• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
13 **
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
16 **
17 */
18 #include "sqliteInt.h"
19 #include <stdarg.h>
20 #ifdef SQLITE_HAVE_ISNAN
21 # include <math.h>
22 #endif
23 
24 /*
25 ** Routine needed to support the testcase() macro.
26 */
27 #ifdef SQLITE_COVERAGE_TEST
sqlite3Coverage(int x)28 void sqlite3Coverage(int x){
29   static unsigned dummy = 0;
30   dummy += (unsigned)x;
31 }
32 #endif
33 
34 #ifndef SQLITE_OMIT_FLOATING_POINT
35 /*
36 ** Return true if the floating point value is Not a Number (NaN).
37 **
38 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
39 ** Otherwise, we have our own implementation that works on most systems.
40 */
sqlite3IsNaN(double x)41 int sqlite3IsNaN(double x){
42   int rc;   /* The value return */
43 #if !defined(SQLITE_HAVE_ISNAN)
44   /*
45   ** Systems that support the isnan() library function should probably
46   ** make use of it by compiling with -DSQLITE_HAVE_ISNAN.  But we have
47   ** found that many systems do not have a working isnan() function so
48   ** this implementation is provided as an alternative.
49   **
50   ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
51   ** On the other hand, the use of -ffast-math comes with the following
52   ** warning:
53   **
54   **      This option [-ffast-math] should never be turned on by any
55   **      -O option since it can result in incorrect output for programs
56   **      which depend on an exact implementation of IEEE or ISO
57   **      rules/specifications for math functions.
58   **
59   ** Under MSVC, this NaN test may fail if compiled with a floating-
60   ** point precision mode other than /fp:precise.  From the MSDN
61   ** documentation:
62   **
63   **      The compiler [with /fp:precise] will properly handle comparisons
64   **      involving NaN. For example, x != x evaluates to true if x is NaN
65   **      ...
66   */
67 #ifdef __FAST_MATH__
68 # error SQLite will not work correctly with the -ffast-math option of GCC.
69 #endif
70   volatile double y = x;
71   volatile double z = y;
72   rc = (y!=z);
73 #else  /* if defined(SQLITE_HAVE_ISNAN) */
74   rc = isnan(x);
75 #endif /* SQLITE_HAVE_ISNAN */
76   testcase( rc );
77   return rc;
78 }
79 #endif /* SQLITE_OMIT_FLOATING_POINT */
80 
81 /*
82 ** Compute a string length that is limited to what can be stored in
83 ** lower 30 bits of a 32-bit signed integer.
84 **
85 ** The value returned will never be negative.  Nor will it ever be greater
86 ** than the actual length of the string.  For very long strings (greater
87 ** than 1GiB) the value returned might be less than the true string length.
88 */
sqlite3Strlen30(const char * z)89 int sqlite3Strlen30(const char *z){
90   const char *z2 = z;
91   if( z==0 ) return 0;
92   while( *z2 ){ z2++; }
93   return 0x3fffffff & (int)(z2 - z);
94 }
95 
96 /*
97 ** Set the most recent error code and error string for the sqlite
98 ** handle "db". The error code is set to "err_code".
99 **
100 ** If it is not NULL, string zFormat specifies the format of the
101 ** error string in the style of the printf functions: The following
102 ** format characters are allowed:
103 **
104 **      %s      Insert a string
105 **      %z      A string that should be freed after use
106 **      %d      Insert an integer
107 **      %T      Insert a token
108 **      %S      Insert the first element of a SrcList
109 **
110 ** zFormat and any string tokens that follow it are assumed to be
111 ** encoded in UTF-8.
112 **
113 ** To clear the most recent error for sqlite handle "db", sqlite3Error
114 ** should be called with err_code set to SQLITE_OK and zFormat set
115 ** to NULL.
116 */
sqlite3Error(sqlite3 * db,int err_code,const char * zFormat,...)117 void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){
118   if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){
119     db->errCode = err_code;
120     if( zFormat ){
121       char *z;
122       va_list ap;
123       va_start(ap, zFormat);
124       z = sqlite3VMPrintf(db, zFormat, ap);
125       va_end(ap);
126       sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
127     }else{
128       sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
129     }
130   }
131 }
132 
133 /*
134 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
135 ** The following formatting characters are allowed:
136 **
137 **      %s      Insert a string
138 **      %z      A string that should be freed after use
139 **      %d      Insert an integer
140 **      %T      Insert a token
141 **      %S      Insert the first element of a SrcList
142 **
143 ** This function should be used to report any error that occurs whilst
144 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
145 ** last thing the sqlite3_prepare() function does is copy the error
146 ** stored by this function into the database handle using sqlite3Error().
147 ** Function sqlite3Error() should be used during statement execution
148 ** (sqlite3_step() etc.).
