• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "ui/gfx/geometry/cubic_bezier.h"
6 
7 #include <algorithm>
8 #include <cmath>
9 
10 #include "base/logging.h"
11 
12 namespace gfx {
13 
14 namespace {
15 
16 static const double kBezierEpsilon = 1e-7;
17 static const int MAX_STEPS = 30;
18 
eval_bezier(double x1,double x2,double t)19 static double eval_bezier(double x1, double x2, double t) {
20   const double x1_times_3 = 3.0 * x1;
21   const double x2_times_3 = 3.0 * x2;
22   const double h3 = x1_times_3;
23   const double h1 = x1_times_3 - x2_times_3 + 1.0;
24   const double h2 = x2_times_3 - 6.0 * x1;
25   return t * (t * (t * h1 + h2) + h3);
26 }
27 
bezier_interp(double x1,double y1,double x2,double y2,double x)28 static double bezier_interp(double x1,
29                             double y1,
30                             double x2,
31                             double y2,
32                             double x) {
33   DCHECK_GE(1.0, x1);
34   DCHECK_LE(0.0, x1);
35   DCHECK_GE(1.0, x2);
36   DCHECK_LE(0.0, x2);
37 
38   x1 = std::min(std::max(x1, 0.0), 1.0);
39   x2 = std::min(std::max(x2, 0.0), 1.0);
40   x = std::min(std::max(x, 0.0), 1.0);
41 
42   // Step 1. Find the t corresponding to the given x. I.e., we want t such that
43   // eval_bezier(x1, x2, t) = x. There is a unique solution if x1 and x2 lie
44   // within (0, 1).
45   //
46   // We're just going to do bisection for now (for simplicity), but we could
47   // easily do some newton steps if this turns out to be a bottleneck.
48   double t = 0.0;
49   double step = 1.0;
50   for (int i = 0; i < MAX_STEPS; ++i, step *= 0.5) {
51     const double error = eval_bezier(x1, x2, t) - x;
52     if (std::abs(error) < kBezierEpsilon)
53       break;
54     t += error > 0.0 ? -step : step;
55   }
56 
57   // We should have terminated the above loop because we got close to x, not
58   // because we exceeded MAX_STEPS. Do a DCHECK here to confirm.
59   DCHECK_GT(kBezierEpsilon, std::abs(eval_bezier(x1, x2, t) - x));
60 
61   // Step 2. Return the interpolated y values at the t we computed above.
62   return eval_bezier(y1, y2, t);
63 }
64 
65 }  // namespace
66 
CubicBezier(double x1,double y1,double x2,double y2)67 CubicBezier::CubicBezier(double x1, double y1, double x2, double y2)
68     : x1_(x1),
69       y1_(y1),
70       x2_(x2),
71       y2_(y2) {
72 }
73 
~CubicBezier()74 CubicBezier::~CubicBezier() {
75 }
76 
Solve(double x) const77 double CubicBezier::Solve(double x) const {
78   return bezier_interp(x1_, y1_, x2_, y2_, x);
79 }
80 
Range(double * min,double * max) const81 void CubicBezier::Range(double* min, double* max) const {
82   *min = 0;
83   *max = 1;
84   if (0 <= y1_ && y1_ < 1 && 0 <= y2_ && y2_ <= 1)
85     return;
86 
87   // Represent the function's derivative in the form at^2 + bt + c.
88   double a = 3 * (y1_ - y2_) + 1;
89   double b = 2 * (y2_ - 2 * y1_);
90   double c = y1_;
91 
92   // Check if the derivative is constant.
93   if (std::abs(a) < kBezierEpsilon &&
94       std::abs(b) < kBezierEpsilon)
95     return;
96 
97   // Zeros of the function's derivative.
98   double t_1 = 0;
99   double t_2 = 0;
100 
101   if (std::abs(a) < kBezierEpsilon) {
102     // The function's derivative is linear.
103     t_1 = -c / b;
104   } else {
105     // The function's derivative is a quadratic. We find the zeros of this
106     // quadratic using the quadratic formula.
107     double discriminant = b * b - 4 * a * c;
108     if (discriminant < 0)
109       return;
110     double discriminant_sqrt = sqrt(discriminant);
111     t_1 = (-b + discriminant_sqrt) / (2 * a);
112     t_2 = (-b - discriminant_sqrt) / (2 * a);
113   }
114 
115   double sol_1 = 0;
116   double sol_2 = 0;
117 
118   if (0 < t_1 && t_1 < 1)
119     sol_1 = eval_bezier(y1_, y2_, t_1);
120 
121   if (0 < t_2 && t_2 < 1)
122     sol_2 = eval_bezier(y1_, y2_, t_2);
123 
124   *min = std::min(std::min(*min, sol_1), sol_2);
125   *max = std::max(std::max(*max, sol_1), sol_2);
126 }
127 
128 }  // namespace gfx
129