1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
13 **
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
16 **
17 */
18 #include "sqliteInt.h"
19 #include <stdarg.h>
20 #ifdef SQLITE_HAVE_ISNAN
21 # include <math.h>
22 #endif
23
24 /*
25 ** Routine needed to support the testcase() macro.
26 */
27 #ifdef SQLITE_COVERAGE_TEST
sqlite3Coverage(int x)28 void sqlite3Coverage(int x){
29 static unsigned dummy = 0;
30 dummy += (unsigned)x;
31 }
32 #endif
33
34 #ifndef SQLITE_OMIT_FLOATING_POINT
35 /*
36 ** Return true if the floating point value is Not a Number (NaN).
37 **
38 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
39 ** Otherwise, we have our own implementation that works on most systems.
40 */
sqlite3IsNaN(double x)41 int sqlite3IsNaN(double x){
42 int rc; /* The value return */
43 #if !defined(SQLITE_HAVE_ISNAN)
44 /*
45 ** Systems that support the isnan() library function should probably
46 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have
47 ** found that many systems do not have a working isnan() function so
48 ** this implementation is provided as an alternative.
49 **
50 ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
51 ** On the other hand, the use of -ffast-math comes with the following
52 ** warning:
53 **
54 ** This option [-ffast-math] should never be turned on by any
55 ** -O option since it can result in incorrect output for programs
56 ** which depend on an exact implementation of IEEE or ISO
57 ** rules/specifications for math functions.
58 **
59 ** Under MSVC, this NaN test may fail if compiled with a floating-
60 ** point precision mode other than /fp:precise. From the MSDN
61 ** documentation:
62 **
63 ** The compiler [with /fp:precise] will properly handle comparisons
64 ** involving NaN. For example, x != x evaluates to true if x is NaN
65 ** ...
66 */
67 #ifdef __FAST_MATH__
68 # error SQLite will not work correctly with the -ffast-math option of GCC.
69 #endif
70 volatile double y = x;
71 volatile double z = y;
72 rc = (y!=z);
73 #else /* if defined(SQLITE_HAVE_ISNAN) */
74 rc = isnan(x);
75 #endif /* SQLITE_HAVE_ISNAN */
76 testcase( rc );
77 return rc;
78 }
79 #endif /* SQLITE_OMIT_FLOATING_POINT */
80
81 /*
82 ** Compute a string length that is limited to what can be stored in
83 ** lower 30 bits of a 32-bit signed integer.
84 **
85 ** The value returned will never be negative. Nor will it ever be greater
86 ** than the actual length of the string. For very long strings (greater
87 ** than 1GiB) the value returned might be less than the true string length.
88 */
sqlite3Strlen30(const char * z)89 int sqlite3Strlen30(const char *z){
90 const char *z2 = z;
91 if( z==0 ) return 0;
92 while( *z2 ){ z2++; }
93 return 0x3fffffff & (int)(z2 - z);
94 }
95
96 /*
97 ** Set the most recent error code and error string for the sqlite
98 ** handle "db". The error code is set to "err_code".
99 **
100 ** If it is not NULL, string zFormat specifies the format of the
101 ** error string in the style of the printf functions: The following
102 ** format characters are allowed:
103 **
104 ** %s Insert a string
105 ** %z A string that should be freed after use
106 ** %d Insert an integer
107 ** %T Insert a token
108 ** %S Insert the first element of a SrcList
109 **
110 ** zFormat and any string tokens that follow it are assumed to be
111 ** encoded in UTF-8.
112 **
113 ** To clear the most recent error for sqlite handle "db", sqlite3Error
114 ** should be called with err_code set to SQLITE_OK and zFormat set
115 ** to NULL.
116 */
sqlite3Error(sqlite3 * db,int err_code,const char * zFormat,...)117 void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){
118 if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){
119 db->errCode = err_code;
120 if( zFormat ){
121 char *z;
122 va_list ap;
123 va_start(ap, zFormat);
124 z = sqlite3VMPrintf(db, zFormat, ap);
125 va_end(ap);
126 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
127 }else{
128 sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
129 }
130 }
131 }
132
133 /*
134 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
135 ** The following formatting characters are allowed:
136 **
137 ** %s Insert a string
138 ** %z A string that should be freed after use
139 ** %d Insert an integer
140 ** %T Insert a token
141 ** %S Insert the first element of a SrcList
142 **
143 ** This function should be used to report any error that occurs whilst
144 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
145 ** last thing the sqlite3_prepare() function does is copy the error
146 ** stored by this function into the database handle using sqlite3Error().
147 ** Function sqlite3Error() should be used during statement execution
148 ** (sqlite3_step() etc.).