149 */
sqlite3ErrorMsg(Parse * pParse,const char * zFormat,...)150 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
151   char *zMsg;
152   va_list ap;
153   sqlite3 *db = pParse->db;
154   va_start(ap, zFormat);
155   zMsg = sqlite3VMPrintf(db, zFormat, ap);
156   va_end(ap);
157   if( db->suppressErr ){
158     sqlite3DbFree(db, zMsg);
159   }else{
160     pParse->nErr++;
161     sqlite3DbFree(db, pParse->zErrMsg);
162     pParse->zErrMsg = zMsg;
163     pParse->rc = SQLITE_ERROR;
164   }
165 }
166 
167 /*
168 ** Convert an SQL-style quoted string into a normal string by removing
169 ** the quote characters.  The conversion is done in-place.  If the
170 ** input does not begin with a quote character, then this routine
171 ** is a no-op.
172 **
173 ** The input string must be zero-terminated.  A new zero-terminator
174 ** is added to the dequoted string.
175 **
176 ** The return value is -1 if no dequoting occurs or the length of the
177 ** dequoted string, exclusive of the zero terminator, if dequoting does
178 ** occur.
179 **
180 ** 2002-Feb-14: This routine is extended to remove MS-Access style
181 ** brackets from around identifers.  For example:  "[a-b-c]" becomes
182 ** "a-b-c".
183 */
sqlite3Dequote(char * z)184 int sqlite3Dequote(char *z){
185   char quote;
186   int i, j;
187   if( z==0 ) return -1;
188   quote = z[0];
189   switch( quote ){
190     case '\'':  break;
191     case '"':   break;
192     case '`':   break;                /* For MySQL compatibility */
193     case '[':   quote = ']';  break;  /* For MS SqlServer compatibility */
194     default:    return -1;
195   }
196   for(i=1, j=0; ALWAYS(z[i]); i++){
197     if( z[i]==quote ){
198       if( z[i+1]==quote ){
199         z[j++] = quote;
200         i++;
201       }else{
202         break;
203       }
204     }else{
205       z[j++] = z[i];
206     }
207   }
208   z[j] = 0;
209   return j;
210 }
211 
212 /* Convenient short-hand */
213 #define UpperToLower sqlite3UpperToLower
214 
215 /*
216 ** Some systems have stricmp().  Others have strcasecmp().  Because
217 ** there is no consistency, we will define our own.
218 **
219 ** IMPLEMENTATION-OF: R-20522-24639 The sqlite3_strnicmp() API allows
220 ** applications and extensions to compare the contents of two buffers
221 ** containing UTF-8 strings in a case-independent fashion, using the same
222 ** definition of case independence that SQLite uses internally when
223 ** comparing identifiers.
224 */
sqlite3StrICmp(const char * zLeft,const char * zRight)225 int sqlite3StrICmp(const char *zLeft, const char *zRight){
226   register unsigned char *a, *b;
227   a = (unsigned char *)zLeft;
228   b = (unsigned char *)zRight;
229   while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
230   return UpperToLower[*a] - UpperToLower[*b];
231 }
sqlite3_strnicmp(const char * zLeft,const char * zRight,int N)232 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
233   register unsigned char *a, *b;
234   a = (unsigned char *)zLeft;
235   b = (unsigned char *)zRight;
236   while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
237   return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
238 }
239 
240 /*
241 ** The string z[] is an text representation of a real number.
242 ** Convert this string to a double and write it into *pResult.
243 **
244 ** The string z[] is length bytes in length (bytes, not characters) and
245 ** uses the encoding enc.  The string is not necessarily zero-terminated.
246 **
247 ** Return TRUE if the result is a valid real number (or integer) and FALSE
248 ** if the string is empty or contains extraneous text.  Valid numbers
249 ** are in one of these formats:
250 **
251 **    [+-]digits[E[+-]digits]
252 **    [+-]digits.[digits][E[+-]digits]
253 **    [+-].digits[E[+-]digits]
254 **
255 ** Leading and trailing whitespace is ignored for the purpose of determining
256 ** validity.
257 **
258 ** If some prefix of the input string is a valid number, this routine
259 ** returns FALSE but it still converts the prefix and writes the result
260 ** into *pResult.
