• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/v8.h"
6 
7 #if V8_TARGET_ARCH_X64
8 
9 #include "src/bootstrapper.h"
10 #include "src/code-stubs.h"
11 #include "src/regexp-macro-assembler.h"
12 #include "src/stub-cache.h"
13 #include "src/runtime.h"
14 
15 namespace v8 {
16 namespace internal {
17 
18 
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)19 void FastNewClosureStub::InitializeInterfaceDescriptor(
20     CodeStubInterfaceDescriptor* descriptor) {
21   static Register registers[] = { rbx };
22   descriptor->register_param_count_ = 1;
23   descriptor->register_params_ = registers;
24   descriptor->deoptimization_handler_ =
25       Runtime::FunctionForId(Runtime::kHiddenNewClosureFromStubFailure)->entry;
26 }
27 
28 
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)29 void FastNewContextStub::InitializeInterfaceDescriptor(
30     CodeStubInterfaceDescriptor* descriptor) {
31   static Register registers[] = { rdi };
32   descriptor->register_param_count_ = 1;
33   descriptor->register_params_ = registers;
34   descriptor->deoptimization_handler_ = NULL;
35 }
36 
37 
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)38 void ToNumberStub::InitializeInterfaceDescriptor(
39     CodeStubInterfaceDescriptor* descriptor) {
40   static Register registers[] = { rax };
41   descriptor->register_param_count_ = 1;
42   descriptor->register_params_ = registers;
43   descriptor->deoptimization_handler_ = NULL;
44 }
45 
46 
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)47 void NumberToStringStub::InitializeInterfaceDescriptor(
48     CodeStubInterfaceDescriptor* descriptor) {
49   static Register registers[] = { rax };
50   descriptor->register_param_count_ = 1;
51   descriptor->register_params_ = registers;
52   descriptor->deoptimization_handler_ =
53       Runtime::FunctionForId(Runtime::kHiddenNumberToString)->entry;
54 }
55 
56 
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)57 void FastCloneShallowArrayStub::InitializeInterfaceDescriptor(
58     CodeStubInterfaceDescriptor* descriptor) {
59   static Register registers[] = { rax, rbx, rcx };
60   descriptor->register_param_count_ = 3;
61   descriptor->register_params_ = registers;
62   static Representation representations[] = {
63     Representation::Tagged(),
64     Representation::Smi(),
65     Representation::Tagged() };
66   descriptor->register_param_representations_ = representations;
67   descriptor->deoptimization_handler_ =
68       Runtime::FunctionForId(
69           Runtime::kHiddenCreateArrayLiteralStubBailout)->entry;
70 }
71 
72 
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)73 void FastCloneShallowObjectStub::InitializeInterfaceDescriptor(
74     CodeStubInterfaceDescriptor* descriptor) {
75   static Register registers[] = { rax, rbx, rcx, rdx };
76   descriptor->register_param_count_ = 4;
77   descriptor->register_params_ = registers;
78   descriptor->deoptimization_handler_ =
79       Runtime::FunctionForId(Runtime::kHiddenCreateObjectLiteral)->entry;
80 }
81 
82 
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)83 void CreateAllocationSiteStub::InitializeInterfaceDescriptor(
84     CodeStubInterfaceDescriptor* descriptor) {
85   static Register registers[] = { rbx, rdx };
86   descriptor->register_param_count_ = 2;
87   descriptor->register_params_ = registers;
88   descriptor->deoptimization_handler_ = NULL;
89 }
90 
91 
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)92 void KeyedLoadFastElementStub::InitializeInterfaceDescriptor(
93     CodeStubInterfaceDescriptor* descriptor) {
94   static Register registers[] = { rdx, rax };
95   descriptor->register_param_count_ = 2;
96   descriptor->register_params_ = registers;
97   descriptor->deoptimization_handler_ =
98       FUNCTION_ADDR(KeyedLoadIC_MissFromStubFailure);
99 }
100 
101 
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)102 void KeyedLoadDictionaryElementStub::InitializeInterfaceDescriptor(
103     CodeStubInterfaceDescriptor* descriptor) {
104   static Register registers[] = { rdx, rax };
105   descriptor->register_param_count_ = 2;
106   descriptor->register_params_ = registers;
107   descriptor->deoptimization_handler_ =
108     FUNCTION_ADDR(KeyedLoadIC_MissFromStubFailure);
109 }
110 
111 
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)112 void RegExpConstructResultStub::InitializeInterfaceDescriptor(
113     CodeStubInterfaceDescriptor* descriptor) {
114   static Register registers[] = { rcx, rbx, rax };
115   descriptor->register_param_count_ = 3;
116   descriptor->register_params_ = registers;
117   descriptor->deoptimization_handler_ =
118       Runtime::FunctionForId(Runtime::kHiddenRegExpConstructResult)->entry;
119 }
120 
121 
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)122 void KeyedLoadGenericElementStub::InitializeInterfaceDescriptor(
123     CodeStubInterfaceDescriptor* descriptor) {
124   static Register registers[] = { rdx, rax };
125   descriptor->register_param_count_ = 2;
126   descriptor->register_params_ = registers;
127   descriptor->deoptimization_handler_ =
128       Runtime::FunctionForId(Runtime::kKeyedGetProperty)->entry;
129 }
130 
131 
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)132 void LoadFieldStub::InitializeInterfaceDescriptor(
133     CodeStubInterfaceDescriptor* descriptor) {
134   static Register registers[] = { rax };
135   descriptor->register_param_count_ = 1;
136   descriptor->register_params_ = registers;
137   descriptor->deoptimization_handler_ = NULL;
138 }
139 
140 
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)141 void KeyedLoadFieldStub::InitializeInterfaceDescriptor(
142     CodeStubInterfaceDescriptor* descriptor) {
143   static Register registers[] = { rdx };
144   descriptor->register_param_count_ = 1;
145   descriptor->register_params_ = registers;
146   descriptor->deoptimization_handler_ = NULL;
147 }
148 
149 
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)150 void StringLengthStub::InitializeInterfaceDescriptor(
151     CodeStubInterfaceDescriptor* descriptor) {
152   static Register registers[] = { rax, rcx };
153   descriptor->register_param_count_ = 2;
154   descriptor->register_params_ = registers;
155   descriptor->deoptimization_handler_ = NULL;
156 }
157 
158 
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)159 void KeyedStringLengthStub::InitializeInterfaceDescriptor(
160     CodeStubInterfaceDescriptor* descriptor) {
161   static Register registers[] = { rdx, rax };
162   descriptor->register_param_count_ = 2;
163   descriptor->register_params_ = registers;
164   descriptor->deoptimization_handler_ = NULL;
165 }
166 
167 
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)168 void KeyedStoreFastElementStub::InitializeInterfaceDescriptor(
169     CodeStubInterfaceDescriptor* descriptor) {
170   static Register registers[] = { rdx, rcx, rax };
171   descriptor->register_param_count_ = 3;
172   descriptor->register_params_ = registers;
173   descriptor->deoptimization_handler_ =
174       FUNCTION_ADDR(KeyedStoreIC_MissFromStubFailure);
175 }
176 
177 
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)178 void TransitionElementsKindStub::InitializeInterfaceDescriptor(
179     CodeStubInterfaceDescriptor* descriptor) {
180   static Register registers[] = { rax, rbx };
181   descriptor->register_param_count_ = 2;
182   descriptor->register_params_ = registers;
183   descriptor->deoptimization_handler_ =
184       Runtime::FunctionForId(Runtime::kTransitionElementsKind)->entry;
185 }
186 
187 
InitializeArrayConstructorDescriptor(CodeStubInterfaceDescriptor * descriptor,int constant_stack_parameter_count)188 static void InitializeArrayConstructorDescriptor(
189     CodeStubInterfaceDescriptor* descriptor,
190     int constant_stack_parameter_count) {
191   // register state
192   // rax -- number of arguments
193   // rdi -- function
194   // rbx -- allocation site with elements kind
195   static Register registers_variable_args[] = { rdi, rbx, rax };
196   static Register registers_no_args[] = { rdi, rbx };
197 
198   if (constant_stack_parameter_count == 0) {
199     descriptor->register_param_count_ = 2;
200     descriptor->register_params_ = registers_no_args;
201   } else {
202     // stack param count needs (constructor pointer, and single argument)
203     descriptor->handler_arguments_mode_ = PASS_ARGUMENTS;
204     descriptor->stack_parameter_count_ = rax;
205     descriptor->register_param_count_ = 3;
206     static Representation representations[] = {
207         Representation::Tagged(),
208         Representation::Tagged(),
209         Representation::Integer32() };
210     descriptor->register_param_representations_ = representations;
211     descriptor->register_params_ = registers_variable_args;
212   }
213 
214   descriptor->hint_stack_parameter_count_ = constant_stack_parameter_count;
215   descriptor->function_mode_ = JS_FUNCTION_STUB_MODE;
216   descriptor->deoptimization_handler_ =
217       Runtime::FunctionForId(Runtime::kHiddenArrayConstructor)->entry;
218 }
219 
220 
InitializeInternalArrayConstructorDescriptor(CodeStubInterfaceDescriptor * descriptor,int constant_stack_parameter_count)221 static void InitializeInternalArrayConstructorDescriptor(
222     CodeStubInterfaceDescriptor* descriptor,
223     int constant_stack_parameter_count) {
224   // register state
225   // rax -- number of arguments
226   // rdi -- constructor function
227   static Register registers_variable_args[] = { rdi, rax };
228   static Register registers_no_args[] = { rdi };
229 
230   if (constant_stack_parameter_count == 0) {