149 */
sqlite3ErrorMsg(Parse * pParse,const char * zFormat,...)150 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
151 char *zMsg;
152 va_list ap;
153 sqlite3 *db = pParse->db;
154 va_start(ap, zFormat);
155 zMsg = sqlite3VMPrintf(db, zFormat, ap);
156 va_end(ap);
157 if( db->suppressErr ){
158 sqlite3DbFree(db, zMsg);
159 }else{
160 pParse->nErr++;
161 sqlite3DbFree(db, pParse->zErrMsg);
162 pParse->zErrMsg = zMsg;
163 pParse->rc = SQLITE_ERROR;
164 }
165 }
166
167 /*
168 ** Convert an SQL-style quoted string into a normal string by removing
169 ** the quote characters. The conversion is done in-place. If the
170 ** input does not begin with a quote character, then this routine
171 ** is a no-op.
172 **
173 ** The input string must be zero-terminated. A new zero-terminator
174 ** is added to the dequoted string.
175 **
176 ** The return value is -1 if no dequoting occurs or the length of the
177 ** dequoted string, exclusive of the zero terminator, if dequoting does
178 ** occur.
179 **
180 ** 2002-Feb-14: This routine is extended to remove MS-Access style
181 ** brackets from around identifers. For example: "[a-b-c]" becomes
182 ** "a-b-c".
183 */
sqlite3Dequote(char * z)184 int sqlite3Dequote(char *z){
185 char quote;
186 int i, j;
187 if( z==0 ) return -1;
188 quote = z[0];
189 switch( quote ){
190 case '\'': break;
191 case '"': break;
192 case '`': break; /* For MySQL compatibility */
193 case '[': quote = ']'; break; /* For MS SqlServer compatibility */
194 default: return -1;
195 }
196 for(i=1, j=0; ALWAYS(z[i]); i++){
197 if( z[i]==quote ){
198 if( z[i+1]==quote ){
199 z[j++] = quote;
200 i++;
201 }else{
202 break;
203 }
204 }else{
205 z[j++] = z[i];
206 }
207 }
208 z[j] = 0;
209 return j;
210 }
211
212 /* Convenient short-hand */
213 #define UpperToLower sqlite3UpperToLower
214
215 /*
216 ** Some systems have stricmp(). Others have strcasecmp(). Because
217 ** there is no consistency, we will define our own.
218 **
219 ** IMPLEMENTATION-OF: R-20522-24639 The sqlite3_strnicmp() API allows
220 ** applications and extensions to compare the contents of two buffers
221 ** containing UTF-8 strings in a case-independent fashion, using the same
222 ** definition of case independence that SQLite uses internally when
223 ** comparing identifiers.
224 */
sqlite3StrICmp(const char * zLeft,const char * zRight)225 int sqlite3StrICmp(const char *zLeft, const char *zRight){
226 register unsigned char *a, *b;
227 a = (unsigned char *)zLeft;
228 b = (unsigned char *)zRight;
229 while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
230 return UpperToLower[*a] - UpperToLower[*b];
231 }
sqlite3_strnicmp(const char * zLeft,const char * zRight,int N)232 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
233 register unsigned char *a, *b;
234 a = (unsigned char *)zLeft;
235 b = (unsigned char *)zRight;
236 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
237 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
238 }
239
240 /*
241 ** The string z[] is an text representation of a real number.
242 ** Convert this string to a double and write it into *pResult.
243 **
244 ** The string z[] is length bytes in length (bytes, not characters) and
245 ** uses the encoding enc. The string is not necessarily zero-terminated.
246 **
247 ** Return TRUE if the result is a valid real number (or integer) and FALSE
248 ** if the string is empty or contains extraneous text. Valid numbers
249 ** are in one of these formats:
250 **
251 ** [+-]digits[E[+-]digits]
252 ** [+-]digits.[digits][E[+-]digits]
253 ** [+-].digits[E[+-]digits]
254 **
255 ** Leading and trailing whitespace is ignored for the purpose of determining
256 ** validity.
257 **
258 ** If some prefix of the input string is a valid number, this routine
259 ** returns FALSE but it still converts the prefix and writes the result
260 ** into *pResult.
