1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/v8.h"
6
7 #if V8_TARGET_ARCH_X64
8
9 #include "src/bootstrapper.h"
10 #include "src/code-stubs.h"
11 #include "src/regexp-macro-assembler.h"
12 #include "src/stub-cache.h"
13 #include "src/runtime.h"
14
15 namespace v8 {
16 namespace internal {
17
18
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)19 void FastNewClosureStub::InitializeInterfaceDescriptor(
20 CodeStubInterfaceDescriptor* descriptor) {
21 static Register registers[] = { rbx };
22 descriptor->register_param_count_ = 1;
23 descriptor->register_params_ = registers;
24 descriptor->deoptimization_handler_ =
25 Runtime::FunctionForId(Runtime::kHiddenNewClosureFromStubFailure)->entry;
26 }
27
28
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)29 void FastNewContextStub::InitializeInterfaceDescriptor(
30 CodeStubInterfaceDescriptor* descriptor) {
31 static Register registers[] = { rdi };
32 descriptor->register_param_count_ = 1;
33 descriptor->register_params_ = registers;
34 descriptor->deoptimization_handler_ = NULL;
35 }
36
37
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)38 void ToNumberStub::InitializeInterfaceDescriptor(
39 CodeStubInterfaceDescriptor* descriptor) {
40 static Register registers[] = { rax };
41 descriptor->register_param_count_ = 1;
42 descriptor->register_params_ = registers;
43 descriptor->deoptimization_handler_ = NULL;
44 }
45
46
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)47 void NumberToStringStub::InitializeInterfaceDescriptor(
48 CodeStubInterfaceDescriptor* descriptor) {
49 static Register registers[] = { rax };
50 descriptor->register_param_count_ = 1;
51 descriptor->register_params_ = registers;
52 descriptor->deoptimization_handler_ =
53 Runtime::FunctionForId(Runtime::kHiddenNumberToString)->entry;
54 }
55
56
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)57 void FastCloneShallowArrayStub::InitializeInterfaceDescriptor(
58 CodeStubInterfaceDescriptor* descriptor) {
59 static Register registers[] = { rax, rbx, rcx };
60 descriptor->register_param_count_ = 3;
61 descriptor->register_params_ = registers;
62 static Representation representations[] = {
63 Representation::Tagged(),
64 Representation::Smi(),
65 Representation::Tagged() };
66 descriptor->register_param_representations_ = representations;
67 descriptor->deoptimization_handler_ =
68 Runtime::FunctionForId(
69 Runtime::kHiddenCreateArrayLiteralStubBailout)->entry;
70 }
71
72
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)73 void FastCloneShallowObjectStub::InitializeInterfaceDescriptor(
74 CodeStubInterfaceDescriptor* descriptor) {
75 static Register registers[] = { rax, rbx, rcx, rdx };
76 descriptor->register_param_count_ = 4;
77 descriptor->register_params_ = registers;
78 descriptor->deoptimization_handler_ =
79 Runtime::FunctionForId(Runtime::kHiddenCreateObjectLiteral)->entry;
80 }
81
82
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)83 void CreateAllocationSiteStub::InitializeInterfaceDescriptor(
84 CodeStubInterfaceDescriptor* descriptor) {
85 static Register registers[] = { rbx, rdx };
86 descriptor->register_param_count_ = 2;
87 descriptor->register_params_ = registers;
88 descriptor->deoptimization_handler_ = NULL;
89 }
90
91
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)92 void KeyedLoadFastElementStub::InitializeInterfaceDescriptor(
93 CodeStubInterfaceDescriptor* descriptor) {
94 static Register registers[] = { rdx, rax };
95 descriptor->register_param_count_ = 2;
96 descriptor->register_params_ = registers;
97 descriptor->deoptimization_handler_ =
98 FUNCTION_ADDR(KeyedLoadIC_MissFromStubFailure);
99 }
100
101
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)102 void KeyedLoadDictionaryElementStub::InitializeInterfaceDescriptor(
103 CodeStubInterfaceDescriptor* descriptor) {
104 static Register registers[] = { rdx, rax };
105 descriptor->register_param_count_ = 2;
106 descriptor->register_params_ = registers;
107 descriptor->deoptimization_handler_ =
108 FUNCTION_ADDR(KeyedLoadIC_MissFromStubFailure);
109 }
110
111
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)112 void RegExpConstructResultStub::InitializeInterfaceDescriptor(
113 CodeStubInterfaceDescriptor* descriptor) {
114 static Register registers[] = { rcx, rbx, rax };
115 descriptor->register_param_count_ = 3;
116 descriptor->register_params_ = registers;
117 descriptor->deoptimization_handler_ =
118 Runtime::FunctionForId(Runtime::kHiddenRegExpConstructResult)->entry;
119 }
120
121
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)122 void KeyedLoadGenericElementStub::InitializeInterfaceDescriptor(
123 CodeStubInterfaceDescriptor* descriptor) {
124 static Register registers[] = { rdx, rax };
125 descriptor->register_param_count_ = 2;
126 descriptor->register_params_ = registers;
127 descriptor->deoptimization_handler_ =
128 Runtime::FunctionForId(Runtime::kKeyedGetProperty)->entry;
129 }
130
131
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)132 void LoadFieldStub::InitializeInterfaceDescriptor(
133 CodeStubInterfaceDescriptor* descriptor) {
134 static Register registers[] = { rax };
135 descriptor->register_param_count_ = 1;
136 descriptor->register_params_ = registers;
137 descriptor->deoptimization_handler_ = NULL;
138 }
139
140
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)141 void KeyedLoadFieldStub::InitializeInterfaceDescriptor(
142 CodeStubInterfaceDescriptor* descriptor) {
143 static Register registers[] = { rdx };
144 descriptor->register_param_count_ = 1;
145 descriptor->register_params_ = registers;
146 descriptor->deoptimization_handler_ = NULL;
147 }
148
149
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)150 void StringLengthStub::InitializeInterfaceDescriptor(
151 CodeStubInterfaceDescriptor* descriptor) {
152 static Register registers[] = { rax, rcx };
153 descriptor->register_param_count_ = 2;
154 descriptor->register_params_ = registers;
155 descriptor->deoptimization_handler_ = NULL;
156 }
157
158
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)159 void KeyedStringLengthStub::InitializeInterfaceDescriptor(
160 CodeStubInterfaceDescriptor* descriptor) {
161 static Register registers[] = { rdx, rax };
162 descriptor->register_param_count_ = 2;
163 descriptor->register_params_ = registers;
164 descriptor->deoptimization_handler_ = NULL;
165 }
166
167
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)168 void KeyedStoreFastElementStub::InitializeInterfaceDescriptor(
169 CodeStubInterfaceDescriptor* descriptor) {
170 static Register registers[] = { rdx, rcx, rax };
171 descriptor->register_param_count_ = 3;
172 descriptor->register_params_ = registers;
173 descriptor->deoptimization_handler_ =
174 FUNCTION_ADDR(KeyedStoreIC_MissFromStubFailure);
175 }
176
177
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)178 void TransitionElementsKindStub::InitializeInterfaceDescriptor(
179 CodeStubInterfaceDescriptor* descriptor) {
180 static Register registers[] = { rax, rbx };
181 descriptor->register_param_count_ = 2;
182 descriptor->register_params_ = registers;
183 descriptor->deoptimization_handler_ =
184 Runtime::FunctionForId(Runtime::kTransitionElementsKind)->entry;
185 }
186
187
InitializeArrayConstructorDescriptor(CodeStubInterfaceDescriptor * descriptor,int constant_stack_parameter_count)188 static void InitializeArrayConstructorDescriptor(
189 CodeStubInterfaceDescriptor* descriptor,
190 int constant_stack_parameter_count) {
191 // register state
192 // rax -- number of arguments
193 // rdi -- function
194 // rbx -- allocation site with elements kind
195 static Register registers_variable_args[] = { rdi, rbx, rax };
196 static Register registers_no_args[] = { rdi, rbx };
197
198 if (constant_stack_parameter_count == 0) {
199 descriptor->register_param_count_ = 2;
200 descriptor->register_params_ = registers_no_args;
201 } else {
202 // stack param count needs (constructor pointer, and single argument)
203 descriptor->handler_arguments_mode_ = PASS_ARGUMENTS;
204 descriptor->stack_parameter_count_ = rax;
205 descriptor->register_param_count_ = 3;
206 static Representation representations[] = {
207 Representation::Tagged(),
208 Representation::Tagged(),
209 Representation::Integer32() };
210 descriptor->register_param_representations_ = representations;
211 descriptor->register_params_ = registers_variable_args;
212 }
213
214 descriptor->hint_stack_parameter_count_ = constant_stack_parameter_count;
215 descriptor->function_mode_ = JS_FUNCTION_STUB_MODE;
216 descriptor->deoptimization_handler_ =
217 Runtime::FunctionForId(Runtime::kHiddenArrayConstructor)->entry;
218 }
219
220
InitializeInternalArrayConstructorDescriptor(CodeStubInterfaceDescriptor * descriptor,int constant_stack_parameter_count)221 static void InitializeInternalArrayConstructorDescriptor(
222 CodeStubInterfaceDescriptor* descriptor,
223 int constant_stack_parameter_count) {
224 // register state
225 // rax -- number of arguments
226 // rdi -- constructor function
227 static Register registers_variable_args[] = { rdi, rax };
228 static Register registers_no_args[] = { rdi };
229
230 if (constant_stack_parameter_count == 0) {
231 descriptor->register_param_count_ = 1;
232 descriptor->register_params_ = registers_no_args;
233 } else {
234 // stack param count needs (constructor pointer, and single argument)
235 descriptor->handler_arguments_mode_ = PASS_ARGUMENTS;
236 descriptor->stack_parameter_count_ = rax;
237 descriptor->register_param_count_ = 2;
238 descriptor->register_params_ = registers_variable_args;
239 static Representation representations[] = {
240 Representation::Tagged(),
241 Representation::Integer32() };
242 descriptor->register_param_representations_ = representations;
243 }
244
245 descriptor->hint_stack_parameter_count_ = constant_stack_parameter_count;
246 descriptor->function_mode_ = JS_FUNCTION_STUB_MODE;
247 descriptor->deoptimization_handler_ =
248 Runtime::FunctionForId(Runtime::kHiddenInternalArrayConstructor)->entry;
249 }
250
251
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)252 void ArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor(
253 CodeStubInterfaceDescriptor* descriptor) {
254 InitializeArrayConstructorDescriptor(descriptor, 0);
255 }
256
257
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)258 void ArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor(
259 CodeStubInterfaceDescriptor* descriptor) {
260 InitializeArrayConstructorDescriptor(descriptor, 1);
261 }
262
263
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)264 void ArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor(
265 CodeStubInterfaceDescriptor* descriptor) {
266 InitializeArrayConstructorDescriptor(descriptor, -1);
267 }
268
269
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)270 void InternalArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor(
271 CodeStubInterfaceDescriptor* descriptor) {
272 InitializeInternalArrayConstructorDescriptor(descriptor, 0);
273 }
274
275
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)276 void InternalArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor(
277 CodeStubInterfaceDescriptor* descriptor) {
278 InitializeInternalArrayConstructorDescriptor(descriptor, 1);
279 }
280
281
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)282 void InternalArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor(
283 CodeStubInterfaceDescriptor* descriptor) {
284 InitializeInternalArrayConstructorDescriptor(descriptor, -1);
285 }
286
287
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)288 void CompareNilICStub::InitializeInterfaceDescriptor(
289 CodeStubInterfaceDescriptor* descriptor) {
290 static Register registers[] = { rax };
291 descriptor->register_param_count_ = 1;
292 descriptor->register_params_ = registers;
293 descriptor->deoptimization_handler_ =
294 FUNCTION_ADDR(CompareNilIC_Miss);
295 descriptor->SetMissHandler(
296 ExternalReference(IC_Utility(IC::kCompareNilIC_Miss), isolate()));
297 }
298
299
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)300 void ToBooleanStub::InitializeInterfaceDescriptor(
301 CodeStubInterfaceDescriptor* descriptor) {
302 static Register registers[] = { rax };
303 descriptor->register_param_count_ = 1;
304 descriptor->register_params_ = registers;
305 descriptor->deoptimization_handler_ =
306 FUNCTION_ADDR(ToBooleanIC_Miss);
307 descriptor->SetMissHandler(
308 ExternalReference(IC_Utility(IC::kToBooleanIC_Miss), isolate()));
309 }
310
311
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)312 void StoreGlobalStub::InitializeInterfaceDescriptor(
313 CodeStubInterfaceDescriptor* descriptor) {
314 static Register registers[] = { rdx, rcx, rax };
315 descriptor->register_param_count_ = 3;
316 descriptor->register_params_ = registers;
317 descriptor->deoptimization_handler_ =
318 FUNCTION_ADDR(StoreIC_MissFromStubFailure);
319 }
320
321
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)322 void ElementsTransitionAndStoreStub::InitializeInterfaceDescriptor(
323 CodeStubInterfaceDescriptor* descriptor) {
324 static Register registers[] = { rax, rbx, rcx, rdx };
325 descriptor->register_param_count_ = 4;
326 descriptor->register_params_ = registers;
327 descriptor->deoptimization_handler_ =
328 FUNCTION_ADDR(ElementsTransitionAndStoreIC_Miss);
329 }
330
331
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)332 void BinaryOpICStub::InitializeInterfaceDescriptor(
333 CodeStubInterfaceDescriptor* descriptor) {
334 static Register registers[] = { rdx, rax };
335 descriptor->register_param_count_ = 2;
336 descriptor->register_params_ = registers;
337 descriptor->deoptimization_handler_ = FUNCTION_ADDR(BinaryOpIC_Miss);
338 descriptor->SetMissHandler(
339 ExternalReference(IC_Utility(IC::kBinaryOpIC_Miss), isolate()));
340 }
341
342
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)343 void BinaryOpWithAllocationSiteStub::InitializeInterfaceDescriptor(
344 CodeStubInterfaceDescriptor* descriptor) {
345 static Register registers[] = { rcx, rdx, rax };
346 descriptor->register_param_count_ = 3;
347 descriptor->register_params_ = registers;
348 descriptor->deoptimization_handler_ =
349 FUNCTION_ADDR(BinaryOpIC_MissWithAllocationSite);
350 }
351
352
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)353 void StringAddStub::InitializeInterfaceDescriptor(
354 CodeStubInterfaceDescriptor* descriptor) {
355 static Register registers[] = { rdx, rax };
356 descriptor->register_param_count_ = 2;
357 descriptor->register_params_ = registers;
358 descriptor->deoptimization_handler_ =
359 Runtime::FunctionForId(Runtime::kHiddenStringAdd)->entry;
360 }
361
362
InitializeForIsolate(Isolate * isolate)363 void CallDescriptors::InitializeForIsolate(Isolate* isolate) {
364 {
365 CallInterfaceDescriptor* descriptor =
366 isolate->call_descriptor(Isolate::ArgumentAdaptorCall);
367 static Register registers[] = { rdi, // JSFunction
368 rsi, // context
369 rax, // actual number of arguments
370 rbx, // expected number of arguments
371 };
372 static Representation representations[] = {
373 Representation::Tagged(), // JSFunction
374 Representation::Tagged(), // context
375 Representation::Integer32(), // actual number of arguments
376 Representation::Integer32(), // expected number of arguments
377 };
378 descriptor->register_param_count_ = 4;
379 descriptor->register_params_ = registers;
380 descriptor->param_representations_ = representations;
381 }
382 {
383 CallInterfaceDescriptor* descriptor =
384 isolate->call_descriptor(Isolate::KeyedCall);
385 static Register registers[] = { rsi, // context
386 rcx, // key
387 };
388 static Representation representations[] = {
389 Representation::Tagged(), // context
390 Representation::Tagged(), // key
391 };
392 descriptor->register_param_count_ = 2;
393 descriptor->register_params_ = registers;
394 descriptor->param_representations_ = representations;
395 }
396 {
397 CallInterfaceDescriptor* descriptor =
398 isolate->call_descriptor(Isolate::NamedCall);
399 static Register registers[] = { rsi, // context
400 rcx, // name
401 };
402 static Representation representations[] = {
403 Representation::Tagged(), // context
404 Representation::Tagged(), // name
405 };
406 descriptor->register_param_count_ = 2;
407 descriptor->register_params_ = registers;
408 descriptor->param_representations_ = representations;
409 }
410 {
411 CallInterfaceDescriptor* descriptor =
412 isolate->call_descriptor(Isolate::CallHandler);
413 static Register registers[] = { rsi, // context
414 rdx, // receiver
415 };
416 static Representation representations[] = {
417 Representation::Tagged(), // context
418 Representation::Tagged(), // receiver
419 };
420 descriptor->register_param_count_ = 2;
421 descriptor->register_params_ = registers;
422 descriptor->param_representations_ = representations;
423 }
424 {
425 CallInterfaceDescriptor* descriptor =
426 isolate->call_descriptor(Isolate::ApiFunctionCall);
427 static Register registers[] = { rax, // callee
428 rbx, // call_data
429 rcx, // holder
430 rdx, // api_function_address
431 rsi, // context
432 };
433 static Representation representations[] = {
434 Representation::Tagged(), // callee
435 Representation::Tagged(), // call_data
436 Representation::Tagged(), // holder
437 Representation::External(), // api_function_address
438 Representation::Tagged(), // context
439 };
440 descriptor->register_param_count_ = 5;
441 descriptor->register_params_ = registers;
442 descriptor->param_representations_ = representations;
443 }
444 }
445
446
447 #define __ ACCESS_MASM(masm)
448
449
GenerateLightweightMiss(MacroAssembler * masm)450 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm) {
451 // Update the static counter each time a new code stub is generated.
452 isolate()->counters()->code_stubs()->Increment();
453
454 CodeStubInterfaceDescriptor* descriptor = GetInterfaceDescriptor();
455 int param_count = descriptor->register_param_count_;
456 {
457 // Call the runtime system in a fresh internal frame.
458 FrameScope scope(masm, StackFrame::INTERNAL);
459 ASSERT(descriptor->register_param_count_ == 0 ||
460 rax.is(descriptor->register_params_[param_count - 1]));
461 // Push arguments
462 for (int i = 0; i < param_count; ++i) {
463 __ Push(descriptor->register_params_[i]);
464 }
465 ExternalReference miss = descriptor->miss_handler();
466 __ CallExternalReference(miss, descriptor->register_param_count_);
467 }
468
469 __ Ret();
470 }
471
472
Generate(MacroAssembler * masm)473 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
474 __ PushCallerSaved(save_doubles_);
475 const int argument_count = 1;
476 __ PrepareCallCFunction(argument_count);
477 __ LoadAddress(arg_reg_1,
478 ExternalReference::isolate_address(isolate()));
479
480 AllowExternalCallThatCantCauseGC scope(masm);
481 __ CallCFunction(
482 ExternalReference::store_buffer_overflow_function(isolate()),
483 argument_count);
484 __ PopCallerSaved(save_doubles_);
485 __ ret(0);
486 }
487
488
489 class FloatingPointHelper : public AllStatic {
490 public:
491 enum ConvertUndefined {
492 CONVERT_UNDEFINED_TO_ZERO,
493 BAILOUT_ON_UNDEFINED
494 };
495 // Load the operands from rdx and rax into xmm0 and xmm1, as doubles.
496 // If the operands are not both numbers, jump to not_numbers.
497 // Leaves rdx and rax unchanged. SmiOperands assumes both are smis.
498 // NumberOperands assumes both are smis or heap numbers.
499 static void LoadSSE2UnknownOperands(MacroAssembler* masm,
500 Label* not_numbers);
501 };
502
503
Generate(MacroAssembler * masm)504 void DoubleToIStub::Generate(MacroAssembler* masm) {
505 Register input_reg = this->source();
506 Register final_result_reg = this->destination();
507 ASSERT(is_truncating());
508
509 Label check_negative, process_64_bits, done;
510
511 int double_offset = offset();
512
513 // Account for return address and saved regs if input is rsp.
514 if (input_reg.is(rsp)) double_offset += 3 * kRegisterSize;
515
516 MemOperand mantissa_operand(MemOperand(input_reg, double_offset));
517 MemOperand exponent_operand(MemOperand(input_reg,
518 double_offset + kDoubleSize / 2));
519
520 Register scratch1;
521 Register scratch_candidates[3] = { rbx, rdx, rdi };
522 for (int i = 0; i < 3; i++) {
523 scratch1 = scratch_candidates[i];
524 if (!final_result_reg.is(scratch1) && !input_reg.is(scratch1)) break;
525 }
526
527 // Since we must use rcx for shifts below, use some other register (rax)
528 // to calculate the result if ecx is the requested return register.
529 Register result_reg = final_result_reg.is(rcx) ? rax : final_result_reg;
530 // Save ecx if it isn't the return register and therefore volatile, or if it
531 // is the return register, then save the temp register we use in its stead
532 // for the result.
533 Register save_reg = final_result_reg.is(rcx) ? rax : rcx;
534 __ pushq(scratch1);
535 __ pushq(save_reg);
536
537 bool stash_exponent_copy = !input_reg.is(rsp);
538 __ movl(scratch1, mantissa_operand);
539 __ movsd(xmm0, mantissa_operand);
540 __ movl(rcx, exponent_operand);
541 if (stash_exponent_copy) __ pushq(rcx);
542
543 __ andl(rcx, Immediate(HeapNumber::kExponentMask));
544 __ shrl(rcx, Immediate(HeapNumber::kExponentShift));
545 __ leal(result_reg, MemOperand(rcx, -HeapNumber::kExponentBias));
546 __ cmpl(result_reg, Immediate(HeapNumber::kMantissaBits));
547 __ j(below, &process_64_bits);
548
549 // Result is entirely in lower 32-bits of mantissa
550 int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
551 __ subl(rcx, Immediate(delta));
552 __ xorl(result_reg, result_reg);
553 __ cmpl(rcx, Immediate(31));
554 __ j(above, &done);
555 __ shll_cl(scratch1);
556 __ jmp(&check_negative);
557
558 __ bind(&process_64_bits);
559 __ cvttsd2siq(result_reg, xmm0);
560 __ jmp(&done, Label::kNear);
561
562 // If the double was negative, negate the integer result.
563 __ bind(&check_negative);
564 __ movl(result_reg, scratch1);
565 __ negl(result_reg);
566 if (stash_exponent_copy) {
567 __ cmpl(MemOperand(rsp, 0), Immediate(0));
568 } else {
569 __ cmpl(exponent_operand, Immediate(0));
570 }
571 __ cmovl(greater, result_reg, scratch1);
572
573 // Restore registers
574 __ bind(&done);
575 if (stash_exponent_copy) {
576 __ addp(rsp, Immediate(kDoubleSize));
577 }
578 if (!final_result_reg.is(result_reg)) {
579 ASSERT(final_result_reg.is(rcx));
580 __ movl(final_result_reg, result_reg);
581 }
582 __ popq(save_reg);
583 __ popq(scratch1);
584 __ ret(0);
585 }
586
587
LoadSSE2UnknownOperands(MacroAssembler * masm,Label * not_numbers)588 void FloatingPointHelper::LoadSSE2UnknownOperands(MacroAssembler* masm,
589 Label* not_numbers) {
590 Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, load_float_rax, done;
591 // Load operand in rdx into xmm0, or branch to not_numbers.
592 __ LoadRoot(rcx, Heap::kHeapNumberMapRootIndex);
593 __ JumpIfSmi(rdx, &load_smi_rdx);
594 __ cmpp(FieldOperand(rdx, HeapObject::kMapOffset), rcx);
595 __ j(not_equal, not_numbers); // Argument in rdx is not a number.
596 __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
597 // Load operand in rax into xmm1, or branch to not_numbers.
598 __ JumpIfSmi(rax, &load_smi_rax);
599
600 __ bind(&load_nonsmi_rax);
601 __ cmpp(FieldOperand(rax, HeapObject::kMapOffset), rcx);
602 __ j(not_equal, not_numbers);
603 __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
604 __ jmp(&done);
605
606 __ bind(&load_smi_rdx);
607 __ SmiToInteger32(kScratchRegister, rdx);
608 __ Cvtlsi2sd(xmm0, kScratchRegister);
609 __ JumpIfNotSmi(rax, &load_nonsmi_rax);
610
611 __ bind(&load_smi_rax);
612 __ SmiToInteger32(kScratchRegister, rax);
613 __ Cvtlsi2sd(xmm1, kScratchRegister);
614 __ bind(&done);
615 }
616
617
Generate(MacroAssembler * masm)618 void MathPowStub::Generate(MacroAssembler* masm) {
619 const Register exponent = rdx;
620 const Register base = rax;
621 const Register scratch = rcx;
622 const XMMRegister double_result = xmm3;
623 const XMMRegister double_base = xmm2;
624 const XMMRegister double_exponent = xmm1;
625 const XMMRegister double_scratch = xmm4;
626
627 Label call_runtime, done, exponent_not_smi, int_exponent;
628
629 // Save 1 in double_result - we need this several times later on.
630 __ movp(scratch, Immediate(1));
631 __ Cvtlsi2sd(double_result, scratch);
632
633 if (exponent_type_ == ON_STACK) {
634 Label base_is_smi, unpack_exponent;
635 // The exponent and base are supplied as arguments on the stack.
636 // This can only happen if the stub is called from non-optimized code.
637 // Load input parameters from stack.
638 StackArgumentsAccessor args(rsp, 2, ARGUMENTS_DONT_CONTAIN_RECEIVER);
639 __ movp(base, args.GetArgumentOperand(0));
640 __ movp(exponent, args.GetArgumentOperand(1));
641 __ JumpIfSmi(base, &base_is_smi, Label::kNear);
642 __ CompareRoot(FieldOperand(base, HeapObject::kMapOffset),
643 Heap::kHeapNumberMapRootIndex);
644 __ j(not_equal, &call_runtime);
645
646 __ movsd(double_base, FieldOperand(base, HeapNumber::kValueOffset));
647 __ jmp(&unpack_exponent, Label::kNear);
648
649 __ bind(&base_is_smi);
650 __ SmiToInteger32(base, base);
651 __ Cvtlsi2sd(double_base, base);
652 __ bind(&unpack_exponent);
653
654 __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
655 __ SmiToInteger32(exponent, exponent);
656 __ jmp(&int_exponent);
657
658 __ bind(&exponent_not_smi);
659 __ CompareRoot(FieldOperand(exponent, HeapObject::kMapOffset),
660 Heap::kHeapNumberMapRootIndex);
661 __ j(not_equal, &call_runtime);
662 __ movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset));
663 } else if (exponent_type_ == TAGGED) {
664 __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
665 __ SmiToInteger32(exponent, exponent);
666 __ jmp(&int_exponent);
667
668 __ bind(&exponent_not_smi);
669 __ movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset));
670 }
671
672 if (exponent_type_ != INTEGER) {
673 Label fast_power, try_arithmetic_simplification;
674 // Detect integer exponents stored as double.
