• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "base/debug/trace_event.h"
6 #include "base/json/json_writer.h"
7 #include "base/memory/scoped_ptr.h"
8 #include "base/strings/stringprintf.h"
9 #include "ui/events/latency_info.h"
10 
11 #include <algorithm>
12 
13 namespace {
14 
15 const size_t kMaxLatencyInfoNumber = 100;
16 
GetComponentName(ui::LatencyComponentType type)17 const char* GetComponentName(ui::LatencyComponentType type) {
18 #define CASE_TYPE(t) case ui::t:  return #t
19   switch (type) {
20     CASE_TYPE(INPUT_EVENT_LATENCY_BEGIN_RWH_COMPONENT);
21     CASE_TYPE(INPUT_EVENT_LATENCY_BEGIN_PLUGIN_COMPONENT);
22     CASE_TYPE(INPUT_EVENT_LATENCY_SCROLL_UPDATE_RWH_COMPONENT);
23     CASE_TYPE(INPUT_EVENT_LATENCY_SCROLL_UPDATE_ORIGINAL_COMPONENT);
24     CASE_TYPE(INPUT_EVENT_LATENCY_ORIGINAL_COMPONENT);
25     CASE_TYPE(INPUT_EVENT_LATENCY_UI_COMPONENT);
26     CASE_TYPE(INPUT_EVENT_LATENCY_RENDERING_SCHEDULED_COMPONENT);
27     CASE_TYPE(INPUT_EVENT_LATENCY_ACKED_TOUCH_COMPONENT);
28     CASE_TYPE(WINDOW_SNAPSHOT_FRAME_NUMBER_COMPONENT);
29     CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_MOUSE_COMPONENT);
30     CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_TOUCH_COMPONENT);
31     CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_GESTURE_COMPONENT);
32     CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_FRAME_SWAP_COMPONENT);
33     CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_COMMIT_FAILED_COMPONENT);
34     CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_SWAP_FAILED_COMPONENT);
35     CASE_TYPE(LATENCY_INFO_LIST_TERMINATED_OVERFLOW_COMPONENT);
36     CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_PLUGIN_COMPONENT);
37     default:
38       DLOG(WARNING) << "Unhandled LatencyComponentType.\n";
39       break;
40   }
41 #undef CASE_TYPE
42   return "unknown";
43 }
44 
IsTerminalComponent(ui::LatencyComponentType type)45 bool IsTerminalComponent(ui::LatencyComponentType type) {
46   switch (type) {
47     case ui::INPUT_EVENT_LATENCY_TERMINATED_MOUSE_COMPONENT:
48     case ui::INPUT_EVENT_LATENCY_TERMINATED_TOUCH_COMPONENT:
49     case ui::INPUT_EVENT_LATENCY_TERMINATED_GESTURE_COMPONENT:
50     case ui::INPUT_EVENT_LATENCY_TERMINATED_FRAME_SWAP_COMPONENT:
51     case ui::INPUT_EVENT_LATENCY_TERMINATED_COMMIT_FAILED_COMPONENT:
52     case ui::INPUT_EVENT_LATENCY_TERMINATED_SWAP_FAILED_COMPONENT:
53     case ui::LATENCY_INFO_LIST_TERMINATED_OVERFLOW_COMPONENT:
54     case ui::INPUT_EVENT_LATENCY_TERMINATED_PLUGIN_COMPONENT:
55       return true;
56     default:
57       return false;
58   }
59 }
60 
IsBeginComponent(ui::LatencyComponentType type)61 bool IsBeginComponent(ui::LatencyComponentType type) {
62   return (type == ui::INPUT_EVENT_LATENCY_BEGIN_RWH_COMPONENT ||
63           type == ui::INPUT_EVENT_LATENCY_BEGIN_PLUGIN_COMPONENT);
64 }
65 
66 // This class is for converting latency info to trace buffer friendly format.