231     descriptor->register_param_count_ = 1;
232     descriptor->register_params_ = registers_no_args;
233   } else {
234     // stack param count needs (constructor pointer, and single argument)
235     descriptor->handler_arguments_mode_ = PASS_ARGUMENTS;
236     descriptor->stack_parameter_count_ = rax;
237     descriptor->register_param_count_ = 2;
238     descriptor->register_params_ = registers_variable_args;
239     static Representation representations[] = {
240         Representation::Tagged(),
241         Representation::Integer32() };
242     descriptor->register_param_representations_ = representations;
243   }
244 
245   descriptor->hint_stack_parameter_count_ = constant_stack_parameter_count;
246   descriptor->function_mode_ = JS_FUNCTION_STUB_MODE;
247   descriptor->deoptimization_handler_ =
248       Runtime::FunctionForId(Runtime::kHiddenInternalArrayConstructor)->entry;
249 }
250 
251 
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)252 void ArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor(
253     CodeStubInterfaceDescriptor* descriptor) {
254   InitializeArrayConstructorDescriptor(descriptor, 0);
255 }
256 
257 
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)258 void ArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor(
259     CodeStubInterfaceDescriptor* descriptor) {
260   InitializeArrayConstructorDescriptor(descriptor, 1);
261 }
262 
263 
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)264 void ArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor(
265     CodeStubInterfaceDescriptor* descriptor) {
266   InitializeArrayConstructorDescriptor(descriptor, -1);
267 }
268 
269 
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)270 void InternalArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor(
271     CodeStubInterfaceDescriptor* descriptor) {
272   InitializeInternalArrayConstructorDescriptor(descriptor, 0);
273 }
274 
275 
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)276 void InternalArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor(
277     CodeStubInterfaceDescriptor* descriptor) {
278   InitializeInternalArrayConstructorDescriptor(descriptor, 1);
279 }
280 
281 
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)282 void InternalArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor(
283     CodeStubInterfaceDescriptor* descriptor) {
284   InitializeInternalArrayConstructorDescriptor(descriptor, -1);
285 }
286 
287 
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)288 void CompareNilICStub::InitializeInterfaceDescriptor(
289     CodeStubInterfaceDescriptor* descriptor) {
290   static Register registers[] = { rax };
291   descriptor->register_param_count_ = 1;
292   descriptor->register_params_ = registers;
293   descriptor->deoptimization_handler_ =
294       FUNCTION_ADDR(CompareNilIC_Miss);
295   descriptor->SetMissHandler(
296       ExternalReference(IC_Utility(IC::kCompareNilIC_Miss), isolate()));
297 }
298 
299 
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)300 void ToBooleanStub::InitializeInterfaceDescriptor(
301     CodeStubInterfaceDescriptor* descriptor) {
302   static Register registers[] = { rax };
303   descriptor->register_param_count_ = 1;
304   descriptor->register_params_ = registers;
305   descriptor->deoptimization_handler_ =
306      FUNCTION_ADDR(ToBooleanIC_Miss);
307   descriptor->SetMissHandler(
308       ExternalReference(IC_Utility(IC::kToBooleanIC_Miss), isolate()));
309 }
310 
311 
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)312 void StoreGlobalStub::InitializeInterfaceDescriptor(
313     CodeStubInterfaceDescriptor* descriptor) {
314   static Register registers[] = { rdx, rcx, rax };
315   descriptor->register_param_count_ = 3;
316   descriptor->register_params_ = registers;
317   descriptor->deoptimization_handler_ =
318       FUNCTION_ADDR(StoreIC_MissFromStubFailure);
319 }
320 
321 
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)322 void ElementsTransitionAndStoreStub::InitializeInterfaceDescriptor(
323     CodeStubInterfaceDescriptor* descriptor) {
324   static Register registers[] = { rax, rbx, rcx, rdx };
325   descriptor->register_param_count_ = 4;
326   descriptor->register_params_ = registers;
327   descriptor->deoptimization_handler_ =
328       FUNCTION_ADDR(ElementsTransitionAndStoreIC_Miss);
329 }
330 
331 
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)332 void BinaryOpICStub::InitializeInterfaceDescriptor(
333     CodeStubInterfaceDescriptor* descriptor) {
334   static Register registers[] = { rdx, rax };
335   descriptor->register_param_count_ = 2;
336   descriptor->register_params_ = registers;
337   descriptor->deoptimization_handler_ = FUNCTION_ADDR(BinaryOpIC_Miss);
338   descriptor->SetMissHandler(
339       ExternalReference(IC_Utility(IC::kBinaryOpIC_Miss), isolate()));
340 }
341 
342 
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)343 void BinaryOpWithAllocationSiteStub::InitializeInterfaceDescriptor(
344     CodeStubInterfaceDescriptor* descriptor) {
345   static Register registers[] = { rcx, rdx, rax };
346   descriptor->register_param_count_ = 3;
347   descriptor->register_params_ = registers;
348   descriptor->deoptimization_handler_ =
349       FUNCTION_ADDR(BinaryOpIC_MissWithAllocationSite);
350 }
351 
352 
InitializeInterfaceDescriptor(CodeStubInterfaceDescriptor * descriptor)353 void StringAddStub::InitializeInterfaceDescriptor(
354     CodeStubInterfaceDescriptor* descriptor) {
355   static Register registers[] = { rdx, rax };
356   descriptor->register_param_count_ = 2;
357   descriptor->register_params_ = registers;
358   descriptor->deoptimization_handler_ =
359       Runtime::FunctionForId(Runtime::kHiddenStringAdd)->entry;
360 }
361 
362 
InitializeForIsolate(Isolate * isolate)363 void CallDescriptors::InitializeForIsolate(Isolate* isolate) {
364   {
365     CallInterfaceDescriptor* descriptor =
366         isolate->call_descriptor(Isolate::ArgumentAdaptorCall);
367     static Register registers[] = { rdi,  // JSFunction
368                                     rsi,  // context
369                                     rax,  // actual number of arguments
370                                     rbx,  // expected number of arguments
371     };
372     static Representation representations[] = {
373         Representation::Tagged(),     // JSFunction
374         Representation::Tagged(),     // context
375         Representation::Integer32(),  // actual number of arguments
376         Representation::Integer32(),  // expected number of arguments
377     };
378     descriptor->register_param_count_ = 4;
379     descriptor->register_params_ = registers;
380     descriptor->param_representations_ = representations;
381   }
382   {
383     CallInterfaceDescriptor* descriptor =
384         isolate->call_descriptor(Isolate::KeyedCall);
385     static Register registers[] = { rsi,  // context
386                                     rcx,  // key
387     };
388     static Representation representations[] = {
389         Representation::Tagged(),     // context
390         Representation::Tagged(),     // key
391     };
392     descriptor->register_param_count_ = 2;
393     descriptor->register_params_ = registers;
394     descriptor->param_representations_ = representations;
395   }
396   {
397     CallInterfaceDescriptor* descriptor =
398         isolate->call_descriptor(Isolate::NamedCall);
399     static Register registers[] = { rsi,  // context
400                                     rcx,  // name
401     };
402     static Representation representations[] = {
403         Representation::Tagged(),     // context
404         Representation::Tagged(),     // name
405     };
406     descriptor->register_param_count_ = 2;
407     descriptor->register_params_ = registers;
408     descriptor->param_representations_ = representations;
409   }
410   {
411     CallInterfaceDescriptor* descriptor =
412         isolate->call_descriptor(Isolate::CallHandler);
413     static Register registers[] = { rsi,  // context
414                                     rdx,  // receiver
415     };
416     static Representation representations[] = {
417         Representation::Tagged(),  // context
418         Representation::Tagged(),  // receiver
419     };
420     descriptor->register_param_count_ = 2;
421     descriptor->register_params_ = registers;
422     descriptor->param_representations_ = representations;
423   }
424   {
425     CallInterfaceDescriptor* descriptor =
426         isolate->call_descriptor(Isolate::ApiFunctionCall);
427     static Register registers[] = { rax,  // callee
428                                     rbx,  // call_data
429                                     rcx,  // holder
430                                     rdx,  // api_function_address
431                                     rsi,  // context
432     };
433     static Representation representations[] = {
434         Representation::Tagged(),    // callee
435         Representation::Tagged(),    // call_data
436         Representation::Tagged(),    // holder
437         Representation::External(),  // api_function_address
438         Representation::Tagged(),    // context
439     };
440     descriptor->register_param_count_ = 5;
441     descriptor->register_params_ = registers;
442     descriptor->param_representations_ = representations;
443   }
444 }
445 
446 
447 #define __ ACCESS_MASM(masm)
448 
449 
GenerateLightweightMiss(MacroAssembler * masm)450 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm) {
451   // Update the static counter each time a new code stub is generated.