675 __ DoubleToI(exponent, double_exponent, double_scratch,
676 TREAT_MINUS_ZERO_AS_ZERO, &try_arithmetic_simplification);
677 __ jmp(&int_exponent);
678
679 __ bind(&try_arithmetic_simplification);
680 __ cvttsd2si(exponent, double_exponent);
681 // Skip to runtime if possibly NaN (indicated by the indefinite integer).
682 __ cmpl(exponent, Immediate(0x1));
683 __ j(overflow, &call_runtime);
684
685 if (exponent_type_ == ON_STACK) {
686 // Detect square root case. Crankshaft detects constant +/-0.5 at
687 // compile time and uses DoMathPowHalf instead. We then skip this check
688 // for non-constant cases of +/-0.5 as these hardly occur.
689 Label continue_sqrt, continue_rsqrt, not_plus_half;
690 // Test for 0.5.
691 // Load double_scratch with 0.5.
692 __ movq(scratch, V8_UINT64_C(0x3FE0000000000000));
693 __ movq(double_scratch, scratch);
694 // Already ruled out NaNs for exponent.
695 __ ucomisd(double_scratch, double_exponent);
696 __ j(not_equal, ¬_plus_half, Label::kNear);
697
698 // Calculates square root of base. Check for the special case of
699 // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
700 // According to IEEE-754, double-precision -Infinity has the highest
701 // 12 bits set and the lowest 52 bits cleared.
702 __ movq(scratch, V8_UINT64_C(0xFFF0000000000000));
703 __ movq(double_scratch, scratch);
704 __ ucomisd(double_scratch, double_base);
705 // Comparing -Infinity with NaN results in "unordered", which sets the
706 // zero flag as if both were equal. However, it also sets the carry flag.
707 __ j(not_equal, &continue_sqrt, Label::kNear);
708 __ j(carry, &continue_sqrt, Label::kNear);
709
710 // Set result to Infinity in the special case.
711 __ xorps(double_result, double_result);
712 __ subsd(double_result, double_scratch);
713 __ jmp(&done);
714
715 __ bind(&continue_sqrt);
716 // sqrtsd returns -0 when input is -0. ECMA spec requires +0.
717 __ xorps(double_scratch, double_scratch);
718 __ addsd(double_scratch, double_base); // Convert -0 to 0.
719 __ sqrtsd(double_result, double_scratch);
720 __ jmp(&done);
721
722 // Test for -0.5.
723 __ bind(¬_plus_half);
724 // Load double_scratch with -0.5 by substracting 1.
725 __ subsd(double_scratch, double_result);
726 // Already ruled out NaNs for exponent.
727 __ ucomisd(double_scratch, double_exponent);
728 __ j(not_equal, &fast_power, Label::kNear);
729
730 // Calculates reciprocal of square root of base. Check for the special
731 // case of Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
732 // According to IEEE-754, double-precision -Infinity has the highest
733 // 12 bits set and the lowest 52 bits cleared.
734 __ movq(scratch, V8_UINT64_C(0xFFF0000000000000));
735 __ movq(double_scratch, scratch);
736 __ ucomisd(double_scratch, double_base);
737 // Comparing -Infinity with NaN results in "unordered", which sets the
738 // zero flag as if both were equal. However, it also sets the carry flag.
739 __ j(not_equal, &continue_rsqrt, Label::kNear);
740 __ j(carry, &continue_rsqrt, Label::kNear);
741
742 // Set result to 0 in the special case.
743 __ xorps(double_result, double_result);
744 __ jmp(&done);
745
746 __ bind(&continue_rsqrt);
747 // sqrtsd returns -0 when input is -0. ECMA spec requires +0.
748 __ xorps(double_exponent, double_exponent);
749 __ addsd(double_exponent, double_base); // Convert -0 to +0.
750 __ sqrtsd(double_exponent, double_exponent);
751 __ divsd(double_result, double_exponent);
752 __ jmp(&done);
753 }
754
755 // Using FPU instructions to calculate power.
756 Label fast_power_failed;
757 __ bind(&fast_power);
758 __ fnclex(); // Clear flags to catch exceptions later.
759 // Transfer (B)ase and (E)xponent onto the FPU register stack.
760 __ subp(rsp, Immediate(kDoubleSize));
761 __ movsd(Operand(rsp, 0), double_exponent);
762 __ fld_d(Operand(rsp, 0)); // E
763 __ movsd(Operand(rsp, 0), double_base);
764 __ fld_d(Operand(rsp, 0)); // B, E
765
766 // Exponent is in st(1) and base is in st(0)
767 // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B)
768 // FYL2X calculates st(1) * log2(st(0))
769 __ fyl2x(); // X
770 __ fld(0); // X, X
771 __ frndint(); // rnd(X), X
772 __ fsub(1); // rnd(X), X-rnd(X)
773 __ fxch(1); // X - rnd(X), rnd(X)
774 // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1
775 __ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X)
776 __ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X)
777 __ faddp(1); // 2^(X-rnd(X)), rnd(X)
778 // FSCALE calculates st(0) * 2^st(1)
779 __ fscale(); // 2^X, rnd(X)
780 __ fstp(1);
781 // Bail out to runtime in case of exceptions in the status word.
782 __ fnstsw_ax();
783 __ testb(rax, Immediate(0x5F)); // Check for all but precision exception.
784 __ j(not_zero, &fast_power_failed, Label::kNear);
785 __ fstp_d(Operand(rsp, 0));
786 __ movsd(double_result, Operand(rsp, 0));
787 __ addp(rsp, Immediate(kDoubleSize));
788 __ jmp(&done);
789
790 __ bind(&fast_power_failed);
791 __ fninit();
792 __ addp(rsp, Immediate(kDoubleSize));
793 __ jmp(&call_runtime);
794 }
795
796 // Calculate power with integer exponent.
797 __ bind(&int_exponent);
798 const XMMRegister double_scratch2 = double_exponent;
799 // Back up exponent as we need to check if exponent is negative later.
800 __ movp(scratch, exponent); // Back up exponent.
801 __ movsd(double_scratch, double_base); // Back up base.
802 __ movsd(double_scratch2, double_result); // Load double_exponent with 1.
803
804 // Get absolute value of exponent.
805 Label no_neg, while_true, while_false;
806 __ testl(scratch, scratch);
807 __ j(positive, &no_neg, Label::kNear);
808 __ negl(scratch);
809 __ bind(&no_neg);
810
811 __ j(zero, &while_false, Label::kNear);
812 __ shrl(scratch, Immediate(1));
813 // Above condition means CF==0 && ZF==0. This means that the
814 // bit that has been shifted out is 0 and the result is not 0.
815 __ j(above, &while_true, Label::kNear);
816 __ movsd(double_result, double_scratch);
817 __ j(zero, &while_false, Label::kNear);
818
819 __ bind(&while_true);
820 __ shrl(scratch, Immediate(1));
821 __ mulsd(double_scratch, double_scratch);
822 __ j(above, &while_true, Label::kNear);
823 __ mulsd(double_result, double_scratch);
824 __ j(not_zero, &while_true);
825
826 __ bind(&while_false);
827 // If the exponent is negative, return 1/result.
828 __ testl(exponent, exponent);
829 __ j(greater, &done);
830 __ divsd(double_scratch2, double_result);
831 __ movsd(double_result, double_scratch2);
832 // Test whether result is zero. Bail out to check for subnormal result.
833 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
834 __ xorps(double_scratch2, double_scratch2);
835 __ ucomisd(double_scratch2, double_result);
836 // double_exponent aliased as double_scratch2 has already been overwritten
837 // and may not have contained the exponent value in the first place when the
838 // input was a smi. We reset it with exponent value before bailing out.
839 __ j(not_equal, &done);
840 __ Cvtlsi2sd(double_exponent, exponent);
841
842 // Returning or bailing out.
843 Counters* counters = isolate()->counters();
844 if (exponent_type_ == ON_STACK) {
845 // The arguments are still on the stack.
846 __ bind(&call_runtime);
847 __ TailCallRuntime(Runtime::kHiddenMathPow, 2, 1);
848
849 // The stub is called from non-optimized code, which expects the result
850 // as heap number in rax.
851 __ bind(&done);
852 __ AllocateHeapNumber(rax, rcx, &call_runtime);
853 __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), double_result);
854 __ IncrementCounter(counters->math_pow(), 1);
855 __ ret(2 * kPointerSize);
856 } else {
857 __ bind(&call_runtime);
858 // Move base to the correct argument register. Exponent is already in xmm1.
859 __ movsd(xmm0, double_base);
860 ASSERT(double_exponent.is(xmm1));
861 {
862 AllowExternalCallThatCantCauseGC scope(masm);
863 __ PrepareCallCFunction(2);
864 __ CallCFunction(
865 ExternalReference::power_double_double_function(isolate()), 2);
866 }
867 // Return value is in xmm0.
868 __ movsd(double_result, xmm0);
869
870 __ bind(&done);
871 __ IncrementCounter(counters->math_pow(), 1);
872 __ ret(0);
873 }
874 }
875
876
Generate(MacroAssembler * masm)877 void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
878 Label miss;
879 Register receiver;
880 if (kind() == Code::KEYED_LOAD_IC) {
881 // ----------- S t a t e -------------
882 // -- rax : key
883 // -- rdx : receiver
884 // -- rsp[0] : return address
885 // -----------------------------------
886 __ Cmp(rax, isolate()->factory()->prototype_string());
887 __ j(not_equal, &miss);
888 receiver = rdx;
889 } else {
890 ASSERT(kind() == Code::LOAD_IC);
891 // ----------- S t a t e -------------
892 // -- rax : receiver
893 // -- rcx : name
894 // -- rsp[0] : return address
895 // -----------------------------------
896 receiver = rax;
897 }
898
899 StubCompiler::GenerateLoadFunctionPrototype(masm, receiver, r8, r9, &miss);
900 __ bind(&miss);
901 StubCompiler::TailCallBuiltin(
902 masm, BaseLoadStoreStubCompiler::MissBuiltin(kind()));
903 }
904
905
GenerateReadElement(MacroAssembler * masm)906 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
907 // The key is in rdx and the parameter count is in rax.
908
909 // Check that the key is a smi.
910 Label slow;
911 __ JumpIfNotSmi(rdx, &slow);
912
913 // Check if the calling frame is an arguments adaptor frame. We look at the
914 // context offset, and if the frame is not a regular one, then we find a
915 // Smi instead of the context. We can't use SmiCompare here, because that
916 // only works for comparing two smis.
917 Label adaptor;
918 __ movp(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
919 __ Cmp(Operand(rbx, StandardFrameConstants::kContextOffset),
920 Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
921 __ j(equal, &adaptor);
922
923 // Check index against formal parameters count limit passed in
924 // through register rax. Use unsigned comparison to get negative
925 // check for free.
926 __ cmpp(rdx, rax);
927 __ j(above_equal, &slow);
928
929 // Read the argument from the stack and return it.
930 __ SmiSub(rax, rax, rdx);
931 __ SmiToInteger32(rax, rax);
932 StackArgumentsAccessor args(rbp, rax, ARGUMENTS_DONT_CONTAIN_RECEIVER);
933 __ movp(rax, args.GetArgumentOperand(0));
934 __ Ret();
935
936 // Arguments adaptor case: Check index against actual arguments
937 // limit found in the arguments adaptor frame. Use unsigned
938 // comparison to get negative check for free.
939 __ bind(&adaptor);
940 __ movp(rcx, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset));
941 __ cmpp(rdx, rcx);
942 __ j(above_equal, &slow);
943
944 // Read the argument from the stack and return it.
945 __ SmiSub(rcx, rcx, rdx);
946 __ SmiToInteger32(rcx, rcx);
947 StackArgumentsAccessor adaptor_args(rbx, rcx,
948 ARGUMENTS_DONT_CONTAIN_RECEIVER);
949 __ movp(rax, adaptor_args.GetArgumentOperand(0));
950 __ Ret();
951
952 // Slow-case: Handle non-smi or out-of-bounds access to arguments
953 // by calling the runtime system.
954 __ bind(&slow);
955 __ PopReturnAddressTo(rbx);
956 __ Push(rdx);
957 __ PushReturnAddressFrom(rbx);
958 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
959 }
960
961
GenerateNewSloppyFast(MacroAssembler * masm)962 void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
963 // Stack layout:
964 // rsp[0] : return address
965 // rsp[8] : number of parameters (tagged)
966 // rsp[16] : receiver displacement
967 // rsp[24] : function
968 // Registers used over the whole function:
969 // rbx: the mapped parameter count (untagged)
970 // rax: the allocated object (tagged).
971
972 Factory* factory = isolate()->factory();
973
974 StackArgumentsAccessor args(rsp, 3, ARGUMENTS_DONT_CONTAIN_RECEIVER);
975 __ SmiToInteger64(rbx, args.GetArgumentOperand(2));
976 // rbx = parameter count (untagged)
977
978 // Check if the calling frame is an arguments adaptor frame.
979 Label runtime;
980 Label adaptor_frame, try_allocate;
981 __ movp(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
982 __ movp(rcx, Operand(rdx, StandardFrameConstants::kContextOffset));
983 __ Cmp(rcx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
984 __ j(equal, &adaptor_frame);
985
986 // No adaptor, parameter count = argument count.
987 __ movp(rcx, rbx);
988 __ jmp(&try_allocate, Label::kNear);
989
990 // We have an adaptor frame. Patch the parameters pointer.
991 __ bind(&adaptor_frame);
992 __ SmiToInteger64(rcx,
993 Operand(rdx,
994 ArgumentsAdaptorFrameConstants::kLengthOffset));
995 __ leap(rdx, Operand(rdx, rcx, times_pointer_size,
996 StandardFrameConstants::kCallerSPOffset));
997 __ movp(args.GetArgumentOperand(1), rdx);
998
999 // rbx = parameter count (untagged)
1000 // rcx = argument count (untagged)
1001 // Compute the mapped parameter count = min(rbx, rcx) in rbx.
1002 __ cmpp(rbx, rcx);
1003 __ j(less_equal, &try_allocate, Label::kNear);
1004 __ movp(rbx, rcx);
1005
1006 __ bind(&try_allocate);
1007
1008 // Compute the sizes of backing store, parameter map, and arguments object.
1009 // 1. Parameter map, has 2 extra words containing context and backing store.
1010 const int kParameterMapHeaderSize =
1011 FixedArray::kHeaderSize + 2 * kPointerSize;
1012 Label no_parameter_map;
1013 __ xorp(r8, r8);
1014 __ testp(rbx, rbx);
1015 __ j(zero, &no_parameter_map, Label::kNear);
1016 __ leap(r8, Operand(rbx, times_pointer_size, kParameterMapHeaderSize));
1017 __ bind(&no_parameter_map);
1018
1019 // 2. Backing store.
1020 __ leap(r8, Operand(r8, rcx, times_pointer_size, FixedArray::kHeaderSize));
1021
1022 // 3. Arguments object.
1023 __ addp(r8, Immediate(Heap::kSloppyArgumentsObjectSize));
1024
1025 // Do the allocation of all three objects in one go.
1026 __ Allocate(r8, rax, rdx, rdi, &runtime, TAG_OBJECT);
1027
1028 // rax = address of new object(s) (tagged)
1029 // rcx = argument count (untagged)
1030 // Get the arguments boilerplate from the current native context into rdi.
1031 Label has_mapped_parameters, copy;
1032 __ movp(rdi, Operand(rsi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
1033 __ movp(rdi, FieldOperand(rdi, GlobalObject::kNativeContextOffset));
1034 __ testp(rbx, rbx);
1035 __ j(not_zero, &has_mapped_parameters, Label::kNear);
1036
1037 const int kIndex = Context::SLOPPY_ARGUMENTS_BOILERPLATE_INDEX;
1038 __ movp(rdi, Operand(rdi, Context::SlotOffset(kIndex)));
1039 __ jmp(©, Label::kNear);
1040
1041 const int kAliasedIndex = Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX;
1042 __ bind(&has_mapped_parameters);
1043 __ movp(rdi, Operand(rdi, Context::SlotOffset(kAliasedIndex)));
1044 __ bind(©);
1045
1046 // rax = address of new object (tagged)
1047 // rbx = mapped parameter count (untagged)
1048 // rcx = argument count (untagged)
1049 // rdi = address of boilerplate object (tagged)
1050 // Copy the JS object part.
1051 for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
1052 __ movp(rdx, FieldOperand(rdi, i));
1053 __ movp(FieldOperand(rax, i), rdx);
1054 }
1055
1056 // Set up the callee in-object property.
1057 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
1058 __ movp(rdx, args.GetArgumentOperand(0));
1059 __ movp(FieldOperand(rax, JSObject::kHeaderSize +
1060 Heap::kArgumentsCalleeIndex * kPointerSize),
1061 rdx);
1062
1063 // Use the length (smi tagged) and set that as an in-object property too.
1064 // Note: rcx is tagged from here on.
1065 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
1066 __ Integer32ToSmi(rcx, rcx);
1067 __ movp(FieldOperand(rax, JSObject::kHeaderSize +
1068 Heap::kArgumentsLengthIndex * kPointerSize),
1069 rcx);
1070
1071 // Set up the elements pointer in the allocated arguments object.
1072 // If we allocated a parameter map, edi will point there, otherwise to the
1073 // backing store.
1074 __ leap(rdi, Operand(rax, Heap::kSloppyArgumentsObjectSize));
1075 __ movp(FieldOperand(rax, JSObject::kElementsOffset), rdi);
1076
1077 // rax = address of new object (tagged)
1078 // rbx = mapped parameter count (untagged)
1079 // rcx = argument count (tagged)
1080 // rdi = address of parameter map or backing store (tagged)
1081
1082 // Initialize parameter map. If there are no mapped arguments, we're done.
1083 Label skip_parameter_map;
1084 __ testp(rbx, rbx);
1085 __ j(zero, &skip_parameter_map);
1086
1087 __ LoadRoot(kScratchRegister, Heap::kSloppyArgumentsElementsMapRootIndex);
1088 // rbx contains the untagged argument count. Add 2 and tag to write.
1089 __ movp(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister);
1090 __ Integer64PlusConstantToSmi(r9, rbx, 2);
1091 __ movp(FieldOperand(rdi, FixedArray::kLengthOffset), r9);
1092 __ movp(FieldOperand(rdi, FixedArray::kHeaderSize + 0 * kPointerSize), rsi);
1093 __ leap(r9, Operand(rdi, rbx, times_pointer_size, kParameterMapHeaderSize));
1094 __ movp(FieldOperand(rdi, FixedArray::kHeaderSize + 1 * kPointerSize), r9);
1095
1096 // Copy the parameter slots and the holes in the arguments.
1097 // We need to fill in mapped_parameter_count slots. They index the context,
1098 // where parameters are stored in reverse order, at
1099 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
1100 // The mapped parameter thus need to get indices
1101 // MIN_CONTEXT_SLOTS+parameter_count-1 ..
1102 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
1103 // We loop from right to left.
1104 Label parameters_loop, parameters_test;
1105
1106 // Load tagged parameter count into r9.
1107 __ Integer32ToSmi(r9, rbx);
1108 __ Move(r8, Smi::FromInt(Context::MIN_CONTEXT_SLOTS));
1109 __ addp(r8, args.GetArgumentOperand(2));
1110 __ subp(r8, r9);
1111 __ Move(r11, factory->the_hole_value());
1112 __ movp(rdx, rdi);
1113 __ leap(rdi, Operand(rdi, rbx, times_pointer_size, kParameterMapHeaderSize));
1114 // r9 = loop variable (tagged)
1115 // r8 = mapping index (tagged)
1116 // r11 = the hole value
1117 // rdx = address of parameter map (tagged)
1118 // rdi = address of backing store (tagged)
1119 __ jmp(¶meters_test, Label::kNear);
1120
1121 __ bind(¶meters_loop);
1122 __ SmiSubConstant(r9, r9, Smi::FromInt(1));
1123 __ SmiToInteger64(kScratchRegister, r9);
1124 __ movp(FieldOperand(rdx, kScratchRegister,
1125 times_pointer_size,
1126 kParameterMapHeaderSize),
1127 r8);
1128 __ movp(FieldOperand(rdi, kScratchRegister,
1129 times_pointer_size,
1130 FixedArray::kHeaderSize),
1131 r11);
1132 __ SmiAddConstant(r8, r8, Smi::FromInt(1));
1133 __ bind(¶meters_test);
1134 __ SmiTest(r9);
1135 __ j(not_zero, ¶meters_loop, Label::kNear);
1136
1137 __ bind(&skip_parameter_map);
1138
1139 // rcx = argument count (tagged)
1140 // rdi = address of backing store (tagged)
1141 // Copy arguments header and remaining slots (if there are any).
1142 __ Move(FieldOperand(rdi, FixedArray::kMapOffset),
1143 factory->fixed_array_map());
1144 __ movp(FieldOperand(rdi, FixedArray::kLengthOffset), rcx);
1145
1146 Label arguments_loop, arguments_test;
1147 __ movp(r8, rbx);
1148 __ movp(rdx, args.GetArgumentOperand(1));
1149 // Untag rcx for the loop below.
1150 __ SmiToInteger64(rcx, rcx);
1151 __ leap(kScratchRegister, Operand(r8, times_pointer_size, 0));
1152 __ subp(rdx, kScratchRegister);
1153 __ jmp(&arguments_test, Label::kNear);
1154
1155 __ bind(&arguments_loop);
1156 __ subp(rdx, Immediate(kPointerSize));
1157 __ movp(r9, Operand(rdx, 0));
1158 __ movp(FieldOperand(rdi, r8,
1159 times_pointer_size,
1160 FixedArray::kHeaderSize),
1161 r9);
1162 __ addp(r8, Immediate(1));
1163
1164 __ bind(&arguments_test);
1165 __ cmpp(r8, rcx);
1166 __ j(less, &arguments_loop, Label::kNear);
1167
1168 // Return and remove the on-stack parameters.
1169 __ ret(3 * kPointerSize);
1170
1171 // Do the runtime call to allocate the arguments object.
1172 // rcx = argument count (untagged)
1173 __ bind(&runtime);
1174 __ Integer32ToSmi(rcx, rcx);
1175 __ movp(args.GetArgumentOperand(2), rcx); // Patch argument count.
1176 __ TailCallRuntime(Runtime::kHiddenNewSloppyArguments, 3, 1);
1177 }
1178
1179
GenerateNewSloppySlow(MacroAssembler * masm)1180 void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
1181 // rsp[0] : return address
1182 // rsp[8] : number of parameters
1183 // rsp[16] : receiver displacement
1184 // rsp[24] : function
1185
1186 // Check if the calling frame is an arguments adaptor frame.
1187 Label runtime;
1188 __ movp(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
1189 __ movp(rcx, Operand(rdx, StandardFrameConstants::kContextOffset));
1190 __ Cmp(rcx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
1191 __ j(not_equal, &runtime);
1192
1193 // Patch the arguments.length and the parameters pointer.
1194 StackArgumentsAccessor args(rsp, 3, ARGUMENTS_DONT_CONTAIN_RECEIVER);
1195 __ movp(rcx, Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset));
1196 __ movp(args.GetArgumentOperand(2), rcx);
1197 __ SmiToInteger64(rcx, rcx);
1198 __ leap(rdx, Operand(rdx, rcx, times_pointer_size,
1199 StandardFrameConstants::kCallerSPOffset));
1200 __ movp(args.GetArgumentOperand(1), rdx);
1201
1202 __ bind(&runtime);
1203 __ TailCallRuntime(Runtime::kHiddenNewSloppyArguments, 3, 1);
1204 }
1205
1206
GenerateNewStrict(MacroAssembler * masm)1207 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
1208 // rsp[0] : return address
1209 // rsp[8] : number of parameters
1210 // rsp[16] : receiver displacement
1211 // rsp[24] : function
1212
1213 // Check if the calling frame is an arguments adaptor frame.
1214 Label adaptor_frame, try_allocate, runtime;
1215 __ movp(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
1216 __ movp(rcx, Operand(rdx, StandardFrameConstants::kContextOffset));
1217 __ Cmp(rcx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
1218 __ j(equal, &adaptor_frame);
1219
1220 // Get the length from the frame.
1221 StackArgumentsAccessor args(rsp, 3, ARGUMENTS_DONT_CONTAIN_RECEIVER);
1222 __ movp(rcx, args.GetArgumentOperand(2));
1223 __ SmiToInteger64(rcx, rcx);
1224 __ jmp(&try_allocate);
1225
1226 // Patch the arguments.length and the parameters pointer.
1227 __ bind(&adaptor_frame);
1228 __ movp(rcx, Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset));
1229 __ movp(args.GetArgumentOperand(2), rcx);
1230 __ SmiToInteger64(rcx, rcx);
1231 __ leap(rdx, Operand(rdx, rcx, times_pointer_size,
1232 StandardFrameConstants::kCallerSPOffset));
1233 __ movp(args.GetArgumentOperand(1), rdx);
1234
1235 // Try the new space allocation. Start out with computing the size of
1236 // the arguments object and the elements array.
1237 Label add_arguments_object;
1238 __ bind(&try_allocate);
1239 __ testp(rcx, rcx);
1240 __ j(zero, &add_arguments_object, Label::kNear);
1241 __ leap(rcx, Operand(rcx, times_pointer_size, FixedArray::kHeaderSize));
1242 __ bind(&add_arguments_object);
1243 __ addp(rcx, Immediate(Heap::kStrictArgumentsObjectSize));
1244
1245 // Do the allocation of both objects in one go.
1246 __ Allocate(rcx, rax, rdx, rbx, &runtime, TAG_OBJECT);
1247
1248 // Get the arguments boilerplate from the current native context.
1249 __ movp(rdi, Operand(rsi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
1250 __ movp(rdi, FieldOperand(rdi, GlobalObject::kNativeContextOffset));
1251 const int offset =
1252 Context::SlotOffset(Context::STRICT_ARGUMENTS_BOILERPLATE_INDEX);
1253 __ movp(rdi, Operand(rdi, offset));
1254
1255 // Copy the JS object part.
