtr = edgeList[index - 1];
2348                 continue;
2349             }
2350             SkASSERT(activePtr == edgeList[index - 1]);
2351             SkASSERT(nextPtr == edgeList[index]);
2352             break;
2353         }
2354         if (activePtr->fSkip && nextPtr->fSkip) {
2355             if (activePtr->fCloseCall ? activePtr->swapClose(nextPtr,
2356                     priorWinding, winding, windingMask)
2357                     : activePtr->swapCoincident(nextPtr, bottom)) {
2358                 winding -= activePtr->fWorkEdge.winding();
2359                 SkASSERT(activePtr == edgeList[index - 1]);
2360                 SkASSERT(nextPtr == edgeList[index]);
2361                 SkTSwap<ActiveEdge*>(edgeList[index - 1], edgeList[index]);
2362                 SkTSwap<ActiveEdge*>(activePtr, nextPtr);
2363                 winding += activePtr->fWorkEdge.winding();
2364                 SkASSERT(activePtr == edgeList[index - 1]);
2365                 SkASSERT(nextPtr == edgeList[index]);
2366             }
2367         }
2368     }
2369     int firstCoincidentWinding = 0;
2370     ActiveEdge* firstCoincident = NULL;
2371     winding = 0;
2372     activePtr = edgeList[0];
2373     for (index = 1; index < edgeCount; ++index) {
2374         int priorWinding = winding;
2375         winding += activePtr->fWorkEdge.winding();
2376         nextPtr = edgeList[index];
2377         if (activePtr->fSkip && nextPtr->fSkip
2378                 && activePtr->fCoincident == nextPtr->fCoincident) {
2379             if (!firstCoincident) {
2380                 firstCoincident = activePtr;
2381                 firstCoincidentWinding = priorWinding;
2382             }
2383             if (activePtr->fCloseCall) {
2384                 // If one of the edges has already been added to out as a non
2385                 // coincident edge, trim it back to the top of this span
2386                 if (outBuilder.trimLine(y, activePtr->ID())) {
2387                     activePtr->addTatYAbove(y);
2388             #if DEBUG_ADJUST_COINCIDENT
2389                     SkDebugf("%s 1 edge=%d y=%1.9g (was fYBottom=%1.9g)\n",
2390                             __FUNCTION__, activePtr->ID(), y, activePtr->fYBottom);
2391             #endif
2392                     activePtr->fYBottom = y;
2393                 }
2394                 if (outBuilder.trimLine(y, nextPtr->ID())) {
2395                     nextPtr->addTatYAbove(y);
2396             #if DEBUG_ADJUST_COINCIDENT
2397                     SkDebugf("%s 2 edge=%d y=%1.9g (was fYBottom=%1.9g)\n",
2398                             __FUNCTION__, nextPtr->ID(), y, nextPtr->fYBottom);
2399             #endif
2400                     nextPtr->fYBottom = y;
2401                 }
2402                 // add missing t values so edges can be the same length
2403                 SkScalar testY = activePtr->fBelow.fY;
2404                 nextPtr->addTatYBelow(testY);
2405                 if (bottom > testY && testY > y) {
2406             #if DEBUG_ADJUST_COINCIDENT
2407                     SkDebugf("%s 3 edge=%d bottom=%1.9g (was bottom=%1.9g)\n",
2408                             __FUNCTION__, activePtr->ID(), testY, bottom);
2409             #endif
2410                     bottom = testY;
2411                 }
2412                 testY = nextPtr->fBelow.fY;
2413                 activePtr->addTatYBelow(testY);
2414                 if (bottom > testY && testY > y) {
2415             #if DEBUG_ADJUST_COINCIDENT
2416                     SkDebugf("%s 4 edge=%d bottom=%1.9g (was bottom=%1.9g)\n",
2417                             __FUNCTION__, nextPtr->ID(), testY, bottom);
2418             #endif
2419                     bottom = testY;
2420                 }
2421             }
2422         } else if (firstCoincident) {
2423             skipCoincidence(firstCoincidentWinding, winding, windingMask,
2424                     activePtr, firstCoincident);
2425             firstCoincident = NULL;
2426         }
2427         activePtr = nextPtr;
2428     }
2429     if (firstCoincident) {
2430         winding += activePtr->fWorkEdge.winding();
2431         skipCoincidence(firstCoincidentWinding, winding, windingMask, activePtr,
2432                 firstCoincident);
2433     }
2434     // fix up the bottom for close call edges. OPTIMIZATION: maybe this could
2435     // be in the loop above, but moved here since loop above reads fBelow and
2436     // it felt unsafe to write it in that loop
2437     for (index = 0; index < edgeCount; ++index) {
2438         (edgeList[index])->fixBelow();
2439     }
2440     return bottom;
2441 }
2442 
2443 // stitch edge and t range that satisfies operation
stitchEdge(SkTDArray<ActiveEdge * > & edgeList,SkScalar y,SkScalar bottom,int windingMask,bool fill,OutEdgeBuilder & outBuilder)2444 static void stitchEdge(SkTDArray<ActiveEdge*>& edgeList, SkScalar