261 */
sqlite3AtoF(const char * z,double * pResult,int length,u8 enc)262 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
263 #ifndef SQLITE_OMIT_FLOATING_POINT
264   int incr = (enc==SQLITE_UTF8?1:2);
265   const char *zEnd = z + length;
266   /* sign * significand * (10 ^ (esign * exponent)) */
267   int sign = 1;    /* sign of significand */
268   i64 s = 0;       /* significand */
269   int d = 0;       /* adjust exponent for shifting decimal point */
270   int esign = 1;   /* sign of exponent */
271   int e = 0;       /* exponent */
272   int eValid = 1;  /* True exponent is either not used or is well-formed */
273   double result;
274   int nDigits = 0;
275 
276   *pResult = 0.0;   /* Default return value, in case of an error */
277 
278   if( enc==SQLITE_UTF16BE ) z++;
279 
280   /* skip leading spaces */
281   while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
282   if( z>=zEnd ) return 0;
283 
284   /* get sign of significand */
285   if( *z=='-' ){
286     sign = -1;
287     z+=incr;
288   }else if( *z=='+' ){
289     z+=incr;
290   }
291 
292   /* skip leading zeroes */
293   while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++;
294 
295   /* copy max significant digits to significand */
296   while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
297     s = s*10 + (*z - '0');
298     z+=incr, nDigits++;
299   }
300 
301   /* skip non-significant significand digits
302   ** (increase exponent by d to shift decimal left) */
303   while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++;
304   if( z>=zEnd ) goto do_atof_calc;
305 
306   /* if decimal point is present */
307   if( *z=='.' ){
308     z+=incr;
309     /* copy digits from after decimal to significand
310     ** (decrease exponent by d to shift decimal right) */
311     while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
312       s = s*10 + (*z - '0');
313       z+=incr, nDigits++, d--;
314     }
315     /* skip non-significant digits */
316     while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++;
317   }
318   if( z>=zEnd ) goto do_atof_calc;
319 
320   /* if exponent is present */
321   if( *z=='e' || *z=='E' ){
322     z+=incr;
323     eValid = 0;
324     if( z>=zEnd ) goto do_atof_calc;
325     /* get sign of exponent */
326     if( *z=='-' ){
327       esign = -1;
328       z+=incr;
329     }else if( *z=='+' ){
330       z+=incr;
331     }
332     /* copy digits to exponent */
333     while( z<zEnd && sqlite3Isdigit(*z) ){
334       e = e*10 + (*z - '0');
335       z+=incr;
336       eValid = 1;
337     }
338   }
339 
340   /* skip trailing spaces */
341   if( nDigits && eValid ){
342     while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
343   }
344 
345 do_atof_calc:
346   /* adjust exponent by d, and update sign */
347   e = (e*esign) + d;
348   if( e<0 ) {
349     esign = -1;
350     e *= -1;
351   } else {
352     esign = 1;
353   }
354 
355   /* if 0 significand */
356   if( !s ) {
357     /* In the IEEE 754 standard, zero is signed.
358     ** Add the sign if we've seen at least one digit */
359     result = (sign<0 && nDigits) ? -(double)0 : (double)0;
360   } else {
361     /* attempt to reduce exponent */
362     if( esign>0 ){
363       while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10;
364     }else{
365       while( !(s%10) && e>0 ) e--,s/=10;
366     }
367 
368     /* adjust the sign of significand */
369     s = sign<0 ? -s : s;
370 
371     /* if exponent, scale significand as appropriate
372     ** and store in result. */
373     if( e ){
374       double scale = 1.0;
375       /* attempt to handle extremely small/large numbers better */
376       if( e>307 && e<342 ){
377         while( e%308 ) { scale *= 1.0e+1; e -= 1; }
378         if( esign<0 ){
379           result = s / scale;
380           result /= 1.0e+308;
381         }else{
382           result = s * scale;
383           result *= 1.0e+308;
384         }
385       }else{
386         /* 1.0e+22 is the largest power of 10 than can be
387         ** represented exactly. */
388         while( e%22 ) { scale *= 1.0e+1; e -= 1; }
389         while( e>0 ) { scale *= 1.0e+22; e -= 22; }
390         if( esign<0 ){
391           result = s / scale;
392         }else{
393           result = s * scale;
394         }
395       }
396     } else {
397       result = (double)s;
398     }
399   }
400 
401   /* store the result */
402   *pResult = result;
403 
404   /* return true if number and no extra non-whitespace chracters after */
405   return z>=zEnd && nDigits>0 && eValid;
406 #else
407   return !sqlite3Atoi64(z, pResult, length, enc);
408 #endif /* SQLITE_OMIT_FLOATING_POINT */
409 }
410 
411 /*
412 ** Compare the 19-character string zNum against the text representation
413 ** value 2^63:  9223372036854775808.  Return negative, zero, or positive
414 ** if zNum is less than, equal to, or greater than the string.
415 ** Note that zNum must contain exactly 19 characters.
416 **
417 ** Unlike memcmp() this routine is guaranteed to return the difference
418 ** in the values of the last digit if the only difference is in the
419 ** last digit.  So, for example,
420 **
421 **      compare2pow63("9223372036854775800", 1)
422 **
423 ** will return -8.