1256 for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
1257 __ movp(rbx, FieldOperand(rdi, i));
1258 __ movp(FieldOperand(rax, i), rbx);
1259 }
1260
1261 // Get the length (smi tagged) and set that as an in-object property too.
1262 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
1263 __ movp(rcx, args.GetArgumentOperand(2));
1264 __ movp(FieldOperand(rax, JSObject::kHeaderSize +
1265 Heap::kArgumentsLengthIndex * kPointerSize),
1266 rcx);
1267
1268 // If there are no actual arguments, we're done.
1269 Label done;
1270 __ testp(rcx, rcx);
1271 __ j(zero, &done);
1272
1273 // Get the parameters pointer from the stack.
1274 __ movp(rdx, args.GetArgumentOperand(1));
1275
1276 // Set up the elements pointer in the allocated arguments object and
1277 // initialize the header in the elements fixed array.
1278 __ leap(rdi, Operand(rax, Heap::kStrictArgumentsObjectSize));
1279 __ movp(FieldOperand(rax, JSObject::kElementsOffset), rdi);
1280 __ LoadRoot(kScratchRegister, Heap::kFixedArrayMapRootIndex);
1281 __ movp(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister);
1282
1283
1284 __ movp(FieldOperand(rdi, FixedArray::kLengthOffset), rcx);
1285 // Untag the length for the loop below.
1286 __ SmiToInteger64(rcx, rcx);
1287
1288 // Copy the fixed array slots.
1289 Label loop;
1290 __ bind(&loop);
1291 __ movp(rbx, Operand(rdx, -1 * kPointerSize)); // Skip receiver.
1292 __ movp(FieldOperand(rdi, FixedArray::kHeaderSize), rbx);
1293 __ addp(rdi, Immediate(kPointerSize));
1294 __ subp(rdx, Immediate(kPointerSize));
1295 __ decp(rcx);
1296 __ j(not_zero, &loop);
1297
1298 // Return and remove the on-stack parameters.
1299 __ bind(&done);
1300 __ ret(3 * kPointerSize);
1301
1302 // Do the runtime call to allocate the arguments object.
1303 __ bind(&runtime);
1304 __ TailCallRuntime(Runtime::kHiddenNewStrictArguments, 3, 1);
1305 }
1306
1307
Generate(MacroAssembler * masm)1308 void RegExpExecStub::Generate(MacroAssembler* masm) {
1309 // Just jump directly to runtime if native RegExp is not selected at compile
1310 // time or if regexp entry in generated code is turned off runtime switch or
1311 // at compilation.
1312 #ifdef V8_INTERPRETED_REGEXP
1313 __ TailCallRuntime(Runtime::kHiddenRegExpExec, 4, 1);
1314 #else // V8_INTERPRETED_REGEXP
1315
1316 // Stack frame on entry.
1317 // rsp[0] : return address
1318 // rsp[8] : last_match_info (expected JSArray)
1319 // rsp[16] : previous index
1320 // rsp[24] : subject string
1321 // rsp[32] : JSRegExp object
1322
1323 enum RegExpExecStubArgumentIndices {
1324 JS_REG_EXP_OBJECT_ARGUMENT_INDEX,
1325 SUBJECT_STRING_ARGUMENT_INDEX,
1326 PREVIOUS_INDEX_ARGUMENT_INDEX,
1327 LAST_MATCH_INFO_ARGUMENT_INDEX,
1328 REG_EXP_EXEC_ARGUMENT_COUNT
1329 };
1330
1331 StackArgumentsAccessor args(rsp, REG_EXP_EXEC_ARGUMENT_COUNT,
1332 ARGUMENTS_DONT_CONTAIN_RECEIVER);
1333 Label runtime;
1334 // Ensure that a RegExp stack is allocated.
1335 ExternalReference address_of_regexp_stack_memory_address =
1336 ExternalReference::address_of_regexp_stack_memory_address(isolate());
1337 ExternalReference address_of_regexp_stack_memory_size =
1338 ExternalReference::address_of_regexp_stack_memory_size(isolate());
1339 __ Load(kScratchRegister, address_of_regexp_stack_memory_size);
1340 __ testp(kScratchRegister, kScratchRegister);
1341 __ j(zero, &runtime);
1342
1343 // Check that the first argument is a JSRegExp object.
1344 __ movp(rax, args.GetArgumentOperand(JS_REG_EXP_OBJECT_ARGUMENT_INDEX));
1345 __ JumpIfSmi(rax, &runtime);
1346 __ CmpObjectType(rax, JS_REGEXP_TYPE, kScratchRegister);
1347 __ j(not_equal, &runtime);
1348
1349 // Check that the RegExp has been compiled (data contains a fixed array).
1350 __ movp(rax, FieldOperand(rax, JSRegExp::kDataOffset));
1351 if (FLAG_debug_code) {
1352 Condition is_smi = masm->CheckSmi(rax);
1353 __ Check(NegateCondition(is_smi),
1354 kUnexpectedTypeForRegExpDataFixedArrayExpected);
1355 __ CmpObjectType(rax, FIXED_ARRAY_TYPE, kScratchRegister);
1356 __ Check(equal, kUnexpectedTypeForRegExpDataFixedArrayExpected);
1357 }
1358
1359 // rax: RegExp data (FixedArray)
1360 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
1361 __ SmiToInteger32(rbx, FieldOperand(rax, JSRegExp::kDataTagOffset));
1362 __ cmpl(rbx, Immediate(JSRegExp::IRREGEXP));
1363 __ j(not_equal, &runtime);
1364
1365 // rax: RegExp data (FixedArray)
1366 // Check that the number of captures fit in the static offsets vector buffer.
1367 __ SmiToInteger32(rdx,
1368 FieldOperand(rax, JSRegExp::kIrregexpCaptureCountOffset));
1369 // Check (number_of_captures + 1) * 2 <= offsets vector size
1370 // Or number_of_captures <= offsets vector size / 2 - 1
1371 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
1372 __ cmpl(rdx, Immediate(Isolate::kJSRegexpStaticOffsetsVectorSize / 2 - 1));
1373 __ j(above, &runtime);
1374
1375 // Reset offset for possibly sliced string.
1376 __ Set(r14, 0);
1377 __ movp(rdi, args.GetArgumentOperand(SUBJECT_STRING_ARGUMENT_INDEX));
1378 __ JumpIfSmi(rdi, &runtime);
1379 __ movp(r15, rdi); // Make a copy of the original subject string.
1380 __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
1381 __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
1382 // rax: RegExp data (FixedArray)
1383 // rdi: subject string
1384 // r15: subject string
1385 // Handle subject string according to its encoding and representation:
1386 // (1) Sequential two byte? If yes, go to (9).
1387 // (2) Sequential one byte? If yes, go to (6).
1388 // (3) Anything but sequential or cons? If yes, go to (7).
1389 // (4) Cons string. If the string is flat, replace subject with first string.
1390 // Otherwise bailout.
1391 // (5a) Is subject sequential two byte? If yes, go to (9).
1392 // (5b) Is subject external? If yes, go to (8).
1393 // (6) One byte sequential. Load regexp code for one byte.
1394 // (E) Carry on.
1395 /// [...]
1396
1397 // Deferred code at the end of the stub:
1398 // (7) Not a long external string? If yes, go to (10).
1399 // (8) External string. Make it, offset-wise, look like a sequential string.
1400 // (8a) Is the external string one byte? If yes, go to (6).
1401 // (9) Two byte sequential. Load regexp code for one byte. Go to (E).
1402 // (10) Short external string or not a string? If yes, bail out to runtime.
1403 // (11) Sliced string. Replace subject with parent. Go to (5a).
1404
1405 Label seq_one_byte_string /* 6 */, seq_two_byte_string /* 9 */,
1406 external_string /* 8 */, check_underlying /* 5a */,
1407 not_seq_nor_cons /* 7 */, check_code /* E */,
1408 not_long_external /* 10 */;
1409
1410 // (1) Sequential two byte? If yes, go to (9).
1411 __ andb(rbx, Immediate(kIsNotStringMask |
1412 kStringRepresentationMask |
1413 kStringEncodingMask |
1414 kShortExternalStringMask));
1415 STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
1416 __ j(zero, &seq_two_byte_string); // Go to (9).
1417
1418 // (2) Sequential one byte? If yes, go to (6).
1419 // Any other sequential string must be one byte.
1420 __ andb(rbx, Immediate(kIsNotStringMask |
1421 kStringRepresentationMask |
1422 kShortExternalStringMask));
1423 __ j(zero, &seq_one_byte_string, Label::kNear); // Go to (6).
1424
1425 // (3) Anything but sequential or cons? If yes, go to (7).
1426 // We check whether the subject string is a cons, since sequential strings
1427 // have already been covered.
1428 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
1429 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
1430 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
1431 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
1432 __ cmpp(rbx, Immediate(kExternalStringTag));
1433 __ j(greater_equal, ¬_seq_nor_cons); // Go to (7).
1434
1435 // (4) Cons string. Check that it's flat.
1436 // Replace subject with first string and reload instance type.
1437 __ CompareRoot(FieldOperand(rdi, ConsString::kSecondOffset),
1438 Heap::kempty_stringRootIndex);
1439 __ j(not_equal, &runtime);
1440 __ movp(rdi, FieldOperand(rdi, ConsString::kFirstOffset));
1441 __ bind(&check_underlying);
1442 __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
1443 __ movp(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
1444
1445 // (5a) Is subject sequential two byte? If yes, go to (9).
1446 __ testb(rbx, Immediate(kStringRepresentationMask | kStringEncodingMask));
1447 STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
1448 __ j(zero, &seq_two_byte_string); // Go to (9).
1449 // (5b) Is subject external? If yes, go to (8).
1450 __ testb(rbx, Immediate(kStringRepresentationMask));
1451 // The underlying external string is never a short external string.
1452 STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
1453 STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
1454 __ j(not_zero, &external_string); // Go to (8)
1455
1456 // (6) One byte sequential. Load regexp code for one byte.
1457 __ bind(&seq_one_byte_string);
1458 // rax: RegExp data (FixedArray)
1459 __ movp(r11, FieldOperand(rax, JSRegExp::kDataAsciiCodeOffset));
1460 __ Set(rcx, 1); // Type is one byte.
1461
1462 // (E) Carry on. String handling is done.
1463 __ bind(&check_code);
1464 // r11: irregexp code
1465 // Check that the irregexp code has been generated for the actual string
1466 // encoding. If it has, the field contains a code object otherwise it contains
1467 // smi (code flushing support)
1468 __ JumpIfSmi(r11, &runtime);
1469
1470 // rdi: sequential subject string (or look-alike, external string)
1471 // r15: original subject string
1472 // rcx: encoding of subject string (1 if ASCII, 0 if two_byte);
1473 // r11: code
1474 // Load used arguments before starting to push arguments for call to native
1475 // RegExp code to avoid handling changing stack height.
1476 // We have to use r15 instead of rdi to load the length because rdi might
1477 // have been only made to look like a sequential string when it actually
1478 // is an external string.
1479 __ movp(rbx, args.GetArgumentOperand(PREVIOUS_INDEX_ARGUMENT_INDEX));
1480 __ JumpIfNotSmi(rbx, &runtime);
1481 __ SmiCompare(rbx, FieldOperand(r15, String::kLengthOffset));
1482 __ j(above_equal, &runtime);
1483 __ SmiToInteger64(rbx, rbx);
1484
1485 // rdi: subject string
1486 // rbx: previous index
1487 // rcx: encoding of subject string (1 if ASCII 0 if two_byte);
1488 // r11: code
1489 // All checks done. Now push arguments for native regexp code.
1490 Counters* counters = isolate()->counters();
1491 __ IncrementCounter(counters->regexp_entry_native(), 1);
1492
1493 // Isolates: note we add an additional parameter here (isolate pointer).
1494 static const int kRegExpExecuteArguments = 9;
1495 int argument_slots_on_stack =
1496 masm->ArgumentStackSlotsForCFunctionCall(kRegExpExecuteArguments);
1497 __ EnterApiExitFrame(argument_slots_on_stack);
1498
1499 // Argument 9: Pass current isolate address.
1500 __ LoadAddress(kScratchRegister,
1501 ExternalReference::isolate_address(isolate()));
1502 __ movq(Operand(rsp, (argument_slots_on_stack - 1) * kRegisterSize),
1503 kScratchRegister);
1504
1505 // Argument 8: Indicate that this is a direct call from JavaScript.
1506 __ movq(Operand(rsp, (argument_slots_on_stack - 2) * kRegisterSize),
1507 Immediate(1));
1508
1509 // Argument 7: Start (high end) of backtracking stack memory area.
1510 __ Move(kScratchRegister, address_of_regexp_stack_memory_address);
1511 __ movp(r9, Operand(kScratchRegister, 0));
1512 __ Move(kScratchRegister, address_of_regexp_stack_memory_size);
1513 __ addp(r9, Operand(kScratchRegister, 0));
1514 __ movq(Operand(rsp, (argument_slots_on_stack - 3) * kRegisterSize), r9);
1515
1516 // Argument 6: Set the number of capture registers to zero to force global
1517 // regexps to behave as non-global. This does not affect non-global regexps.
1518 // Argument 6 is passed in r9 on Linux and on the stack on Windows.
1519 #ifdef _WIN64
1520 __ movq(Operand(rsp, (argument_slots_on_stack - 4) * kRegisterSize),
1521 Immediate(0));
1522 #else
1523 __ Set(r9, 0);
1524 #endif
1525
1526 // Argument 5: static offsets vector buffer.
1527 __ LoadAddress(
1528 r8, ExternalReference::address_of_static_offsets_vector(isolate()));
1529 // Argument 5 passed in r8 on Linux and on the stack on Windows.
1530 #ifdef _WIN64
1531 __ movq(Operand(rsp, (argument_slots_on_stack - 5) * kRegisterSize), r8);
1532 #endif
1533
1534 // rdi: subject string
1535 // rbx: previous index
1536 // rcx: encoding of subject string (1 if ASCII 0 if two_byte);
1537 // r11: code
1538 // r14: slice offset
1539 // r15: original subject string
1540
1541 // Argument 2: Previous index.
1542 __ movp(arg_reg_2, rbx);
1543
1544 // Argument 4: End of string data
1545 // Argument 3: Start of string data
1546 Label setup_two_byte, setup_rest, got_length, length_not_from_slice;
1547 // Prepare start and end index of the input.
1548 // Load the length from the original sliced string if that is the case.
1549 __ addp(rbx, r14);
1550 __ SmiToInteger32(arg_reg_3, FieldOperand(r15, String::kLengthOffset));
1551 __ addp(r14, arg_reg_3); // Using arg3 as scratch.
1552
1553 // rbx: start index of the input
1554 // r14: end index of the input
1555 // r15: original subject string
1556 __ testb(rcx, rcx); // Last use of rcx as encoding of subject string.
1557 __ j(zero, &setup_two_byte, Label::kNear);
1558 __ leap(arg_reg_4,
1559 FieldOperand(rdi, r14, times_1, SeqOneByteString::kHeaderSize));
1560 __ leap(arg_reg_3,
1561 FieldOperand(rdi, rbx, times_1, SeqOneByteString::kHeaderSize));
1562 __ jmp(&setup_rest, Label::kNear);
1563 __ bind(&setup_two_byte);
1564 __ leap(arg_reg_4,
1565 FieldOperand(rdi, r14, times_2, SeqTwoByteString::kHeaderSize));
1566 __ leap(arg_reg_3,
1567 FieldOperand(rdi, rbx, times_2, SeqTwoByteString::kHeaderSize));
1568 __ bind(&setup_rest);
1569
1570 // Argument 1: Original subject string.
1571 // The original subject is in the previous stack frame. Therefore we have to
1572 // use rbp, which points exactly to one pointer size below the previous rsp.
1573 // (Because creating a new stack frame pushes the previous rbp onto the stack
1574 // and thereby moves up rsp by one kPointerSize.)
1575 __ movp(arg_reg_1, r15);
1576
1577 // Locate the code entry and call it.
1578 __ addp(r11, Immediate(Code::kHeaderSize - kHeapObjectTag));
1579 __ call(r11);
1580
1581 __ LeaveApiExitFrame(true);
1582
1583 // Check the result.
1584 Label success;
1585 Label exception;
1586 __ cmpl(rax, Immediate(1));
1587 // We expect exactly one result since we force the called regexp to behave
1588 // as non-global.
1589 __ j(equal, &success, Label::kNear);
1590 __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::EXCEPTION));
1591 __ j(equal, &exception);
1592 __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::FAILURE));
1593 // If none of the above, it can only be retry.
1594 // Handle that in the runtime system.
1595 __ j(not_equal, &runtime);
1596
1597 // For failure return null.
1598 __ LoadRoot(rax, Heap::kNullValueRootIndex);
1599 __ ret(REG_EXP_EXEC_ARGUMENT_COUNT * kPointerSize);
1600
1601 // Load RegExp data.
1602 __ bind(&success);
1603 __ movp(rax, args.GetArgumentOperand(JS_REG_EXP_OBJECT_ARGUMENT_INDEX));
1604 __ movp(rcx, FieldOperand(rax, JSRegExp::kDataOffset));
1605 __ SmiToInteger32(rax,
1606 FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset));
1607 // Calculate number of capture registers (number_of_captures + 1) * 2.
1608 __ leal(rdx, Operand(rax, rax, times_1, 2));
1609
1610 // rdx: Number of capture registers
1611 // Check that the fourth object is a JSArray object.
1612 __ movp(r15, args.GetArgumentOperand(LAST_MATCH_INFO_ARGUMENT_INDEX));
1613 __ JumpIfSmi(r15, &runtime);
1614 __ CmpObjectType(r15, JS_ARRAY_TYPE, kScratchRegister);
1615 __ j(not_equal, &runtime);
1616 // Check that the JSArray is in fast case.
1617 __ movp(rbx, FieldOperand(r15, JSArray::kElementsOffset));
1618 __ movp(rax, FieldOperand(rbx, HeapObject::kMapOffset));
1619 __ CompareRoot(rax, Heap::kFixedArrayMapRootIndex);
1620 __ j(not_equal, &runtime);
1621 // Check that the last match info has space for the capture registers and the
1622 // additional information. Ensure no overflow in add.
1623 STATIC_ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset);
1624 __ SmiToInteger32(rax, FieldOperand(rbx, FixedArray::kLengthOffset));
1625 __ subl(rax, Immediate(RegExpImpl::kLastMatchOverhead));
1626 __ cmpl(rdx, rax);
1627 __ j(greater, &runtime);
1628
1629 // rbx: last_match_info backing store (FixedArray)
1630 // rdx: number of capture registers
1631 // Store the capture count.
1632 __ Integer32ToSmi(kScratchRegister, rdx);
1633 __ movp(FieldOperand(rbx, RegExpImpl::kLastCaptureCountOffset),
1634 kScratchRegister);
1635 // Store last subject and last input.
1636 __ movp(rax, args.GetArgumentOperand(SUBJECT_STRING_ARGUMENT_INDEX));
1637 __ movp(FieldOperand(rbx, RegExpImpl::kLastSubjectOffset), rax);
1638 __ movp(rcx, rax);
1639 __ RecordWriteField(rbx,
1640 RegExpImpl::kLastSubjectOffset,
1641 rax,
1642 rdi,
1643 kDontSaveFPRegs);
1644 __ movp(rax, rcx);
1645 __ movp(FieldOperand(rbx, RegExpImpl::kLastInputOffset), rax);
1646 __ RecordWriteField(rbx,
1647 RegExpImpl::kLastInputOffset,
1648 rax,
1649 rdi,
1650 kDontSaveFPRegs);
1651
1652 // Get the static offsets vector filled by the native regexp code.
1653 __ LoadAddress(
1654 rcx, ExternalReference::address_of_static_offsets_vector(isolate()));
1655
1656 // rbx: last_match_info backing store (FixedArray)
1657 // rcx: offsets vector
1658 // rdx: number of capture registers
1659 Label next_capture, done;
1660 // Capture register counter starts from number of capture registers and
1661 // counts down until wraping after zero.
1662 __ bind(&next_capture);
1663 __ subp(rdx, Immediate(1));
1664 __ j(negative, &done, Label::kNear);
1665 // Read the value from the static offsets vector buffer and make it a smi.
1666 __ movl(rdi, Operand(rcx, rdx, times_int_size, 0));
1667 __ Integer32ToSmi(rdi, rdi);
1668 // Store the smi value in the last match info.
1669 __ movp(FieldOperand(rbx,
1670 rdx,
1671 times_pointer_size,
1672 RegExpImpl::kFirstCaptureOffset),
1673 rdi);
1674 __ jmp(&next_capture);
1675 __ bind(&done);
1676
1677 // Return last match info.
1678 __ movp(rax, r15);
1679 __ ret(REG_EXP_EXEC_ARGUMENT_COUNT * kPointerSize);
1680
1681 __ bind(&exception);
1682 // Result must now be exception. If there is no pending exception already a
1683 // stack overflow (on the backtrack stack) was detected in RegExp code but
1684 // haven't created the exception yet. Handle that in the runtime system.
1685 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
1686 ExternalReference pending_exception_address(
1687 Isolate::kPendingExceptionAddress, isolate());
1688 Operand pending_exception_operand =
1689 masm->ExternalOperand(pending_exception_address, rbx);
1690 __ movp(rax, pending_exception_operand);
1691 __ LoadRoot(rdx, Heap::kTheHoleValueRootIndex);
1692 __ cmpp(rax, rdx);
1693 __ j(equal, &runtime);
1694 __ movp(pending_exception_operand, rdx);
1695
1696 __ CompareRoot(rax, Heap::kTerminationExceptionRootIndex);
1697 Label termination_exception;
1698 __ j(equal, &termination_exception, Label::kNear);
1699 __ Throw(rax);
1700
1701 __ bind(&termination_exception);
1702 __ ThrowUncatchable(rax);
1703
1704 // Do the runtime call to execute the regexp.
1705 __ bind(&runtime);
1706 __ TailCallRuntime(Runtime::kHiddenRegExpExec, 4, 1);
1707
1708 // Deferred code for string handling.
1709 // (7) Not a long external string? If yes, go to (10).
1710 __ bind(¬_seq_nor_cons);
1711 // Compare flags are still set from (3).
1712 __ j(greater, ¬_long_external, Label::kNear); // Go to (10).
1713
1714 // (8) External string. Short external strings have been ruled out.
1715 __ bind(&external_string);
1716 __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
1717 __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
1718 if (FLAG_debug_code) {
1719 // Assert that we do not have a cons or slice (indirect strings) here.
1720 // Sequential strings have already been ruled out.
1721 __ testb(rbx, Immediate(kIsIndirectStringMask));
1722 __ Assert(zero, kExternalStringExpectedButNotFound);
1723 }
1724 __ movp(rdi, FieldOperand(rdi, ExternalString::kResourceDataOffset));
1725 // Move the pointer so that offset-wise, it looks like a sequential string.
1726 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
1727 __ subp(rdi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
1728 STATIC_ASSERT(kTwoByteStringTag == 0);
1729 // (8a) Is the external string one byte? If yes, go to (6).
1730 __ testb(rbx, Immediate(kStringEncodingMask));
1731 __ j(not_zero, &seq_one_byte_string); // Goto (6).
1732
1733 // rdi: subject string (flat two-byte)
1734 // rax: RegExp data (FixedArray)
1735 // (9) Two byte sequential. Load regexp code for one byte. Go to (E).
1736 __ bind(&seq_two_byte_string);
1737 __ movp(r11, FieldOperand(rax, JSRegExp::kDataUC16CodeOffset));
1738 __ Set(rcx, 0); // Type is two byte.
1739 __ jmp(&check_code); // Go to (E).
1740
1741 // (10) Not a string or a short external string? If yes, bail out to runtime.
1742 __ bind(¬_long_external);
1743 // Catch non-string subject or short external string.
1744 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
1745 __ testb(rbx, Immediate(kIsNotStringMask | kShortExternalStringMask));
1746 __ j(not_zero, &runtime);
1747
1748 // (11) Sliced string. Replace subject with parent. Go to (5a).
1749 // Load offset into r14 and replace subject string with parent.
1750 __ SmiToInteger32(r14, FieldOperand(rdi, SlicedString::kOffsetOffset));
1751 __ movp(rdi, FieldOperand(rdi, SlicedString::kParentOffset));
1752 __ jmp(&check_underlying);
1753 #endif // V8_INTERPRETED_REGEXP
1754 }
1755
1756
NegativeComparisonResult(Condition cc)1757 static int NegativeComparisonResult(Condition cc) {
1758 ASSERT(cc != equal);
1759 ASSERT((cc == less) || (cc == less_equal)
1760 || (cc == greater) || (cc == greater_equal));
1761 return (cc == greater || cc == greater_equal) ? LESS : GREATER;
1762 }
1763
1764
CheckInputType(MacroAssembler * masm,Register input,CompareIC::State expected,Label * fail)1765 static void CheckInputType(MacroAssembler* masm,
1766 Register input,
1767 CompareIC::State expected,
1768 Label* fail) {
1769 Label ok;
1770 if (expected == CompareIC::SMI) {
1771 __ JumpIfNotSmi(input, fail);
1772 } else if (expected == CompareIC::NUMBER) {
1773 __ JumpIfSmi(input, &ok);
1774 __ CompareMap(input, masm->isolate()->factory()->heap_number_map());
1775 __ j(not_equal, fail);
1776 }
1777 // We could be strict about internalized/non-internalized here, but as long as
1778 // hydrogen doesn't care, the stub doesn't have to care either.
1779 __ bind(&ok);
1780 }
1781
1782
BranchIfNotInternalizedString(MacroAssembler * masm,Label * label,Register object,Register scratch)1783 static void BranchIfNotInternalizedString(MacroAssembler* masm,
1784 Label* label,
1785 Register object,
1786 Register scratch) {
1787 __ JumpIfSmi(object, label);
1788 __ movp(scratch, FieldOperand(object, HeapObject::kMapOffset));
1789 __ movzxbp(scratch,
1790 FieldOperand(scratch, Map::kInstanceTypeOffset));
1791 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
1792 __ testb(scratch, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
1793 __ j(not_zero, label);
1794 }
1795
1796
GenerateGeneric(MacroAssembler * masm)1797 void ICCompareStub::GenerateGeneric(MacroAssembler* masm) {
1798 Label check_unequal_objects, done;
1799 Condition cc = GetCondition();
1800 Factory* factory = isolate()->factory();
1801
1802 Label miss;
1803 CheckInputType(masm, rdx, left_, &miss);
1804 CheckInputType(masm, rax, right_, &miss);
1805
1806 // Compare two smis.