261 */
sqlite3AtoF(const char * z,double * pResult,int length,u8 enc)262 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
263 #ifndef SQLITE_OMIT_FLOATING_POINT
264 int incr = (enc==SQLITE_UTF8?1:2);
265 const char *zEnd = z + length;
266 /* sign * significand * (10 ^ (esign * exponent)) */
267 int sign = 1; /* sign of significand */
268 i64 s = 0; /* significand */
269 int d = 0; /* adjust exponent for shifting decimal point */
270 int esign = 1; /* sign of exponent */
271 int e = 0; /* exponent */
272 int eValid = 1; /* True exponent is either not used or is well-formed */
273 double result;
274 int nDigits = 0;
275
276 *pResult = 0.0; /* Default return value, in case of an error */
277
278 if( enc==SQLITE_UTF16BE ) z++;
279
280 /* skip leading spaces */
281 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
282 if( z>=zEnd ) return 0;
283
284 /* get sign of significand */
285 if( *z=='-' ){
286 sign = -1;
287 z+=incr;
288 }else if( *z=='+' ){
289 z+=incr;
290 }
291
292 /* skip leading zeroes */
293 while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++;
294
295 /* copy max significant digits to significand */
296 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
297 s = s*10 + (*z - '0');
298 z+=incr, nDigits++;
299 }
300
301 /* skip non-significant significand digits
302 ** (increase exponent by d to shift decimal left) */
303 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++;
304 if( z>=zEnd ) goto do_atof_calc;
305
306 /* if decimal point is present */
307 if( *z=='.' ){
308 z+=incr;
309 /* copy digits from after decimal to significand
310 ** (decrease exponent by d to shift decimal right) */
311 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
312 s = s*10 + (*z - '0');
313 z+=incr, nDigits++, d--;
314 }
315 /* skip non-significant digits */
316 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++;
317 }
318 if( z>=zEnd ) goto do_atof_calc;
319
320 /* if exponent is present */
321 if( *z=='e' || *z=='E' ){
322 z+=incr;
323 eValid = 0;
324 if( z>=zEnd ) goto do_atof_calc;
325 /* get sign of exponent */
326 if( *z=='-' ){
327 esign = -1;
328 z+=incr;
329 }else if( *z=='+' ){
330 z+=incr;
331 }
332 /* copy digits to exponent */
333 while( z<zEnd && sqlite3Isdigit(*z) ){
334 e = e*10 + (*z - '0');
335 z+=incr;
336 eValid = 1;
337 }
338 }
339
340 /* skip trailing spaces */
341 if( nDigits && eValid ){
342 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
343 }
344
345 do_atof_calc:
346 /* adjust exponent by d, and update sign */
347 e = (e*esign) + d;
348 if( e<0 ) {
349 esign = -1;
350 e *= -1;
351 } else {
352 esign = 1;
353 }
354
355 /* if 0 significand */
356 if( !s ) {
357 /* In the IEEE 754 standard, zero is signed.
358 ** Add the sign if we've seen at least one digit */
359 result = (sign<0 && nDigits) ? -(double)0 : (double)0;
360 } else {
361 /* attempt to reduce exponent */
362 if( esign>0 ){
363 while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10;
364 }else{
365 while( !(s%10) && e>0 ) e--,s/=10;
366 }
367
368 /* adjust the sign of significand */
369 s = sign<0 ? -s : s;
370
371 /* if exponent, scale significand as appropriate
372 ** and store in result. */
373 if( e ){
374 double scale = 1.0;
375 /* attempt to handle extremely small/large numbers better */
376 if( e>307 && e<342 ){
377 while( e%308 ) { scale *= 1.0e+1; e -= 1; }
378 if( esign<0 ){
379 result = s / scale;
380 result /= 1.0e+308;
381 }else{
382 result = s * scale;
383 result *= 1.0e+308;
384 }
385 }else{
386 /* 1.0e+22 is the largest power of 10 than can be
387 ** represented exactly. */
388 while( e%22 ) { scale *= 1.0e+1; e -= 1; }
389 while( e>0 ) { scale *= 1.0e+22; e -= 22; }
390 if( esign<0 ){
391 result = s / scale;
392 }else{
393 result = s * scale;
394 }
395 }
396 } else {
397 result = (double)s;
398 }
399 }
400
401 /* store the result */
402 *pResult = result;
403
404 /* return true if number and no extra non-whitespace chracters after */
405 return z>=zEnd && nDigits>0 && eValid;
406 #else
407 return !sqlite3Atoi64(z, pResult, length, enc);
408 #endif /* SQLITE_OMIT_FLOATING_POINT */
409 }
410
411 /*
412 ** Compare the 19-character string zNum against the text representation
413 ** value 2^63: 9223372036854775808. Return negative, zero, or positive
414 ** if zNum is less than, equal to, or greater than the string.
415 ** Note that zNum must contain exactly 19 characters.
416 **
417 ** Unlike memcmp() this routine is guaranteed to return the difference
418 ** in the values of the last digit if the only difference is in the
419 ** last digit. So, for example,
420 **
421 ** compare2pow63("9223372036854775800", 1)
422 **
423 ** will return -8.