424 */
compare2pow63(const char * zNum,int incr)425 static int compare2pow63(const char *zNum, int incr){
426   int c = 0;
427   int i;
428                     /* 012345678901234567 */
429   const char *pow63 = "922337203685477580";
430   for(i=0; c==0 && i<18; i++){
431     c = (zNum[i*incr]-pow63[i])*10;
432   }
433   if( c==0 ){
434     c = zNum[18*incr] - '8';
435     testcase( c==(-1) );
436     testcase( c==0 );
437     testcase( c==(+1) );
438   }
439   return c;
440 }
441 
442 
443 /*
444 ** Convert zNum to a 64-bit signed integer.
445 **
446 ** If the zNum value is representable as a 64-bit twos-complement
447 ** integer, then write that value into *pNum and return 0.
448 **
449 ** If zNum is exactly 9223372036854665808, return 2.  This special
450 ** case is broken out because while 9223372036854665808 cannot be a
451 ** signed 64-bit integer, its negative -9223372036854665808 can be.
452 **
453 ** If zNum is too big for a 64-bit integer and is not
454 ** 9223372036854665808 then return 1.
455 **
456 ** length is the number of bytes in the string (bytes, not characters).
457 ** The string is not necessarily zero-terminated.  The encoding is
458 ** given by enc.
459 */
sqlite3Atoi64(const char * zNum,i64 * pNum,int length,u8 enc)460 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
461   int incr = (enc==SQLITE_UTF8?1:2);
462   u64 u = 0;
463   int neg = 0; /* assume positive */
464   int i;
465   int c = 0;
466   const char *zStart;
467   const char *zEnd = zNum + length;
468   if( enc==SQLITE_UTF16BE ) zNum++;
469   while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
470   if( zNum<zEnd ){
471     if( *zNum=='-' ){
472       neg = 1;
473       zNum+=incr;
474     }else if( *zNum=='+' ){
475       zNum+=incr;
476     }
477   }
478   zStart = zNum;
479   while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
480   for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
481     u = u*10 + c - '0';
482   }
483   if( u>LARGEST_INT64 ){
484     *pNum = SMALLEST_INT64;
485   }else if( neg ){
486     *pNum = -(i64)u;
487   }else{
488     *pNum = (i64)u;
489   }
490   testcase( i==18 );
491   testcase( i==19 );
492   testcase( i==20 );
493   if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr ){
494     /* zNum is empty or contains non-numeric text or is longer
495     ** than 19 digits (thus guaranteeing that it is too large) */
496     return 1;
497   }else if( i<19*incr ){
498     /* Less than 19 digits, so we know that it fits in 64 bits */
499     assert( u<=LARGEST_INT64 );
500     return 0;
501   }else{
502     /* zNum is a 19-digit numbers.  Compare it against 9223372036854775808. */
503     c = compare2pow63(zNum, incr);
504     if( c<0 ){
505       /* zNum is less than 9223372036854775808 so it fits */
506       assert( u<=LARGEST_INT64 );
507       return 0;
508     }else if( c>0 ){
509       /* zNum is greater than 9223372036854775808 so it overflows */
510       return 1;
511     }else{
512       /* zNum is exactly 9223372036854775808.  Fits if negative.  The
513       ** special case 2 overflow if positive */
514       assert( u-1==LARGEST_INT64 );
515       assert( (*pNum)==SMALLEST_INT64 );
516       return neg ? 0 : 2;
517     }
518   }
519 }
520 
521 /*
522 ** If zNum represents an integer that will fit in 32-bits, then set
523 ** *pValue to that integer and return true.  Otherwise return false.
524 **
525 ** Any non-numeric characters that following zNum are ignored.
526 ** This is different from sqlite3Atoi64() which requires the
527 ** input number to be zero-terminated.
528 */
sqlite3GetInt32(const char * zNum,int * pValue)529 int sqlite3GetInt32(const char *zNum, int *pValue){
530   sqlite_int64 v = 0;
531   int i, c;
532   int neg = 0;
533   if( zNum[0]=='-' ){
534     neg = 1;
535     zNum++;
536   }else if( zNum[0]=='+' ){
537     zNum++;
538   }
539   while( zNum[0]=='0' ) zNum++;
540   for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
541     v = v*10 + c;
542   }
543 
544   /* The longest decimal representation of a 32 bit integer is 10 digits:
545   **
546   **             1234567890
547   **     2^31 -> 2147483648
548   */
549   testcase( i==10 );
550   if( i>10 ){
551     return 0;
552   }
553   testcase( v-neg==2147483647 );
554   if( v-neg>2147483647 ){
555     return 0;
556   }
557   if( neg ){
558     v = -v;
559   }
560   *pValue = (int)v;
561   return 1;
562 }
563 
564 /*
565 ** Return a 32-bit integer value extracted from a string.  If the
566 ** string is not an integer, just return 0.