452   isolate()->counters()->code_stubs()->Increment();
453 
454   CodeStubInterfaceDescriptor* descriptor = GetInterfaceDescriptor();
455   int param_count = descriptor->register_param_count_;
456   {
457     // Call the runtime system in a fresh internal frame.
458     FrameScope scope(masm, StackFrame::INTERNAL);
459     ASSERT(descriptor->register_param_count_ == 0 ||
460            rax.is(descriptor->register_params_[param_count - 1]));
461     // Push arguments
462     for (int i = 0; i < param_count; ++i) {
463       __ Push(descriptor->register_params_[i]);
464     }
465     ExternalReference miss = descriptor->miss_handler();
466     __ CallExternalReference(miss, descriptor->register_param_count_);
467   }
468 
469   __ Ret();
470 }
471 
472 
Generate(MacroAssembler * masm)473 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
474   __ PushCallerSaved(save_doubles_);
475   const int argument_count = 1;
476   __ PrepareCallCFunction(argument_count);
477   __ LoadAddress(arg_reg_1,
478                  ExternalReference::isolate_address(isolate()));
479 
480   AllowExternalCallThatCantCauseGC scope(masm);
481   __ CallCFunction(
482       ExternalReference::store_buffer_overflow_function(isolate()),
483       argument_count);
484   __ PopCallerSaved(save_doubles_);
485   __ ret(0);
486 }
487 
488 
489 class FloatingPointHelper : public AllStatic {
490  public:
491   enum ConvertUndefined {
492     CONVERT_UNDEFINED_TO_ZERO,
493     BAILOUT_ON_UNDEFINED
494   };
495   // Load the operands from rdx and rax into xmm0 and xmm1, as doubles.
496   // If the operands are not both numbers, jump to not_numbers.
497   // Leaves rdx and rax unchanged.  SmiOperands assumes both are smis.
498   // NumberOperands assumes both are smis or heap numbers.
499   static void LoadSSE2UnknownOperands(MacroAssembler* masm,
500                                       Label* not_numbers);
501 };
502 
503 
Generate(MacroAssembler * masm)504 void DoubleToIStub::Generate(MacroAssembler* masm) {
505     Register input_reg = this->source();
506     Register final_result_reg = this->destination();
507     ASSERT(is_truncating());
508 
509     Label check_negative, process_64_bits, done;
510 
511     int double_offset = offset();
512 
513     // Account for return address and saved regs if input is rsp.
514     if (input_reg.is(rsp)) double_offset += 3 * kRegisterSize;
515 
516     MemOperand mantissa_operand(MemOperand(input_reg, double_offset));
517     MemOperand exponent_operand(MemOperand(input_reg,
518                                            double_offset + kDoubleSize / 2));
519 
520     Register scratch1;
521     Register scratch_candidates[3] = { rbx, rdx, rdi };
522     for (int i = 0; i < 3; i++) {
523       scratch1 = scratch_candidates[i];
524       if (!final_result_reg.is(scratch1) && !input_reg.is(scratch1)) break;
525     }
526 
527     // Since we must use rcx for shifts below, use some other register (rax)
528     // to calculate the result if ecx is the requested return register.
529     Register result_reg = final_result_reg.is(rcx) ? rax : final_result_reg;
530     // Save ecx if it isn't the return register and therefore volatile, or if it
531     // is the return register, then save the temp register we use in its stead
532     // for the result.
533     Register save_reg = final_result_reg.is(rcx) ? rax : rcx;
534     __ pushq(scratch1);
535     __ pushq(save_reg);
536 
537     bool stash_exponent_copy = !input_reg.is(rsp);
538     __ movl(scratch1, mantissa_operand);
539     __ movsd(xmm0, mantissa_operand);
540     __ movl(rcx, exponent_operand);
541     if (stash_exponent_copy) __ pushq(rcx);
542 
543     __ andl(rcx, Immediate(HeapNumber::kExponentMask));
544     __ shrl(rcx, Immediate(HeapNumber::kExponentShift));
545     __ leal(result_reg, MemOperand(rcx, -HeapNumber::kExponentBias));
546     __ cmpl(result_reg, Immediate(HeapNumber::kMantissaBits));
547     __ j(below, &process_64_bits);
548 
549     // Result is entirely in lower 32-bits of mantissa
550     int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
551     __ subl(rcx, Immediate(delta));
552     __ xorl(result_reg, result_reg);
553     __ cmpl(rcx, Immediate(31));
554     __ j(above, &done);
555     __ shll_cl(scratch1);
556     __ jmp(&check_negative);
557 
558     __ bind(&process_64_bits);
559     __ cvttsd2siq(result_reg, xmm0);
560     __ jmp(&done, Label::kNear);
561 
562     // If the double was negative, negate the integer result.
563     __ bind(&check_negative);
564     __ movl(result_reg, scratch1);
565     __ negl(result_reg);
566     if (stash_exponent_copy) {
567         __ cmpl(MemOperand(rsp, 0), Immediate(0));
568     } else {
569         __ cmpl(exponent_operand, Immediate(0));
570     }
571     __ cmovl(greater, result_reg, scratch1);
572 
573     // Restore registers
574     __ bind(&done);
575     if (stash_exponent_copy) {
576         __ addp(rsp, Immediate(kDoubleSize));
577     }
578     if (!final_result_reg.is(result_reg)) {
579         ASSERT(final_result_reg.is(rcx));
580         __ movl(final_result_reg, result_reg);
581     }
582     __ popq(save_reg);
583     __ popq(scratch1);
584     __ ret(0);
585 }
586 
587 
LoadSSE2UnknownOperands(MacroAssembler * masm,Label * not_numbers)588 void FloatingPointHelper::LoadSSE2UnknownOperands(MacroAssembler* masm,
589                                                   Label* not_numbers) {
590   Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, load_float_rax, done;
591   // Load operand in rdx into xmm0, or branch to not_numbers.
592   __ LoadRoot(rcx, Heap::kHeapNumberMapRootIndex);
593   __ JumpIfSmi(rdx, &load_smi_rdx);
594   __ cmpp(FieldOperand(rdx, HeapObject::kMapOffset), rcx);
595   __ j(not_equal, not_numbers);  // Argument in rdx is not a number.