1807 Label non_smi, smi_done;
1808 __ JumpIfNotBothSmi(rax, rdx, &non_smi);
1809 __ subp(rdx, rax);
1810 __ j(no_overflow, &smi_done);
1811 __ notp(rdx); // Correct sign in case of overflow. rdx cannot be 0 here.
1812 __ bind(&smi_done);
1813 __ movp(rax, rdx);
1814 __ ret(0);
1815 __ bind(&non_smi);
1816
1817 // The compare stub returns a positive, negative, or zero 64-bit integer
1818 // value in rax, corresponding to result of comparing the two inputs.
1819 // NOTICE! This code is only reached after a smi-fast-case check, so
1820 // it is certain that at least one operand isn't a smi.
1821
1822 // Two identical objects are equal unless they are both NaN or undefined.
1823 {
1824 Label not_identical;
1825 __ cmpp(rax, rdx);
1826 __ j(not_equal, ¬_identical, Label::kNear);
1827
1828 if (cc != equal) {
1829 // Check for undefined. undefined OP undefined is false even though
1830 // undefined == undefined.
1831 Label check_for_nan;
1832 __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex);
1833 __ j(not_equal, &check_for_nan, Label::kNear);
1834 __ Set(rax, NegativeComparisonResult(cc));
1835 __ ret(0);
1836 __ bind(&check_for_nan);
1837 }
1838
1839 // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
1840 // so we do the second best thing - test it ourselves.
1841 Label heap_number;
1842 // If it's not a heap number, then return equal for (in)equality operator.
1843 __ Cmp(FieldOperand(rdx, HeapObject::kMapOffset),
1844 factory->heap_number_map());
1845 __ j(equal, &heap_number, Label::kNear);
1846 if (cc != equal) {
1847 // Call runtime on identical objects. Otherwise return equal.
1848 __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx);
1849 __ j(above_equal, ¬_identical, Label::kNear);
1850 }
1851 __ Set(rax, EQUAL);
1852 __ ret(0);
1853
1854 __ bind(&heap_number);
1855 // It is a heap number, so return equal if it's not NaN.
1856 // For NaN, return 1 for every condition except greater and
1857 // greater-equal. Return -1 for them, so the comparison yields
1858 // false for all conditions except not-equal.
1859 __ Set(rax, EQUAL);
1860 __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
1861 __ ucomisd(xmm0, xmm0);
1862 __ setcc(parity_even, rax);
1863 // rax is 0 for equal non-NaN heapnumbers, 1 for NaNs.
1864 if (cc == greater_equal || cc == greater) {
1865 __ negp(rax);
1866 }
1867 __ ret(0);
1868
1869 __ bind(¬_identical);
1870 }
1871
1872 if (cc == equal) { // Both strict and non-strict.
1873 Label slow; // Fallthrough label.
1874
1875 // If we're doing a strict equality comparison, we don't have to do
1876 // type conversion, so we generate code to do fast comparison for objects
1877 // and oddballs. Non-smi numbers and strings still go through the usual
1878 // slow-case code.
1879 if (strict()) {
1880 // If either is a Smi (we know that not both are), then they can only
1881 // be equal if the other is a HeapNumber. If so, use the slow case.
1882 {
1883 Label not_smis;
1884 __ SelectNonSmi(rbx, rax, rdx, ¬_smis);
1885
1886 // Check if the non-smi operand is a heap number.
1887 __ Cmp(FieldOperand(rbx, HeapObject::kMapOffset),
1888 factory->heap_number_map());
1889 // If heap number, handle it in the slow case.
1890 __ j(equal, &slow);
1891 // Return non-equal. ebx (the lower half of rbx) is not zero.
1892 __ movp(rax, rbx);
1893 __ ret(0);
1894
1895 __ bind(¬_smis);
1896 }
1897
1898 // If either operand is a JSObject or an oddball value, then they are not
1899 // equal since their pointers are different
1900 // There is no test for undetectability in strict equality.
1901
1902 // If the first object is a JS object, we have done pointer comparison.
1903 STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
1904 Label first_non_object;
1905 __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx);
1906 __ j(below, &first_non_object, Label::kNear);
1907 // Return non-zero (rax (not rax) is not zero)
1908 Label return_not_equal;
1909 STATIC_ASSERT(kHeapObjectTag != 0);
1910 __ bind(&return_not_equal);
1911 __ ret(0);
1912
1913 __ bind(&first_non_object);
1914 // Check for oddballs: true, false, null, undefined.
1915 __ CmpInstanceType(rcx, ODDBALL_TYPE);
1916 __ j(equal, &return_not_equal);
1917
1918 __ CmpObjectType(rdx, FIRST_SPEC_OBJECT_TYPE, rcx);
1919 __ j(above_equal, &return_not_equal);
1920
1921 // Check for oddballs: true, false, null, undefined.
1922 __ CmpInstanceType(rcx, ODDBALL_TYPE);
1923 __ j(equal, &return_not_equal);
1924
1925 // Fall through to the general case.
1926 }
1927 __ bind(&slow);
1928 }
1929
1930 // Generate the number comparison code.
1931 Label non_number_comparison;
1932 Label unordered;
1933 FloatingPointHelper::LoadSSE2UnknownOperands(masm, &non_number_comparison);
1934 __ xorl(rax, rax);
1935 __ xorl(rcx, rcx);
1936 __ ucomisd(xmm0, xmm1);
1937
1938 // Don't base result on EFLAGS when a NaN is involved.
1939 __ j(parity_even, &unordered, Label::kNear);
1940 // Return a result of -1, 0, or 1, based on EFLAGS.
1941 __ setcc(above, rax);
1942 __ setcc(below, rcx);
1943 __ subp(rax, rcx);
1944 __ ret(0);
1945
1946 // If one of the numbers was NaN, then the result is always false.
1947 // The cc is never not-equal.
1948 __ bind(&unordered);
1949 ASSERT(cc != not_equal);
1950 if (cc == less || cc == less_equal) {
1951 __ Set(rax, 1);
1952 } else {
1953 __ Set(rax, -1);
1954 }
1955 __ ret(0);
1956
1957 // The number comparison code did not provide a valid result.
1958 __ bind(&non_number_comparison);
1959
1960 // Fast negative check for internalized-to-internalized equality.
1961 Label check_for_strings;
1962 if (cc == equal) {
1963 BranchIfNotInternalizedString(
1964 masm, &check_for_strings, rax, kScratchRegister);
1965 BranchIfNotInternalizedString(
1966 masm, &check_for_strings, rdx, kScratchRegister);
1967
1968 // We've already checked for object identity, so if both operands are
1969 // internalized strings they aren't equal. Register rax (not rax) already
1970 // holds a non-zero value, which indicates not equal, so just return.
1971 __ ret(0);
1972 }
1973
1974 __ bind(&check_for_strings);
1975
1976 __ JumpIfNotBothSequentialAsciiStrings(
1977 rdx, rax, rcx, rbx, &check_unequal_objects);
1978
1979 // Inline comparison of ASCII strings.
1980 if (cc == equal) {
1981 StringCompareStub::GenerateFlatAsciiStringEquals(masm,
1982 rdx,
1983 rax,
1984 rcx,
1985 rbx);
1986 } else {
1987 StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
1988 rdx,
1989 rax,
1990 rcx,
1991 rbx,
1992 rdi,
1993 r8);
1994 }
1995
1996 #ifdef DEBUG
1997 __ Abort(kUnexpectedFallThroughFromStringComparison);
1998 #endif
1999
2000 __ bind(&check_unequal_objects);
2001 if (cc == equal && !strict()) {
2002 // Not strict equality. Objects are unequal if
2003 // they are both JSObjects and not undetectable,
2004 // and their pointers are different.
2005 Label not_both_objects, return_unequal;
2006 // At most one is a smi, so we can test for smi by adding the two.
2007 // A smi plus a heap object has the low bit set, a heap object plus
2008 // a heap object has the low bit clear.
2009 STATIC_ASSERT(kSmiTag == 0);
2010 STATIC_ASSERT(kSmiTagMask == 1);
2011 __ leap(rcx, Operand(rax, rdx, times_1, 0));
2012 __ testb(rcx, Immediate(kSmiTagMask));
2013 __ j(not_zero, ¬_both_objects, Label::kNear);
2014 __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rbx);
2015 __ j(below, ¬_both_objects, Label::kNear);
2016 __ CmpObjectType(rdx, FIRST_SPEC_OBJECT_TYPE, rcx);
2017 __ j(below, ¬_both_objects, Label::kNear);
2018 __ testb(FieldOperand(rbx, Map::kBitFieldOffset),
2019 Immediate(1 << Map::kIsUndetectable));
2020 __ j(zero, &return_unequal, Label::kNear);
2021 __ testb(FieldOperand(rcx, Map::kBitFieldOffset),
2022 Immediate(1 << Map::kIsUndetectable));
2023 __ j(zero, &return_unequal, Label::kNear);
2024 // The objects are both undetectable, so they both compare as the value
2025 // undefined, and are equal.
2026 __ Set(rax, EQUAL);
2027 __ bind(&return_unequal);
2028 // Return non-equal by returning the non-zero object pointer in rax,
2029 // or return equal if we fell through to here.
2030 __ ret(0);
2031 __ bind(¬_both_objects);
2032 }
2033
2034 // Push arguments below the return address to prepare jump to builtin.
2035 __ PopReturnAddressTo(rcx);
2036 __ Push(rdx);
2037 __ Push(rax);
2038
2039 // Figure out which native to call and setup the arguments.
2040 Builtins::JavaScript builtin;
2041 if (cc == equal) {
2042 builtin = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
2043 } else {
2044 builtin = Builtins::COMPARE;
2045 __ Push(Smi::FromInt(NegativeComparisonResult(cc)));
2046 }
2047
2048 __ PushReturnAddressFrom(rcx);
2049
2050 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
2051 // tagged as a small integer.
2052 __ InvokeBuiltin(builtin, JUMP_FUNCTION);
2053
2054 __ bind(&miss);
2055 GenerateMiss(masm);
2056 }
2057
2058
GenerateRecordCallTarget(MacroAssembler * masm)2059 static void GenerateRecordCallTarget(MacroAssembler* masm) {
2060 // Cache the called function in a feedback vector slot. Cache states
2061 // are uninitialized, monomorphic (indicated by a JSFunction), and
2062 // megamorphic.
2063 // rax : number of arguments to the construct function
2064 // rbx : Feedback vector
2065 // rdx : slot in feedback vector (Smi)
2066 // rdi : the function to call
2067 Isolate* isolate = masm->isolate();
2068 Label initialize, done, miss, megamorphic, not_array_function,
2069 done_no_smi_convert;
2070
2071 // Load the cache state into rcx.
2072 __ SmiToInteger32(rdx, rdx);
2073 __ movp(rcx, FieldOperand(rbx, rdx, times_pointer_size,
2074 FixedArray::kHeaderSize));
2075
2076 // A monomorphic cache hit or an already megamorphic state: invoke the
2077 // function without changing the state.
2078 __ cmpp(rcx, rdi);
2079 __ j(equal, &done);
2080 __ Cmp(rcx, TypeFeedbackInfo::MegamorphicSentinel(isolate));
2081 __ j(equal, &done);
2082
2083 if (!FLAG_pretenuring_call_new) {
2084 // If we came here, we need to see if we are the array function.
2085 // If we didn't have a matching function, and we didn't find the megamorph
2086 // sentinel, then we have in the slot either some other function or an
2087 // AllocationSite. Do a map check on the object in rcx.
2088 Handle<Map> allocation_site_map =
2089 masm->isolate()->factory()->allocation_site_map();
2090 __ Cmp(FieldOperand(rcx, 0), allocation_site_map);
2091 __ j(not_equal, &miss);
2092
2093 // Make sure the function is the Array() function
2094 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, rcx);
2095 __ cmpp(rdi, rcx);
2096 __ j(not_equal, &megamorphic);
2097 __ jmp(&done);
2098 }
2099
2100 __ bind(&miss);
2101
2102 // A monomorphic miss (i.e, here the cache is not uninitialized) goes
2103 // megamorphic.
2104 __ Cmp(rcx, TypeFeedbackInfo::UninitializedSentinel(isolate));
2105 __ j(equal, &initialize);
2106 // MegamorphicSentinel is an immortal immovable object (undefined) so no
2107 // write-barrier is needed.
2108 __ bind(&megamorphic);
2109 __ Move(FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize),
2110 TypeFeedbackInfo::MegamorphicSentinel(isolate));
2111 __ jmp(&done);
2112
2113 // An uninitialized cache is patched with the function or sentinel to
2114 // indicate the ElementsKind if function is the Array constructor.
2115 __ bind(&initialize);
2116
2117 if (!FLAG_pretenuring_call_new) {
2118 // Make sure the function is the Array() function
2119 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, rcx);
2120 __ cmpp(rdi, rcx);
2121 __ j(not_equal, ¬_array_function);
2122
2123 {
2124 FrameScope scope(masm, StackFrame::INTERNAL);
2125
2126 // Arguments register must be smi-tagged to call out.
2127 __ Integer32ToSmi(rax, rax);
2128 __ Push(rax);
2129 __ Push(rdi);
2130 __ Integer32ToSmi(rdx, rdx);
2131 __ Push(rdx);
2132 __ Push(rbx);
2133
2134 CreateAllocationSiteStub create_stub(isolate);
2135 __ CallStub(&create_stub);
2136
2137 __ Pop(rbx);
2138 __ Pop(rdx);
2139 __ Pop(rdi);
2140 __ Pop(rax);
2141 __ SmiToInteger32(rax, rax);
2142 }
2143 __ jmp(&done_no_smi_convert);
2144
2145 __ bind(¬_array_function);
2146 }
2147
2148 __ movp(FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize),
2149 rdi);
2150
2151 // We won't need rdx or rbx anymore, just save rdi
2152 __ Push(rdi);
2153 __ Push(rbx);
2154 __ Push(rdx);
2155 __ RecordWriteArray(rbx, rdi, rdx, kDontSaveFPRegs,
2156 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
2157 __ Pop(rdx);
2158 __ Pop(rbx);
2159 __ Pop(rdi);
2160
2161 __ bind(&done);
2162 __ Integer32ToSmi(rdx, rdx);
2163
2164 __ bind(&done_no_smi_convert);
2165 }
2166
2167
EmitContinueIfStrictOrNative(MacroAssembler * masm,Label * cont)2168 static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
2169 // Do not transform the receiver for strict mode functions.
2170 __ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
2171 __ testb(FieldOperand(rcx, SharedFunctionInfo::kStrictModeByteOffset),
2172 Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
2173 __ j(not_equal, cont);
2174
2175 // Do not transform the receiver for natives.
2176 // SharedFunctionInfo is already loaded into rcx.
2177 __ testb(FieldOperand(rcx, SharedFunctionInfo::kNativeByteOffset),
2178 Immediate(1 << SharedFunctionInfo::kNativeBitWithinByte));
2179 __ j(not_equal, cont);
2180 }
2181
2182
EmitSlowCase(Isolate * isolate,MacroAssembler * masm,StackArgumentsAccessor * args,int argc,Label * non_function)2183 static void EmitSlowCase(Isolate* isolate,
2184 MacroAssembler* masm,
2185 StackArgumentsAccessor* args,
2186 int argc,
2187 Label* non_function) {
2188 // Check for function proxy.
2189 __ CmpInstanceType(rcx, JS_FUNCTION_PROXY_TYPE);
2190 __ j(not_equal, non_function);
2191 __ PopReturnAddressTo(rcx);
2192 __ Push(rdi); // put proxy as additional argument under return address
2193 __ PushReturnAddressFrom(rcx);
2194 __ Set(rax, argc + 1);
2195 __ Set(rbx, 0);
2196 __ GetBuiltinEntry(rdx, Builtins::CALL_FUNCTION_PROXY);
2197 {
2198 Handle<Code> adaptor =
2199 masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
2200 __ jmp(adaptor, RelocInfo::CODE_TARGET);
2201 }
2202
2203 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
2204 // of the original receiver from the call site).
2205 __ bind(non_function);
2206 __ movp(args->GetReceiverOperand(), rdi);
2207 __ Set(rax, argc);
2208 __ Set(rbx, 0);
2209 __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION);
2210 Handle<Code> adaptor =
2211 isolate->builtins()->ArgumentsAdaptorTrampoline();
2212 __ Jump(adaptor, RelocInfo::CODE_TARGET);
2213 }
2214
2215
EmitWrapCase(MacroAssembler * masm,StackArgumentsAccessor * args,Label * cont)2216 static void EmitWrapCase(MacroAssembler* masm,
2217 StackArgumentsAccessor* args,
2218 Label* cont) {
2219 // Wrap the receiver and patch it back onto the stack.
2220 { FrameScope frame_scope(masm, StackFrame::INTERNAL);
2221 __ Push(rdi);
2222 __ Push(rax);
2223 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
2224 __ Pop(rdi);
2225 }
2226 __ movp(args->GetReceiverOperand(), rax);
2227 __ jmp(cont);
2228 }
2229
2230
CallFunctionNoFeedback(MacroAssembler * masm,int argc,bool needs_checks,bool call_as_method)2231 static void CallFunctionNoFeedback(MacroAssembler* masm,
2232 int argc, bool needs_checks,
2233 bool call_as_method) {
2234 // rdi : the function to call
2235
2236 // wrap_and_call can only be true if we are compiling a monomorphic method.
2237 Isolate* isolate = masm->isolate();
2238 Label slow, non_function, wrap, cont;
2239 StackArgumentsAccessor args(rsp, argc);
2240
2241 if (needs_checks) {
2242 // Check that the function really is a JavaScript function.
2243 __ JumpIfSmi(rdi, &non_function);
2244
2245 // Goto slow case if we do not have a function.
2246 __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
2247 __ j(not_equal, &slow);
2248 }
2249
2250 // Fast-case: Just invoke the function.
2251 ParameterCount actual(argc);
2252
2253 if (call_as_method) {
2254 if (needs_checks) {
2255 EmitContinueIfStrictOrNative(masm, &cont);
2256 }
2257
2258 // Load the receiver from the stack.
2259 __ movp(rax, args.GetReceiverOperand());
2260
2261 if (needs_checks) {
2262 __ JumpIfSmi(rax, &wrap);
2263
2264 __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx);
2265 __ j(below, &wrap);
2266 } else {
2267 __ jmp(&wrap);
2268 }
2269
2270 __ bind(&cont);
2271 }
2272
2273 __ InvokeFunction(rdi, actual, JUMP_FUNCTION, NullCallWrapper());
2274
2275 if (needs_checks) {
2276 // Slow-case: Non-function called.
2277 __ bind(&slow);
2278 EmitSlowCase(isolate, masm, &args, argc, &non_function);
2279 }
2280
2281 if (call_as_method) {
2282 __ bind(&wrap);
2283 EmitWrapCase(masm, &args, &cont);
2284 }
2285 }
2286
2287
Generate(MacroAssembler * masm)2288 void CallFunctionStub::Generate(MacroAssembler* masm) {
2289 CallFunctionNoFeedback(masm, argc_, NeedsChecks(), CallAsMethod());
2290 }
2291
2292
Generate(MacroAssembler * masm)2293 void CallConstructStub::Generate(MacroAssembler* masm) {
2294 // rax : number of arguments
2295 // rbx : feedback vector
2296 // rdx : (only if rbx is not the megamorphic symbol) slot in feedback
2297 // vector (Smi)
2298 // rdi : constructor function
2299 Label slow, non_function_call;
2300
2301 // Check that function is not a smi.
2302 __ JumpIfSmi(rdi, &non_function_call);
2303 // Check that function is a JSFunction.
2304 __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
2305 __ j(not_equal, &slow);
2306
2307 if (RecordCallTarget()) {
2308 GenerateRecordCallTarget(masm);
2309
2310 __ SmiToInteger32(rdx, rdx);
2311 if (FLAG_pretenuring_call_new) {
2312 // Put the AllocationSite from the feedback vector into ebx.
2313 // By adding kPointerSize we encode that we know the AllocationSite
2314 // entry is at the feedback vector slot given by rdx + 1.
2315 __ movp(rbx, FieldOperand(rbx, rdx, times_pointer_size,
2316 FixedArray::kHeaderSize + kPointerSize));
2317 } else {
2318 Label feedback_register_initialized;
2319 // Put the AllocationSite from the feedback vector into rbx, or undefined.
2320 __ movp(rbx, FieldOperand(rbx, rdx, times_pointer_size,
2321 FixedArray::kHeaderSize));
2322 __ CompareRoot(FieldOperand(rbx, 0), Heap::kAllocationSiteMapRootIndex);
2323 __ j(equal, &feedback_register_initialized);
2324 __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
2325 __ bind(&feedback_register_initialized);
2326 }
2327
2328 __ AssertUndefinedOrAllocationSite(rbx);
2329 }
2330
2331 // Jump to the function-specific construct stub.
2332 Register jmp_reg = rcx;
2333 __ movp(jmp_reg, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
2334 __ movp(jmp_reg, FieldOperand(jmp_reg,
2335 SharedFunctionInfo::kConstructStubOffset));
2336 __ leap(jmp_reg, FieldOperand(jmp_reg, Code::kHeaderSize));
2337 __ jmp(jmp_reg);
2338
2339 // rdi: called object
2340 // rax: number of arguments
2341 // rcx: object map
2342 Label do_call;
2343 __ bind(&slow);
2344 __ CmpInstanceType(rcx, JS_FUNCTION_PROXY_TYPE);
2345 __ j(not_equal, &non_function_call);
2346 __ GetBuiltinEntry(rdx, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
2347 __ jmp(&do_call);
2348
2349 __ bind(&non_function_call);
2350 __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
2351 __ bind(&do_call);
2352 // Set expected number of arguments to zero (not changing rax).
2353 __ Set(rbx, 0);
2354 __ Jump(isolate()->builtins()->ArgumentsAdaptorTrampoline(),
2355 RelocInfo::CODE_TARGET);
2356 }
2357
2358
EmitLoadTypeFeedbackVector(MacroAssembler * masm,Register vector)2359 static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
2360 __ movp(vector, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
2361 __ movp(vector, FieldOperand(vector, JSFunction::kSharedFunctionInfoOffset));
2362 __ movp(vector, FieldOperand(vector,
2363 SharedFunctionInfo::kFeedbackVectorOffset));
2364 }
2365
2366
Generate(MacroAssembler * masm)2367 void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
2368 // rdi - function
2369 // rdx - slot id (as integer)
2370 Label miss;
2371 int argc = state_.arg_count();
2372 ParameterCount actual(argc);
2373
2374 EmitLoadTypeFeedbackVector(masm, rbx);
2375 __ SmiToInteger32(rdx, rdx);
2376
2377 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, rcx);
2378 __ cmpq(rdi, rcx);
2379 __ j(not_equal, &miss);
2380
2381 __ movp(rax, Immediate(arg_count()));
2382 __ movp(rcx, FieldOperand(rbx, rdx, times_pointer_size,
2383 FixedArray::kHeaderSize));
2384 // Verify that ecx contains an AllocationSite
2385 Factory* factory = masm->isolate()->factory();
2386 __ Cmp(FieldOperand(rcx, HeapObject::kMapOffset),
2387 factory->allocation_site_map());
2388 __ j(not_equal, &miss);
2389
2390 __ movp(rbx, rcx);
2391 ArrayConstructorStub stub(masm->isolate(), arg_count());
2392 __ TailCallStub(&stub);
2393
2394 __ bind(&miss);
2395 GenerateMiss(masm, IC::kCallIC_Customization_Miss);
2396
2397 // The slow case, we need this no matter what to complete a call after a miss.
2398 CallFunctionNoFeedback(masm,
2399 arg_count(),
2400 true,
2401 CallAsMethod());
2402
2403 // Unreachable.
2404 __ int3();
2405 }
2406
2407
Generate(MacroAssembler * masm)2408 void CallICStub::Generate(MacroAssembler* masm) {
2409 // rdi - function
2410 // rbx - vector
2411 // rdx - slot id
2412 Isolate* isolate = masm->isolate();
2413 Label extra_checks_or_miss, slow_start;
2414 Label slow, non_function, wrap, cont;
2415 Label have_js_function;
2416 int argc = state_.arg_count();
2417 StackArgumentsAccessor args(rsp, argc);
2418 ParameterCount actual(argc);
2419
2420 EmitLoadTypeFeedbackVector(masm, rbx);
2421
2422 // The checks. First, does rdi match the recorded monomorphic target?
2423 __ SmiToInteger32(rdx, rdx);
2424 __ cmpq(rdi, FieldOperand(rbx, rdx, times_pointer_size,
2425 FixedArray::kHeaderSize));
2426 __ j(not_equal, &extra_checks_or_miss);
2427
2428 __ bind(&have_js_function);
2429 if (state_.CallAsMethod()) {
2430 EmitContinueIfStrictOrNative(masm, &cont);
2431
2432 // Load the receiver from the stack.
2433 __ movp(rax, args.GetReceiverOperand());
2434
2435 __ JumpIfSmi(rax, &wrap);
2436
2437 __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx);
2438 __ j(below, &wrap);
2439
2440 __ bind(&cont);
2441 }
2442
2443 __ InvokeFunction(rdi, actual, JUMP_FUNCTION, NullCallWrapper());
2444
2445 __ bind(&slow);
2446 EmitSlowCase(isolate, masm, &args, argc, &non_function);
2447
2448 if (state_.CallAsMethod()) {
2449 __ bind(&wrap);
2450 EmitWrapCase(masm, &args, &cont);
2451 }
2452
2453 __ bind(&extra_checks_or_miss);
2454 Label miss;
2455
2456 __ movp(rcx, FieldOperand(rbx, rdx, times_pointer_size,
2457 FixedArray::kHeaderSize));
2458 __ Cmp(rcx, TypeFeedbackInfo::MegamorphicSentinel(isolate));
2459 __ j(equal, &slow_start);
2460 __ Cmp(rcx, TypeFeedbackInfo::UninitializedSentinel(isolate));
2461 __ j(equal, &miss);
2462
2463 if (!FLAG_trace_ic) {
2464 // We are going megamorphic. If the feedback is a JSFunction, it is fine
2465 // to handle it here. More complex cases are dealt with in the runtime.