67 class LatencyInfoTracedValue : public base::debug::ConvertableToTraceFormat {
68  public:
69   static scoped_refptr<ConvertableToTraceFormat> FromValue(
70       scoped_ptr<base::Value> value);
71 
72   virtual void AppendAsTraceFormat(std::string* out) const OVERRIDE;
73 
74  private:
75   explicit LatencyInfoTracedValue(base::Value* value);
76   virtual ~LatencyInfoTracedValue();
77 
78   scoped_ptr<base::Value> value_;
79 
80   DISALLOW_COPY_AND_ASSIGN(LatencyInfoTracedValue);
81 };
82 
83 scoped_refptr<base::debug::ConvertableToTraceFormat>
FromValue(scoped_ptr<base::Value> value)84 LatencyInfoTracedValue::FromValue(scoped_ptr<base::Value> value) {
85   return scoped_refptr<base::debug::ConvertableToTraceFormat>(
86       new LatencyInfoTracedValue(value.release()));
87 }
88 
~LatencyInfoTracedValue()89 LatencyInfoTracedValue::~LatencyInfoTracedValue() {
90 }
91 
AppendAsTraceFormat(std::string * out) const92 void LatencyInfoTracedValue::AppendAsTraceFormat(std::string* out) const {
93   std::string tmp;
94   base::JSONWriter::Write(value_.get(), &tmp);
95   *out += tmp;
96 }
97 
LatencyInfoTracedValue(base::Value * value)98 LatencyInfoTracedValue::LatencyInfoTracedValue(base::Value* value)
99     : value_(value) {
100 }
101 
102 // Converts latencyinfo into format that can be dumped into trace buffer.
AsTraceableData(const ui::LatencyInfo & latency)103 scoped_refptr<base::debug::ConvertableToTraceFormat> AsTraceableData(
104     const ui::LatencyInfo& latency) {
105   scoped_ptr<base::DictionaryValue> record_data(new base::DictionaryValue());
106   for (ui::LatencyInfo::LatencyMap::const_iterator it =
107            latency.latency_components.begin();
108        it != latency.latency_components.end(); ++it) {
109     base::DictionaryValue* component_info = new base::DictionaryValue();
110     component_info->SetDouble("comp_id", it->first.second);
111     component_info->SetDouble("time", it->second.event_time.ToInternalValue());
112     component_info->SetDouble("count", it->second.event_count);
113     record_data->Set(GetComponentName(it->first.first), component_info);
114   }
115   record_data->SetDouble("trace_id", latency.trace_id);
116   return LatencyInfoTracedValue::FromValue(record_data.PassAs<base::Value>());
117 }
118 
119 }  // namespace
120 
121 namespace ui {
122 
LatencyInfo()123 LatencyInfo::LatencyInfo() : trace_id(-1), terminated(false) {
124 }
125 
~LatencyInfo()126 LatencyInfo::~LatencyInfo() {
127 }
128 
Verify(const std::vector<LatencyInfo> & latency_info,const char * referring_msg)129 bool LatencyInfo::Verify(const std::vector<LatencyInfo>& latency_info,
130                          const char* referring_msg) {
131   if (latency_info.size() > kMaxLatencyInfoNumber) {
132     LOG(ERROR) << referring_msg << ", LatencyInfo vector size "
133                << latency_info.size() << " is too big.";
134     return false;
135   }
136   return true;
137 }
138 
CopyLatencyFrom(const LatencyInfo & other,LatencyComponentType type)139 void LatencyInfo::CopyLatencyFrom(const LatencyInfo& other,
140                                   LatencyComponentType type) {
141   for (LatencyMap::const_iterator it = other.latency_components.begin();
142        it != other.latency_components.end();
143        ++it) {
144     if (it->first.first == type) {
145       AddLatencyNumberWithTimestamp(it->first.first,
146                                     it->first.second,
147                                     it->second.sequence_number,
148                                     it->second.event_time,
149                                     it->second.event_count);
150     }
151   }
152 }
153 
AddNewLatencyFrom(const LatencyInfo & other)154 void LatencyInfo::AddNewLatencyFrom(const LatencyInfo& other) {
155     for (LatencyMap::const_iterator it = other.latency_components.begin();
156          it != other.latency_components.end();
157          ++it) {
158       if (!FindLatency(it->first.first, it->first.second, NULL)) {
159         AddLatencyNumberWithTimestamp(it->first.first,
160                                       it->first.second,
161                                       it->second.sequence_number,
162                                       it->second.event_time,
163                                       it->second.event_count);
164       }
165     }
166 }
167 
AddLatencyNumber(LatencyComponentType component,int64 id,int64 component_sequence_number)168 void LatencyInfo::AddLatencyNumber(LatencyComponentType component,
169                                    int64 id,
170                                    int64 component_sequence_number) {
171   AddLatencyNumberWithTimestamp(component, id, component_sequence_number,
172                                 base::TimeTicks::HighResNow(), 1);
173 }
174 
AddLatencyNumberWithTimestamp(LatencyComponentType component,int64 id,int64 component_sequence_number,base::TimeTicks time,uint32 event_count)175 void LatencyInfo::AddLatencyNumberWithTimestamp(LatencyComponentType component,
176                                                 int64 id,
177                                                 int64 component_sequence_number,
178                                                 base::TimeTicks time,
179                                                 uint32 event_count) {
180   if (IsBeginComponent(component)) {
181     // Should only ever add begin component once.