2445 #if DEBUG_STITCH_EDGE
2446 y
2447 #endif
2448 ,
2449         SkScalar bottom, int windingMask, bool fill, OutEdgeBuilder& outBuilder) {
2450     int winding = 0;
2451     ActiveEdge** activeHandle = edgeList.begin() - 1;
2452     ActiveEdge** lastActive = edgeList.end();
2453 #if DEBUG_STITCH_EDGE
2454     const int tab = 7; // FIXME: debugging only
2455     SkDebugf("%s y=%1.9g bottom=%1.9g\n", __FUNCTION__, y, bottom);
2456 #endif
2457     while (++activeHandle != lastActive) {
2458         ActiveEdge* activePtr = *activeHandle;
2459         const WorkEdge& wt = activePtr->fWorkEdge;
2460         int lastWinding = winding;
2461         winding += wt.winding();
2462 #if DEBUG_STITCH_EDGE
2463         SkDebugf("%*s edge=%d lastWinding=%d winding=%d skip=%d close=%d"
2464                 " above=%1.9g below=%1.9g\n",
2465                 tab-4, "", activePtr->ID(), lastWinding,
2466                 winding, activePtr->fSkip, activePtr->fCloseCall,
2467                 activePtr->fTAbove, activePtr->fTBelow);
2468 #endif
2469         if (activePtr->done(bottom)) {
2470 #if DEBUG_STITCH_EDGE
2471             SkDebugf("%*s fDone=%d || fYBottom=%1.9g >= bottom\n", tab, "",
2472                     activePtr->fDone, activePtr->fYBottom);
2473 #endif
2474             continue;
2475         }
2476         int opener = (lastWinding & windingMask) == 0;
2477         bool closer = (winding & windingMask) == 0;
2478         SkASSERT(!opener | !closer);
2479         bool inWinding = opener | closer;
2480         SkPoint clippedPts[4];
2481         const SkPoint* clipped = NULL;
2482         bool moreToDo, aboveBottom;
2483         do {
2484             double currentT = activePtr->t();
2485             const SkPoint* points = wt.fPts;
2486             double nextT;
2487             SkPath::Verb verb = activePtr->fVerb;
2488             do {
2489                 nextT = activePtr->nextT();
2490                 // FIXME: obtuse: want efficient way to say
2491                 // !currentT && currentT != 1 || !nextT && nextT != 1
2492                 if (currentT * nextT != 0 || currentT + nextT != 1) {
2493                     // OPTIMIZATION: if !inWinding, we only need
2494                     // clipped[1].fY
2495                     switch (verb) {
2496                         case SkPath::kLine_Verb:
2497                             LineSubDivide(points, currentT, nextT, clippedPts);
2498                             break;
2499                         case SkPath::kQuad_Verb:
2500                             QuadSubDivide(points, currentT, nextT, clippedPts);
2501                             break;
2502                         case SkPath::kCubic_Verb:
2503                             CubicSubDivide(points, currentT, nextT, clippedPts);
2504                             break;
2505                         default:
2506                             SkASSERT(0);
2507                             break;
2508                     }
2509                     clipped = clippedPts;
2510                 } else {
2511                     clipped = points;
2512                 }
2513                 if (inWinding && !activePtr->fSkip && (fill ? clipped[0].fY
2514                         != clipped[verb].fY : clipped[0] != clipped[verb])) {
2515 #if DEBUG_STITCH_EDGE
2516                     SkDebugf("%*s add%s %1.9g,%1.9g %1.9g,%1.9g edge=%d"
2517                             " v=%d t=(%1.9g,%1.9g)\n", tab, "",
2518                             kUVerbStr[verb], clipped[0].fX, clipped[0].fY,
2519                             clipped[verb].fX, clipped[verb].fY,
2520                             activePtr->ID(),
2521                             activePtr->fWorkEdge.fVerb
2522                             - activePtr->fWorkEdge.fEdge->fVerbs.begin(),
2523                             currentT, nextT);
2524 #endif
2525                     outBuilder.addCurve(clipped, (SkPath::Verb) verb,
2526                             activePtr->fWorkEdge.fEdge->fID,
2527                             activePtr->fCloseCall);
2528                 } else {
2529 #if DEBUG_STITCH_EDGE
2530                     SkDebugf("%*s skip%s %1.9g,%1.9g %1.9g,%1.9g"
2531                             " edge=%d v=%d t=(%1.9g,%1.9g)\n", tab, "",
2532                             kUVerbStr[verb], clipped[0].fX, clipped[0].fY,
2533                             clipped[verb].fX, clipped[verb].fY,
2534                             activePtr->ID(),
2535                             activePtr->fWorkEdge.fVerb
2536                             - activePtr->fWorkEdge.fEdge->fVerbs.begin(),
2537                             currentT, nextT);
2538 #endif
2539                 }
2540             // by advancing fAbove/fBelow, the next call to sortHorizontal
2541             // will use these values if they're still valid instead of
2542             // recomputing