2466 __ AssertNotSmi(rcx);
2467 __ CmpObjectType(rcx, JS_FUNCTION_TYPE, rcx);
2468 __ j(not_equal, &miss);
2469 __ Move(FieldOperand(rbx, rdx, times_pointer_size,
2470 FixedArray::kHeaderSize),
2471 TypeFeedbackInfo::MegamorphicSentinel(isolate));
2472 __ jmp(&slow_start);
2473 }
2474
2475 // We are here because tracing is on or we are going monomorphic.
2476 __ bind(&miss);
2477 GenerateMiss(masm, IC::kCallIC_Miss);
2478
2479 // the slow case
2480 __ bind(&slow_start);
2481 // Check that function is not a smi.
2482 __ JumpIfSmi(rdi, &non_function);
2483 // Check that function is a JSFunction.
2484 __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
2485 __ j(not_equal, &slow);
2486 __ jmp(&have_js_function);
2487
2488 // Unreachable
2489 __ int3();
2490 }
2491
2492
GenerateMiss(MacroAssembler * masm,IC::UtilityId id)2493 void CallICStub::GenerateMiss(MacroAssembler* masm, IC::UtilityId id) {
2494 // Get the receiver of the function from the stack; 1 ~ return address.
2495 __ movp(rcx, Operand(rsp, (state_.arg_count() + 1) * kPointerSize));
2496
2497 {
2498 FrameScope scope(masm, StackFrame::INTERNAL);
2499
2500 // Push the receiver and the function and feedback info.
2501 __ Push(rcx);
2502 __ Push(rdi);
2503 __ Push(rbx);
2504 __ Integer32ToSmi(rdx, rdx);
2505 __ Push(rdx);
2506
2507 // Call the entry.
2508 ExternalReference miss = ExternalReference(IC_Utility(id),
2509 masm->isolate());
2510 __ CallExternalReference(miss, 4);
2511
2512 // Move result to edi and exit the internal frame.
2513 __ movp(rdi, rax);
2514 }
2515 }
2516
2517
NeedsImmovableCode()2518 bool CEntryStub::NeedsImmovableCode() {
2519 return false;
2520 }
2521
2522
GenerateStubsAheadOfTime(Isolate * isolate)2523 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
2524 CEntryStub::GenerateAheadOfTime(isolate);
2525 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
2526 StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
2527 // It is important that the store buffer overflow stubs are generated first.
2528 ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
2529 CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
2530 BinaryOpICStub::GenerateAheadOfTime(isolate);
2531 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
2532 }
2533
2534
GenerateFPStubs(Isolate * isolate)2535 void CodeStub::GenerateFPStubs(Isolate* isolate) {
2536 }
2537
2538
GenerateAheadOfTime(Isolate * isolate)2539 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
2540 CEntryStub stub(isolate, 1, kDontSaveFPRegs);
2541 stub.GetCode();
2542 CEntryStub save_doubles(isolate, 1, kSaveFPRegs);
2543 save_doubles.GetCode();
2544 }
2545
2546
Generate(MacroAssembler * masm)2547 void CEntryStub::Generate(MacroAssembler* masm) {
2548 // rax: number of arguments including receiver
2549 // rbx: pointer to C function (C callee-saved)
2550 // rbp: frame pointer of calling JS frame (restored after C call)
2551 // rsp: stack pointer (restored after C call)
2552 // rsi: current context (restored)
2553
2554 ProfileEntryHookStub::MaybeCallEntryHook(masm);
2555
2556 // Enter the exit frame that transitions from JavaScript to C++.
2557 #ifdef _WIN64
2558 int arg_stack_space = (result_size_ < 2 ? 2 : 4);
2559 #else
2560 int arg_stack_space = 0;
2561 #endif
2562 __ EnterExitFrame(arg_stack_space, save_doubles_);
2563
2564 // rbx: pointer to builtin function (C callee-saved).
2565 // rbp: frame pointer of exit frame (restored after C call).
2566 // rsp: stack pointer (restored after C call).
2567 // r14: number of arguments including receiver (C callee-saved).
2568 // r15: argv pointer (C callee-saved).
2569
2570 // Simple results returned in rax (both AMD64 and Win64 calling conventions).
2571 // Complex results must be written to address passed as first argument.
2572 // AMD64 calling convention: a struct of two pointers in rax+rdx
2573
2574 // Check stack alignment.
2575 if (FLAG_debug_code) {
2576 __ CheckStackAlignment();
2577 }
2578
2579 // Call C function.
2580 #ifdef _WIN64
2581 // Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9.
2582 // Pass argv and argc as two parameters. The arguments object will
2583 // be created by stubs declared by DECLARE_RUNTIME_FUNCTION().
2584 if (result_size_ < 2) {
2585 // Pass a pointer to the Arguments object as the first argument.
2586 // Return result in single register (rax).
2587 __ movp(rcx, r14); // argc.
2588 __ movp(rdx, r15); // argv.
2589 __ Move(r8, ExternalReference::isolate_address(isolate()));
2590 } else {
2591 ASSERT_EQ(2, result_size_);
2592 // Pass a pointer to the result location as the first argument.
2593 __ leap(rcx, StackSpaceOperand(2));
2594 // Pass a pointer to the Arguments object as the second argument.
2595 __ movp(rdx, r14); // argc.
2596 __ movp(r8, r15); // argv.
2597 __ Move(r9, ExternalReference::isolate_address(isolate()));
2598 }
2599
2600 #else // _WIN64
2601 // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9.
2602 __ movp(rdi, r14); // argc.
2603 __ movp(rsi, r15); // argv.
2604 __ Move(rdx, ExternalReference::isolate_address(isolate()));
2605 #endif
2606 __ call(rbx);
2607 // Result is in rax - do not destroy this register!
2608
2609 #ifdef _WIN64
2610 // If return value is on the stack, pop it to registers.
2611 if (result_size_ > 1) {
2612 ASSERT_EQ(2, result_size_);
2613 // Read result values stored on stack. Result is stored
2614 // above the four argument mirror slots and the two
2615 // Arguments object slots.
2616 __ movq(rax, Operand(rsp, 6 * kRegisterSize));
2617 __ movq(rdx, Operand(rsp, 7 * kRegisterSize));
2618 }
2619 #endif
2620
2621 // Runtime functions should not return 'the hole'. Allowing it to escape may
2622 // lead to crashes in the IC code later.
2623 if (FLAG_debug_code) {
2624 Label okay;
2625 __ CompareRoot(rax, Heap::kTheHoleValueRootIndex);
2626 __ j(not_equal, &okay, Label::kNear);
2627 __ int3();
2628 __ bind(&okay);
2629 }
2630
2631 // Check result for exception sentinel.
2632 Label exception_returned;
2633 __ CompareRoot(rax, Heap::kExceptionRootIndex);
2634 __ j(equal, &exception_returned);
2635
2636 ExternalReference pending_exception_address(
2637 Isolate::kPendingExceptionAddress, isolate());
2638
2639 // Check that there is no pending exception, otherwise we
2640 // should have returned the exception sentinel.
2641 if (FLAG_debug_code) {
2642 Label okay;
2643 __ LoadRoot(r14, Heap::kTheHoleValueRootIndex);
2644 Operand pending_exception_operand =
2645 masm->ExternalOperand(pending_exception_address);
2646 __ cmpp(r14, pending_exception_operand);
2647 __ j(equal, &okay, Label::kNear);
2648 __ int3();
2649 __ bind(&okay);
2650 }
2651
2652 // Exit the JavaScript to C++ exit frame.
2653 __ LeaveExitFrame(save_doubles_);
2654 __ ret(0);
2655
2656 // Handling of exception.
2657 __ bind(&exception_returned);
2658
2659 // Retrieve the pending exception.
2660 Operand pending_exception_operand =
2661 masm->ExternalOperand(pending_exception_address);
2662 __ movp(rax, pending_exception_operand);
2663
2664 // Clear the pending exception.
2665 __ LoadRoot(rdx, Heap::kTheHoleValueRootIndex);
2666 __ movp(pending_exception_operand, rdx);
2667
2668 // Special handling of termination exceptions which are uncatchable
2669 // by javascript code.
2670 Label throw_termination_exception;
2671 __ CompareRoot(rax, Heap::kTerminationExceptionRootIndex);
2672 __ j(equal, &throw_termination_exception);
2673
2674 // Handle normal exception.
2675 __ Throw(rax);
2676
2677 __ bind(&throw_termination_exception);
2678 __ ThrowUncatchable(rax);
2679 }
2680
2681
GenerateBody(MacroAssembler * masm,bool is_construct)2682 void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
2683 Label invoke, handler_entry, exit;
2684 Label not_outermost_js, not_outermost_js_2;
2685
2686 ProfileEntryHookStub::MaybeCallEntryHook(masm);
2687
2688 { // NOLINT. Scope block confuses linter.
2689 MacroAssembler::NoRootArrayScope uninitialized_root_register(masm);
2690 // Set up frame.
2691 __ pushq(rbp);
2692 __ movp(rbp, rsp);
2693
2694 // Push the stack frame type marker twice.
2695 int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
2696 // Scratch register is neither callee-save, nor an argument register on any
2697 // platform. It's free to use at this point.
2698 // Cannot use smi-register for loading yet.
2699 __ Move(kScratchRegister, Smi::FromInt(marker), Assembler::RelocInfoNone());
2700 __ Push(kScratchRegister); // context slot
2701 __ Push(kScratchRegister); // function slot
2702 // Save callee-saved registers (X64/X32/Win64 calling conventions).
2703 __ pushq(r12);
2704 __ pushq(r13);
2705 __ pushq(r14);
2706 __ pushq(r15);
2707 #ifdef _WIN64
2708 __ pushq(rdi); // Only callee save in Win64 ABI, argument in AMD64 ABI.
2709 __ pushq(rsi); // Only callee save in Win64 ABI, argument in AMD64 ABI.
2710 #endif
2711 __ pushq(rbx);
2712
2713 #ifdef _WIN64
2714 // On Win64 XMM6-XMM15 are callee-save
2715 __ subp(rsp, Immediate(EntryFrameConstants::kXMMRegistersBlockSize));
2716 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0), xmm6);
2717 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1), xmm7);
2718 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2), xmm8);
2719 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3), xmm9);
2720 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4), xmm10);
2721 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5), xmm11);
2722 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6), xmm12);
2723 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7), xmm13);
2724 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8), xmm14);
2725 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9), xmm15);
2726 #endif
2727
2728 // Set up the roots and smi constant registers.
2729 // Needs to be done before any further smi loads.
2730 __ InitializeSmiConstantRegister();
2731 __ InitializeRootRegister();
2732 }
2733
2734 // Save copies of the top frame descriptor on the stack.
2735 ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate());
2736 {
2737 Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp);
2738 __ Push(c_entry_fp_operand);
2739 }
2740
2741 // If this is the outermost JS call, set js_entry_sp value.
2742 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
2743 __ Load(rax, js_entry_sp);
2744 __ testp(rax, rax);
2745 __ j(not_zero, ¬_outermost_js);
2746 __ Push(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
2747 __ movp(rax, rbp);
2748 __ Store(js_entry_sp, rax);
2749 Label cont;
2750 __ jmp(&cont);
2751 __ bind(¬_outermost_js);
2752 __ Push(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME));
2753 __ bind(&cont);
2754
2755 // Jump to a faked try block that does the invoke, with a faked catch
2756 // block that sets the pending exception.
2757 __ jmp(&invoke);
2758 __ bind(&handler_entry);
2759 handler_offset_ = handler_entry.pos();
2760 // Caught exception: Store result (exception) in the pending exception
2761 // field in the JSEnv and return a failure sentinel.
2762 ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
2763 isolate());
2764 __ Store(pending_exception, rax);
2765 __ LoadRoot(rax, Heap::kExceptionRootIndex);
2766 __ jmp(&exit);
2767
2768 // Invoke: Link this frame into the handler chain. There's only one
2769 // handler block in this code object, so its index is 0.
2770 __ bind(&invoke);
2771 __ PushTryHandler(StackHandler::JS_ENTRY, 0);
2772
2773 // Clear any pending exceptions.
2774 __ LoadRoot(rax, Heap::kTheHoleValueRootIndex);
2775 __ Store(pending_exception, rax);
2776
2777 // Fake a receiver (NULL).
2778 __ Push(Immediate(0)); // receiver
2779
2780 // Invoke the function by calling through JS entry trampoline builtin and
2781 // pop the faked function when we return. We load the address from an
2782 // external reference instead of inlining the call target address directly
2783 // in the code, because the builtin stubs may not have been generated yet
2784 // at the time this code is generated.
2785 if (is_construct) {
2786 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
2787 isolate());
2788 __ Load(rax, construct_entry);
2789 } else {
2790 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
2791 __ Load(rax, entry);
2792 }
2793 __ leap(kScratchRegister, FieldOperand(rax, Code::kHeaderSize));
2794 __ call(kScratchRegister);
2795
2796 // Unlink this frame from the handler chain.
2797 __ PopTryHandler();
2798
2799 __ bind(&exit);
2800 // Check if the current stack frame is marked as the outermost JS frame.
2801 __ Pop(rbx);
2802 __ Cmp(rbx, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
2803 __ j(not_equal, ¬_outermost_js_2);
2804 __ Move(kScratchRegister, js_entry_sp);
2805 __ movp(Operand(kScratchRegister, 0), Immediate(0));
2806 __ bind(¬_outermost_js_2);
2807
2808 // Restore the top frame descriptor from the stack.
2809 { Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp);
2810 __ Pop(c_entry_fp_operand);
2811 }
2812
2813 // Restore callee-saved registers (X64 conventions).
2814 #ifdef _WIN64
2815 // On Win64 XMM6-XMM15 are callee-save
2816 __ movdqu(xmm6, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0));
2817 __ movdqu(xmm7, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1));
2818 __ movdqu(xmm8, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2));
2819 __ movdqu(xmm9, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3));
2820 __ movdqu(xmm10, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4));
2821 __ movdqu(xmm11, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5));
2822 __ movdqu(xmm12, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6));
2823 __ movdqu(xmm13, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7));
2824 __ movdqu(xmm14, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8));
2825 __ movdqu(xmm15, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9));
2826 __ addp(rsp, Immediate(EntryFrameConstants::kXMMRegistersBlockSize));
2827 #endif
2828
2829 __ popq(rbx);
2830 #ifdef _WIN64
2831 // Callee save on in Win64 ABI, arguments/volatile in AMD64 ABI.
2832 __ popq(rsi);
2833 __ popq(rdi);
2834 #endif
2835 __ popq(r15);
2836 __ popq(r14);
2837 __ popq(r13);
2838 __ popq(r12);
2839 __ addp(rsp, Immediate(2 * kPointerSize)); // remove markers
2840
2841 // Restore frame pointer and return.
2842 __ popq(rbp);
2843 __ ret(0);
2844 }
2845
2846
Generate(MacroAssembler * masm)2847 void InstanceofStub::Generate(MacroAssembler* masm) {
2848 // Implements "value instanceof function" operator.
2849 // Expected input state with no inline cache:
2850 // rsp[0] : return address
2851 // rsp[8] : function pointer
2852 // rsp[16] : value
2853 // Expected input state with an inline one-element cache:
2854 // rsp[0] : return address
2855 // rsp[8] : offset from return address to location of inline cache
2856 // rsp[16] : function pointer
2857 // rsp[24] : value
2858 // Returns a bitwise zero to indicate that the value
2859 // is and instance of the function and anything else to
2860 // indicate that the value is not an instance.
2861
2862 static const int kOffsetToMapCheckValue = 2;
2863 static const int kOffsetToResultValue = kPointerSize == kInt64Size ? 18 : 14;
2864 // The last 4 bytes of the instruction sequence
2865 // movp(rdi, FieldOperand(rax, HeapObject::kMapOffset))
2866 // Move(kScratchRegister, Factory::the_hole_value())
2867 // in front of the hole value address.
2868 static const unsigned int kWordBeforeMapCheckValue =
2869 kPointerSize == kInt64Size ? 0xBA49FF78 : 0xBA41FF78;
2870 // The last 4 bytes of the instruction sequence
2871 // __ j(not_equal, &cache_miss);
2872 // __ LoadRoot(ToRegister(instr->result()), Heap::kTheHoleValueRootIndex);
2873 // before the offset of the hole value in the root array.
2874 static const unsigned int kWordBeforeResultValue =
2875 kPointerSize == kInt64Size ? 0x458B4906 : 0x458B4106;
2876 // Only the inline check flag is supported on X64.
2877 ASSERT(flags_ == kNoFlags || HasCallSiteInlineCheck());
2878 int extra_argument_offset = HasCallSiteInlineCheck() ? 1 : 0;
2879
2880 // Get the object - go slow case if it's a smi.
2881 Label slow;
2882 StackArgumentsAccessor args(rsp, 2 + extra_argument_offset,
2883 ARGUMENTS_DONT_CONTAIN_RECEIVER);
2884 __ movp(rax, args.GetArgumentOperand(0));
2885 __ JumpIfSmi(rax, &slow);
2886
2887 // Check that the left hand is a JS object. Leave its map in rax.
2888 __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rax);
2889 __ j(below, &slow);
2890 __ CmpInstanceType(rax, LAST_SPEC_OBJECT_TYPE);
2891 __ j(above, &slow);
2892
2893 // Get the prototype of the function.
2894 __ movp(rdx, args.GetArgumentOperand(1));
2895 // rdx is function, rax is map.
2896
2897 // If there is a call site cache don't look in the global cache, but do the
2898 // real lookup and update the call site cache.
2899 if (!HasCallSiteInlineCheck()) {
2900 // Look up the function and the map in the instanceof cache.
2901 Label miss;
2902 __ CompareRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex);
2903 __ j(not_equal, &miss, Label::kNear);
2904 __ CompareRoot(rax, Heap::kInstanceofCacheMapRootIndex);
2905 __ j(not_equal, &miss, Label::kNear);
2906 __ LoadRoot(rax, Heap::kInstanceofCacheAnswerRootIndex);
2907 __ ret(2 * kPointerSize);
2908 __ bind(&miss);
2909 }
2910
2911 __ TryGetFunctionPrototype(rdx, rbx, &slow, true);
2912
2913 // Check that the function prototype is a JS object.
2914 __ JumpIfSmi(rbx, &slow);
2915 __ CmpObjectType(rbx, FIRST_SPEC_OBJECT_TYPE, kScratchRegister);
2916 __ j(below, &slow);
2917 __ CmpInstanceType(kScratchRegister, LAST_SPEC_OBJECT_TYPE);
2918 __ j(above, &slow);
2919
2920 // Register mapping:
2921 // rax is object map.
2922 // rdx is function.
2923 // rbx is function prototype.
2924 if (!HasCallSiteInlineCheck()) {
2925 __ StoreRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex);
2926 __ StoreRoot(rax, Heap::kInstanceofCacheMapRootIndex);
2927 } else {
2928 // Get return address and delta to inlined map check.
2929 __ movq(kScratchRegister, StackOperandForReturnAddress(0));
2930 __ subp(kScratchRegister, args.GetArgumentOperand(2));
2931 if (FLAG_debug_code) {
2932 __ movl(rdi, Immediate(kWordBeforeMapCheckValue));
2933 __ cmpl(Operand(kScratchRegister, kOffsetToMapCheckValue - 4), rdi);
2934 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheCheck);
2935 }
2936 __ movp(kScratchRegister,
2937 Operand(kScratchRegister, kOffsetToMapCheckValue));
2938 __ movp(Operand(kScratchRegister, 0), rax);
2939 }
2940
2941 __ movp(rcx, FieldOperand(rax, Map::kPrototypeOffset));
2942
2943 // Loop through the prototype chain looking for the function prototype.
2944 Label loop, is_instance, is_not_instance;
2945 __ LoadRoot(kScratchRegister, Heap::kNullValueRootIndex);
2946 __ bind(&loop);
2947 __ cmpp(rcx, rbx);
2948 __ j(equal, &is_instance, Label::kNear);
2949 __ cmpp(rcx, kScratchRegister);
2950 // The code at is_not_instance assumes that kScratchRegister contains a
2951 // non-zero GCable value (the null object in this case).
2952 __ j(equal, &is_not_instance, Label::kNear);
2953 __ movp(rcx, FieldOperand(rcx, HeapObject::kMapOffset));
2954 __ movp(rcx, FieldOperand(rcx, Map::kPrototypeOffset));
2955 __ jmp(&loop);
2956
2957 __ bind(&is_instance);
2958 if (!HasCallSiteInlineCheck()) {
2959 __ xorl(rax, rax);
2960 // Store bitwise zero in the cache. This is a Smi in GC terms.
2961 STATIC_ASSERT(kSmiTag == 0);
2962 __ StoreRoot(rax, Heap::kInstanceofCacheAnswerRootIndex);
2963 } else {
2964 // Store offset of true in the root array at the inline check site.
2965 int true_offset = 0x100 +
2966 (Heap::kTrueValueRootIndex << kPointerSizeLog2) - kRootRegisterBias;
2967 // Assert it is a 1-byte signed value.
2968 ASSERT(true_offset >= 0 && true_offset < 0x100);
2969 __ movl(rax, Immediate(true_offset));
2970 __ movq(kScratchRegister, StackOperandForReturnAddress(0));
2971 __ subp(kScratchRegister, args.GetArgumentOperand(2));
2972 __ movb(Operand(kScratchRegister, kOffsetToResultValue), rax);
2973 if (FLAG_debug_code) {
2974 __ movl(rax, Immediate(kWordBeforeResultValue));
2975 __ cmpl(Operand(kScratchRegister, kOffsetToResultValue - 4), rax);
2976 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov);
2977 }
2978 __ Set(rax, 0);
2979 }
2980 __ ret((2 + extra_argument_offset) * kPointerSize);
2981
2982 __ bind(&is_not_instance);
2983 if (!HasCallSiteInlineCheck()) {
2984 // We have to store a non-zero value in the cache.
2985 __ StoreRoot(kScratchRegister, Heap::kInstanceofCacheAnswerRootIndex);
2986 } else {
2987 // Store offset of false in the root array at the inline check site.
2988 int false_offset = 0x100 +
2989 (Heap::kFalseValueRootIndex << kPointerSizeLog2) - kRootRegisterBias;
2990 // Assert it is a 1-byte signed value.
2991 ASSERT(false_offset >= 0 && false_offset < 0x100);
2992 __ movl(rax, Immediate(false_offset));
2993 __ movq(kScratchRegister, StackOperandForReturnAddress(0));
2994 __ subp(kScratchRegister, args.GetArgumentOperand(2));
2995 __ movb(Operand(kScratchRegister, kOffsetToResultValue), rax);
2996 if (FLAG_debug_code) {
2997 __ movl(rax, Immediate(kWordBeforeResultValue));
2998 __ cmpl(Operand(kScratchRegister, kOffsetToResultValue - 4), rax);
2999 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov);
3000 }
3001 }
3002 __ ret((2 + extra_argument_offset) * kPointerSize);
3003
3004 // Slow-case: Go through the JavaScript implementation.
3005 __ bind(&slow);
3006 if (HasCallSiteInlineCheck()) {
3007 // Remove extra value from the stack.
3008 __ PopReturnAddressTo(rcx);
3009 __ Pop(rax);
3010 __ PushReturnAddressFrom(rcx);
3011 }
3012 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
3013 }
3014
3015
3016 // Passing arguments in registers is not supported.
left()3017 Register InstanceofStub::left() { return no_reg; }
3018
3019
right()3020 Register InstanceofStub::right() { return no_reg; }
3021
3022
3023 // -------------------------------------------------------------------------
3024 // StringCharCodeAtGenerator
3025
GenerateFast(MacroAssembler * masm)3026 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
3027 Label flat_string;
3028 Label ascii_string;
3029 Label got_char_code;
3030 Label sliced_string;
3031
3032 // If the receiver is a smi trigger the non-string case.
3033 __ JumpIfSmi(object_, receiver_not_string_);
3034
3035 // Fetch the instance type of the receiver into result register.
3036 __ movp(result_, FieldOperand(object_, HeapObject::kMapOffset));
3037 __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
3038 // If the receiver is not a string trigger the non-string case.
3039 __ testb(result_, Immediate(kIsNotStringMask));
3040 __ j(not_zero, receiver_not_string_);
3041
3042 // If the index is non-smi trigger the non-smi case.
3043 __ JumpIfNotSmi(index_, &index_not_smi_);
3044 __ bind(&got_smi_index_);
3045
3046 // Check for index out of range.
3047 __ SmiCompare(index_, FieldOperand(object_, String::kLengthOffset));
3048 __ j(above_equal, index_out_of_range_);
3049
3050 __ SmiToInteger32(index_, index_);
3051
3052 StringCharLoadGenerator::Generate(
3053 masm, object_, index_, result_, &call_runtime_);
3054
3055 __ Integer32ToSmi(result_, result_);
3056 __ bind(&exit_);
3057 }
3058
3059
GenerateSlow(MacroAssembler * masm,const RuntimeCallHelper & call_helper)3060 void StringCharCodeAtGenerator::GenerateSlow(
3061 MacroAssembler* masm,
3062 const RuntimeCallHelper& call_helper) {
3063 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
3064
3065 Factory* factory = masm->isolate()->factory();
3066 // Index is not a smi.
3067 __ bind(&index_not_smi_);
3068 // If index is a heap number, try converting it to an integer.
3069 __ CheckMap(index_,
3070 factory->heap_number_map(),
3071 index_not_number_,
3072 DONT_DO_SMI_CHECK);
3073 call_helper.BeforeCall(masm);
3074 __ Push(object_);
3075 __ Push(index_); // Consumed by runtime conversion function.
3076 if (index_flags_ == STRING_INDEX_IS_NUMBER) {
3077 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
3078 } else {
3079 ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
3080 // NumberToSmi discards numbers that are not exact integers.
3081 __ CallRuntime(Runtime::kHiddenNumberToSmi, 1);
3082 }
3083 if (!index_.is(rax)) {
3084 // Save the conversion result before the pop instructions below
3085 // have a chance to overwrite it.
3086 __ movp(index_, rax);
3087 }
3088 __ Pop(object_);
3089 // Reload the instance type.
