1# 2009 December 03 2# 3# May you do good and not evil. 4# May you find forgiveness for yourself and forgive others. 5# May you share freely, never taking more than you give. 6# 7#*********************************************************************** 8# 9# Brute force (random data) tests for FTS3. 10# 11 12#------------------------------------------------------------------------- 13# 14# The FTS3 tests implemented in this file focus on testing that FTS3 15# returns the correct set of documents for various types of full-text 16# query. This is done using pseudo-randomly generated data and queries. 17# The expected result of each query is calculated using Tcl code. 18# 19# 1. The database is initialized to contain a single table with three 20# columns. 100 rows are inserted into the table. Each of the three 21# values in each row is a document consisting of between 0 and 100 22# terms. Terms are selected from a vocabulary of $G(nVocab) terms. 23# 24# 2. The following is performed 100 times: 25# 26# a. A row is inserted into the database. The row contents are 27# generated as in step 1. The docid is a pseudo-randomly selected 28# value between 0 and 1000000. 29# 30# b. A psuedo-randomly selected row is updated. One of its columns is 31# set to contain a new document generated in the same way as the 32# documents in step 1. 33# 34# c. A psuedo-randomly selected row is deleted. 35# 36# d. For each of several types of fts3 queries, 10 SELECT queries 37# of the form: 38# 39# SELECT docid FROM <tbl> WHERE <tbl> MATCH '<query>' 40# 41# are evaluated. The results are compared to those calculated by 42# Tcl code in this file. The patterns used for the different query 43# types are: 44# 45# 1. query = <term> 46# 2. query = <prefix> 47# 3. query = "<term> <term>" 48# 4. query = "<term> <term> <term>" 49# 5. query = "<prefix> <prefix> <prefix>" 50# 6. query = <term> NEAR <term> 51# 7. query = <term> NEAR/11 <term> NEAR/11 <term> 52# 8. query = <term> OR <term> 53# 9. query = <term> NOT <term> 54# 10. query = <term> AND <term> 55# 11. query = <term> NEAR <term> OR <term> NEAR <term> 56# 12. query = <term> NEAR <term> NOT <term> NEAR <term> 57# 13. query = <term> NEAR <term> AND <term> NEAR <term> 58# 59# where <term> is a term psuedo-randomly selected from the vocabulary 60# and prefix is the first 2 characters of such a term followed by 61# a "*" character. 62# 63# Every second iteration, steps (a) through (d) above are performed 64# within a single transaction. This forces the queries in (d) to 65# read data from both the database and the in-memory hash table 66# that caches the full-text index entries created by steps (a), (b) 67# and (c) until the transaction is committed. 68# 69# The procedure above is run 5 times, using advisory fts3 node sizes of 50, 70# 500, 1000 and 2000 bytes. 71# 72# After the test using an advisory node-size of 50, an OOM test is run using 73# the database. This test is similar to step (d) above, except that it tests 74# the effects of transient and persistent OOM conditions encountered while 75# executing each query. 