567 */
sqlite3Atoi(const char * z)568 int sqlite3Atoi(const char *z){
569   int x = 0;
570   if( z ) sqlite3GetInt32(z, &x);
571   return x;
572 }
573 
574 /*
575 ** The variable-length integer encoding is as follows:
576 **
577 ** KEY:
578 **         A = 0xxxxxxx    7 bits of data and one flag bit
579 **         B = 1xxxxxxx    7 bits of data and one flag bit
580 **         C = xxxxxxxx    8 bits of data
581 **
582 **  7 bits - A
583 ** 14 bits - BA
584 ** 21 bits - BBA
585 ** 28 bits - BBBA
586 ** 35 bits - BBBBA
587 ** 42 bits - BBBBBA
588 ** 49 bits - BBBBBBA
589 ** 56 bits - BBBBBBBA
590 ** 64 bits - BBBBBBBBC
591 */
592 
593 /*
594 ** Write a 64-bit variable-length integer to memory starting at p[0].
595 ** The length of data write will be between 1 and 9 bytes.  The number
596 ** of bytes written is returned.
597 **
598 ** A variable-length integer consists of the lower 7 bits of each byte
599 ** for all bytes that have the 8th bit set and one byte with the 8th
600 ** bit clear.  Except, if we get to the 9th byte, it stores the full
601 ** 8 bits and is the last byte.
602 */
sqlite3PutVarint(unsigned char * p,u64 v)603 int sqlite3PutVarint(unsigned char *p, u64 v){
604   int i, j, n;
605   u8 buf[10];
606   if( v & (((u64)0xff000000)<<32) ){
607     p[8] = (u8)v;
608     v >>= 8;
609     for(i=7; i>=0; i--){
610       p[i] = (u8)((v & 0x7f) | 0x80);
611       v >>= 7;
612     }
613     return 9;
614   }
615   n = 0;
616   do{
617     buf[n++] = (u8)((v & 0x7f) | 0x80);
618     v >>= 7;
619   }while( v!=0 );
620   buf[0] &= 0x7f;
621   assert( n<=9 );
622   for(i=0, j=n-1; j>=0; j--, i++){
623     p[i] = buf[j];
624   }
625   return n;
626 }
627 
628 /*
629 ** This routine is a faster version of sqlite3PutVarint() that only
630 ** works for 32-bit positive integers and which is optimized for
631 ** the common case of small integers.  A MACRO version, putVarint32,
632 ** is provided which inlines the single-byte case.  All code should use
633 ** the MACRO version as this function assumes the single-byte case has
634 ** already been handled.
635 */
sqlite3PutVarint32(unsigned char * p,u32 v)636 int sqlite3PutVarint32(unsigned char *p, u32 v){
637 #ifndef putVarint32
638   if( (v & ~0x7f)==0 ){
639     p[0] = v;
640     return 1;
641   }
642 #endif
643   if( (v & ~0x3fff)==0 ){
644     p[0] = (u8)((v>>7) | 0x80);
645     p[1] = (u8)(v & 0x7f);
646     return 2;
647   }
648   return sqlite3PutVarint(p, v);
649 }
650 
651 /*
652 ** Bitmasks used by sqlite3GetVarint().  These precomputed constants
653 ** are defined here rather than simply putting the constant expressions
654 ** inline in order to work around bugs in the RVT compiler.
655 **
656 ** SLOT_2_0     A mask for  (0x7f<<14) | 0x7f
657 **
658 ** SLOT_4_2_0   A mask for  (0x7f<<28) | SLOT_2_0
659 */
660 #define SLOT_2_0     0x001fc07f
661 #define SLOT_4_2_0   0xf01fc07f
662 
663 
664 /*
665 ** Read a 64-bit variable-length integer from memory starting at p[0].
666 ** Return the number of bytes read.  The value is stored in *v.