424 */
compare2pow63(const char * zNum,int incr)425 static int compare2pow63(const char *zNum, int incr){
426 int c = 0;
427 int i;
428 /* 012345678901234567 */
429 const char *pow63 = "922337203685477580";
430 for(i=0; c==0 && i<18; i++){
431 c = (zNum[i*incr]-pow63[i])*10;
432 }
433 if( c==0 ){
434 c = zNum[18*incr] - '8';
435 testcase( c==(-1) );
436 testcase( c==0 );
437 testcase( c==(+1) );
438 }
439 return c;
440 }
441
442
443 /*
444 ** Convert zNum to a 64-bit signed integer.
445 **
446 ** If the zNum value is representable as a 64-bit twos-complement
447 ** integer, then write that value into *pNum and return 0.
448 **
449 ** If zNum is exactly 9223372036854665808, return 2. This special
450 ** case is broken out because while 9223372036854665808 cannot be a
451 ** signed 64-bit integer, its negative -9223372036854665808 can be.
452 **
453 ** If zNum is too big for a 64-bit integer and is not
454 ** 9223372036854665808 then return 1.
455 **
456 ** length is the number of bytes in the string (bytes, not characters).
457 ** The string is not necessarily zero-terminated. The encoding is
458 ** given by enc.
459 */
sqlite3Atoi64(const char * zNum,i64 * pNum,int length,u8 enc)460 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
461 int incr = (enc==SQLITE_UTF8?1:2);
462 u64 u = 0;
463 int neg = 0; /* assume positive */
464 int i;
465 int c = 0;
466 const char *zStart;
467 const char *zEnd = zNum + length;
468 if( enc==SQLITE_UTF16BE ) zNum++;
469 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
470 if( zNum<zEnd ){
471 if( *zNum=='-' ){
472 neg = 1;
473 zNum+=incr;
474 }else if( *zNum=='+' ){
475 zNum+=incr;
476 }
477 }
478 zStart = zNum;
479 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
480 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
481 u = u*10 + c - '0';
482 }
483 if( u>LARGEST_INT64 ){
484 *pNum = SMALLEST_INT64;
485 }else if( neg ){
486 *pNum = -(i64)u;
487 }else{
488 *pNum = (i64)u;
489 }
490 testcase( i==18 );
491 testcase( i==19 );
492 testcase( i==20 );
493 if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr ){
494 /* zNum is empty or contains non-numeric text or is longer
495 ** than 19 digits (thus guaranteeing that it is too large) */
496 return 1;
497 }else if( i<19*incr ){
498 /* Less than 19 digits, so we know that it fits in 64 bits */
499 assert( u<=LARGEST_INT64 );
500 return 0;
501 }else{
502 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
503 c = compare2pow63(zNum, incr);
504 if( c<0 ){
505 /* zNum is less than 9223372036854775808 so it fits */
506 assert( u<=LARGEST_INT64 );
507 return 0;
508 }else if( c>0 ){
509 /* zNum is greater than 9223372036854775808 so it overflows */
510 return 1;
511 }else{
512 /* zNum is exactly 9223372036854775808. Fits if negative. The
513 ** special case 2 overflow if positive */
514 assert( u-1==LARGEST_INT64 );
515 assert( (*pNum)==SMALLEST_INT64 );
516 return neg ? 0 : 2;
517 }
518 }
519 }
520
521 /*
522 ** If zNum represents an integer that will fit in 32-bits, then set
523 ** *pValue to that integer and return true. Otherwise return false.
524 **
525 ** Any non-numeric characters that following zNum are ignored.
526 ** This is different from sqlite3Atoi64() which requires the
527 ** input number to be zero-terminated.
528 */
sqlite3GetInt32(const char * zNum,int * pValue)529 int sqlite3GetInt32(const char *zNum, int *pValue){
530 sqlite_int64 v = 0;
531 int i, c;
532 int neg = 0;
533 if( zNum[0]=='-' ){
534 neg = 1;
535 zNum++;
536 }else if( zNum[0]=='+' ){
537 zNum++;
538 }
539 while( zNum[0]=='0' ) zNum++;
540 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
541 v = v*10 + c;
542 }
543
544 /* The longest decimal representation of a 32 bit integer is 10 digits:
545 **
546 ** 1234567890
547 ** 2^31 -> 2147483648
548 */
549 testcase( i==10 );
550 if( i>10 ){
551 return 0;
552 }
553 testcase( v-neg==2147483647 );
554 if( v-neg>2147483647 ){
555 return 0;
556 }
557 if( neg ){
558 v = -v;
559 }
560 *pValue = (int)v;
561 return 1;
562 }
563
564 /*
565 ** Return a 32-bit integer value extracted from a string. If the
566 ** string is not an integer, just return 0.