76# 77 78set testdir [file dirname $argv0] 79source $testdir/tester.tcl 80 81# If this build does not include FTS3, skip the tests in this file. 82# 83ifcapable !fts3 { finish_test ; return } 84source $testdir/fts3_common.tcl 85source $testdir/malloc_common.tcl 86 87set G(nVocab) 100 88 89set nVocab 100 90set lVocab [list] 91 92expr srand(0) 93 94# Generate a vocabulary of nVocab words. Each word is 3 characters long. 95# 96set lChar {a b c d e f g h i j k l m n o p q r s t u v w x y z} 97for {set i 0} {$i < $nVocab} {incr i} { 98 set len [expr int(rand()*3)+2] 99 set word [lindex $lChar [expr int(rand()*26)]] 100 append word [lindex $lChar [expr int(rand()*26)]] 101 if {$len>2} { append word [lindex $lChar [expr int(rand()*26)]] } 102 if {$len>3} { append word [lindex $lChar [expr int(rand()*26)]] } 103 lappend lVocab $word 104} 105 106proc random_term {} { 107 lindex $::lVocab [expr {int(rand()*$::nVocab)}] 108} 109 110# Return a document consisting of $nWord arbitrarily selected terms 111# from the $::lVocab list. 112# 113proc generate_doc {nWord} { 114 set doc [list] 115 for {set i 0} {$i < $nWord} {incr i} { 116 lappend doc [random_term] 117 } 118 return $doc 119} 120 121 122 123# Primitives to update the table. 124# 125unset -nocomplain t1 126proc insert_row {rowid} { 127 set a [generate_doc [expr int((rand()*100))]] 128 set b [generate_doc [expr int((rand()*100))]] 129 set c [generate_doc [expr int((rand()*100))]] 130 execsql { INSERT INTO t1(docid, a, b, c) VALUES($rowid, $a, $b, $c) } 131 set ::t1($rowid) [list $a $b $c] 132} 133proc delete_row {rowid} { 134 execsql { DELETE FROM t1 WHERE rowid = $rowid } 135 catch {unset ::t1($rowid)} 136} 137proc update_row {rowid} { 138 set cols {a b c} 139 set iCol [expr int(rand()*3)] 140 set doc [generate_doc [expr int((rand()*100))]] 141 lset ::t1($rowid) $iCol $doc 142 execsql "UPDATE t1 SET [lindex $cols $iCol] = \$doc WHERE rowid = \$rowid" 143} 144 145proc simple_phrase {zPrefix} { 146 set ret [list] 147 148 set reg [string map {* {[^ ]*}} $zPrefix] 149 set reg " $reg " 150 151 foreach key [lsort -integer [array names ::t1]] { 152 set value $::t1($key) 153 set cnt [list] 154 foreach col $value { 155 if {[regexp $reg " $col "]} { lappend ret $key ; break } 156 } 157 } 158 159 #lsort -uniq -integer $ret 160 set ret 161} 162 163# This [proc] is used to test the FTS3 matchinfo() function. 164# 165proc simple_token_matchinfo {zToken} { 166 167 set nDoc(0) 0 168 set nDoc(1) 0 169 set nDoc(2) 0 170 set nHit(0) 0 171 set nHit(1) 0 172 set nHit(2) 0 173 174 175 foreach key [array names ::t1] { 176 set value $::t1($key) 177 set a($key) [list] 178 foreach i {0 1 2} col $value { 179 set hit [llength [lsearch -all $col $zToken]] 180 lappend a($key) $hit 181 incr nHit($i) $hit 182 if {$hit>0} { incr nDoc($i) } 183 } 184 } 185 186 set ret [list] 187 foreach docid [lsort -integer [array names a]] { 188 if { [lindex [lsort -integer $a($docid)] end] } { 189 set matchinfo [list 1 3] 190 foreach i {0 1 2} hit $a($docid) { 191 lappend matchinfo $hit $nHit($i) $nDoc($i) 192 } 193 lappend ret $docid $matchinfo 194 } 195 } 196 197 set ret 198} 199 200proc simple_near {termlist nNear} { 201 set ret [list] 202 203 foreach {key value} [array get ::t1] { 204 foreach v $value { 205 206 set l [lsearch -exact -all $v [lindex $termlist 0]] 207 foreach T [lrange $termlist 1 end] { 208 set l2 [list] 