596   __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
597   // Load operand in rax into xmm1, or branch to not_numbers.
598   __ JumpIfSmi(rax, &load_smi_rax);
599 
600   __ bind(&load_nonsmi_rax);
601   __ cmpp(FieldOperand(rax, HeapObject::kMapOffset), rcx);
602   __ j(not_equal, not_numbers);
603   __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
604   __ jmp(&done);
605 
606   __ bind(&load_smi_rdx);
607   __ SmiToInteger32(kScratchRegister, rdx);
608   __ Cvtlsi2sd(xmm0, kScratchRegister);
609   __ JumpIfNotSmi(rax, &load_nonsmi_rax);
610 
611   __ bind(&load_smi_rax);
612   __ SmiToInteger32(kScratchRegister, rax);
613   __ Cvtlsi2sd(xmm1, kScratchRegister);
614   __ bind(&done);
615 }
616 
617 
Generate(MacroAssembler * masm)618 void MathPowStub::Generate(MacroAssembler* masm) {
619   const Register exponent = rdx;
620   const Register base = rax;
621   const Register scratch = rcx;
622   const XMMRegister double_result = xmm3;
623   const XMMRegister double_base = xmm2;
624   const XMMRegister double_exponent = xmm1;
625   const XMMRegister double_scratch = xmm4;
626 
627   Label call_runtime, done, exponent_not_smi, int_exponent;
628 
629   // Save 1 in double_result - we need this several times later on.
630   __ movp(scratch, Immediate(1));
631   __ Cvtlsi2sd(double_result, scratch);
632 
633   if (exponent_type_ == ON_STACK) {
634     Label base_is_smi, unpack_exponent;
635     // The exponent and base are supplied as arguments on the stack.
636     // This can only happen if the stub is called from non-optimized code.
637     // Load input parameters from stack.
638     StackArgumentsAccessor args(rsp, 2, ARGUMENTS_DONT_CONTAIN_RECEIVER);
639     __ movp(base, args.GetArgumentOperand(0));
640     __ movp(exponent, args.GetArgumentOperand(1));
641     __ JumpIfSmi(base, &base_is_smi, Label::kNear);
642     __ CompareRoot(FieldOperand(base, HeapObject::kMapOffset),
643                    Heap::kHeapNumberMapRootIndex);
644     __ j(not_equal, &call_runtime);
645 
646     __ movsd(double_base, FieldOperand(base, HeapNumber::kValueOffset));
647     __ jmp(&unpack_exponent, Label::kNear);
648 
649     __ bind(&base_is_smi);
650     __ SmiToInteger32(base, base);
651     __ Cvtlsi2sd(double_base, base);
652     __ bind(&unpack_exponent);
653 
654     __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
655     __ SmiToInteger32(exponent, exponent);
656     __ jmp(&int_exponent);
657 
658     __ bind(&exponent_not_smi);
659     __ CompareRoot(FieldOperand(exponent, HeapObject::kMapOffset),
660                    Heap::kHeapNumberMapRootIndex);
661     __ j(not_equal, &call_runtime);
662     __ movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset));
663   } else if (exponent_type_ == TAGGED) {
664     __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
665     __ SmiToInteger32(exponent, exponent);
666     __ jmp(&int_exponent);
667 
668     __ bind(&exponent_not_smi);
669     __ movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset));
670   }
671 
672   if (exponent_type_ != INTEGER) {
673     Label fast_power, try_arithmetic_simplification;
674     // Detect integer exponents stored as double.
675     __ DoubleToI(exponent, double_exponent, double_scratch,
676                  TREAT_MINUS_ZERO_AS_ZERO, &try_arithmetic_simplification);
677     __ jmp(&int_exponent);
678 
679     __ bind(&try_arithmetic_simplification);
680     __ cvttsd2si(exponent, double_exponent);
681     // Skip to runtime if possibly NaN (indicated by the indefinite integer).
682     __ cmpl(exponent, Immediate(0x1));
683     __ j(overflow, &call_runtime);
684 
685     if (exponent_type_ == ON_STACK) {
686       // Detect square root case.  Crankshaft detects constant +/-0.5 at
687       // compile time and uses DoMathPowHalf instead.  We then skip this check
688       // for non-constant cases of +/-0.5 as these hardly occur.
689       Label continue_sqrt, continue_rsqrt, not_plus_half;
690       // Test for 0.5.
691       // Load double_scratch with 0.5.
692       __ movq(scratch, V8_UINT64_C(0x3FE0000000000000));
693       __ movq(double_scratch, scratch);
694       // Already ruled out NaNs for exponent.
695       __ ucomisd(double_scratch, double_exponent);
696       __ j(not_equal, &not_plus_half, Label::kNear);
697 
698       // Calculates square root of base.  Check for the special case of
699       // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
700       // According to IEEE-754, double-precision -Infinity has the highest
701       // 12 bits set and the lowest 52 bits cleared.
702       __ movq(scratch, V8_UINT64_C(0xFFF0000000000000));
703       __ movq(double_scratch, scratch);
704       __ ucomisd(double_scratch, double_base);
705       // Comparing -Infinity with NaN results in "unordered", which sets the
706       // zero flag as if both were equal.  However, it also sets the carry flag.
707       __ j(not_equal, &continue_sqrt, Label::kNear);
708       __ j(carry, &continue_sqrt, Label::kNear);
709 
710       // Set result to Infinity in the special case.
711       __ xorps(double_result, double_result);
712       __ subsd(double_result, double_scratch);
713       __ jmp(&done);
714 
715       __ bind(&continue_sqrt);
716       // sqrtsd returns -0 when input is -0.  ECMA spec requires +0.
717       __ xorps(double_scratch, double_scratch);
718       __ addsd(double_scratch, double_base);  // Convert -0 to 0.
719       __ sqrtsd(double_result, double_scratch);
720       __ jmp(&done);
721 
722       // Test for -0.5.
723       __ bind(&not_plus_half);
724       // Load double_scratch with -0.5 by substracting 1.
725       __ subsd(double_scratch, double_result);
726       // Already ruled out NaNs for exponent.
727       __ ucomisd(double_scratch, double_exponent);
728       __ j(not_equal, &fast_power, Label::kNear);
729 
730       // Calculates reciprocal of square root of base.  Check for the special
731       // case of Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
732       // According to IEEE-754, double-precision -Infinity has the highest
733       // 12 bits set and the lowest 52 bits cleared.
734       __ movq(scratch, V8_UINT64_C(0xFFF0000000000000));
735       __ movq(double_scratch, scratch);
736       __ ucomisd(double_scratch, double_base);
737       // Comparing -Infinity with NaN results in "unordered", which sets the
738       // zero flag as if both were equal.  However, it also sets the carry flag.
739       __ j(not_equal, &continue_rsqrt, Label::kNear);
740       __ j(carry, &continue_rsqrt, Label::kNear);
741 
742       // Set result to 0 in the special case.
743       __ xorps(double_result, double_result);
744       __ jmp(&done);
745 
746       __ bind(&continue_rsqrt);
747       // sqrtsd returns -0 when input is -0.  ECMA spec requires +0.
748       __ xorps(double_exponent, double_exponent);
749       __ addsd(double_exponent, double_base);  // Convert -0 to +0.
750       __ sqrtsd(double_exponent, double_exponent);
751       __ divsd(double_result, double_exponent);
752       __ jmp(&done);
753     }
754 
755     // Using FPU instructions to calculate power.
756     Label fast_power_failed;
757     __ bind(&fast_power);
758     __ fnclex();  // Clear flags to catch exceptions later.
759     // Transfer (B)ase and (E)xponent onto the FPU register stack.