567 */
sqlite3Atoi(const char * z)568 int sqlite3Atoi(const char *z){
569 int x = 0;
570 if( z ) sqlite3GetInt32(z, &x);
571 return x;
572 }
573
574 /*
575 ** The variable-length integer encoding is as follows:
576 **
577 ** KEY:
578 ** A = 0xxxxxxx 7 bits of data and one flag bit
579 ** B = 1xxxxxxx 7 bits of data and one flag bit
580 ** C = xxxxxxxx 8 bits of data
581 **
582 ** 7 bits - A
583 ** 14 bits - BA
584 ** 21 bits - BBA
585 ** 28 bits - BBBA
586 ** 35 bits - BBBBA
587 ** 42 bits - BBBBBA
588 ** 49 bits - BBBBBBA
589 ** 56 bits - BBBBBBBA
590 ** 64 bits - BBBBBBBBC
591 */
592
593 /*
594 ** Write a 64-bit variable-length integer to memory starting at p[0].
595 ** The length of data write will be between 1 and 9 bytes. The number
596 ** of bytes written is returned.
597 **
598 ** A variable-length integer consists of the lower 7 bits of each byte
599 ** for all bytes that have the 8th bit set and one byte with the 8th
600 ** bit clear. Except, if we get to the 9th byte, it stores the full
601 ** 8 bits and is the last byte.
602 */
sqlite3PutVarint(unsigned char * p,u64 v)603 int sqlite3PutVarint(unsigned char *p, u64 v){
604 int i, j, n;
605 u8 buf[10];
606 if( v & (((u64)0xff000000)<<32) ){
607 p[8] = (u8)v;
608 v >>= 8;
609 for(i=7; i>=0; i--){
610 p[i] = (u8)((v & 0x7f) | 0x80);
611 v >>= 7;
612 }
613 return 9;
614 }
615 n = 0;
616 do{
617 buf[n++] = (u8)((v & 0x7f) | 0x80);
618 v >>= 7;
619 }while( v!=0 );
620 buf[0] &= 0x7f;
621 assert( n<=9 );
622 for(i=0, j=n-1; j>=0; j--, i++){
623 p[i] = buf[j];
624 }
625 return n;
626 }
627
628 /*
629 ** This routine is a faster version of sqlite3PutVarint() that only
630 ** works for 32-bit positive integers and which is optimized for
631 ** the common case of small integers. A MACRO version, putVarint32,
632 ** is provided which inlines the single-byte case. All code should use
633 ** the MACRO version as this function assumes the single-byte case has
634 ** already been handled.
635 */
sqlite3PutVarint32(unsigned char * p,u32 v)636 int sqlite3PutVarint32(unsigned char *p, u32 v){
637 #ifndef putVarint32
638 if( (v & ~0x7f)==0 ){
639 p[0] = v;
640 return 1;
641 }
642 #endif
643 if( (v & ~0x3fff)==0 ){
644 p[0] = (u8)((v>>7) | 0x80);
645 p[1] = (u8)(v & 0x7f);
646 return 2;
647 }
648 return sqlite3PutVarint(p, v);
649 }
650
651 /*
652 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants
653 ** are defined here rather than simply putting the constant expressions
654 ** inline in order to work around bugs in the RVT compiler.
655 **
656 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
657 **
658 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
659 */
660 #define SLOT_2_0 0x001fc07f
661 #define SLOT_4_2_0 0xf01fc07f
662
663
664 /*
665 ** Read a 64-bit variable-length integer from memory starting at p[0].
666 ** Return the number of bytes read. The value is stored in *v.