182     CHECK_EQ(-1, trace_id);
183     trace_id = component_sequence_number;
184     TRACE_EVENT_ASYNC_BEGIN0("benchmark",
185                              "InputLatency",
186                              TRACE_ID_DONT_MANGLE(trace_id));
187     TRACE_EVENT_FLOW_BEGIN0(
188         "input", "LatencyInfo.Flow", TRACE_ID_DONT_MANGLE(trace_id));
189   }
190 
191   LatencyMap::key_type key = std::make_pair(component, id);
192   LatencyMap::iterator it = latency_components.find(key);
193   if (it == latency_components.end()) {
194     LatencyComponent info = {component_sequence_number, time, event_count};
195     latency_components[key] = info;
196   } else {
197     it->second.sequence_number = std::max(component_sequence_number,
198                                           it->second.sequence_number);
199     uint32 new_count = event_count + it->second.event_count;
200     if (event_count > 0 && new_count != 0) {
201       // Do a weighted average, so that the new event_time is the average of
202       // the times of events currently in this structure with the time passed
203       // into this method.
204       it->second.event_time += (time - it->second.event_time) * event_count /
205           new_count;
206       it->second.event_count = new_count;
207     }
208   }
209 
210   if (IsTerminalComponent(component) && trace_id != -1) {
211     // Should only ever add terminal component once.
212     CHECK(!terminated);
213     terminated = true;
214     TRACE_EVENT_ASYNC_END1("benchmark",
215                            "InputLatency",
216                            TRACE_ID_DONT_MANGLE(trace_id),
217                            "data", AsTraceableData(*this));
218     TRACE_EVENT_FLOW_END0(
219         "input", "LatencyInfo.Flow", TRACE_ID_DONT_MANGLE(trace_id));
220   }
221 }
222 
FindLatency(LatencyComponentType type,int64 id,LatencyComponent * output) const223 bool LatencyInfo::FindLatency(LatencyComponentType type,
224                               int64 id,
225                               LatencyComponent* output) const {
226   LatencyMap::const_iterator it = latency_components.find(
227       std::make_pair(type, id));
228   if (it == latency_components.end())
229     return false;
230   if (output)
231     *output = it->second;
232   return true;
233 }
234 
RemoveLatency(LatencyComponentType type)235 void LatencyInfo::RemoveLatency(LatencyComponentType type) {
236   LatencyMap::iterator it = latency_components.begin();
237   while (it != latency_components.end()) {
238     if (it->first.first == type) {
239       LatencyMap::iterator tmp = it;
240       ++it;
241       latency_components.erase(tmp);
242     } else {
243       it++;
244     }
245   }
246 }
247 
Clear()248 void LatencyInfo::Clear() {
249   latency_components.clear();
250 }
251 
TraceEventType(const char * event_type)252 void LatencyInfo::TraceEventType(const char* event_type) {
253   TRACE_EVENT_ASYNC_STEP_INTO0("benchmark",
254                                "InputLatency",
255                                TRACE_ID_DONT_MANGLE(trace_id),
256                                event_type);
257 }
258 
259 }  // namespace ui
260