3090 __ movp(result_, FieldOperand(object_, HeapObject::kMapOffset));
3091 __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
3092 call_helper.AfterCall(masm);
3093 // If index is still not a smi, it must be out of range.
3094 __ JumpIfNotSmi(index_, index_out_of_range_);
3095 // Otherwise, return to the fast path.
3096 __ jmp(&got_smi_index_);
3097
3098 // Call runtime. We get here when the receiver is a string and the
3099 // index is a number, but the code of getting the actual character
3100 // is too complex (e.g., when the string needs to be flattened).
3101 __ bind(&call_runtime_);
3102 call_helper.BeforeCall(masm);
3103 __ Push(object_);
3104 __ Integer32ToSmi(index_, index_);
3105 __ Push(index_);
3106 __ CallRuntime(Runtime::kHiddenStringCharCodeAt, 2);
3107 if (!result_.is(rax)) {
3108 __ movp(result_, rax);
3109 }
3110 call_helper.AfterCall(masm);
3111 __ jmp(&exit_);
3112
3113 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
3114 }
3115
3116
3117 // -------------------------------------------------------------------------
3118 // StringCharFromCodeGenerator
3119
GenerateFast(MacroAssembler * masm)3120 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
3121 // Fast case of Heap::LookupSingleCharacterStringFromCode.
3122 __ JumpIfNotSmi(code_, &slow_case_);
3123 __ SmiCompare(code_, Smi::FromInt(String::kMaxOneByteCharCode));
3124 __ j(above, &slow_case_);
3125
3126 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
3127 SmiIndex index = masm->SmiToIndex(kScratchRegister, code_, kPointerSizeLog2);
3128 __ movp(result_, FieldOperand(result_, index.reg, index.scale,
3129 FixedArray::kHeaderSize));
3130 __ CompareRoot(result_, Heap::kUndefinedValueRootIndex);
3131 __ j(equal, &slow_case_);
3132 __ bind(&exit_);
3133 }
3134
3135
GenerateSlow(MacroAssembler * masm,const RuntimeCallHelper & call_helper)3136 void StringCharFromCodeGenerator::GenerateSlow(
3137 MacroAssembler* masm,
3138 const RuntimeCallHelper& call_helper) {
3139 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
3140
3141 __ bind(&slow_case_);
3142 call_helper.BeforeCall(masm);
3143 __ Push(code_);
3144 __ CallRuntime(Runtime::kCharFromCode, 1);
3145 if (!result_.is(rax)) {
3146 __ movp(result_, rax);
3147 }
3148 call_helper.AfterCall(masm);
3149 __ jmp(&exit_);
3150
3151 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
3152 }
3153
3154
GenerateCopyCharacters(MacroAssembler * masm,Register dest,Register src,Register count,String::Encoding encoding)3155 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
3156 Register dest,
3157 Register src,
3158 Register count,
3159 String::Encoding encoding) {
3160 // Nothing to do for zero characters.
3161 Label done;
3162 __ testl(count, count);
3163 __ j(zero, &done, Label::kNear);
3164
3165 // Make count the number of bytes to copy.
3166 if (encoding == String::TWO_BYTE_ENCODING) {
3167 STATIC_ASSERT(2 == sizeof(uc16));
3168 __ addl(count, count);
3169 }
3170
3171 // Copy remaining characters.
3172 Label loop;
3173 __ bind(&loop);
3174 __ movb(kScratchRegister, Operand(src, 0));
3175 __ movb(Operand(dest, 0), kScratchRegister);
3176 __ incp(src);
3177 __ incp(dest);
3178 __ decl(count);
3179 __ j(not_zero, &loop);
3180
3181 __ bind(&done);
3182 }
3183
3184
GenerateHashInit(MacroAssembler * masm,Register hash,Register character,Register scratch)3185 void StringHelper::GenerateHashInit(MacroAssembler* masm,
3186 Register hash,
3187 Register character,
3188 Register scratch) {
3189 // hash = (seed + character) + ((seed + character) << 10);
3190 __ LoadRoot(scratch, Heap::kHashSeedRootIndex);
3191 __ SmiToInteger32(scratch, scratch);
3192 __ addl(scratch, character);
3193 __ movl(hash, scratch);
3194 __ shll(scratch, Immediate(10));
3195 __ addl(hash, scratch);
3196 // hash ^= hash >> 6;
3197 __ movl(scratch, hash);
3198 __ shrl(scratch, Immediate(6));
3199 __ xorl(hash, scratch);
3200 }
3201
3202
GenerateHashAddCharacter(MacroAssembler * masm,Register hash,Register character,Register scratch)3203 void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
3204 Register hash,
3205 Register character,
3206 Register scratch) {
3207 // hash += character;
3208 __ addl(hash, character);
3209 // hash += hash << 10;
3210 __ movl(scratch, hash);
3211 __ shll(scratch, Immediate(10));
3212 __ addl(hash, scratch);
3213 // hash ^= hash >> 6;
3214 __ movl(scratch, hash);
3215 __ shrl(scratch, Immediate(6));
3216 __ xorl(hash, scratch);
3217 }
3218
3219
GenerateHashGetHash(MacroAssembler * masm,Register hash,Register scratch)3220 void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
3221 Register hash,
3222 Register scratch) {
3223 // hash += hash << 3;
3224 __ leal(hash, Operand(hash, hash, times_8, 0));
3225 // hash ^= hash >> 11;
3226 __ movl(scratch, hash);
3227 __ shrl(scratch, Immediate(11));
3228 __ xorl(hash, scratch);
3229 // hash += hash << 15;
3230 __ movl(scratch, hash);
3231 __ shll(scratch, Immediate(15));
3232 __ addl(hash, scratch);
3233
3234 __ andl(hash, Immediate(String::kHashBitMask));
3235
3236 // if (hash == 0) hash = 27;
3237 Label hash_not_zero;
3238 __ j(not_zero, &hash_not_zero);
3239 __ Set(hash, StringHasher::kZeroHash);
3240 __ bind(&hash_not_zero);
3241 }
3242
3243
Generate(MacroAssembler * masm)3244 void SubStringStub::Generate(MacroAssembler* masm) {
3245 Label runtime;
3246
3247 // Stack frame on entry.
3248 // rsp[0] : return address
3249 // rsp[8] : to
3250 // rsp[16] : from
3251 // rsp[24] : string
3252
3253 enum SubStringStubArgumentIndices {
3254 STRING_ARGUMENT_INDEX,
3255 FROM_ARGUMENT_INDEX,
3256 TO_ARGUMENT_INDEX,
3257 SUB_STRING_ARGUMENT_COUNT
3258 };
3259
3260 StackArgumentsAccessor args(rsp, SUB_STRING_ARGUMENT_COUNT,
3261 ARGUMENTS_DONT_CONTAIN_RECEIVER);
3262
3263 // Make sure first argument is a string.
3264 __ movp(rax, args.GetArgumentOperand(STRING_ARGUMENT_INDEX));
3265 STATIC_ASSERT(kSmiTag == 0);
3266 __ testl(rax, Immediate(kSmiTagMask));
3267 __ j(zero, &runtime);
3268 Condition is_string = masm->IsObjectStringType(rax, rbx, rbx);
3269 __ j(NegateCondition(is_string), &runtime);
3270
3271 // rax: string
3272 // rbx: instance type
3273 // Calculate length of sub string using the smi values.
3274 __ movp(rcx, args.GetArgumentOperand(TO_ARGUMENT_INDEX));
3275 __ movp(rdx, args.GetArgumentOperand(FROM_ARGUMENT_INDEX));
3276 __ JumpUnlessBothNonNegativeSmi(rcx, rdx, &runtime);
3277
3278 __ SmiSub(rcx, rcx, rdx); // Overflow doesn't happen.
3279 __ cmpp(rcx, FieldOperand(rax, String::kLengthOffset));
3280 Label not_original_string;
3281 // Shorter than original string's length: an actual substring.
3282 __ j(below, ¬_original_string, Label::kNear);
3283 // Longer than original string's length or negative: unsafe arguments.
3284 __ j(above, &runtime);
3285 // Return original string.
3286 Counters* counters = isolate()->counters();
3287 __ IncrementCounter(counters->sub_string_native(), 1);
3288 __ ret(SUB_STRING_ARGUMENT_COUNT * kPointerSize);
3289 __ bind(¬_original_string);
3290
3291 Label single_char;
3292 __ SmiCompare(rcx, Smi::FromInt(1));
3293 __ j(equal, &single_char);
3294
3295 __ SmiToInteger32(rcx, rcx);
3296
3297 // rax: string
3298 // rbx: instance type
3299 // rcx: sub string length
3300 // rdx: from index (smi)
3301 // Deal with different string types: update the index if necessary
3302 // and put the underlying string into edi.
3303 Label underlying_unpacked, sliced_string, seq_or_external_string;
3304 // If the string is not indirect, it can only be sequential or external.
3305 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
3306 STATIC_ASSERT(kIsIndirectStringMask != 0);
3307 __ testb(rbx, Immediate(kIsIndirectStringMask));
3308 __ j(zero, &seq_or_external_string, Label::kNear);
3309
3310 __ testb(rbx, Immediate(kSlicedNotConsMask));
3311 __ j(not_zero, &sliced_string, Label::kNear);
3312 // Cons string. Check whether it is flat, then fetch first part.
3313 // Flat cons strings have an empty second part.
3314 __ CompareRoot(FieldOperand(rax, ConsString::kSecondOffset),
3315 Heap::kempty_stringRootIndex);
3316 __ j(not_equal, &runtime);
3317 __ movp(rdi, FieldOperand(rax, ConsString::kFirstOffset));
3318 // Update instance type.
3319 __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
3320 __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
3321 __ jmp(&underlying_unpacked, Label::kNear);
3322
3323 __ bind(&sliced_string);
3324 // Sliced string. Fetch parent and correct start index by offset.
3325 __ addp(rdx, FieldOperand(rax, SlicedString::kOffsetOffset));
3326 __ movp(rdi, FieldOperand(rax, SlicedString::kParentOffset));
3327 // Update instance type.
3328 __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
3329 __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
3330 __ jmp(&underlying_unpacked, Label::kNear);
3331
3332 __ bind(&seq_or_external_string);
3333 // Sequential or external string. Just move string to the correct register.
3334 __ movp(rdi, rax);
3335
3336 __ bind(&underlying_unpacked);
3337
3338 if (FLAG_string_slices) {
3339 Label copy_routine;
3340 // rdi: underlying subject string
3341 // rbx: instance type of underlying subject string
3342 // rdx: adjusted start index (smi)
3343 // rcx: length
3344 // If coming from the make_two_character_string path, the string
3345 // is too short to be sliced anyways.
3346 __ cmpp(rcx, Immediate(SlicedString::kMinLength));
3347 // Short slice. Copy instead of slicing.
3348 __ j(less, ©_routine);
3349 // Allocate new sliced string. At this point we do not reload the instance
3350 // type including the string encoding because we simply rely on the info
3351 // provided by the original string. It does not matter if the original
3352 // string's encoding is wrong because we always have to recheck encoding of
3353 // the newly created string's parent anyways due to externalized strings.
3354 Label two_byte_slice, set_slice_header;
3355 STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
3356 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
3357 __ testb(rbx, Immediate(kStringEncodingMask));
3358 __ j(zero, &two_byte_slice, Label::kNear);
3359 __ AllocateAsciiSlicedString(rax, rbx, r14, &runtime);
3360 __ jmp(&set_slice_header, Label::kNear);
3361 __ bind(&two_byte_slice);
3362 __ AllocateTwoByteSlicedString(rax, rbx, r14, &runtime);
3363 __ bind(&set_slice_header);
3364 __ Integer32ToSmi(rcx, rcx);
3365 __ movp(FieldOperand(rax, SlicedString::kLengthOffset), rcx);
3366 __ movp(FieldOperand(rax, SlicedString::kHashFieldOffset),
3367 Immediate(String::kEmptyHashField));
3368 __ movp(FieldOperand(rax, SlicedString::kParentOffset), rdi);
3369 __ movp(FieldOperand(rax, SlicedString::kOffsetOffset), rdx);
3370 __ IncrementCounter(counters->sub_string_native(), 1);
3371 __ ret(3 * kPointerSize);
3372
3373 __ bind(©_routine);
3374 }
3375
3376 // rdi: underlying subject string
3377 // rbx: instance type of underlying subject string
3378 // rdx: adjusted start index (smi)
3379 // rcx: length
3380 // The subject string can only be external or sequential string of either
3381 // encoding at this point.
3382 Label two_byte_sequential, sequential_string;
3383 STATIC_ASSERT(kExternalStringTag != 0);
3384 STATIC_ASSERT(kSeqStringTag == 0);
3385 __ testb(rbx, Immediate(kExternalStringTag));
3386 __ j(zero, &sequential_string);
3387
3388 // Handle external string.
3389 // Rule out short external strings.
3390 STATIC_ASSERT(kShortExternalStringTag != 0);
3391 __ testb(rbx, Immediate(kShortExternalStringMask));
3392 __ j(not_zero, &runtime);
3393 __ movp(rdi, FieldOperand(rdi, ExternalString::kResourceDataOffset));
3394 // Move the pointer so that offset-wise, it looks like a sequential string.
3395 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
3396 __ subp(rdi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
3397
3398 __ bind(&sequential_string);
3399 STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
3400 __ testb(rbx, Immediate(kStringEncodingMask));
3401 __ j(zero, &two_byte_sequential);
3402
3403 // Allocate the result.
3404 __ AllocateAsciiString(rax, rcx, r11, r14, r15, &runtime);
3405
3406 // rax: result string
3407 // rcx: result string length
3408 { // Locate character of sub string start.
3409 SmiIndex smi_as_index = masm->SmiToIndex(rdx, rdx, times_1);
3410 __ leap(r14, Operand(rdi, smi_as_index.reg, smi_as_index.scale,
3411 SeqOneByteString::kHeaderSize - kHeapObjectTag));
3412 }
3413 // Locate first character of result.
3414 __ leap(rdi, FieldOperand(rax, SeqOneByteString::kHeaderSize));
3415
3416 // rax: result string
3417 // rcx: result length
3418 // r14: first character of result
3419 // rsi: character of sub string start
3420 StringHelper::GenerateCopyCharacters(
3421 masm, rdi, r14, rcx, String::ONE_BYTE_ENCODING);
3422 __ IncrementCounter(counters->sub_string_native(), 1);
3423 __ ret(SUB_STRING_ARGUMENT_COUNT * kPointerSize);
3424
3425 __ bind(&two_byte_sequential);
3426 // Allocate the result.
3427 __ AllocateTwoByteString(rax, rcx, r11, r14, r15, &runtime);
3428
3429 // rax: result string
3430 // rcx: result string length
3431 { // Locate character of sub string start.
3432 SmiIndex smi_as_index = masm->SmiToIndex(rdx, rdx, times_2);
3433 __ leap(r14, Operand(rdi, smi_as_index.reg, smi_as_index.scale,
3434 SeqOneByteString::kHeaderSize - kHeapObjectTag));
3435 }
3436 // Locate first character of result.
3437 __ leap(rdi, FieldOperand(rax, SeqTwoByteString::kHeaderSize));
3438
3439 // rax: result string
3440 // rcx: result length
3441 // rdi: first character of result
3442 // r14: character of sub string start
3443 StringHelper::GenerateCopyCharacters(
3444 masm, rdi, r14, rcx, String::TWO_BYTE_ENCODING);
3445 __ IncrementCounter(counters->sub_string_native(), 1);
3446 __ ret(SUB_STRING_ARGUMENT_COUNT * kPointerSize);
3447
3448 // Just jump to runtime to create the sub string.
3449 __ bind(&runtime);
3450 __ TailCallRuntime(Runtime::kHiddenSubString, 3, 1);
3451
3452 __ bind(&single_char);
3453 // rax: string
3454 // rbx: instance type
3455 // rcx: sub string length (smi)
3456 // rdx: from index (smi)
3457 StringCharAtGenerator generator(
3458 rax, rdx, rcx, rax, &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER);
3459 generator.GenerateFast(masm);
3460 __ ret(SUB_STRING_ARGUMENT_COUNT * kPointerSize);
3461 generator.SkipSlow(masm, &runtime);
3462 }
3463
3464
GenerateFlatAsciiStringEquals(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2)3465 void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm,
3466 Register left,
3467 Register right,
3468 Register scratch1,
3469 Register scratch2) {
3470 Register length = scratch1;
3471
3472 // Compare lengths.
3473 Label check_zero_length;
3474 __ movp(length, FieldOperand(left, String::kLengthOffset));
3475 __ SmiCompare(length, FieldOperand(right, String::kLengthOffset));
3476 __ j(equal, &check_zero_length, Label::kNear);
3477 __ Move(rax, Smi::FromInt(NOT_EQUAL));
3478 __ ret(0);
3479
3480 // Check if the length is zero.
3481 Label compare_chars;
3482 __ bind(&check_zero_length);
3483 STATIC_ASSERT(kSmiTag == 0);
3484 __ SmiTest(length);
3485 __ j(not_zero, &compare_chars, Label::kNear);
3486 __ Move(rax, Smi::FromInt(EQUAL));
3487 __ ret(0);
3488
3489 // Compare characters.
3490 __ bind(&compare_chars);
3491 Label strings_not_equal;
3492 GenerateAsciiCharsCompareLoop(masm, left, right, length, scratch2,
3493 &strings_not_equal, Label::kNear);
3494
3495 // Characters are equal.
3496 __ Move(rax, Smi::FromInt(EQUAL));
3497 __ ret(0);
3498
3499 // Characters are not equal.
3500 __ bind(&strings_not_equal);
3501 __ Move(rax, Smi::FromInt(NOT_EQUAL));
3502 __ ret(0);
3503 }
3504
3505
GenerateCompareFlatAsciiStrings(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2,Register scratch3,Register scratch4)3506 void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
3507 Register left,
3508 Register right,
3509 Register scratch1,
3510 Register scratch2,
3511 Register scratch3,
3512 Register scratch4) {
3513 // Ensure that you can always subtract a string length from a non-negative
3514 // number (e.g. another length).
3515 STATIC_ASSERT(String::kMaxLength < 0x7fffffff);
3516
3517 // Find minimum length and length difference.
3518 __ movp(scratch1, FieldOperand(left, String::kLengthOffset));
3519 __ movp(scratch4, scratch1);
3520 __ SmiSub(scratch4,
3521 scratch4,
3522 FieldOperand(right, String::kLengthOffset));
3523 // Register scratch4 now holds left.length - right.length.
3524 const Register length_difference = scratch4;
3525 Label left_shorter;
3526 __ j(less, &left_shorter, Label::kNear);
3527 // The right string isn't longer that the left one.
3528 // Get the right string's length by subtracting the (non-negative) difference
3529 // from the left string's length.
3530 __ SmiSub(scratch1, scratch1, length_difference);
3531 __ bind(&left_shorter);
3532 // Register scratch1 now holds Min(left.length, right.length).
3533 const Register min_length = scratch1;
3534
3535 Label compare_lengths;
3536 // If min-length is zero, go directly to comparing lengths.
3537 __ SmiTest(min_length);
3538 __ j(zero, &compare_lengths, Label::kNear);
3539
3540 // Compare loop.
3541 Label result_not_equal;
3542 GenerateAsciiCharsCompareLoop(masm, left, right, min_length, scratch2,
3543 &result_not_equal,
3544 // In debug-code mode, SmiTest below might push
3545 // the target label outside the near range.
3546 Label::kFar);
3547
3548 // Completed loop without finding different characters.
3549 // Compare lengths (precomputed).
3550 __ bind(&compare_lengths);
3551 __ SmiTest(length_difference);
3552 Label length_not_equal;
3553 __ j(not_zero, &length_not_equal, Label::kNear);
3554
3555 // Result is EQUAL.
3556 __ Move(rax, Smi::FromInt(EQUAL));
3557 __ ret(0);
3558
3559 Label result_greater;
3560 Label result_less;
3561 __ bind(&length_not_equal);
3562 __ j(greater, &result_greater, Label::kNear);
3563 __ jmp(&result_less, Label::kNear);
3564 __ bind(&result_not_equal);
3565 // Unequal comparison of left to right, either character or length.
3566 __ j(above, &result_greater, Label::kNear);
3567 __ bind(&result_less);
3568
3569 // Result is LESS.
3570 __ Move(rax, Smi::FromInt(LESS));
3571 __ ret(0);
3572
3573 // Result is GREATER.
3574 __ bind(&result_greater);
3575 __ Move(rax, Smi::FromInt(GREATER));
3576 __ ret(0);
3577 }
3578
3579
GenerateAsciiCharsCompareLoop(MacroAssembler * masm,Register left,Register right,Register length,Register scratch,Label * chars_not_equal,Label::Distance near_jump)3580 void StringCompareStub::GenerateAsciiCharsCompareLoop(
3581 MacroAssembler* masm,
3582 Register left,
3583 Register right,
3584 Register length,
3585 Register scratch,
3586 Label* chars_not_equal,
3587 Label::Distance near_jump) {
3588 // Change index to run from -length to -1 by adding length to string
3589 // start. This means that loop ends when index reaches zero, which
3590 // doesn't need an additional compare.
3591 __ SmiToInteger32(length, length);
3592 __ leap(left,
3593 FieldOperand(left, length, times_1, SeqOneByteString::kHeaderSize));
3594 __ leap(right,
3595 FieldOperand(right, length, times_1, SeqOneByteString::kHeaderSize));
3596 __ negq(length);
3597 Register index = length; // index = -length;
3598
3599 // Compare loop.
3600 Label loop;
3601 __ bind(&loop);
3602 __ movb(scratch, Operand(left, index, times_1, 0));
3603 __ cmpb(scratch, Operand(right, index, times_1, 0));
3604 __ j(not_equal, chars_not_equal, near_jump);
3605 __ incq(index);
3606 __ j(not_zero, &loop);
3607 }
3608
3609
Generate(MacroAssembler * masm)3610 void StringCompareStub::Generate(MacroAssembler* masm) {
3611 Label runtime;
3612
3613 // Stack frame on entry.
3614 // rsp[0] : return address
3615 // rsp[8] : right string
3616 // rsp[16] : left string
3617
3618 StackArgumentsAccessor args(rsp, 2, ARGUMENTS_DONT_CONTAIN_RECEIVER);
3619 __ movp(rdx, args.GetArgumentOperand(0)); // left
3620 __ movp(rax, args.GetArgumentOperand(1)); // right
3621
3622 // Check for identity.
3623 Label not_same;
3624 __ cmpp(rdx, rax);
3625 __ j(not_equal, ¬_same, Label::kNear);
3626 __ Move(rax, Smi::FromInt(EQUAL));
3627 Counters* counters = isolate()->counters();
3628 __ IncrementCounter(counters->string_compare_native(), 1);
3629 __ ret(2 * kPointerSize);
3630
3631 __ bind(¬_same);
3632
3633 // Check that both are sequential ASCII strings.
3634 __ JumpIfNotBothSequentialAsciiStrings(rdx, rax, rcx, rbx, &runtime);
3635
3636 // Inline comparison of ASCII strings.
3637 __ IncrementCounter(counters->string_compare_native(), 1);
3638 // Drop arguments from the stack
3639 __ PopReturnAddressTo(rcx);
3640 __ addp(rsp, Immediate(2 * kPointerSize));
3641 __ PushReturnAddressFrom(rcx);
3642 GenerateCompareFlatAsciiStrings(masm, rdx, rax, rcx, rbx, rdi, r8);
3643
3644 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
3645 // tagged as a small integer.
3646 __ bind(&runtime);
3647 __ TailCallRuntime(Runtime::kHiddenStringCompare, 2, 1);
3648 }
3649
3650
Generate(MacroAssembler * masm)3651 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
3652 // ----------- S t a t e -------------
3653 // -- rdx : left
3654 // -- rax : right
3655 // -- rsp[0] : return address
3656 // -----------------------------------
3657
3658 // Load rcx with the allocation site. We stick an undefined dummy value here
3659 // and replace it with the real allocation site later when we instantiate this
3660 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
3661 __ Move(rcx, handle(isolate()->heap()->undefined_value()));
3662
3663 // Make sure that we actually patched the allocation site.
3664 if (FLAG_debug_code) {
3665 __ testb(rcx, Immediate(kSmiTagMask));
3666 __ Assert(not_equal, kExpectedAllocationSite);
3667 __ Cmp(FieldOperand(rcx, HeapObject::kMapOffset),
3668 isolate()->factory()->allocation_site_map());
3669 __ Assert(equal, kExpectedAllocationSite);
3670 }
3671
3672 // Tail call into the stub that handles binary operations with allocation
3673 // sites.
3674 BinaryOpWithAllocationSiteStub stub(isolate(), state_);
3675 __ TailCallStub(&stub);
3676 }
3677
3678
GenerateSmis(MacroAssembler * masm)3679 void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
3680 ASSERT(state_ == CompareIC::SMI);
3681 Label miss;
3682 __ JumpIfNotBothSmi(rdx, rax, &miss, Label::kNear);
3683
3684 if (GetCondition() == equal) {
3685 // For equality we do not care about the sign of the result.
3686 __ subp(rax, rdx);
3687 } else {
3688 Label done;
3689 __ subp(rdx, rax);
3690 __ j(no_overflow, &done, Label::kNear);
3691 // Correct sign of result in case of overflow.
3692 __ notp(rdx);
3693 __ bind(&done);
3694 __ movp(rax, rdx);
3695 }
3696 __ ret(0);
3697
3698 __ bind(&miss);
3699 GenerateMiss(masm);
3700 }
3701
3702
GenerateNumbers(MacroAssembler * masm)3703 void ICCompareStub::GenerateNumbers(MacroAssembler* masm) {
3704 ASSERT(state_ == CompareIC::NUMBER);
3705
3706 Label generic_stub;
3707 Label unordered, maybe_undefined1, maybe_undefined2;
3708 Label miss;
3709
3710 if (left_ == CompareIC::SMI) {
3711 __ JumpIfNotSmi(rdx, &miss);
3712 }
3713 if (right_ == CompareIC::SMI) {
3714 __ JumpIfNotSmi(rax, &miss);
3715 }
3716
3717 // Load left and right operand.
3718 Label done, left, left_smi, right_smi;
3719 __ JumpIfSmi(rax, &right_smi, Label::kNear);
3720 __ CompareMap(rax, isolate()->factory()->heap_number_map());
3721 __ j(not_equal, &maybe_undefined1, Label::kNear);
3722 __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
3723 __ jmp(&left, Label::kNear);
3724 __ bind(&right_smi);
3725 __ SmiToInteger32(rcx, rax); // Can't clobber rax yet.