667 */
sqlite3GetVarint(const unsigned char * p,u64 * v)668 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
669 u32 a,b,s;
670
671 a = *p;
672 /* a: p0 (unmasked) */
673 if (!(a&0x80))
674 {
675 *v = a;
676 return 1;
677 }
678
679 p++;
680 b = *p;
681 /* b: p1 (unmasked) */
682 if (!(b&0x80))
683 {
684 a &= 0x7f;
685 a = a<<7;
686 a |= b;
687 *v = a;
688 return 2;
689 }
690
691 /* Verify that constants are precomputed correctly */
692 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
693 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
694
695 p++;
696 a = a<<14;
697 a |= *p;
698 /* a: p0<<14 | p2 (unmasked) */
699 if (!(a&0x80))
700 {
701 a &= SLOT_2_0;
702 b &= 0x7f;
703 b = b<<7;
704 a |= b;
705 *v = a;
706 return 3;
707 }
708
709 /* CSE1 from below */
710 a &= SLOT_2_0;
711 p++;
712 b = b<<14;
713 b |= *p;
714 /* b: p1<<14 | p3 (unmasked) */
715 if (!(b&0x80))
716 {
717 b &= SLOT_2_0;
718 /* moved CSE1 up */
719 /* a &= (0x7f<<14)|(0x7f); */
720 a = a<<7;
721 a |= b;
722 *v = a;
723 return 4;
724 }
725
726 /* a: p0<<14 | p2 (masked) */
727 /* b: p1<<14 | p3 (unmasked) */
728 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
729 /* moved CSE1 up */
730 /* a &= (0x7f<<14)|(0x7f); */
731 b &= SLOT_2_0;
732 s = a;
733 /* s: p0<<14 | p2 (masked) */
734
735 p++;
736 a = a<<14;
737 a |= *p;
738 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
739 if (!(a&0x80))
740 {
741 /* we can skip these cause they were (effectively) done above in calc'ing s */
742 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
743 /* b &= (0x7f<<14)|(0x7f); */
744 b = b<<7;
745 a |= b;
746 s = s>>18;
747 *v = ((u64)s)<<32 | a;
748 return 5;
749 }
750
751 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
752 s = s<<7;
753 s |= b;
754 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
755
756 p++;
757 b = b<<14;
758 b |= *p;
759 /* b: p1<<28 | p3<<14 | p5 (unmasked) */
760 if (!(b&0x80))
761 {
762 /* we can skip this cause it was (effectively) done above in calc'ing s */
763 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
764 a &= SLOT_2_0;
765 a = a<<7;
766 a |= b;
767 s = s>>18;
768 *v = ((u64)s)<<32 | a;
769 return 6;
770 }
771
772 p++;
773 a = a<<14;
774 a |= *p;
775 /* a: p2<<28 | p4<<14 | p6 (unmasked) */
776 if (!(a&0x80))
777 {
778 a &= SLOT_4_2_0;
779 b &= SLOT_2_0;
780 b = b<<7;
781 a |= b;
782 s = s>>11;
783 *v = ((u64)s)<<32 | a;
784 return 7;
785 }
786
787 /* CSE2 from below */
788 a &= SLOT_2_0;
789 p++;
790 b = b<<14;
791 b |= *p;
792 /* b: p3<<28 | p5<<14 | p7 (unmasked) */
793 if (!(b&0x80))
794 {
795 b &= SLOT_4_2_0;
796 /* moved CSE2 up */
797 /* a &= (0x7f<<14)|(0x7f); */
798 a = a<<7;
799 a |= b;
800 s = s>>4;
801 *v = ((u64)s)<<32 | a;
802 return 8;
803 }
804
805 p++;
806 a = a<<15;
807 a |= *p;
808 /* a: p4<<29 | p6<<15 | p8 (unmasked) */
809
810 /* moved CSE2 up */
811 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
812 b &= SLOT_2_0;
813 b = b<<8;
814 a |= b;
815
816 s = s<<4;
817 b = p[-4];
818 b &= 0x7f;
819 b = b>>3;
820 s |= b;
821
822 *v = ((u64)s)<<32 | a;
823
824 return 9;
825 }
826
827 /*
828 ** Read a 32-bit variable-length integer from memory starting at p[0].
829 ** Return the number of bytes read. The value is stored in *v.
830 **
831 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
832 ** integer, then set *v to 0xffffffff.
833 **
834 ** A MACRO version, getVarint32, is provided which inlines the
835 ** single-byte case. All code should use the MACRO version as
836 ** this function assumes the single-byte case has already been handled.
837 */
sqlite3GetVarint32(const unsigned char * p,u32 * v)838 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
839 u32 a,b;
840
841 /* The 1-byte case. Overwhelmingly the most common. Handled inline
842 ** by the getVarin32() macro */
843 a = *p;
844 /* a: p0 (unmasked) */
845 #ifndef getVarint32
846 if (!(a&0x80))
847 {
848 /* Values between 0 and 127 */
849 *v = a;
850 return 1;
851 }
852 #endif
853
854 /* The 2-byte case */
855 p++;
856 b = *p;
857 /* b: p1 (unmasked) */
858 if (!(b&0x80))
859 {
860 /* Values between 128 and 16383 */
861 a &= 0x7f;
862 a = a<<7;
863 *v = a | b;
864 return 2;
865 }
866
867 /* The 3-byte case */
868 p++;
869 a = a<<14;
870 a |= *p;
871 /* a: p0<<14 | p2 (unmasked) */
872 if (!(a&0x80))
873 {
874 /* Values between 16384 and 2097151 */
875 a &= (0x7f<<14)|(0x7f);
876 b &= 0x7f;
877 b = b<<7;
878 *v = a | b;
879 return 3;
880 }
881
882 /* A 32-bit varint is used to store size information in btrees.