667 */
sqlite3GetVarint(const unsigned char * p,u64 * v)668 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
669   u32 a,b,s;
670 
671   a = *p;
672   /* a: p0 (unmasked) */
673   if (!(a&0x80))
674   {
675     *v = a;
676     return 1;
677   }
678 
679   p++;
680   b = *p;
681   /* b: p1 (unmasked) */
682   if (!(b&0x80))
683   {
684     a &= 0x7f;
685     a = a<<7;
686     a |= b;
687     *v = a;
688     return 2;
689   }
690 
691   /* Verify that constants are precomputed correctly */
692   assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
693   assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
694 
695   p++;
696   a = a<<14;
697   a |= *p;
698   /* a: p0<<14 | p2 (unmasked) */
699   if (!(a&0x80))
700   {
701     a &= SLOT_2_0;
702     b &= 0x7f;
703     b = b<<7;
704     a |= b;
705     *v = a;
706     return 3;
707   }
708 
709   /* CSE1 from below */
710   a &= SLOT_2_0;
711   p++;
712   b = b<<14;
713   b |= *p;
714   /* b: p1<<14 | p3 (unmasked) */
715   if (!(b&0x80))
716   {
717     b &= SLOT_2_0;
718     /* moved CSE1 up */
719     /* a &= (0x7f<<14)|(0x7f); */
720     a = a<<7;
721     a |= b;
722     *v = a;
723     return 4;
724   }
725 
726   /* a: p0<<14 | p2 (masked) */
727   /* b: p1<<14 | p3 (unmasked) */
728   /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
729   /* moved CSE1 up */
730   /* a &= (0x7f<<14)|(0x7f); */
731   b &= SLOT_2_0;
732   s = a;
733   /* s: p0<<14 | p2 (masked) */
734 
735   p++;
736   a = a<<14;
737   a |= *p;
738   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
739   if (!(a&0x80))
740   {
741     /* we can skip these cause they were (effectively) done above in calc'ing s */
742     /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
743     /* b &= (0x7f<<14)|(0x7f); */
744     b = b<<7;
745     a |= b;
746     s = s>>18;
747     *v = ((u64)s)<<32 | a;
748     return 5;
749   }
750 
751   /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
752   s = s<<7;
753   s |= b;
754   /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
755 
756   p++;
757   b = b<<14;
758   b |= *p;
759   /* b: p1<<28 | p3<<14 | p5 (unmasked) */
760   if (!(b&0x80))
761   {
762     /* we can skip this cause it was (effectively) done above in calc'ing s */
763     /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
764     a &= SLOT_2_0;
765     a = a<<7;
766     a |= b;
767     s = s>>18;
768     *v = ((u64)s)<<32 | a;
769     return 6;
770   }
771 
772   p++;
773   a = a<<14;
774   a |= *p;
775   /* a: p2<<28 | p4<<14 | p6 (unmasked) */
776   if (!(a&0x80))
777   {
778     a &= SLOT_4_2_0;
779     b &= SLOT_2_0;
780     b = b<<7;
781     a |= b;
782     s = s>>11;
783     *v = ((u64)s)<<32 | a;
784     return 7;
785   }
786 
787   /* CSE2 from below */
788   a &= SLOT_2_0;
789   p++;
790   b = b<<14;
791   b |= *p;
792   /* b: p3<<28 | p5<<14 | p7 (unmasked) */
793   if (!(b&0x80))
794   {
795     b &= SLOT_4_2_0;
796     /* moved CSE2 up */
797     /* a &= (0x7f<<14)|(0x7f); */
798     a = a<<7;
799     a |= b;
800     s = s>>4;
801     *v = ((u64)s)<<32 | a;
802     return 8;
803   }
804 
805   p++;
806   a = a<<15;
807   a |= *p;
808   /* a: p4<<29 | p6<<15 | p8 (unmasked) */
809 
810   /* moved CSE2 up */
811   /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
812   b &= SLOT_2_0;
813   b = b<<8;
814   a |= b;
815 
816   s = s<<4;
817   b = p[-4];
818   b &= 0x7f;
819   b = b>>3;
820   s |= b;
821 
822   *v = ((u64)s)<<32 | a;
823 
824   return 9;
825 }
826 
827 /*
828 ** Read a 32-bit variable-length integer from memory starting at p[0].
829 ** Return the number of bytes read.  The value is stored in *v.
830 **
831 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
832 ** integer, then set *v to 0xffffffff.
833 **
834 ** A MACRO version, getVarint32, is provided which inlines the
835 ** single-byte case.  All code should use the MACRO version as
836 ** this function assumes the single-byte case has already been handled.
837 */
sqlite3GetVarint32(const unsigned char * p,u32 * v)838 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
839   u32 a,b;
840 
841   /* The 1-byte case.  Overwhelmingly the most common.  Handled inline
842   ** by the getVarin32() macro */
843   a = *p;
844   /* a: p0 (unmasked) */
845 #ifndef getVarint32
846   if (!(a&0x80))
847   {
848     /* Values between 0 and 127 */
849     *v = a;
850     return 1;
851   }
852 #endif
853 
854   /* The 2-byte case */
855   p++;
856   b = *p;
857   /* b: p1 (unmasked) */
858   if (!(b&0x80))
859   {
860     /* Values between 128 and 16383 */
861     a &= 0x7f;
862     a = a<<7;
863     *v = a | b;
864     return 2;
865   }
866 
867   /* The 3-byte case */
868   p++;
869   a = a<<14;
870   a |= *p;
871   /* a: p0<<14 | p2 (unmasked) */
872   if (!(a&0x80))
873   {
874     /* Values between 16384 and 2097151 */
875     a &= (0x7f<<14)|(0x7f);
876     b &= 0x7f;
877     b = b<<7;
878     *v = a | b;
879     return 3;
880   }
881 
882   /* A 32-bit varint is used to store size information in btrees.