2543                 if (clipped[verb].fY > activePtr->fBelow.fY
2544                         && bottom >= activePtr->fBelow.fY
2545                         && verb == SkPath::kLine_Verb) {
2546                     activePtr->fAbove = activePtr->fBelow;
2547                     activePtr->fBelow = activePtr->fTangent = clipped[verb];
2548                     activePtr->fTAbove = activePtr->fTBelow < 1
2549                             ? activePtr->fTBelow : 0;
2550                     activePtr->fTBelow = nextT;
2551                 }
2552                 currentT = nextT;
2553                 moreToDo = activePtr->advanceT();
2554                 activePtr->fYBottom = clipped[verb].fY; // was activePtr->fCloseCall ? bottom :
2555 
2556                 // clearing the fSkip/fCloseCall bit here means that trailing edges
2557                 // fall out of sync, if one edge is long and another is a series of short pieces
2558                 // if fSkip/fCloseCall is set, need to recompute coincidence/too-close-to-call
2559                 // after advancing
2560                 // another approach would be to restrict bottom to smaller part of close call
2561                 // maybe this is already happening with coincidence when intersection is computed,
2562                 // and needs to be added to the close call computation as well
2563                 // this is hard to do because that the bottom is important is not known when
2564                 // the lines are intersected; only when the computation for edge sorting is done
2565                 // does the need for new bottoms become apparent.
2566                 // maybe this is good incentive to scrap the current sort and do an insertion
2567                 // sort that can take this into consideration when the x value is computed
2568 
2569                 // FIXME: initialized in sortHorizontal, cleared here as well so
2570                 // that next edge is not skipped -- but should skipped edges ever
2571                 // continue? (probably not)
2572                 aboveBottom = clipped[verb].fY < bottom;
2573                 if (clipped[0].fY != clipped[verb].fY) {
2574                     activePtr->fSkip = false;
2575                     activePtr->fCloseCall = false;
2576                     aboveBottom &= !activePtr->fCloseCall;
2577                 }
2578 #if DEBUG_STITCH_EDGE
2579                  else {
2580                     if (activePtr->fSkip || activePtr->fCloseCall) {
2581                         SkDebugf("%s skip or close == %1.9g\n", __FUNCTION__,
2582                                 clippedPts[0].fY);
2583                     }
2584                 }
2585 #endif
2586             } while (moreToDo & aboveBottom);
2587         } while ((moreToDo || activePtr->advance()) & aboveBottom);
2588     }
2589 }
2590 
2591 #if DEBUG_DUMP
dumpEdgeList(const SkTDArray<InEdge * > & edgeList,const InEdge & edgeSentinel)2592 static void dumpEdgeList(const SkTDArray<InEdge*>& edgeList,
2593         const InEdge& edgeSentinel) {
2594     InEdge** debugPtr = edgeList.begin();
2595     do {
2596         (*debugPtr++)->dump();
2597     } while (*debugPtr != &edgeSentinel);
2598 }
2599 #else
dumpEdgeList(const SkTDArray<InEdge * > &,const InEdge &)2600 static void dumpEdgeList(const SkTDArray<InEdge*>& ,
2601         const InEdge& ) {
2602 }
2603 #endif
2604 
simplify(const SkPath & path,bool asFill,SkPath & simple)2605 void simplify(const SkPath& path, bool asFill, SkPath& simple) {
2606     // returns 1 for evenodd, -1 for winding, regardless of inverse-ness
2607     int windingMask = (path.getFillType() & 1) ? 1 : -1;
2608     simple.reset();
2609     simple.setFillType(SkPath::kEvenOdd_FillType);
2610     // turn path into list of edges increasing in y
2611     // if an edge is a quad or a cubic with a y extrema, note it, but leave it
2612     // unbroken. Once we have a list, sort it, then walk the list (walk edges
2613     // twice that have y extrema's on top)  and detect crossings -- look for raw
2614     // bounds that cross over, then tight bounds that cross
2615     SkTArray<InEdge> edges;
2616     SkTDArray<HorizontalEdge> horizontalEdges;
2617     InEdgeBuilder builder(path, asFill, edges, horizontalEdges);
2618     SkTDArray<InEdge*> edgeList;
2619     InEdge edgeSentinel;
2620     edgeSentinel.reset();
2621     makeEdgeList(edges, edgeSentinel, edgeList);
2622     SkTDArray<HorizontalEdge*> horizontalList;
2623     HorizontalEdge horizontalSentinel;
2624     makeHorizontalList(horizontalEdges, horizontalSentinel, horizontalList);
2625     InEdge** currentPtr = edgeList.begin();
2626     if (!currentPtr) {
2627         return;
2628     }
2629     // find all intersections between edges
2630 // beyond looking for horizontal intercepts, we need to know if any active edges
2631 // intersect edges below 'bottom', but above the active edge segment.