883 ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
884 ** A 3-byte varint is sufficient, for example, to record the size
885 ** of a 1048569-byte BLOB or string.
886 **
887 ** We only unroll the first 1-, 2-, and 3- byte cases. The very
888 ** rare larger cases can be handled by the slower 64-bit varint
889 ** routine.
890 */
891 #if 1
892 {
893 u64 v64;
894 u8 n;
895
896 p -= 2;
897 n = sqlite3GetVarint(p, &v64);
898 assert( n>3 && n<=9 );
899 if( (v64 & SQLITE_MAX_U32)!=v64 ){
900 *v = 0xffffffff;
901 }else{
902 *v = (u32)v64;
903 }
904 return n;
905 }
906
907 #else
908 /* For following code (kept for historical record only) shows an
909 ** unrolling for the 3- and 4-byte varint cases. This code is
910 ** slightly faster, but it is also larger and much harder to test.
911 */
912 p++;
913 b = b<<14;
914 b |= *p;
915 /* b: p1<<14 | p3 (unmasked) */
916 if (!(b&0x80))
917 {
918 /* Values between 2097152 and 268435455 */
919 b &= (0x7f<<14)|(0x7f);
920 a &= (0x7f<<14)|(0x7f);
921 a = a<<7;
922 *v = a | b;
923 return 4;
924 }
925
926 p++;
927 a = a<<14;
928 a |= *p;
929 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
930 if (!(a&0x80))
931 {
932 /* Values between 268435456 and 34359738367 */
933 a &= SLOT_4_2_0;
934 b &= SLOT_4_2_0;
935 b = b<<7;
936 *v = a | b;
937 return 5;
938 }
939
940 /* We can only reach this point when reading a corrupt database
941 ** file. In that case we are not in any hurry. Use the (relatively
942 ** slow) general-purpose sqlite3GetVarint() routine to extract the
943 ** value. */
944 {
945 u64 v64;
946 u8 n;
947
948 p -= 4;
949 n = sqlite3GetVarint(p, &v64);
950 assert( n>5 && n<=9 );
951 *v = (u32)v64;
952 return n;
953 }
954 #endif
955 }
956
957 /*
958 ** Return the number of bytes that will be needed to store the given
959 ** 64-bit integer.
960 */
sqlite3VarintLen(u64 v)961 int sqlite3VarintLen(u64 v){
962 int i = 0;
963 do{
964 i++;
965 v >>= 7;
966 }while( v!=0 && ALWAYS(i<9) );
967 return i;
968 }
969
970
971 /*
972 ** Read or write a four-byte big-endian integer value.
973 */
sqlite3Get4byte(const u8 * p)974 u32 sqlite3Get4byte(const u8 *p){
975 return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
976 }
sqlite3Put4byte(unsigned char * p,u32 v)977 void sqlite3Put4byte(unsigned char *p, u32 v){
978 p[0] = (u8)(v>>24);
979 p[1] = (u8)(v>>16);
980 p[2] = (u8)(v>>8);
981 p[3] = (u8)v;
982 }
983
984
985
986 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
987 /*
988 ** Translate a single byte of Hex into an integer.
989 ** This routine only works if h really is a valid hexadecimal
990 ** character: 0..9a..fA..F
991 */
hexToInt(int h)992 static u8 hexToInt(int h){
993 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
994 #ifdef SQLITE_ASCII
995 h += 9*(1&(h>>6));
996 #endif
997 #ifdef SQLITE_EBCDIC
998 h += 9*(1&~(h>>4));
999 #endif
1000 return (u8)(h & 0xf);
1001 }
1002 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1003
1004 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
1005 /*
1006 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1007 ** value. Return a pointer to its binary value. Space to hold the
1008 ** binary value has been obtained from malloc and must be freed by
1009 ** the calling routine.
1010 */
sqlite3HexToBlob(sqlite3 * db,const char * z,int n)1011 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1012 char *zBlob;
1013 int i;
1014
1015 zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1);
1016 n--;
1017 if( zBlob ){
1018 for(i=0; i<n; i+=2){
1019 zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]);
1020 }
1021 zBlob[i/2] = 0;
1022 }
1023 return zBlob;
1024 }
1025 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1026
1027 /*
1028 ** Log an error that is an API call on a connection pointer that should
1029 ** not have been used. The "type" of connection pointer is given as the
1030 ** argument. The zType is a word like "NULL" or "closed" or "invalid".