760     __ subp(rsp, Immediate(kDoubleSize));
761     __ movsd(Operand(rsp, 0), double_exponent);
762     __ fld_d(Operand(rsp, 0));  // E
763     __ movsd(Operand(rsp, 0), double_base);
764     __ fld_d(Operand(rsp, 0));  // B, E
765 
766     // Exponent is in st(1) and base is in st(0)
767     // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B)
768     // FYL2X calculates st(1) * log2(st(0))
769     __ fyl2x();    // X
770     __ fld(0);     // X, X
771     __ frndint();  // rnd(X), X
772     __ fsub(1);    // rnd(X), X-rnd(X)
773     __ fxch(1);    // X - rnd(X), rnd(X)
774     // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1
775     __ f2xm1();    // 2^(X-rnd(X)) - 1, rnd(X)
776     __ fld1();     // 1, 2^(X-rnd(X)) - 1, rnd(X)
777     __ faddp(1);   // 2^(X-rnd(X)), rnd(X)
778     // FSCALE calculates st(0) * 2^st(1)
779     __ fscale();   // 2^X, rnd(X)
780     __ fstp(1);
781     // Bail out to runtime in case of exceptions in the status word.
782     __ fnstsw_ax();
783     __ testb(rax, Immediate(0x5F));  // Check for all but precision exception.
784     __ j(not_zero, &fast_power_failed, Label::kNear);
785     __ fstp_d(Operand(rsp, 0));
786     __ movsd(double_result, Operand(rsp, 0));
787     __ addp(rsp, Immediate(kDoubleSize));
788     __ jmp(&done);
789 
790     __ bind(&fast_power_failed);
791     __ fninit();
792     __ addp(rsp, Immediate(kDoubleSize));
793     __ jmp(&call_runtime);
794   }
795 
796   // Calculate power with integer exponent.
797   __ bind(&int_exponent);
798   const XMMRegister double_scratch2 = double_exponent;
799   // Back up exponent as we need to check if exponent is negative later.
800   __ movp(scratch, exponent);  // Back up exponent.
801   __ movsd(double_scratch, double_base);  // Back up base.
802   __ movsd(double_scratch2, double_result);  // Load double_exponent with 1.
803 
804   // Get absolute value of exponent.
805   Label no_neg, while_true, while_false;
806   __ testl(scratch, scratch);
807   __ j(positive, &no_neg, Label::kNear);
808   __ negl(scratch);
809   __ bind(&no_neg);
810 
811   __ j(zero, &while_false, Label::kNear);
812   __ shrl(scratch, Immediate(1));
813   // Above condition means CF==0 && ZF==0.  This means that the
814   // bit that has been shifted out is 0 and the result is not 0.
815   __ j(above, &while_true, Label::kNear);
816   __ movsd(double_result, double_scratch);
817   __ j(zero, &while_false, Label::kNear);
818 
819   __ bind(&while_true);
820   __ shrl(scratch, Immediate(1));
821   __ mulsd(double_scratch, double_scratch);
822   __ j(above, &while_true, Label::kNear);
823   __ mulsd(double_result, double_scratch);
824   __ j(not_zero, &while_true);
825 
826   __ bind(&while_false);
827   // If the exponent is negative, return 1/result.
828   __ testl(exponent, exponent);
829   __ j(greater, &done);
830   __ divsd(double_scratch2, double_result);
831   __ movsd(double_result, double_scratch2);
832   // Test whether result is zero.  Bail out to check for subnormal result.
833   // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
834   __ xorps(double_scratch2, double_scratch2);
835   __ ucomisd(double_scratch2, double_result);
836   // double_exponent aliased as double_scratch2 has already been overwritten
837   // and may not have contained the exponent value in the first place when the
838   // input was a smi.  We reset it with exponent value before bailing out.
839   __ j(not_equal, &done);
840   __ Cvtlsi2sd(double_exponent, exponent);
841 
842   // Returning or bailing out.
843   Counters* counters = isolate()->counters();
844   if (exponent_type_ == ON_STACK) {
845     // The arguments are still on the stack.
846     __ bind(&call_runtime);
847     __ TailCallRuntime(Runtime::kHiddenMathPow, 2, 1);
848 
849     // The stub is called from non-optimized code, which expects the result
850     // as heap number in rax.
851     __ bind(&done);
852     __ AllocateHeapNumber(rax, rcx, &call_runtime);
853     __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), double_result);
854     __ IncrementCounter(counters->math_pow(), 1);
855     __ ret(2 * kPointerSize);
856   } else {
857     __ bind(&call_runtime);
858     // Move base to the correct argument register.  Exponent is already in xmm1.
859     __ movsd(xmm0, double_base);
860     ASSERT(double_exponent.is(xmm1));
861     {
862       AllowExternalCallThatCantCauseGC scope(masm);
863       __ PrepareCallCFunction(2);
864       __ CallCFunction(
865           ExternalReference::power_double_double_function(isolate()), 2);
866     }
867     // Return value is in xmm0.
868     __ movsd(double_result, xmm0);
869 
870     __ bind(&done);
871     __ IncrementCounter(counters->math_pow(), 1);
872     __ ret(0);
873   }
874 }
875 
876 
Generate(MacroAssembler * masm)877 void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
878   Label miss;
879   Register receiver;
880   if (kind() == Code::KEYED_LOAD_IC) {
881     // ----------- S t a t e -------------
882     //  -- rax    : key
883     //  -- rdx    : receiver
884     //  -- rsp[0] : return address
885     // -----------------------------------
886     __ Cmp(rax, isolate()->factory()->prototype_string());
887     __ j(not_equal, &miss);
888     receiver = rdx;
889   } else {
890     ASSERT(kind() == Code::LOAD_IC);
891     // ----------- S t a t e -------------
892     //  -- rax    : receiver
893     //  -- rcx    : name
894     //  -- rsp[0] : return address
895     // -----------------------------------
896     receiver = rax;
897   }
898 
899   StubCompiler::GenerateLoadFunctionPrototype(masm, receiver, r8, r9, &miss);
900   __ bind(&miss);
901   StubCompiler::TailCallBuiltin(
902       masm, BaseLoadStoreStubCompiler::MissBuiltin(kind()));
903 }
904 
905 
GenerateReadElement(MacroAssembler * masm)906 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
907   // The key is in rdx and the parameter count is in rax.
908 
909   // Check that the key is a smi.
910   Label slow;
911   __ JumpIfNotSmi(rdx, &slow);
912 
913   // Check if the calling frame is an arguments adaptor frame.  We look at the
914   // context offset, and if the frame is not a regular one, then we find a
915   // Smi instead of the context.  We can't use SmiCompare here, because that
916   // only works for comparing two smis.
917   Label adaptor;
918   __ movp(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
919   __ Cmp(Operand(rbx, StandardFrameConstants::kContextOffset),
920          Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
921   __ j(equal, &adaptor);
922 
923   // Check index against formal parameters count limit passed in
924   // through register rax. Use unsigned comparison to get negative
925   // check for free.
926   __ cmpp(rdx, rax);
927   __ j(above_equal, &slow);
928 
929   // Read the argument from the stack and return it.
930   __ SmiSub(rax, rax, rdx);
931   __ SmiToInteger32(rax, rax);
932   StackArgumentsAccessor args(rbp, rax, ARGUMENTS_DONT_CONTAIN_RECEIVER);
933   __ movp(rax, args.GetArgumentOperand(0));
934   __ Ret();
935 
936   // Arguments adaptor case: Check index against actual arguments
937   // limit found in the arguments adaptor frame. Use unsigned
938   // comparison to get negative check for free.
939   __ bind(&adaptor);
940   __ movp(rcx, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset));
941   __ cmpp(rdx, rcx);
942   __ j(above_equal, &slow);
943 
944   // Read the argument from the stack and return it.
945   __ SmiSub(rcx, rcx, rdx);
946   __ SmiToInteger32(rcx, rcx);
947   StackArgumentsAccessor adaptor_args(rbx, rcx,
948                                       ARGUMENTS_DONT_CONTAIN_RECEIVER);
949   __ movp(rax, adaptor_args.GetArgumentOperand(0));
950   __ Ret();
951 
952   // Slow-case: Handle non-smi or out-of-bounds access to arguments
953   // by calling the runtime system.
954   __ bind(&slow);
955   __ PopReturnAddressTo(rbx);
956   __ Push(rdx);
957   __ PushReturnAddressFrom(rbx);
958   __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
959 }
960 
961 
GenerateNewSloppyFast(MacroAssembler * masm)962 void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
963   // Stack layout:
964   //  rsp[0]  : return address
965   //  rsp[8]  : number of parameters (tagged)
966   //  rsp[16] : receiver displacement
967   //  rsp[24] : function
968   // Registers used over the whole function:
969   //  rbx: the mapped parameter count (untagged)
970   //  rax: the allocated object (tagged).