3726 __ Cvtlsi2sd(xmm1, rcx);
3727
3728 __ bind(&left);
3729 __ JumpIfSmi(rdx, &left_smi, Label::kNear);
3730 __ CompareMap(rdx, isolate()->factory()->heap_number_map());
3731 __ j(not_equal, &maybe_undefined2, Label::kNear);
3732 __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
3733 __ jmp(&done);
3734 __ bind(&left_smi);
3735 __ SmiToInteger32(rcx, rdx); // Can't clobber rdx yet.
3736 __ Cvtlsi2sd(xmm0, rcx);
3737
3738 __ bind(&done);
3739 // Compare operands
3740 __ ucomisd(xmm0, xmm1);
3741
3742 // Don't base result on EFLAGS when a NaN is involved.
3743 __ j(parity_even, &unordered, Label::kNear);
3744
3745 // Return a result of -1, 0, or 1, based on EFLAGS.
3746 // Performing mov, because xor would destroy the flag register.
3747 __ movl(rax, Immediate(0));
3748 __ movl(rcx, Immediate(0));
3749 __ setcc(above, rax); // Add one to zero if carry clear and not equal.
3750 __ sbbp(rax, rcx); // Subtract one if below (aka. carry set).
3751 __ ret(0);
3752
3753 __ bind(&unordered);
3754 __ bind(&generic_stub);
3755 ICCompareStub stub(isolate(), op_, CompareIC::GENERIC, CompareIC::GENERIC,
3756 CompareIC::GENERIC);
3757 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
3758
3759 __ bind(&maybe_undefined1);
3760 if (Token::IsOrderedRelationalCompareOp(op_)) {
3761 __ Cmp(rax, isolate()->factory()->undefined_value());
3762 __ j(not_equal, &miss);
3763 __ JumpIfSmi(rdx, &unordered);
3764 __ CmpObjectType(rdx, HEAP_NUMBER_TYPE, rcx);
3765 __ j(not_equal, &maybe_undefined2, Label::kNear);
3766 __ jmp(&unordered);
3767 }
3768
3769 __ bind(&maybe_undefined2);
3770 if (Token::IsOrderedRelationalCompareOp(op_)) {
3771 __ Cmp(rdx, isolate()->factory()->undefined_value());
3772 __ j(equal, &unordered);
3773 }
3774
3775 __ bind(&miss);
3776 GenerateMiss(masm);
3777 }
3778
3779
GenerateInternalizedStrings(MacroAssembler * masm)3780 void ICCompareStub::GenerateInternalizedStrings(MacroAssembler* masm) {
3781 ASSERT(state_ == CompareIC::INTERNALIZED_STRING);
3782 ASSERT(GetCondition() == equal);
3783
3784 // Registers containing left and right operands respectively.
3785 Register left = rdx;
3786 Register right = rax;
3787 Register tmp1 = rcx;
3788 Register tmp2 = rbx;
3789
3790 // Check that both operands are heap objects.
3791 Label miss;
3792 Condition cond = masm->CheckEitherSmi(left, right, tmp1);
3793 __ j(cond, &miss, Label::kNear);
3794
3795 // Check that both operands are internalized strings.
3796 __ movp(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3797 __ movp(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3798 __ movzxbp(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3799 __ movzxbp(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3800 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
3801 __ orp(tmp1, tmp2);
3802 __ testb(tmp1, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
3803 __ j(not_zero, &miss, Label::kNear);
3804
3805 // Internalized strings are compared by identity.
3806 Label done;
3807 __ cmpp(left, right);
3808 // Make sure rax is non-zero. At this point input operands are
3809 // guaranteed to be non-zero.
3810 ASSERT(right.is(rax));
3811 __ j(not_equal, &done, Label::kNear);
3812 STATIC_ASSERT(EQUAL == 0);
3813 STATIC_ASSERT(kSmiTag == 0);
3814 __ Move(rax, Smi::FromInt(EQUAL));
3815 __ bind(&done);
3816 __ ret(0);
3817
3818 __ bind(&miss);
3819 GenerateMiss(masm);
3820 }
3821
3822
GenerateUniqueNames(MacroAssembler * masm)3823 void ICCompareStub::GenerateUniqueNames(MacroAssembler* masm) {
3824 ASSERT(state_ == CompareIC::UNIQUE_NAME);
3825 ASSERT(GetCondition() == equal);
3826
3827 // Registers containing left and right operands respectively.
3828 Register left = rdx;
3829 Register right = rax;
3830 Register tmp1 = rcx;
3831 Register tmp2 = rbx;
3832
3833 // Check that both operands are heap objects.
3834 Label miss;
3835 Condition cond = masm->CheckEitherSmi(left, right, tmp1);
3836 __ j(cond, &miss, Label::kNear);
3837
3838 // Check that both operands are unique names. This leaves the instance
3839 // types loaded in tmp1 and tmp2.
3840 __ movp(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3841 __ movp(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3842 __ movzxbp(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3843 __ movzxbp(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3844
3845 __ JumpIfNotUniqueName(tmp1, &miss, Label::kNear);
3846 __ JumpIfNotUniqueName(tmp2, &miss, Label::kNear);
3847
3848 // Unique names are compared by identity.
3849 Label done;
3850 __ cmpp(left, right);
3851 // Make sure rax is non-zero. At this point input operands are
3852 // guaranteed to be non-zero.
3853 ASSERT(right.is(rax));
3854 __ j(not_equal, &done, Label::kNear);
3855 STATIC_ASSERT(EQUAL == 0);
3856 STATIC_ASSERT(kSmiTag == 0);
3857 __ Move(rax, Smi::FromInt(EQUAL));
3858 __ bind(&done);
3859 __ ret(0);
3860
3861 __ bind(&miss);
3862 GenerateMiss(masm);
3863 }
3864
3865
GenerateStrings(MacroAssembler * masm)3866 void ICCompareStub::GenerateStrings(MacroAssembler* masm) {
3867 ASSERT(state_ == CompareIC::STRING);
3868 Label miss;
3869
3870 bool equality = Token::IsEqualityOp(op_);
3871
3872 // Registers containing left and right operands respectively.
3873 Register left = rdx;
3874 Register right = rax;
3875 Register tmp1 = rcx;
3876 Register tmp2 = rbx;
3877 Register tmp3 = rdi;
3878
3879 // Check that both operands are heap objects.
3880 Condition cond = masm->CheckEitherSmi(left, right, tmp1);
3881 __ j(cond, &miss);
3882
3883 // Check that both operands are strings. This leaves the instance
3884 // types loaded in tmp1 and tmp2.
3885 __ movp(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3886 __ movp(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3887 __ movzxbp(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3888 __ movzxbp(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3889 __ movp(tmp3, tmp1);
3890 STATIC_ASSERT(kNotStringTag != 0);
3891 __ orp(tmp3, tmp2);
3892 __ testb(tmp3, Immediate(kIsNotStringMask));
3893 __ j(not_zero, &miss);
3894
3895 // Fast check for identical strings.
3896 Label not_same;
3897 __ cmpp(left, right);
3898 __ j(not_equal, ¬_same, Label::kNear);
3899 STATIC_ASSERT(EQUAL == 0);
3900 STATIC_ASSERT(kSmiTag == 0);
3901 __ Move(rax, Smi::FromInt(EQUAL));
3902 __ ret(0);
3903
3904 // Handle not identical strings.
3905 __ bind(¬_same);
3906
3907 // Check that both strings are internalized strings. If they are, we're done
3908 // because we already know they are not identical. We also know they are both
3909 // strings.
3910 if (equality) {
3911 Label do_compare;
3912 STATIC_ASSERT(kInternalizedTag == 0);
3913 __ orp(tmp1, tmp2);
3914 __ testb(tmp1, Immediate(kIsNotInternalizedMask));
3915 __ j(not_zero, &do_compare, Label::kNear);
3916 // Make sure rax is non-zero. At this point input operands are
3917 // guaranteed to be non-zero.
3918 ASSERT(right.is(rax));
3919 __ ret(0);
3920 __ bind(&do_compare);
3921 }
3922
3923 // Check that both strings are sequential ASCII.
3924 Label runtime;
3925 __ JumpIfNotBothSequentialAsciiStrings(left, right, tmp1, tmp2, &runtime);
3926
3927 // Compare flat ASCII strings. Returns when done.
3928 if (equality) {
3929 StringCompareStub::GenerateFlatAsciiStringEquals(
3930 masm, left, right, tmp1, tmp2);
3931 } else {
3932 StringCompareStub::GenerateCompareFlatAsciiStrings(
3933 masm, left, right, tmp1, tmp2, tmp3, kScratchRegister);
3934 }
3935
3936 // Handle more complex cases in runtime.
3937 __ bind(&runtime);
3938 __ PopReturnAddressTo(tmp1);
3939 __ Push(left);
3940 __ Push(right);
3941 __ PushReturnAddressFrom(tmp1);
3942 if (equality) {
3943 __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
3944 } else {
3945 __ TailCallRuntime(Runtime::kHiddenStringCompare, 2, 1);
3946 }
3947
3948 __ bind(&miss);
3949 GenerateMiss(masm);
3950 }
3951
3952
GenerateObjects(MacroAssembler * masm)3953 void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
3954 ASSERT(state_ == CompareIC::OBJECT);
3955 Label miss;
3956 Condition either_smi = masm->CheckEitherSmi(rdx, rax);
3957 __ j(either_smi, &miss, Label::kNear);
3958
3959 __ CmpObjectType(rax, JS_OBJECT_TYPE, rcx);
3960 __ j(not_equal, &miss, Label::kNear);
3961 __ CmpObjectType(rdx, JS_OBJECT_TYPE, rcx);
3962 __ j(not_equal, &miss, Label::kNear);
3963
3964 ASSERT(GetCondition() == equal);
3965 __ subp(rax, rdx);
3966 __ ret(0);
3967
3968 __ bind(&miss);
3969 GenerateMiss(masm);
3970 }
3971
3972
GenerateKnownObjects(MacroAssembler * masm)3973 void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) {
3974 Label miss;
3975 Condition either_smi = masm->CheckEitherSmi(rdx, rax);
3976 __ j(either_smi, &miss, Label::kNear);
3977
3978 __ movp(rcx, FieldOperand(rax, HeapObject::kMapOffset));
3979 __ movp(rbx, FieldOperand(rdx, HeapObject::kMapOffset));
3980 __ Cmp(rcx, known_map_);
3981 __ j(not_equal, &miss, Label::kNear);
3982 __ Cmp(rbx, known_map_);
3983 __ j(not_equal, &miss, Label::kNear);
3984
3985 __ subp(rax, rdx);
3986 __ ret(0);
3987
3988 __ bind(&miss);
3989 GenerateMiss(masm);
3990 }
3991
3992
GenerateMiss(MacroAssembler * masm)3993 void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
3994 {
3995 // Call the runtime system in a fresh internal frame.
3996 ExternalReference miss =
3997 ExternalReference(IC_Utility(IC::kCompareIC_Miss), isolate());
3998
3999 FrameScope scope(masm, StackFrame::INTERNAL);
4000 __ Push(rdx);
4001 __ Push(rax);
4002 __ Push(rdx);
4003 __ Push(rax);
4004 __ Push(Smi::FromInt(op_));
4005 __ CallExternalReference(miss, 3);
4006
4007 // Compute the entry point of the rewritten stub.
4008 __ leap(rdi, FieldOperand(rax, Code::kHeaderSize));
4009 __ Pop(rax);
4010 __ Pop(rdx);
4011 }
4012
4013 // Do a tail call to the rewritten stub.
4014 __ jmp(rdi);
4015 }
4016
4017
GenerateNegativeLookup(MacroAssembler * masm,Label * miss,Label * done,Register properties,Handle<Name> name,Register r0)4018 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
4019 Label* miss,
4020 Label* done,
4021 Register properties,
4022 Handle<Name> name,
4023 Register r0) {
4024 ASSERT(name->IsUniqueName());
4025 // If names of slots in range from 1 to kProbes - 1 for the hash value are
4026 // not equal to the name and kProbes-th slot is not used (its name is the
4027 // undefined value), it guarantees the hash table doesn't contain the
4028 // property. It's true even if some slots represent deleted properties
4029 // (their names are the hole value).
4030 for (int i = 0; i < kInlinedProbes; i++) {
4031 // r0 points to properties hash.
4032 // Compute the masked index: (hash + i + i * i) & mask.
4033 Register index = r0;
4034 // Capacity is smi 2^n.
4035 __ SmiToInteger32(index, FieldOperand(properties, kCapacityOffset));
4036 __ decl(index);
4037 __ andp(index,
4038 Immediate(name->Hash() + NameDictionary::GetProbeOffset(i)));
4039
4040 // Scale the index by multiplying by the entry size.
4041 ASSERT(NameDictionary::kEntrySize == 3);
4042 __ leap(index, Operand(index, index, times_2, 0)); // index *= 3.
4043
4044 Register entity_name = r0;
4045 // Having undefined at this place means the name is not contained.
4046 ASSERT_EQ(kSmiTagSize, 1);
4047 __ movp(entity_name, Operand(properties,
4048 index,
4049 times_pointer_size,
4050 kElementsStartOffset - kHeapObjectTag));
4051 __ Cmp(entity_name, masm->isolate()->factory()->undefined_value());
4052 __ j(equal, done);
4053
4054 // Stop if found the property.
4055 __ Cmp(entity_name, Handle<Name>(name));
4056 __ j(equal, miss);
4057
4058 Label good;
4059 // Check for the hole and skip.
4060 __ CompareRoot(entity_name, Heap::kTheHoleValueRootIndex);
4061 __ j(equal, &good, Label::kNear);
4062
4063 // Check if the entry name is not a unique name.
4064 __ movp(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset));
4065 __ JumpIfNotUniqueName(FieldOperand(entity_name, Map::kInstanceTypeOffset),
4066 miss);
4067 __ bind(&good);
4068 }
4069
4070 NameDictionaryLookupStub stub(masm->isolate(), properties, r0, r0,
4071 NEGATIVE_LOOKUP);
4072 __ Push(Handle<Object>(name));
4073 __ Push(Immediate(name->Hash()));
4074 __ CallStub(&stub);
4075 __ testp(r0, r0);
4076 __ j(not_zero, miss);
4077 __ jmp(done);
4078 }
4079
4080
4081 // Probe the name dictionary in the |elements| register. Jump to the
4082 // |done| label if a property with the given name is found leaving the
4083 // index into the dictionary in |r1|. Jump to the |miss| label
4084 // otherwise.
GeneratePositiveLookup(MacroAssembler * masm,Label * miss,Label * done,Register elements,Register name,Register r0,Register r1)4085 void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
4086 Label* miss,
4087 Label* done,
4088 Register elements,
4089 Register name,
4090 Register r0,
4091 Register r1) {
4092 ASSERT(!elements.is(r0));
4093 ASSERT(!elements.is(r1));
4094 ASSERT(!name.is(r0));
4095 ASSERT(!name.is(r1));
4096
4097 __ AssertName(name);
4098
4099 __ SmiToInteger32(r0, FieldOperand(elements, kCapacityOffset));
4100 __ decl(r0);
4101
4102 for (int i = 0; i < kInlinedProbes; i++) {
4103 // Compute the masked index: (hash + i + i * i) & mask.
4104 __ movl(r1, FieldOperand(name, Name::kHashFieldOffset));
4105 __ shrl(r1, Immediate(Name::kHashShift));
4106 if (i > 0) {
4107 __ addl(r1, Immediate(NameDictionary::GetProbeOffset(i)));
4108 }
4109 __ andp(r1, r0);
4110
4111 // Scale the index by multiplying by the entry size.
4112 ASSERT(NameDictionary::kEntrySize == 3);
4113 __ leap(r1, Operand(r1, r1, times_2, 0)); // r1 = r1 * 3
4114
4115 // Check if the key is identical to the name.
4116 __ cmpp(name, Operand(elements, r1, times_pointer_size,
4117 kElementsStartOffset - kHeapObjectTag));
4118 __ j(equal, done);
4119 }
4120
4121 NameDictionaryLookupStub stub(masm->isolate(), elements, r0, r1,
4122 POSITIVE_LOOKUP);
4123 __ Push(name);
4124 __ movl(r0, FieldOperand(name, Name::kHashFieldOffset));
4125 __ shrl(r0, Immediate(Name::kHashShift));
4126 __ Push(r0);
4127 __ CallStub(&stub);
4128
4129 __ testp(r0, r0);
4130 __ j(zero, miss);
4131 __ jmp(done);
4132 }
4133
4134
Generate(MacroAssembler * masm)4135 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
4136 // This stub overrides SometimesSetsUpAFrame() to return false. That means
4137 // we cannot call anything that could cause a GC from this stub.
4138 // Stack frame on entry:
4139 // rsp[0 * kPointerSize] : return address.
4140 // rsp[1 * kPointerSize] : key's hash.
4141 // rsp[2 * kPointerSize] : key.
4142 // Registers:
4143 // dictionary_: NameDictionary to probe.
4144 // result_: used as scratch.
4145 // index_: will hold an index of entry if lookup is successful.
4146 // might alias with result_.
4147 // Returns:
4148 // result_ is zero if lookup failed, non zero otherwise.
4149
4150 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
4151
4152 Register scratch = result_;
4153
4154 __ SmiToInteger32(scratch, FieldOperand(dictionary_, kCapacityOffset));
4155 __ decl(scratch);
4156 __ Push(scratch);
4157
4158 // If names of slots in range from 1 to kProbes - 1 for the hash value are
4159 // not equal to the name and kProbes-th slot is not used (its name is the
4160 // undefined value), it guarantees the hash table doesn't contain the
4161 // property. It's true even if some slots represent deleted properties
4162 // (their names are the null value).
4163 StackArgumentsAccessor args(rsp, 2, ARGUMENTS_DONT_CONTAIN_RECEIVER,
4164 kPointerSize);
4165 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
4166 // Compute the masked index: (hash + i + i * i) & mask.
4167 __ movp(scratch, args.GetArgumentOperand(1));
4168 if (i > 0) {
4169 __ addl(scratch, Immediate(NameDictionary::GetProbeOffset(i)));
4170 }
4171 __ andp(scratch, Operand(rsp, 0));
4172
4173 // Scale the index by multiplying by the entry size.
4174 ASSERT(NameDictionary::kEntrySize == 3);
4175 __ leap(index_, Operand(scratch, scratch, times_2, 0)); // index *= 3.
4176
4177 // Having undefined at this place means the name is not contained.
4178 __ movp(scratch, Operand(dictionary_,
4179 index_,
4180 times_pointer_size,
4181 kElementsStartOffset - kHeapObjectTag));
4182
4183 __ Cmp(scratch, isolate()->factory()->undefined_value());
4184 __ j(equal, ¬_in_dictionary);
4185
4186 // Stop if found the property.
4187 __ cmpp(scratch, args.GetArgumentOperand(0));
4188 __ j(equal, &in_dictionary);
4189
4190 if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) {
4191 // If we hit a key that is not a unique name during negative
4192 // lookup we have to bailout as this key might be equal to the
4193 // key we are looking for.
4194
4195 // Check if the entry name is not a unique name.
4196 __ movp(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
4197 __ JumpIfNotUniqueName(FieldOperand(scratch, Map::kInstanceTypeOffset),
4198 &maybe_in_dictionary);
4199 }
4200 }
4201
4202 __ bind(&maybe_in_dictionary);
4203 // If we are doing negative lookup then probing failure should be
4204 // treated as a lookup success. For positive lookup probing failure
4205 // should be treated as lookup failure.
4206 if (mode_ == POSITIVE_LOOKUP) {
4207 __ movp(scratch, Immediate(0));
4208 __ Drop(1);
4209 __ ret(2 * kPointerSize);
4210 }
4211
4212 __ bind(&in_dictionary);
4213 __ movp(scratch, Immediate(1));
4214 __ Drop(1);
4215 __ ret(2 * kPointerSize);
4216
4217 __ bind(¬_in_dictionary);
4218 __ movp(scratch, Immediate(0));
4219 __ Drop(1);
4220 __ ret(2 * kPointerSize);
4221 }
4222
4223
GenerateFixedRegStubsAheadOfTime(Isolate * isolate)4224 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
4225 Isolate* isolate) {
4226 StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
4227 stub1.GetCode();
4228 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
4229 stub2.GetCode();
4230 }
4231
4232
4233 // Takes the input in 3 registers: address_ value_ and object_. A pointer to
4234 // the value has just been written into the object, now this stub makes sure
4235 // we keep the GC informed. The word in the object where the value has been
4236 // written is in the address register.
Generate(MacroAssembler * masm)4237 void RecordWriteStub::Generate(MacroAssembler* masm) {
4238 Label skip_to_incremental_noncompacting;
4239 Label skip_to_incremental_compacting;
4240
4241 // The first two instructions are generated with labels so as to get the
4242 // offset fixed up correctly by the bind(Label*) call. We patch it back and
4243 // forth between a compare instructions (a nop in this position) and the
4244 // real branch when we start and stop incremental heap marking.
4245 // See RecordWriteStub::Patch for details.
4246 __ jmp(&skip_to_incremental_noncompacting, Label::kNear);
4247 __ jmp(&skip_to_incremental_compacting, Label::kFar);
4248
4249 if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
4250 __ RememberedSetHelper(object_,
4251 address_,
4252 value_,
4253 save_fp_regs_mode_,
4254 MacroAssembler::kReturnAtEnd);
4255 } else {
4256 __ ret(0);
4257 }
4258
4259 __ bind(&skip_to_incremental_noncompacting);
4260 GenerateIncremental(masm, INCREMENTAL);
4261
4262 __ bind(&skip_to_incremental_compacting);
4263 GenerateIncremental(masm, INCREMENTAL_COMPACTION);
4264
4265 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
4266 // Will be checked in IncrementalMarking::ActivateGeneratedStub.
4267 masm->set_byte_at(0, kTwoByteNopInstruction);
4268 masm->set_byte_at(2, kFiveByteNopInstruction);
4269 }
4270
4271
GenerateIncremental(MacroAssembler * masm,Mode mode)4272 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
4273 regs_.Save(masm);
4274
4275 if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
4276 Label dont_need_remembered_set;
4277
4278 __ movp(regs_.scratch0(), Operand(regs_.address(), 0));
4279 __ JumpIfNotInNewSpace(regs_.scratch0(),
4280 regs_.scratch0(),
4281 &dont_need_remembered_set);
4282
4283 __ CheckPageFlag(regs_.object(),
4284 regs_.scratch0(),
4285 1 << MemoryChunk::SCAN_ON_SCAVENGE,
4286 not_zero,
4287 &dont_need_remembered_set);
4288
4289 // First notify the incremental marker if necessary, then update the
4290 // remembered set.
4291 CheckNeedsToInformIncrementalMarker(
4292 masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
4293 InformIncrementalMarker(masm);
4294 regs_.Restore(masm);
4295 __ RememberedSetHelper(object_,
4296 address_,
4297 value_,
4298 save_fp_regs_mode_,
4299 MacroAssembler::kReturnAtEnd);
4300
4301 __ bind(&dont_need_remembered_set);
4302 }
4303
4304 CheckNeedsToInformIncrementalMarker(
4305 masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
4306 InformIncrementalMarker(masm);
4307 regs_.Restore(masm);
4308 __ ret(0);
4309 }
4310
4311
InformIncrementalMarker(MacroAssembler * masm)4312 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
4313 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_);
4314 Register address =
4315 arg_reg_1.is(regs_.address()) ? kScratchRegister : regs_.address();
4316 ASSERT(!address.is(regs_.object()));
4317 ASSERT(!address.is(arg_reg_1));
4318 __ Move(address, regs_.address());
4319 __ Move(arg_reg_1, regs_.object());
4320 // TODO(gc) Can we just set address arg2 in the beginning?
4321 __ Move(arg_reg_2, address);
4322 __ LoadAddress(arg_reg_3,
4323 ExternalReference::isolate_address(isolate()));
4324 int argument_count = 3;
4325
4326 AllowExternalCallThatCantCauseGC scope(masm);
4327 __ PrepareCallCFunction(argument_count);
4328 __ CallCFunction(
4329 ExternalReference::incremental_marking_record_write_function(isolate()),
4330 argument_count);
4331 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_);
4332 }
4333
4334
CheckNeedsToInformIncrementalMarker(MacroAssembler * masm,OnNoNeedToInformIncrementalMarker on_no_need,Mode mode)4335 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
4336 MacroAssembler* masm,
4337 OnNoNeedToInformIncrementalMarker on_no_need,
4338 Mode mode) {
4339 Label on_black;
4340 Label need_incremental;
4341 Label need_incremental_pop_object;
4342
4343 __ movp(regs_.scratch0(), Immediate(~Page::kPageAlignmentMask));
4344 __ andp(regs_.scratch0(), regs_.object());
4345 __ movp(regs_.scratch1(),
4346 Operand(regs_.scratch0(),
4347 MemoryChunk::kWriteBarrierCounterOffset));
4348 __ subp(regs_.scratch1(), Immediate(1));
4349 __ movp(Operand(regs_.scratch0(),
4350 MemoryChunk::kWriteBarrierCounterOffset),
4351 regs_.scratch1());
4352 __ j(negative, &need_incremental);
4353
4354 // Let's look at the color of the object: If it is not black we don't have
4355 // to inform the incremental marker.
4356 __ JumpIfBlack(regs_.object(),
4357 regs_.scratch0(),
4358 regs_.scratch1(),
4359 &on_black,
4360 Label::kNear);
4361
4362 regs_.Restore(masm);
4363 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4364 __ RememberedSetHelper(object_,
4365 address_,
4366 value_,
4367 save_fp_regs_mode_,
4368 MacroAssembler::kReturnAtEnd);
4369 } else {
4370 __ ret(0);
4371 }
4372
4373 __ bind(&on_black);
4374
4375 // Get the value from the slot.
4376 __ movp(regs_.scratch0(), Operand(regs_.address(), 0));
4377
4378 if (mode == INCREMENTAL_COMPACTION) {
4379 Label ensure_not_white;
4380
4381 __ CheckPageFlag(regs_.scratch0(), // Contains value.
4382 regs_.scratch1(), // Scratch.