209 foreach i $l { 210 set iStart [expr $i - $nNear - 1] 211 set iEnd [expr $i + $nNear + 1] 212 if {$iStart < 0} {set iStart 0} 213 foreach i2 [lsearch -exact -all [lrange $v $iStart $iEnd] $T] { 214 incr i2 $iStart 215 if {$i2 != $i} { lappend l2 $i2 } 216 } 217 } 218 set l [lsort -uniq -integer $l2] 219 } 220 221 if {[llength $l]} { 222#puts "MATCH($key): $v" 223 lappend ret $key 224 } 225 } 226 } 227 228 lsort -unique -integer $ret 229} 230 231# The following three procs: 232# 233# setup_not A B 234# setup_or A B 235# setup_and A B 236# 237# each take two arguments. Both arguments must be lists of integer values 238# sorted by value. The return value is the list produced by evaluating 239# the equivalent of "A op B", where op is the FTS3 operator NOT, OR or 240# AND. 241# 242proc setop_not {A B} { 243 foreach b $B { set n($b) {} } 244 set ret [list] 245 foreach a $A { if {![info exists n($a)]} {lappend ret $a} } 246 return $ret 247} 248proc setop_or {A B} { 249 lsort -integer -uniq [concat $A $B] 250} 251proc setop_and {A B} { 252 foreach b $B { set n($b) {} } 253 set ret [list] 254 foreach a $A { if {[info exists n($a)]} {lappend ret $a} } 255 return $ret 256} 257 258proc mit {blob} { 259 set scan(littleEndian) i* 260 set scan(bigEndian) I* 261 binary scan $blob $scan($::tcl_platform(byteOrder)) r 262 return $r 263} 264db func mit mit 265 266set sqlite_fts3_enable_parentheses 1 267 268foreach nodesize {50 500 1000 2000} { 269 catch { array unset ::t1 } 270 271 # Create the FTS3 table. Populate it (and the Tcl array) with 100 rows. 272 # 273 db transaction { 274 catchsql { DROP TABLE t1 } 275 execsql "CREATE VIRTUAL TABLE t1 USING fts3(a, b, c)" 276 execsql "INSERT INTO t1(t1) VALUES('nodesize=$nodesize')" 277 for {set i 0} {$i < 100} {incr i} { insert_row $i } 278 } 279 280 for {set iTest 1} {$iTest <= 100} {incr iTest} { 281 catchsql COMMIT 282 283 set DO_MALLOC_TEST 0 284 set nRep 10 285 if {$iTest==100 && $nodesize==50} { 286 set DO_MALLOC_TEST 1 287 set nRep 2 288 } 289 290 # Delete one row, update one row and insert one row. 291 # 292 set rows [array names ::t1] 293 set nRow [llength $rows] 294 set iUpdate [lindex $rows [expr {int(rand()*$nRow)}]] 295 set iDelete $iUpdate 296 while {$iDelete == $iUpdate} { 297 set iDelete [lindex $rows [expr {int(rand()*$nRow)}]] 298 } 299 set iInsert $iUpdate 300 while {[info exists ::t1($iInsert)]} { 301 set iInsert [expr {int(rand()*1000000)}] 302 } 303 execsql BEGIN 304 insert_row $iInsert 305 update_row $iUpdate 306 delete_row $iDelete 307 if {0==($iTest%2)} { execsql COMMIT } 308 309 if {0==($iTest%2)} { 310 do_test fts3rnd-1.$nodesize.$iTest.0 { fts3_integrity_check t1 } ok 311 } 312 313 # Pick 10 terms from the vocabulary. Check that the results of querying 314 # the database for the set of documents containing each of these terms 315 # is the same as the result obtained by scanning the contents of the Tcl 316 # array for each term. 317 # 318 for {set i 0} {$i < 10} {incr i} { 319 set term [random_term] 320 do_select_test fts3rnd-1.$nodesize.$iTest.1.$i { 321 SELECT docid, mit(matchinfo(t1)) FROM t1 WHERE t1 MATCH $term 322 } [simple_token_matchinfo $term] 323 } 324 325 # This time, use the first two characters of each term as a term prefix 326 # to query for. Test that querying the Tcl array produces the same results 327 # as querying the FTS3 table for the prefix. 