971 
972   Factory* factory = isolate()->factory();
973 
974   StackArgumentsAccessor args(rsp, 3, ARGUMENTS_DONT_CONTAIN_RECEIVER);
975   __ SmiToInteger64(rbx, args.GetArgumentOperand(2));
976   // rbx = parameter count (untagged)
977 
978   // Check if the calling frame is an arguments adaptor frame.
979   Label runtime;
980   Label adaptor_frame, try_allocate;
981   __ movp(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
982   __ movp(rcx, Operand(rdx, StandardFrameConstants::kContextOffset));
983   __ Cmp(rcx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
984   __ j(equal, &adaptor_frame);
985 
986   // No adaptor, parameter count = argument count.
987   __ movp(rcx, rbx);
988   __ jmp(&try_allocate, Label::kNear);
989 
990   // We have an adaptor frame. Patch the parameters pointer.
991   __ bind(&adaptor_frame);
992   __ SmiToInteger64(rcx,
993                     Operand(rdx,
994                             ArgumentsAdaptorFrameConstants::kLengthOffset));
995   __ leap(rdx, Operand(rdx, rcx, times_pointer_size,
996                       StandardFrameConstants::kCallerSPOffset));
997   __ movp(args.GetArgumentOperand(1), rdx);
998 
999   // rbx = parameter count (untagged)
1000   // rcx = argument count (untagged)
1001   // Compute the mapped parameter count = min(rbx, rcx) in rbx.
1002   __ cmpp(rbx, rcx);
1003   __ j(less_equal, &try_allocate, Label::kNear);
1004   __ movp(rbx, rcx);
1005 
1006   __ bind(&try_allocate);
1007 
1008   // Compute the sizes of backing store, parameter map, and arguments object.
1009   // 1. Parameter map, has 2 extra words containing context and backing store.
1010   const int kParameterMapHeaderSize =
1011       FixedArray::kHeaderSize + 2 * kPointerSize;
1012   Label no_parameter_map;
1013   __ xorp(r8, r8);
1014   __ testp(rbx, rbx);
1015   __ j(zero, &no_parameter_map, Label::kNear);
1016   __ leap(r8, Operand(rbx, times_pointer_size, kParameterMapHeaderSize));
1017   __ bind(&no_parameter_map);
1018 
1019   // 2. Backing store.
1020   __ leap(r8, Operand(r8, rcx, times_pointer_size, FixedArray::kHeaderSize));
1021 
1022   // 3. Arguments object.
1023   __ addp(r8, Immediate(Heap::kSloppyArgumentsObjectSize));
1024 
1025   // Do the allocation of all three objects in one go.
1026   __ Allocate(r8, rax, rdx, rdi, &runtime, TAG_OBJECT);
1027 
1028   // rax = address of new object(s) (tagged)
1029   // rcx = argument count (untagged)
1030   // Get the arguments boilerplate from the current native context into rdi.
1031   Label has_mapped_parameters, copy;
1032   __ movp(rdi, Operand(rsi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
1033   __ movp(rdi, FieldOperand(rdi, GlobalObject::kNativeContextOffset));
1034   __ testp(rbx, rbx);
1035   __ j(not_zero, &has_mapped_parameters, Label::kNear);
1036 
1037   const int kIndex = Context::SLOPPY_ARGUMENTS_BOILERPLATE_INDEX;
1038   __ movp(rdi, Operand(rdi, Context::SlotOffset(kIndex)));
1039   __ jmp(&copy, Label::kNear);
1040 
1041   const int kAliasedIndex = Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX;
1042   __ bind(&has_mapped_parameters);
1043   __ movp(rdi, Operand(rdi, Context::SlotOffset(kAliasedIndex)));
1044   __ bind(&copy);
1045 
1046   // rax = address of new object (tagged)
1047   // rbx = mapped parameter count (untagged)
1048   // rcx = argument count (untagged)
1049   // rdi = address of boilerplate object (tagged)
1050   // Copy the JS object part.
1051   for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
1052     __ movp(rdx, FieldOperand(rdi, i));
1053     __ movp(FieldOperand(rax, i), rdx);
1054   }
1055 
1056   // Set up the callee in-object property.
1057   STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
1058   __ movp(rdx, args.GetArgumentOperand(0));
1059   __ movp(FieldOperand(rax, JSObject::kHeaderSize +
1060                        Heap::kArgumentsCalleeIndex * kPointerSize),
1061           rdx);
1062 
1063   // Use the length (smi tagged) and set that as an in-object property too.
1064   // Note: rcx is tagged from here on.
1065   STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
1066   __ Integer32ToSmi(rcx, rcx);
1067   __ movp(FieldOperand(rax, JSObject::kHeaderSize +
1068                        Heap::kArgumentsLengthIndex * kPointerSize),
1069           rcx);
1070 
1071   // Set up the elements pointer in the allocated arguments object.
1072   // If we allocated a parameter map, edi will point there, otherwise to the
1073   // backing store.
1074   __ leap(rdi, Operand(rax, Heap::kSloppyArgumentsObjectSize));
1075   __ movp(FieldOperand(rax, JSObject::kElementsOffset), rdi);
1076 
1077   // rax = address of new object (tagged)
1078   // rbx = mapped parameter count (untagged)
1079   // rcx = argument count (tagged)
1080   // rdi = address of parameter map or backing store (tagged)
1081 
1082   // Initialize parameter map. If there are no mapped arguments, we're done.
1083   Label skip_parameter_map;
1084   __ testp(rbx, rbx);
1085   __ j(zero, &skip_parameter_map);
1086 
1087   __ LoadRoot(kScratchRegister, Heap::kSloppyArgumentsElementsMapRootIndex);
1088   // rbx contains the untagged argument count. Add 2 and tag to write.
1089   __ movp(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister);
1090   __ Integer64PlusConstantToSmi(r9, rbx, 2);
1091   __ movp(FieldOperand(rdi, FixedArray::kLengthOffset), r9);
1092   __ movp(FieldOperand(rdi, FixedArray::kHeaderSize + 0 * kPointerSize), rsi);
1093   __ leap(r9, Operand(rdi, rbx, times_pointer_size, kParameterMapHeaderSize));
1094   __ movp(FieldOperand(rdi, FixedArray::kHeaderSize + 1 * kPointerSize), r9);
1095 
1096   // Copy the parameter slots and the holes in the arguments.
1097   // We need to fill in mapped_parameter_count slots. They index the context,
1098   // where parameters are stored in reverse order, at
1099   //   MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
1100   // The mapped parameter thus need to get indices
1101   //   MIN_CONTEXT_SLOTS+parameter_count-1 ..
1102   //       MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
1103   // We loop from right to left.
1104   Label parameters_loop, parameters_test;
1105 
1106   // Load tagged parameter count into r9.
1107   __ Integer32ToSmi(r9, rbx);
1108   __ Move(r8, Smi::FromInt(Context::MIN_CONTEXT_SLOTS));
1109   __ addp(r8, args.GetArgumentOperand(2));
1110   __ subp(r8, r9);
1111   __ Move(r11, factory->the_hole_value());
1112   __ movp(rdx, rdi);
1113   __ leap(rdi, Operand(rdi, rbx, times_pointer_size, kParameterMapHeaderSize));
1114   // r9 = loop variable (tagged)
1115   // r8 = mapping index (tagged)
1116   // r11 = the hole value
1117   // rdx = address of parameter map (tagged)
1118   // rdi = address of backing store (tagged)
1119   __ jmp(&parameters_test, Label::kNear);
1120 
1121   __ bind(&parameters_loop);
1122   __ SmiSubConstant(r9, r9, Smi::FromInt(1));
1123   __ SmiToInteger64(kScratchRegister, r9);
1124   __ movp(FieldOperand(rdx, kScratchRegister,
1125                        times_pointer_size,
1126                        kParameterMapHeaderSize),
1127           r8);
1128   __ movp(FieldOperand(rdi, kScratchRegister,
1129                        times_pointer_size,
1130                        FixedArray::kHeaderSize),
1131           r11);
1132   __ SmiAddConstant(r8, r8, Smi::FromInt(1));
1133   __ bind(&parameters_test);
1134   __ SmiTest(r9);
1135   __ j(not_zero, &parameters_loop, Label::kNear);
1136 
1137   __ bind(&skip_parameter_map);
1138 
1139   // rcx = argument count (tagged)
1140   // rdi = address of backing store (tagged)
1141   // Copy arguments header and remaining slots (if there are any).