4383 MemoryChunk::kEvacuationCandidateMask,
4384 zero,
4385 &ensure_not_white,
4386 Label::kNear);
4387
4388 __ CheckPageFlag(regs_.object(),
4389 regs_.scratch1(), // Scratch.
4390 MemoryChunk::kSkipEvacuationSlotsRecordingMask,
4391 zero,
4392 &need_incremental);
4393
4394 __ bind(&ensure_not_white);
4395 }
4396
4397 // We need an extra register for this, so we push the object register
4398 // temporarily.
4399 __ Push(regs_.object());
4400 __ EnsureNotWhite(regs_.scratch0(), // The value.
4401 regs_.scratch1(), // Scratch.
4402 regs_.object(), // Scratch.
4403 &need_incremental_pop_object,
4404 Label::kNear);
4405 __ Pop(regs_.object());
4406
4407 regs_.Restore(masm);
4408 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4409 __ RememberedSetHelper(object_,
4410 address_,
4411 value_,
4412 save_fp_regs_mode_,
4413 MacroAssembler::kReturnAtEnd);
4414 } else {
4415 __ ret(0);
4416 }
4417
4418 __ bind(&need_incremental_pop_object);
4419 __ Pop(regs_.object());
4420
4421 __ bind(&need_incremental);
4422
4423 // Fall through when we need to inform the incremental marker.
4424 }
4425
4426
Generate(MacroAssembler * masm)4427 void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
4428 // ----------- S t a t e -------------
4429 // -- rax : element value to store
4430 // -- rcx : element index as smi
4431 // -- rsp[0] : return address
4432 // -- rsp[8] : array literal index in function
4433 // -- rsp[16] : array literal
4434 // clobbers rbx, rdx, rdi
4435 // -----------------------------------
4436
4437 Label element_done;
4438 Label double_elements;
4439 Label smi_element;
4440 Label slow_elements;
4441 Label fast_elements;
4442
4443 // Get array literal index, array literal and its map.
4444 StackArgumentsAccessor args(rsp, 2, ARGUMENTS_DONT_CONTAIN_RECEIVER);
4445 __ movp(rdx, args.GetArgumentOperand(1));
4446 __ movp(rbx, args.GetArgumentOperand(0));
4447 __ movp(rdi, FieldOperand(rbx, JSObject::kMapOffset));
4448
4449 __ CheckFastElements(rdi, &double_elements);
4450
4451 // FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS
4452 __ JumpIfSmi(rax, &smi_element);
4453 __ CheckFastSmiElements(rdi, &fast_elements);
4454
4455 // Store into the array literal requires a elements transition. Call into
4456 // the runtime.
4457
4458 __ bind(&slow_elements);
4459 __ PopReturnAddressTo(rdi);
4460 __ Push(rbx);
4461 __ Push(rcx);
4462 __ Push(rax);
4463 __ movp(rbx, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
4464 __ Push(FieldOperand(rbx, JSFunction::kLiteralsOffset));
4465 __ Push(rdx);
4466 __ PushReturnAddressFrom(rdi);
4467 __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
4468
4469 // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
4470 __ bind(&fast_elements);
4471 __ SmiToInteger32(kScratchRegister, rcx);
4472 __ movp(rbx, FieldOperand(rbx, JSObject::kElementsOffset));
4473 __ leap(rcx, FieldOperand(rbx, kScratchRegister, times_pointer_size,
4474 FixedArrayBase::kHeaderSize));
4475 __ movp(Operand(rcx, 0), rax);
4476 // Update the write barrier for the array store.
4477 __ RecordWrite(rbx, rcx, rax,
4478 kDontSaveFPRegs,
4479 EMIT_REMEMBERED_SET,
4480 OMIT_SMI_CHECK);
4481 __ ret(0);
4482
4483 // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or
4484 // FAST_*_ELEMENTS, and value is Smi.
4485 __ bind(&smi_element);
4486 __ SmiToInteger32(kScratchRegister, rcx);
4487 __ movp(rbx, FieldOperand(rbx, JSObject::kElementsOffset));
4488 __ movp(FieldOperand(rbx, kScratchRegister, times_pointer_size,
4489 FixedArrayBase::kHeaderSize), rax);
4490 __ ret(0);
4491
4492 // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS.
4493 __ bind(&double_elements);
4494
4495 __ movp(r9, FieldOperand(rbx, JSObject::kElementsOffset));
4496 __ SmiToInteger32(r11, rcx);
4497 __ StoreNumberToDoubleElements(rax,
4498 r9,
4499 r11,
4500 xmm0,
4501 &slow_elements);
4502 __ ret(0);
4503 }
4504
4505
Generate(MacroAssembler * masm)4506 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
4507 CEntryStub ces(isolate(), 1, kSaveFPRegs);
4508 __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
4509 int parameter_count_offset =
4510 StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
4511 __ movp(rbx, MemOperand(rbp, parameter_count_offset));
4512 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
4513 __ PopReturnAddressTo(rcx);
4514 int additional_offset = function_mode_ == JS_FUNCTION_STUB_MODE
4515 ? kPointerSize
4516 : 0;
4517 __ leap(rsp, MemOperand(rsp, rbx, times_pointer_size, additional_offset));
4518 __ jmp(rcx); // Return to IC Miss stub, continuation still on stack.
4519 }
4520
4521
MaybeCallEntryHook(MacroAssembler * masm)4522 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
4523 if (masm->isolate()->function_entry_hook() != NULL) {
4524 ProfileEntryHookStub stub(masm->isolate());
4525 masm->CallStub(&stub);
4526 }
4527 }
4528
4529
Generate(MacroAssembler * masm)4530 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
4531 // This stub can be called from essentially anywhere, so it needs to save
4532 // all volatile and callee-save registers.
4533 const size_t kNumSavedRegisters = 2;
4534 __ pushq(arg_reg_1);
4535 __ pushq(arg_reg_2);
4536
4537 // Calculate the original stack pointer and store it in the second arg.
4538 __ leap(arg_reg_2,
4539 Operand(rsp, kNumSavedRegisters * kRegisterSize + kPCOnStackSize));
4540
4541 // Calculate the function address to the first arg.
4542 __ movp(arg_reg_1, Operand(rsp, kNumSavedRegisters * kRegisterSize));
4543 __ subp(arg_reg_1, Immediate(Assembler::kShortCallInstructionLength));
4544
4545 // Save the remainder of the volatile registers.
4546 masm->PushCallerSaved(kSaveFPRegs, arg_reg_1, arg_reg_2);
4547
4548 // Call the entry hook function.
4549 __ Move(rax, FUNCTION_ADDR(isolate()->function_entry_hook()),
4550 Assembler::RelocInfoNone());
4551
4552 AllowExternalCallThatCantCauseGC scope(masm);
4553
4554 const int kArgumentCount = 2;
4555 __ PrepareCallCFunction(kArgumentCount);
4556 __ CallCFunction(rax, kArgumentCount);
4557
4558 // Restore volatile regs.
4559 masm->PopCallerSaved(kSaveFPRegs, arg_reg_1, arg_reg_2);
4560 __ popq(arg_reg_2);
4561 __ popq(arg_reg_1);
4562
4563 __ Ret();
4564 }
4565
4566
4567 template<class T>
CreateArrayDispatch(MacroAssembler * masm,AllocationSiteOverrideMode mode)4568 static void CreateArrayDispatch(MacroAssembler* masm,
4569 AllocationSiteOverrideMode mode) {
4570 if (mode == DISABLE_ALLOCATION_SITES) {
4571 T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
4572 __ TailCallStub(&stub);
4573 } else if (mode == DONT_OVERRIDE) {
4574 int last_index = GetSequenceIndexFromFastElementsKind(
4575 TERMINAL_FAST_ELEMENTS_KIND);
4576 for (int i = 0; i <= last_index; ++i) {
4577 Label next;
4578 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4579 __ cmpl(rdx, Immediate(kind));
4580 __ j(not_equal, &next);
4581 T stub(masm->isolate(), kind);
4582 __ TailCallStub(&stub);
4583 __ bind(&next);
4584 }
4585
4586 // If we reached this point there is a problem.
4587 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4588 } else {
4589 UNREACHABLE();
4590 }
4591 }
4592
4593
CreateArrayDispatchOneArgument(MacroAssembler * masm,AllocationSiteOverrideMode mode)4594 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
4595 AllocationSiteOverrideMode mode) {
4596 // rbx - allocation site (if mode != DISABLE_ALLOCATION_SITES)
4597 // rdx - kind (if mode != DISABLE_ALLOCATION_SITES)
4598 // rax - number of arguments
4599 // rdi - constructor?
4600 // rsp[0] - return address
4601 // rsp[8] - last argument
4602 Handle<Object> undefined_sentinel(
4603 masm->isolate()->heap()->undefined_value(),
4604 masm->isolate());
4605
4606 Label normal_sequence;
4607 if (mode == DONT_OVERRIDE) {
4608 ASSERT(FAST_SMI_ELEMENTS == 0);
4609 ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
4610 ASSERT(FAST_ELEMENTS == 2);
4611 ASSERT(FAST_HOLEY_ELEMENTS == 3);
4612 ASSERT(FAST_DOUBLE_ELEMENTS == 4);
4613 ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
4614
4615 // is the low bit set? If so, we are holey and that is good.
4616 __ testb(rdx, Immediate(1));
4617 __ j(not_zero, &normal_sequence);
4618 }
4619
4620 // look at the first argument
4621 StackArgumentsAccessor args(rsp, 1, ARGUMENTS_DONT_CONTAIN_RECEIVER);
4622 __ movp(rcx, args.GetArgumentOperand(0));
4623 __ testp(rcx, rcx);
4624 __ j(zero, &normal_sequence);
4625
4626 if (mode == DISABLE_ALLOCATION_SITES) {
4627 ElementsKind initial = GetInitialFastElementsKind();
4628 ElementsKind holey_initial = GetHoleyElementsKind(initial);
4629
4630 ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
4631 holey_initial,
4632 DISABLE_ALLOCATION_SITES);
4633 __ TailCallStub(&stub_holey);
4634
4635 __ bind(&normal_sequence);
4636 ArraySingleArgumentConstructorStub stub(masm->isolate(),
4637 initial,
4638 DISABLE_ALLOCATION_SITES);
4639 __ TailCallStub(&stub);
4640 } else if (mode == DONT_OVERRIDE) {
4641 // We are going to create a holey array, but our kind is non-holey.
4642 // Fix kind and retry (only if we have an allocation site in the slot).
4643 __ incl(rdx);
4644
4645 if (FLAG_debug_code) {
4646 Handle<Map> allocation_site_map =
4647 masm->isolate()->factory()->allocation_site_map();
4648 __ Cmp(FieldOperand(rbx, 0), allocation_site_map);
4649 __ Assert(equal, kExpectedAllocationSite);
4650 }
4651
4652 // Save the resulting elements kind in type info. We can't just store r3
4653 // in the AllocationSite::transition_info field because elements kind is
4654 // restricted to a portion of the field...upper bits need to be left alone.
4655 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4656 __ SmiAddConstant(FieldOperand(rbx, AllocationSite::kTransitionInfoOffset),
4657 Smi::FromInt(kFastElementsKindPackedToHoley));
4658
4659 __ bind(&normal_sequence);
4660 int last_index = GetSequenceIndexFromFastElementsKind(
4661 TERMINAL_FAST_ELEMENTS_KIND);
4662 for (int i = 0; i <= last_index; ++i) {
4663 Label next;
4664 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4665 __ cmpl(rdx, Immediate(kind));
4666 __ j(not_equal, &next);
4667 ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
4668 __ TailCallStub(&stub);
4669 __ bind(&next);
4670 }
4671
4672 // If we reached this point there is a problem.
4673 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4674 } else {
4675 UNREACHABLE();
4676 }
4677 }
4678
4679
4680 template<class T>
ArrayConstructorStubAheadOfTimeHelper(Isolate * isolate)4681 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
4682 int to_index = GetSequenceIndexFromFastElementsKind(
4683 TERMINAL_FAST_ELEMENTS_KIND);
4684 for (int i = 0; i <= to_index; ++i) {
4685 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4686 T stub(isolate, kind);
4687 stub.GetCode();
4688 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
4689 T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
4690 stub1.GetCode();
4691 }
4692 }
4693 }
4694
4695
GenerateStubsAheadOfTime(Isolate * isolate)4696 void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
4697 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
4698 isolate);
4699 ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
4700 isolate);
4701 ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
4702 isolate);
4703 }
4704
4705
GenerateStubsAheadOfTime(Isolate * isolate)4706 void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
4707 Isolate* isolate) {
4708 ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
4709 for (int i = 0; i < 2; i++) {
4710 // For internal arrays we only need a few things
4711 InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
4712 stubh1.GetCode();
4713 InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
4714 stubh2.GetCode();
4715 InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
4716 stubh3.GetCode();
4717 }
4718 }
4719
4720
GenerateDispatchToArrayStub(MacroAssembler * masm,AllocationSiteOverrideMode mode)4721 void ArrayConstructorStub::GenerateDispatchToArrayStub(
4722 MacroAssembler* masm,
4723 AllocationSiteOverrideMode mode) {
4724 if (argument_count_ == ANY) {
4725 Label not_zero_case, not_one_case;
4726 __ testp(rax, rax);
4727 __ j(not_zero, ¬_zero_case);
4728 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4729
4730 __ bind(¬_zero_case);
4731 __ cmpl(rax, Immediate(1));
4732 __ j(greater, ¬_one_case);
4733 CreateArrayDispatchOneArgument(masm, mode);
4734
4735 __ bind(¬_one_case);
4736 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4737 } else if (argument_count_ == NONE) {
4738 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4739 } else if (argument_count_ == ONE) {
4740 CreateArrayDispatchOneArgument(masm, mode);
4741 } else if (argument_count_ == MORE_THAN_ONE) {
4742 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4743 } else {
4744 UNREACHABLE();
4745 }
4746 }
4747
4748
Generate(MacroAssembler * masm)4749 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
4750 // ----------- S t a t e -------------
4751 // -- rax : argc
4752 // -- rbx : AllocationSite or undefined
4753 // -- rdi : constructor
4754 // -- rsp[0] : return address
4755 // -- rsp[8] : last argument
4756 // -----------------------------------
4757 if (FLAG_debug_code) {
4758 // The array construct code is only set for the global and natives
4759 // builtin Array functions which always have maps.
4760
4761 // Initial map for the builtin Array function should be a map.
4762 __ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
4763 // Will both indicate a NULL and a Smi.
4764 STATIC_ASSERT(kSmiTag == 0);
4765 Condition not_smi = NegateCondition(masm->CheckSmi(rcx));
4766 __ Check(not_smi, kUnexpectedInitialMapForArrayFunction);
4767 __ CmpObjectType(rcx, MAP_TYPE, rcx);
4768 __ Check(equal, kUnexpectedInitialMapForArrayFunction);
4769
4770 // We should either have undefined in rbx or a valid AllocationSite
4771 __ AssertUndefinedOrAllocationSite(rbx);
4772 }
4773
4774 Label no_info;
4775 // If the feedback vector is the undefined value call an array constructor
4776 // that doesn't use AllocationSites.
4777 __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex);
4778 __ j(equal, &no_info);
4779
4780 // Only look at the lower 16 bits of the transition info.
4781 __ movp(rdx, FieldOperand(rbx, AllocationSite::kTransitionInfoOffset));
4782 __ SmiToInteger32(rdx, rdx);
4783 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4784 __ andp(rdx, Immediate(AllocationSite::ElementsKindBits::kMask));
4785 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
4786
4787 __ bind(&no_info);
4788 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
4789 }
4790
4791
GenerateCase(MacroAssembler * masm,ElementsKind kind)4792 void InternalArrayConstructorStub::GenerateCase(
4793 MacroAssembler* masm, ElementsKind kind) {
4794 Label not_zero_case, not_one_case;
4795 Label normal_sequence;
4796
4797 __ testp(rax, rax);
4798 __ j(not_zero, ¬_zero_case);
4799 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
4800 __ TailCallStub(&stub0);
4801
4802 __ bind(¬_zero_case);
4803 __ cmpl(rax, Immediate(1));
4804 __ j(greater, ¬_one_case);
4805
4806 if (IsFastPackedElementsKind(kind)) {
4807 // We might need to create a holey array
4808 // look at the first argument
4809 StackArgumentsAccessor args(rsp, 1, ARGUMENTS_DONT_CONTAIN_RECEIVER);
4810 __ movp(rcx, args.GetArgumentOperand(0));
4811 __ testp(rcx, rcx);
4812 __ j(zero, &normal_sequence);
4813
4814 InternalArraySingleArgumentConstructorStub
4815 stub1_holey(isolate(), GetHoleyElementsKind(kind));
4816 __ TailCallStub(&stub1_holey);
4817 }
4818
4819 __ bind(&normal_sequence);
4820 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
4821 __ TailCallStub(&stub1);
4822
4823 __ bind(¬_one_case);
4824 InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
4825 __ TailCallStub(&stubN);
4826 }
4827
4828
Generate(MacroAssembler * masm)4829 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
4830 // ----------- S t a t e -------------
4831 // -- rax : argc
4832 // -- rdi : constructor
4833 // -- rsp[0] : return address
4834 // -- rsp[8] : last argument
4835 // -----------------------------------
4836
4837 if (FLAG_debug_code) {
4838 // The array construct code is only set for the global and natives
4839 // builtin Array functions which always have maps.
4840
4841 // Initial map for the builtin Array function should be a map.
4842 __ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
4843 // Will both indicate a NULL and a Smi.
4844 STATIC_ASSERT(kSmiTag == 0);
4845 Condition not_smi = NegateCondition(masm->CheckSmi(rcx));
4846 __ Check(not_smi, kUnexpectedInitialMapForArrayFunction);
4847 __ CmpObjectType(rcx, MAP_TYPE, rcx);
4848 __ Check(equal, kUnexpectedInitialMapForArrayFunction);
4849 }
4850
4851 // Figure out the right elements kind
4852 __ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
4853
4854 // Load the map's "bit field 2" into |result|. We only need the first byte,
4855 // but the following masking takes care of that anyway.
4856 __ movzxbp(rcx, FieldOperand(rcx, Map::kBitField2Offset));
4857 // Retrieve elements_kind from bit field 2.
4858 __ DecodeField<Map::ElementsKindBits>(rcx);
4859
4860 if (FLAG_debug_code) {
4861 Label done;
4862 __ cmpl(rcx, Immediate(FAST_ELEMENTS));
4863 __ j(equal, &done);
4864 __ cmpl(rcx, Immediate(FAST_HOLEY_ELEMENTS));
4865 __ Assert(equal,
4866 kInvalidElementsKindForInternalArrayOrInternalPackedArray);
4867 __ bind(&done);
4868 }
4869
4870 Label fast_elements_case;
4871 __ cmpl(rcx, Immediate(FAST_ELEMENTS));
4872 __ j(equal, &fast_elements_case);
4873 GenerateCase(masm, FAST_HOLEY_ELEMENTS);
4874
4875 __ bind(&fast_elements_case);
4876 GenerateCase(masm, FAST_ELEMENTS);
4877 }
4878
4879
Generate(MacroAssembler * masm)4880 void CallApiFunctionStub::Generate(MacroAssembler* masm) {
4881 // ----------- S t a t e -------------
4882 // -- rax : callee
4883 // -- rbx : call_data
4884 // -- rcx : holder
4885 // -- rdx : api_function_address
4886 // -- rsi : context
4887 // --
4888 // -- rsp[0] : return address
4889 // -- rsp[8] : last argument
4890 // -- ...
4891 // -- rsp[argc * 8] : first argument
4892 // -- rsp[(argc + 1) * 8] : receiver
4893 // -----------------------------------
4894
4895 Register callee = rax;
4896 Register call_data = rbx;
4897 Register holder = rcx;
4898 Register api_function_address = rdx;
4899 Register return_address = rdi;
4900 Register context = rsi;
4901
4902 int argc = ArgumentBits::decode(bit_field_);
4903 bool is_store = IsStoreBits::decode(bit_field_);
4904 bool call_data_undefined = CallDataUndefinedBits::decode(bit_field_);
4905
4906 typedef FunctionCallbackArguments FCA;
4907
4908 STATIC_ASSERT(FCA::kContextSaveIndex == 6);
4909 STATIC_ASSERT(FCA::kCalleeIndex == 5);
4910 STATIC_ASSERT(FCA::kDataIndex == 4);
4911 STATIC_ASSERT(FCA::kReturnValueOffset == 3);
4912 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
4913 STATIC_ASSERT(FCA::kIsolateIndex == 1);
4914 STATIC_ASSERT(FCA::kHolderIndex == 0);
4915 STATIC_ASSERT(FCA::kArgsLength == 7);
4916
4917 __ PopReturnAddressTo(return_address);
4918
4919 // context save
4920 __ Push(context);
4921 // load context from callee
4922 __ movp(context, FieldOperand(callee, JSFunction::kContextOffset));
4923
4924 // callee
4925 __ Push(callee);
4926
4927 // call data
4928 __ Push(call_data);
4929 Register scratch = call_data;
4930 if (!call_data_undefined) {
4931 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
4932 }
4933 // return value
4934 __ Push(scratch);
4935 // return value default
4936 __ Push(scratch);
4937 // isolate
4938 __ Move(scratch,
4939 ExternalReference::isolate_address(isolate()));
4940 __ Push(scratch);
4941 // holder
4942 __ Push(holder);
4943
4944 __ movp(scratch, rsp);
4945 // Push return address back on stack.
4946 __ PushReturnAddressFrom(return_address);
4947
4948 // Allocate the v8::Arguments structure in the arguments' space since
4949 // it's not controlled by GC.
4950 const int kApiStackSpace = 4;
4951
4952 __ PrepareCallApiFunction(kApiStackSpace);
4953
4954 // FunctionCallbackInfo::implicit_args_.
4955 __ movp(StackSpaceOperand(0), scratch);
4956 __ addp(scratch, Immediate((argc + FCA::kArgsLength - 1) * kPointerSize));
4957 __ movp(StackSpaceOperand(1), scratch); // FunctionCallbackInfo::values_.
4958 __ Set(StackSpaceOperand(2), argc); // FunctionCallbackInfo::length_.
4959 // FunctionCallbackInfo::is_construct_call_.
4960 __ Set(StackSpaceOperand(3), 0);
4961
4962 #if defined(__MINGW64__) || defined(_WIN64)
4963 Register arguments_arg = rcx;
4964 Register callback_arg = rdx;
4965 #else
4966 Register arguments_arg = rdi;
4967 Register callback_arg = rsi;
4968 #endif
4969
4970 // It's okay if api_function_address == callback_arg
4971 // but not arguments_arg
4972 ASSERT(!api_function_address.is(arguments_arg));
4973
4974 // v8::InvocationCallback's argument.
4975 __ leap(arguments_arg, StackSpaceOperand(0));
4976
4977 ExternalReference thunk_ref =
4978 ExternalReference::invoke_function_callback(isolate());
4979
4980 // Accessor for FunctionCallbackInfo and first js arg.
4981 StackArgumentsAccessor args_from_rbp(rbp, FCA::kArgsLength + 1,
4982 ARGUMENTS_DONT_CONTAIN_RECEIVER);
4983 Operand context_restore_operand = args_from_rbp.GetArgumentOperand(
4984 FCA::kArgsLength - FCA::kContextSaveIndex);
4985 // Stores return the first js argument
4986 Operand return_value_operand = args_from_rbp.GetArgumentOperand(
4987 is_store ? 0 : FCA::kArgsLength - FCA::kReturnValueOffset);
4988 __ CallApiFunctionAndReturn(
4989 api_function_address,
4990 thunk_ref,
4991 callback_arg,
4992 argc + FCA::kArgsLength + 1,
4993 return_value_operand,
4994 &context_restore_operand);
4995 }
4996
4997
Generate(MacroAssembler * masm)4998 void CallApiGetterStub::Generate(MacroAssembler* masm) {
4999 // ----------- S t a t e -------------
5000 // -- rsp[0] : return address
5001 // -- rsp[8] : name
5002 // -- rsp[16 - kArgsLength*8] : PropertyCallbackArguments object
5003 // -- ...
5004 // -- r8 : api_function_address
5005 // -----------------------------------
5006
5007 #if defined(__MINGW64__) || defined(_WIN64)
5008 Register getter_arg = r8;
5009 Register accessor_info_arg = rdx;
5010 Register name_arg = rcx;
5011 #else
5012 Register getter_arg = rdx;
5013 Register accessor_info_arg = rsi;
5014 Register name_arg = rdi;
5015 #endif
5016 Register api_function_address = r8;
5017 Register scratch = rax;
5018
5019 // v8::Arguments::values_ and handler for name.
5020 const int kStackSpace = PropertyCallbackArguments::kArgsLength + 1;
5021
5022 // Allocate v8::AccessorInfo in non-GCed stack space.
5023 const int kArgStackSpace = 1;
5024
5025 __ leap(name_arg, Operand(rsp, kPCOnStackSize));
5026
5027 __ PrepareCallApiFunction(kArgStackSpace);
5028 __ leap(scratch, Operand(name_arg, 1 * kPointerSize));
5029
5030 // v8::PropertyAccessorInfo::args_.
5031 __ movp(StackSpaceOperand(0), scratch);
5032
5033 // The context register (rsi) has been saved in PrepareCallApiFunction and
5034 // could be used to pass arguments.
5035 __ leap(accessor_info_arg, StackSpaceOperand(0));
5036
5037 ExternalReference thunk_ref =
5038 ExternalReference::invoke_accessor_getter_callback(isolate());
5039
5040 // It's okay if api_function_address == getter_arg
5041 // but not accessor_info_arg or name_arg
5042 ASSERT(!api_function_address.is(accessor_info_arg) &&
5043 !api_function_address.is(name_arg));
5044
5045 // The name handler is counted as an argument.
5046 StackArgumentsAccessor args(rbp, PropertyCallbackArguments::kArgsLength);
5047 Operand return_value_operand = args.GetArgumentOperand(
5048 PropertyCallbackArguments::kArgsLength - 1 -
5049 PropertyCallbackArguments::kReturnValueOffset);
5050 __ CallApiFunctionAndReturn(api_function_address,
5051 thunk_ref,
5052 getter_arg,
5053 kStackSpace,
5054 return_value_operand,
5055 NULL);
5056 }
5057
5058
5059 #undef __
5060
5061 } } // namespace v8::internal
5062
5063 #endif // V8_TARGET_ARCH_X64
5064