328 # 329 for {set i 0} {$i < $nRep} {incr i} { 330 set prefix [string range [random_term] 0 end-1] 331 set match "${prefix}*" 332 do_select_test fts3rnd-1.$nodesize.$iTest.2.$i { 333 SELECT docid FROM t1 WHERE t1 MATCH $match 334 } [simple_phrase $match] 335 } 336 337 # Similar to the above, except for phrase queries. 338 # 339 for {set i 0} {$i < $nRep} {incr i} { 340 set term [list [random_term] [random_term]] 341 set match "\"$term\"" 342 do_select_test fts3rnd-1.$nodesize.$iTest.3.$i { 343 SELECT docid FROM t1 WHERE t1 MATCH $match 344 } [simple_phrase $term] 345 } 346 347 # Three word phrases. 348 # 349 for {set i 0} {$i < $nRep} {incr i} { 350 set term [list [random_term] [random_term] [random_term]] 351 set match "\"$term\"" 352 do_select_test fts3rnd-1.$nodesize.$iTest.4.$i { 353 SELECT docid FROM t1 WHERE t1 MATCH $match 354 } [simple_phrase $term] 355 } 356 357 # Three word phrases made up of term-prefixes. 358 # 359 for {set i 0} {$i < $nRep} {incr i} { 360 set query "[string range [random_term] 0 end-1]* " 361 append query "[string range [random_term] 0 end-1]* " 362 append query "[string range [random_term] 0 end-1]*" 363 364 set match "\"$query\"" 365 do_select_test fts3rnd-1.$nodesize.$iTest.5.$i { 366 SELECT docid FROM t1 WHERE t1 MATCH $match 367 } [simple_phrase $query] 368 } 369 370 # A NEAR query with terms as the arguments. 371 # 372 for {set i 0} {$i < $nRep} {incr i} { 373 set terms [list [random_term] [random_term]] 374 set match [join $terms " NEAR "] 375 do_select_test fts3rnd-1.$nodesize.$iTest.6.$i { 376 SELECT docid FROM t1 WHERE t1 MATCH $match 377 } [simple_near $terms 10] 378 } 379 380 # A 3-way NEAR query with terms as the arguments. 381 # 382 for {set i 0} {$i < $nRep} {incr i} { 383 set terms [list [random_term] [random_term] [random_term]] 384 set nNear 11 385 set match [join $terms " NEAR/$nNear "] 386 do_select_test fts3rnd-1.$nodesize.$iTest.7.$i { 387 SELECT docid FROM t1 WHERE t1 MATCH $match 388 } [simple_near $terms $nNear] 389 } 390 391 # Set operations on simple term queries. 392 # 393 foreach {tn op proc} { 394 8 OR setop_or 395 9 NOT setop_not 396 10 AND setop_and 397 } { 398 for {set i 0} {$i < $nRep} {incr i} { 399 set term1 [random_term] 400 set term2 [random_term] 401 set match "$term1 $op $term2" 402 do_select_test fts3rnd-1.$nodesize.$iTest.$tn.$i { 403 SELECT docid FROM t1 WHERE t1 MATCH $match 404 } [$proc [simple_phrase $term1] [simple_phrase $term2]] 405 } 406 } 407 408 # Set operations on NEAR queries. 409 # 410 foreach {tn op proc} { 411 8 OR setop_or 412 9 NOT setop_not 413 10 AND setop_and 414 } { 415 for {set i 0} {$i < $nRep} {incr i} { 416 set term1 [random_term] 417 set term2 [random_term] 418 set term3 [random_term] 419 set term4 [random_term] 420 set match "$term1 NEAR $term2 $op $term3 NEAR $term4" 421 do_select_test fts3rnd-1.$nodesize.$iTest.$tn.$i { 422 SELECT docid FROM t1 WHERE t1 MATCH $match 423 } [$proc \ 424 [simple_near [list $term1 $term2] 10] \ 425 [simple_near [list $term3 $term4] 10] 426 ] 427 } 428 } 429 430 catchsql COMMIT 431 } 432} 433 434finish_test 435