2632 // maybe it makes more sense to compute all intercepts before doing anything
2633 // else, since the intercept list is long-lived, at least in the current design.
2634     SkScalar y = (*currentPtr)->fBounds.fTop;
2635     HorizontalEdge** currentHorizontal = horizontalList.begin();
2636     do {
2637         InEdge** lastPtr = currentPtr; // find the edge below the bottom of the first set
2638         SkScalar bottom = findBottom(currentPtr, edgeList.end(),
2639                 NULL, y, asFill, lastPtr);
2640         if (lastPtr > currentPtr) {
2641             if (currentHorizontal) {
2642                 if ((*currentHorizontal)->fY < SK_ScalarMax) {
2643                     addBottomT(currentPtr, lastPtr, currentHorizontal);
2644                 }
2645                 currentHorizontal = advanceHorizontal(currentHorizontal, bottom);
2646             }
2647             addIntersectingTs(currentPtr, lastPtr);
2648         }
2649         y = bottom;
2650         currentPtr = advanceEdges(NULL, currentPtr, lastPtr, y);
2651     } while (*currentPtr != &edgeSentinel);
2652     // if a quadratic or cubic now has an intermediate T value, see if the Ts
2653     // on either side cause the Y values to monotonically increase. If not, split
2654     // the curve at the new T.
2655 
2656     // try an alternate approach which does not split curves or stitch edges
2657     // (may still need adjustCoincident, though)
2658     // the idea is to output non-intersecting contours, then figure out their
2659     // respective winding contribution
2660     // each contour will need to know whether it is CW or CCW, and then whether
2661     // a ray from that contour hits any a contour that contains it. The ray can
2662     // move to the left and then arbitrarily move up or down (as long as it never
2663     // moves to the right) to find a reference sibling contour or containing
2664     // contour. If the contour is part of an intersection, the companion contour
2665     // that is part of the intersection can determine the containership.
2666     if (builder.containsCurves()) {
2667         currentPtr = edgeList.begin();
2668         SkTArray<InEdge> splits;
2669         do {
2670             (*currentPtr)->splitInflectionPts(splits);
2671         } while (*++currentPtr != &edgeSentinel);
2672         if (splits.count()) {
2673             for (int index = 0; index < splits.count(); ++index) {
2674                 edges.push_back(splits[index]);
2675             }
2676             edgeList.reset();
2677             makeEdgeList(edges, edgeSentinel, edgeList);
2678         }
2679     }
2680     dumpEdgeList(edgeList, edgeSentinel);
2681     // walk the sorted edges from top to bottom, computing accumulated winding
2682     SkTDArray<ActiveEdge> activeEdges;
2683     OutEdgeBuilder outBuilder(asFill);
2684     currentPtr = edgeList.begin();
2685     y = (*currentPtr)->fBounds.fTop;
2686     do {
2687         InEdge** lastPtr = currentPtr; // find the edge below the bottom of the first set
2688         SkScalar bottom = findBottom(currentPtr, edgeList.end(),
2689                 &activeEdges, y, asFill, lastPtr);
2690         if (lastPtr > currentPtr) {
2691             bottom = computeInterceptBottom(activeEdges, y, bottom);
2692             SkTDArray<ActiveEdge*> activeEdgeList;
2693             sortHorizontal(activeEdges, activeEdgeList, y);
2694             bottom = adjustCoincident(activeEdgeList, windingMask, y, bottom,
2695                 outBuilder);
2696             stitchEdge(activeEdgeList, y, bottom, windingMask, asFill, outBuilder);
2697         }
2698         y = bottom;
2699         // OPTIMIZATION: as edges expire, InEdge allocations could be released
2700         currentPtr = advanceEdges(&activeEdges, currentPtr, lastPtr, y);
2701     } while (*currentPtr != &edgeSentinel);
2702     // assemble output path from string of pts, verbs
2703     outBuilder.bridge();
2704     outBuilder.assemble(simple);
2705 }
2706