883   ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
884   ** A 3-byte varint is sufficient, for example, to record the size
885   ** of a 1048569-byte BLOB or string.
886   **
887   ** We only unroll the first 1-, 2-, and 3- byte cases.  The very
888   ** rare larger cases can be handled by the slower 64-bit varint
889   ** routine.
890   */
891 #if 1
892   {
893     u64 v64;
894     u8 n;
895 
896     p -= 2;
897     n = sqlite3GetVarint(p, &v64);
898     assert( n>3 && n<=9 );
899     if( (v64 & SQLITE_MAX_U32)!=v64 ){
900       *v = 0xffffffff;
901     }else{
902       *v = (u32)v64;
903     }
904     return n;
905   }
906 
907 #else
908   /* For following code (kept for historical record only) shows an
909   ** unrolling for the 3- and 4-byte varint cases.  This code is
910   ** slightly faster, but it is also larger and much harder to test.
911   */
912   p++;
913   b = b<<14;
914   b |= *p;
915   /* b: p1<<14 | p3 (unmasked) */
916   if (!(b&0x80))
917   {
918     /* Values between 2097152 and 268435455 */
919     b &= (0x7f<<14)|(0x7f);
920     a &= (0x7f<<14)|(0x7f);
921     a = a<<7;
922     *v = a | b;
923     return 4;
924   }
925 
926   p++;
927   a = a<<14;
928   a |= *p;
929   /* a: p0<<28 | p2<<14 | p4 (unmasked) */
930   if (!(a&0x80))
931   {
932     /* Values  between 268435456 and 34359738367 */
933     a &= SLOT_4_2_0;
934     b &= SLOT_4_2_0;
935     b = b<<7;
936     *v = a | b;
937     return 5;
938   }
939 
940   /* We can only reach this point when reading a corrupt database
941   ** file.  In that case we are not in any hurry.  Use the (relatively
942   ** slow) general-purpose sqlite3GetVarint() routine to extract the
943   ** value. */
944   {
945     u64 v64;
946     u8 n;
947 
948     p -= 4;
949     n = sqlite3GetVarint(p, &v64);
950     assert( n>5 && n<=9 );
951     *v = (u32)v64;
952     return n;
953   }
954 #endif
955 }
956 
957 /*
958 ** Return the number of bytes that will be needed to store the given
959 ** 64-bit integer.
960 */
sqlite3VarintLen(u64 v)961 int sqlite3VarintLen(u64 v){
962   int i = 0;
963   do{
964     i++;
965     v >>= 7;
966   }while( v!=0 && ALWAYS(i<9) );
967   return i;
968 }
969 
970 
971 /*
972 ** Read or write a four-byte big-endian integer value.
973 */
sqlite3Get4byte(const u8 * p)974 u32 sqlite3Get4byte(const u8 *p){
975   return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
976 }
sqlite3Put4byte(unsigned char * p,u32 v)977 void sqlite3Put4byte(unsigned char *p, u32 v){
978   p[0] = (u8)(v>>24);
979   p[1] = (u8)(v>>16);
980   p[2] = (u8)(v>>8);
981   p[3] = (u8)v;
982 }
983 
984 
985 
986 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
987 /*
988 ** Translate a single byte of Hex into an integer.
989 ** This routine only works if h really is a valid hexadecimal
990 ** character:  0..9a..fA..F
991 */
hexToInt(int h)992 static u8 hexToInt(int h){
993   assert( (h>='0' && h<='9') ||  (h>='a' && h<='f') ||  (h>='A' && h<='F') );
994 #ifdef SQLITE_ASCII
995   h += 9*(1&(h>>6));
996 #endif
997 #ifdef SQLITE_EBCDIC
998   h += 9*(1&~(h>>4));
999 #endif
1000   return (u8)(h & 0xf);
1001 }
1002 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1003 
1004 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
1005 /*
1006 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1007 ** value.  Return a pointer to its binary value.  Space to hold the
1008 ** binary value has been obtained from malloc and must be freed by
1009 ** the calling routine.
1010 */
sqlite3HexToBlob(sqlite3 * db,const char * z,int n)1011 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1012   char *zBlob;
1013   int i;
1014 
1015   zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1);
1016   n--;
1017   if( zBlob ){
1018     for(i=0; i<n; i+=2){
1019       zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]);
1020     }
1021     zBlob[i/2] = 0;
1022   }
1023   return zBlob;
1024 }
1025 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1026 
1027 /*
1028 ** Log an error that is an API call on a connection pointer that should
1029 ** not have been used.  The "type" of connection pointer is given as the
1030 ** argument.  The zType is a word like "NULL" or "closed" or "invalid".