1031 */
logBadConnection(const char * zType)1032 static void logBadConnection(const char *zType){
1033 sqlite3_log(SQLITE_MISUSE,
1034 "API call with %s database connection pointer",
1035 zType
1036 );
1037 }
1038
1039 /*
1040 ** Check to make sure we have a valid db pointer. This test is not
1041 ** foolproof but it does provide some measure of protection against
1042 ** misuse of the interface such as passing in db pointers that are
1043 ** NULL or which have been previously closed. If this routine returns
1044 ** 1 it means that the db pointer is valid and 0 if it should not be
1045 ** dereferenced for any reason. The calling function should invoke
1046 ** SQLITE_MISUSE immediately.
1047 **
1048 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1049 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1050 ** open properly and is not fit for general use but which can be
1051 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1052 */
sqlite3SafetyCheckOk(sqlite3 * db)1053 int sqlite3SafetyCheckOk(sqlite3 *db){
1054 u32 magic;
1055 if( db==0 ){
1056 logBadConnection("NULL");
1057 return 0;
1058 }
1059 magic = db->magic;
1060 if( magic!=SQLITE_MAGIC_OPEN ){
1061 if( sqlite3SafetyCheckSickOrOk(db) ){
1062 testcase( sqlite3GlobalConfig.xLog!=0 );
1063 logBadConnection("unopened");
1064 }
1065 return 0;
1066 }else{
1067 return 1;
1068 }
1069 }
sqlite3SafetyCheckSickOrOk(sqlite3 * db)1070 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1071 u32 magic;
1072 magic = db->magic;
1073 if( magic!=SQLITE_MAGIC_SICK &&
1074 magic!=SQLITE_MAGIC_OPEN &&
1075 magic!=SQLITE_MAGIC_BUSY ){
1076 testcase( sqlite3GlobalConfig.xLog!=0 );
1077 logBadConnection("invalid");
1078 return 0;
1079 }else{
1080 return 1;
1081 }
1082 }
1083
1084 /*
1085 ** Attempt to add, substract, or multiply the 64-bit signed value iB against
1086 ** the other 64-bit signed integer at *pA and store the result in *pA.
1087 ** Return 0 on success. Or if the operation would have resulted in an
1088 ** overflow, leave *pA unchanged and return 1.
1089 */
sqlite3AddInt64(i64 * pA,i64 iB)1090 int sqlite3AddInt64(i64 *pA, i64 iB){
1091 i64 iA = *pA;
1092 testcase( iA==0 ); testcase( iA==1 );
1093 testcase( iB==-1 ); testcase( iB==0 );
1094 if( iB>=0 ){
1095 testcase( iA>0 && LARGEST_INT64 - iA == iB );
1096 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1097 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
1098 *pA += iB;
1099 }else{
1100 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1101 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1102 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
1103 *pA += iB;
1104 }
1105 return 0;
1106 }
sqlite3SubInt64(i64 * pA,i64 iB)1107 int sqlite3SubInt64(i64 *pA, i64 iB){
1108 testcase( iB==SMALLEST_INT64+1 );
1109 if( iB==SMALLEST_INT64 ){
1110 testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1111 if( (*pA)>=0 ) return 1;
1112 *pA -= iB;
1113 return 0;
1114 }else{
1115 return sqlite3AddInt64(pA, -iB);
1116 }
1117 }
1118 #define TWOPOWER32 (((i64)1)<<32)
1119 #define TWOPOWER31 (((i64)1)<<31)
sqlite3MulInt64(i64 * pA,i64 iB)1120 int sqlite3MulInt64(i64 *pA, i64 iB){
1121 i64 iA = *pA;
1122 i64 iA1, iA0, iB1, iB0, r;
1123
1124 iA1 = iA/TWOPOWER32;
1125 iA0 = iA % TWOPOWER32;
1126 iB1 = iB/TWOPOWER32;
1127 iB0 = iB % TWOPOWER32;
1128 if( iA1*iB1 != 0 ) return 1;
1129 assert( iA1*iB0==0 || iA0*iB1==0 );
1130 r = iA1*iB0 + iA0*iB1;
1131 testcase( r==(-TWOPOWER31)-1 );
1132 testcase( r==(-TWOPOWER31) );
1133 testcase( r==TWOPOWER31 );
1134 testcase( r==TWOPOWER31-1 );
1135 if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1;
1136 r *= TWOPOWER32;
1137 if( sqlite3AddInt64(&r, iA0*iB0) ) return 1;
1138 *pA = r;
1139 return 0;
1140 }
1141
1142 /*
1143 ** Compute the absolute value of a 32-bit signed integer, of possible. Or
1144 ** if the integer has a value of -2147483648, return +2147483647
1145 */
sqlite3AbsInt32(int x)1146 int sqlite3AbsInt32(int x){
1147 if( x>=0 ) return x;
1148 if( x==(int)0x80000000 ) return 0x7fffffff;
1149 return -x;
1150 }
1151