1142   __ Move(FieldOperand(rdi, FixedArray::kMapOffset),
1143           factory->fixed_array_map());
1144   __ movp(FieldOperand(rdi, FixedArray::kLengthOffset), rcx);
1145 
1146   Label arguments_loop, arguments_test;
1147   __ movp(r8, rbx);
1148   __ movp(rdx, args.GetArgumentOperand(1));
1149   // Untag rcx for the loop below.
1150   __ SmiToInteger64(rcx, rcx);
1151   __ leap(kScratchRegister, Operand(r8, times_pointer_size, 0));
1152   __ subp(rdx, kScratchRegister);
1153   __ jmp(&arguments_test, Label::kNear);
1154 
1155   __ bind(&arguments_loop);
1156   __ subp(rdx, Immediate(kPointerSize));
1157   __ movp(r9, Operand(rdx, 0));
1158   __ movp(FieldOperand(rdi, r8,
1159                        times_pointer_size,
1160                        FixedArray::kHeaderSize),
1161           r9);
1162   __ addp(r8, Immediate(1));
1163 
1164   __ bind(&arguments_test);
1165   __ cmpp(r8, rcx);
1166   __ j(less, &arguments_loop, Label::kNear);
1167 
1168   // Return and remove the on-stack parameters.
1169   __ ret(3 * kPointerSize);
1170 
1171   // Do the runtime call to allocate the arguments object.
1172   // rcx = argument count (untagged)
1173   __ bind(&runtime);
1174   __ Integer32ToSmi(rcx, rcx);
1175   __ movp(args.GetArgumentOperand(2), rcx);  // Patch argument count.
1176   __ TailCallRuntime(Runtime::kHiddenNewSloppyArguments, 3, 1);
1177 }
1178 
1179 
GenerateNewSloppySlow(MacroAssembler * masm)1180 void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
1181   // rsp[0]  : return address
1182   // rsp[8]  : number of parameters
1183   // rsp[16] : receiver displacement
1184   // rsp[24] : function
1185 
1186   // Check if the calling frame is an arguments adaptor frame.
1187   Label runtime;
1188   __ movp(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
1189   __ movp(rcx, Operand(rdx, StandardFrameConstants::kContextOffset));
1190   __ Cmp(rcx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
1191   __ j(not_equal, &runtime);
1192 
1193   // Patch the arguments.length and the parameters pointer.
1194   StackArgumentsAccessor args(rsp, 3, ARGUMENTS_DONT_CONTAIN_RECEIVER);
1195   __ movp(rcx, Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset));
1196   __ movp(args.GetArgumentOperand(2), rcx);
1197   __ SmiToInteger64(rcx, rcx);
1198   __ leap(rdx, Operand(rdx, rcx, times_pointer_size,
1199               StandardFrameConstants::kCallerSPOffset));
1200   __ movp(args.GetArgumentOperand(1), rdx);
1201 
1202   __ bind(&runtime);
1203   __ TailCallRuntime(Runtime::kHiddenNewSloppyArguments, 3, 1);
1204 }
1205 
1206 
GenerateNewStrict(MacroAssembler * masm)1207 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
1208   // rsp[0]  : return address
1209   // rsp[8]  : number of parameters
1210   // rsp[16] : receiver displacement
1211   // rsp[24] : function
1212 
1213   // Check if the calling frame is an arguments adaptor frame.
1214   Label adaptor_frame, try_allocate, runtime;
1215   __ movp(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
1216   __ movp(rcx, Operand(rdx, StandardFrameConstants::kContextOffset));
1217   __ Cmp(rcx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
1218   __ j(equal, &adaptor_frame);
1219 
1220   // Get the length from the frame.
1221   StackArgumentsAccessor args(rsp, 3, ARGUMENTS_DONT_CONTAIN_RECEIVER);
1222   __ movp(rcx, args.GetArgumentOperand(2));
1223   __ SmiToInteger64(rcx, rcx);
1224   __ jmp(&try_allocate);
1225 
1226   // Patch the arguments.length and the parameters pointer.
1227   __ bind(&adaptor_frame);
1228   __ movp(rcx, Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset));
1229   __ movp(args.GetArgumentOperand(2), rcx);
1230   __ SmiToInteger64(rcx, rcx);
1231   __ leap(rdx, Operand(rdx, rcx, times_pointer_size,
1232                       StandardFrameConstants::kCallerSPOffset));
1233   __ movp(args.GetArgumentOperand(1), rdx);
1234 
1235   // Try the new space allocation. Start out with computing the size of
1236   // the arguments object and the elements array.
1237   Label add_arguments_object;
1238   __ bind(&try_allocate);
1239   __ testp(rcx, rcx);
1240   __ j(zero, &add_arguments_object, Label::kNear);
1241   __ leap(rcx, Operand(rcx, times_pointer_size, FixedArray::kHeaderSize));
1242   __ bind(&add_arguments_object);
1243   __ addp(rcx, Immediate(Heap::kStrictArgumentsObjectSize));
1244 
1245   // Do the allocation of both objects in one go.
1246   __ Allocate(rcx, rax, rdx, rbx, &runtime, TAG_OBJECT);
1247 
1248   // Get the arguments boilerplate from the current native context.
1249   __ movp(rdi, Operand(rsi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
1250   __ movp(rdi, FieldOperand(rdi, GlobalObject::kNativeContextOffset));
1251   const int offset =
1252       Context::SlotOffset(Context::STRICT_ARGUMENTS_BOILERPLATE_INDEX);
1253   __ movp(rdi, Operand(rdi, offset));
1254 
1255   // Copy the JS object part.
1256   for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
1257     __ movp(rbx, FieldOperand(rdi, i));
1258     __ movp(FieldOperand(rax, i), rbx);
1259   }
1260 
1261   // Get the length (smi tagged) and set that as an in-object property too.
1262   STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
1263   __ movp(rcx, args.GetArgumentOperand(2));
1264   __ movp(FieldOperand(rax, JSObject::kHeaderSize +
1265                        Heap::kArgumentsLengthIndex * kPointerSize),
1266           rcx);
1267 
1268   // If there are no actual arguments, we're done.
1269   Label done;
1270   __ testp(rcx, rcx);
1271   __ j(zero, &done);
1272 
1273   // Get the parameters pointer from the stack.
1274   __ movp(rdx, args.GetArgumentOperand(1));
1275 
1276   // Set up the elements pointer in the allocated arguments object and
1277   // initialize the header in the elements fixed array.
1278   __ leap(rdi, Operand(rax, Heap::kStrictArgumentsObjectSize));
1279   __ movp(FieldOperand(rax, JSObject::kElementsOffset), rdi);
1280   __ LoadRoot(kScratchRegister, Heap::kFixedArrayMapRootIndex);
1281   __ movp(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister);
1282 
1283 
1284   __ movp(FieldOperand(rdi, FixedArray::kLengthOffset), rcx);
1285   // Untag the length for the loop below.
1286   __ SmiToInteger64(rcx, rcx);
1287 
1288   // Copy the fixed array slots.
1289   Label loop;
1290   __ bind(&loop);
1291   __ movp(rbx, Operand(rdx, -1 * kPointerSize));  // Skip receiver.
1292   __ movp(FieldOperand(rdi, FixedArray::kHeaderSize), rbx);
1293   __ addp(rdi, Immediate(kPointerSize));
1294   __ subp(rdx, Immediate(kPointerSize));
1295   __ decp(rcx);
1296   __ j(not_zero, &loop);
1297 
1298   // Return and remove the on-stack parameters.
1299   __ bind(&done);
1300   __ ret(3 * kPointerSize);
1301 
1302   // Do the runtime call to allocate the arguments object.