1031 */
logBadConnection(const char * zType)1032 static void logBadConnection(const char *zType){
1033   sqlite3_log(SQLITE_MISUSE,
1034      "API call with %s database connection pointer",
1035      zType
1036   );
1037 }
1038 
1039 /*
1040 ** Check to make sure we have a valid db pointer.  This test is not
1041 ** foolproof but it does provide some measure of protection against
1042 ** misuse of the interface such as passing in db pointers that are
1043 ** NULL or which have been previously closed.  If this routine returns
1044 ** 1 it means that the db pointer is valid and 0 if it should not be
1045 ** dereferenced for any reason.  The calling function should invoke
1046 ** SQLITE_MISUSE immediately.
1047 **
1048 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1049 ** use.  sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1050 ** open properly and is not fit for general use but which can be
1051 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1052 */
sqlite3SafetyCheckOk(sqlite3 * db)1053 int sqlite3SafetyCheckOk(sqlite3 *db){
1054   u32 magic;
1055   if( db==0 ){
1056     logBadConnection("NULL");
1057     return 0;
1058   }
1059   magic = db->magic;
1060   if( magic!=SQLITE_MAGIC_OPEN ){
1061     if( sqlite3SafetyCheckSickOrOk(db) ){
1062       testcase( sqlite3GlobalConfig.xLog!=0 );
1063       logBadConnection("unopened");
1064     }
1065     return 0;
1066   }else{
1067     return 1;
1068   }
1069 }
sqlite3SafetyCheckSickOrOk(sqlite3 * db)1070 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1071   u32 magic;
1072   magic = db->magic;
1073   if( magic!=SQLITE_MAGIC_SICK &&
1074       magic!=SQLITE_MAGIC_OPEN &&
1075       magic!=SQLITE_MAGIC_BUSY ){
1076     testcase( sqlite3GlobalConfig.xLog!=0 );
1077     logBadConnection("invalid");
1078     return 0;
1079   }else{
1080     return 1;
1081   }
1082 }
1083 
1084 /*
1085 ** Attempt to add, substract, or multiply the 64-bit signed value iB against
1086 ** the other 64-bit signed integer at *pA and store the result in *pA.
1087 ** Return 0 on success.  Or if the operation would have resulted in an
1088 ** overflow, leave *pA unchanged and return 1.
1089 */
sqlite3AddInt64(i64 * pA,i64 iB)1090 int sqlite3AddInt64(i64 *pA, i64 iB){
1091   i64 iA = *pA;
1092   testcase( iA==0 ); testcase( iA==1 );
1093   testcase( iB==-1 ); testcase( iB==0 );
1094   if( iB>=0 ){
1095     testcase( iA>0 && LARGEST_INT64 - iA == iB );
1096     testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1097     if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
1098     *pA += iB;
1099   }else{
1100     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1101     testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1102     if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
1103     *pA += iB;
1104   }
1105   return 0;
1106 }
sqlite3SubInt64(i64 * pA,i64 iB)1107 int sqlite3SubInt64(i64 *pA, i64 iB){
1108   testcase( iB==SMALLEST_INT64+1 );
1109   if( iB==SMALLEST_INT64 ){
1110     testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1111     if( (*pA)>=0 ) return 1;
1112     *pA -= iB;
1113     return 0;
1114   }else{
1115     return sqlite3AddInt64(pA, -iB);
1116   }
1117 }
1118 #define TWOPOWER32 (((i64)1)<<32)
1119 #define TWOPOWER31 (((i64)1)<<31)
sqlite3MulInt64(i64 * pA,i64 iB)1120 int sqlite3MulInt64(i64 *pA, i64 iB){
1121   i64 iA = *pA;
1122   i64 iA1, iA0, iB1, iB0, r;
1123 
1124   iA1 = iA/TWOPOWER32;
1125   iA0 = iA % TWOPOWER32;
1126   iB1 = iB/TWOPOWER32;
1127   iB0 = iB % TWOPOWER32;
1128   if( iA1*iB1 != 0 ) return 1;
1129   assert( iA1*iB0==0 || iA0*iB1==0 );
1130   r = iA1*iB0 + iA0*iB1;
1131   testcase( r==(-TWOPOWER31)-1 );
1132   testcase( r==(-TWOPOWER31) );
1133   testcase( r==TWOPOWER31 );
1134   testcase( r==TWOPOWER31-1 );
1135   if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1;
1136   r *= TWOPOWER32;
1137   if( sqlite3AddInt64(&r, iA0*iB0) ) return 1;
1138   *pA = r;
1139   return 0;
1140 }
1141 
1142 /*
1143 ** Compute the absolute value of a 32-bit signed integer, of possible.  Or
1144 ** if the integer has a value of -2147483648, return +2147483647
1145 */
sqlite3AbsInt32(int x)1146 int sqlite3AbsInt32(int x){
1147   if( x>=0 ) return x;
1148   if( x==(int)0x80000000 ) return 0x7fffffff;
1149   return -x;
1150 }
1151