1303   __ bind(&runtime);
1304   __ TailCallRuntime(Runtime::kHiddenNewStrictArguments, 3, 1);
1305 }
1306 
1307 
Generate(MacroAssembler * masm)1308 void RegExpExecStub::Generate(MacroAssembler* masm) {
1309   // Just jump directly to runtime if native RegExp is not selected at compile
1310   // time or if regexp entry in generated code is turned off runtime switch or
1311   // at compilation.
1312 #ifdef V8_INTERPRETED_REGEXP
1313   __ TailCallRuntime(Runtime::kHiddenRegExpExec, 4, 1);
1314 #else  // V8_INTERPRETED_REGEXP
1315 
1316   // Stack frame on entry.
1317   //  rsp[0]  : return address
1318   //  rsp[8]  : last_match_info (expected JSArray)
1319   //  rsp[16] : previous index
1320   //  rsp[24] : subject string
1321   //  rsp[32] : JSRegExp object
1322 
1323   enum RegExpExecStubArgumentIndices {
1324     JS_REG_EXP_OBJECT_ARGUMENT_INDEX,
1325     SUBJECT_STRING_ARGUMENT_INDEX,
1326     PREVIOUS_INDEX_ARGUMENT_INDEX,
1327     LAST_MATCH_INFO_ARGUMENT_INDEX,
1328     REG_EXP_EXEC_ARGUMENT_COUNT
1329   };
1330 
1331   StackArgumentsAccessor args(rsp, REG_EXP_EXEC_ARGUMENT_COUNT,
1332                               ARGUMENTS_DONT_CONTAIN_RECEIVER);
1333   Label runtime;
1334   // Ensure that a RegExp stack is allocated.
1335   ExternalReference address_of_regexp_stack_memory_address =
1336       ExternalReference::address_of_regexp_stack_memory_address(isolate());
1337   ExternalReference address_of_regexp_stack_memory_size =
1338       ExternalReference::address_of_regexp_stack_memory_size(isolate());
1339   __ Load(kScratchRegister, address_of_regexp_stack_memory_size);
1340   __ testp(kScratchRegister, kScratchRegister);
1341   __ j(zero, &runtime);
1342 
1343   // Check that the first argument is a JSRegExp object.
1344   __ movp(rax, args.GetArgumentOperand(JS_REG_EXP_OBJECT_ARGUMENT_INDEX));
1345   __ JumpIfSmi(rax, &runtime);
1346   __ CmpObjectType(rax, JS_REGEXP_TYPE, kScratchRegister);
1347   __ j(not_equal, &runtime);
1348 
1349   // Check that the RegExp has been compiled (data contains a fixed array).
1350   __ movp(rax, FieldOperand(rax, JSRegExp::kDataOffset));
1351   if (FLAG_debug_code) {
1352     Condition is_smi = masm->CheckSmi(rax);
1353     __ Check(NegateCondition(is_smi),
1354         kUnexpectedTypeForRegExpDataFixedArrayExpected);
1355     __ CmpObjectType(rax, FIXED_ARRAY_TYPE, kScratchRegister);
1356     __ Check(equal, kUnexpectedTypeForRegExpDataFixedArrayExpected);
1357   }
1358 
1359   // rax: RegExp data (FixedArray)
1360   // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
1361   __ SmiToInteger32(rbx, FieldOperand(rax, JSRegExp::kDataTagOffset));
1362   __ cmpl(rbx, Immediate(JSRegExp::IRREGEXP));
1363   __ j(not_equal, &runtime);
1364 
1365   // rax: RegExp data (FixedArray)
1366   // Check that the number of captures fit in the static offsets vector buffer.
1367   __ SmiToInteger32(rdx,
1368                     FieldOperand(rax, JSRegExp::kIrregexpCaptureCountOffset));
1369   // Check (number_of_captures + 1) * 2 <= offsets vector size
1370   // Or              number_of_captures <= offsets vector size / 2 - 1
1371   STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
1372   __ cmpl(rdx, Immediate(Isolate::kJSRegexpStaticOffsetsVectorSize / 2 - 1));
1373   __ j(above, &runtime);
1374 
1375   // Reset offset for possibly sliced string.
1376   __ Set(r14, 0);
1377   __ movp(rdi, args.GetArgumentOperand(SUBJECT_STRING_ARGUMENT_INDEX));
1378   __ JumpIfSmi(rdi, &runtime);
1379   __ movp(r15, rdi);  // Make a copy of the original subject string.
1380   __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
1381   __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
1382   // rax: RegExp data (FixedArray)
1383   // rdi: subject string
1384   // r15: subject string
1385   // Handle subject string according to its encoding and representation:
1386   // (1) Sequential two byte?  If yes, go to (9).
1387   // (2) Sequential one byte?  If yes, go to (6).
1388   // (3) Anything but sequential or cons?  If yes, go to (7).
1389   // (4) Cons string.  If the string is flat, replace subject with first string.
1390   //     Otherwise bailout.
1391   // (5a) Is subject sequential two byte?  If yes, go to (9).
1392   // (5b) Is subject external?  If yes, go to (8).
1393   // (6) One byte sequential.  Load regexp code for one byte.
1394   // (E) Carry on.
1395   /// [...]
1396 
1397   // Deferred code at the end of the stub:
1398   // (7) Not a long external string?  If yes, go to (10).
1399   // (8) External string.  Make it, offset-wise, look like a sequential string.
1400   // (8a) Is the external string one byte?  If yes, go to (6).
1401   // (9) Two byte sequential.  Load regexp code for one byte. Go to (E).
1402   // (10) Short external string or not a string?  If yes, bail out to runtime.
1403   // (11) Sliced string.  Replace subject with parent. Go to (5a).
1404 
1405   Label seq_one_byte_string /* 6 */, seq_two_byte_string /* 9 */,
1406         external_string /* 8 */, check_underlying /* 5a */,
1407         not_seq_nor_cons /* 7 */, check_code /* E */,
1408         not_long_external /* 10 */;
1409 
1410   // (1) Sequential two byte?  If yes, go to (9).
1411   __ andb(rbx, Immediate(kIsNotStringMask |
1412                          kStringRepresentationMask |
1413                          kStringEncodingMask |
1414                          kShortExternalStringMask));
1415   STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
1416   __ j(zero, &seq_two_byte_string);  // Go to (9).
1417 
1418   // (2) Sequential one byte?  If yes, go to (6).
1419   // Any other sequential string must be one byte.
1420   __ andb(rbx, Immediate(kIsNotStringMask |
1421                          kStringRepresentationMask |
1422                          kShortExternalStringMask));
1423   __ j(zero, &seq_one_byte_string, Label::kNear);  // Go to (6).
1424 
1425   // (3) Anything but sequential or cons?  If yes, go to (7).
1426   // We check whether the subject string is a cons, since sequential strings
1427   // have already been covered.
1428   STATIC_ASSERT(kConsStringTag < kExternalStringTag);
1429   STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
1430   STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
1431   STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
1432   __ cmpp(rbx, Immediate(kExternalStringTag));
1433   __ j(greater_equal, &not_seq_nor_cons);  // Go to (7).
1434 
1435   // (4) Cons string.  Check that it's flat.
1436   // Replace subject with first string and reload instance type.
1437   __ CompareRoot(FieldOperand(rdi, ConsString::kSecondOffset),
1438                  Heap::kempty_stringRootIndex);
1439   __ j(not_equal, &runtime);
1440   __ movp(rdi, FieldOperand(rdi, ConsString::kFirstOffset));
1441   __ bind(&check_underlying);
1442   __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
1443   __ movp(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
1444 
1445   // (5a) Is subject sequential two byte?  If yes, go to (9).
1446   __ testb(rbx, Immediate(kStringRepresentationMask | kStringEncodingMask));
1447   STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
1448   __ j(zero, &seq_two_byte_string);  // Go to (9).
1449   // (5b) Is subject external?  If yes, go to (8).
1450   __ testb(rbx, Immediate(kStringRepresentationMask));
1451   // The underlying external string is never a short external string.
1452   STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
1453   STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
1454   __ j(not_zero, &external_string);  // Go to (8)
1455 
1456   // (6) One byte sequential.  Load regexp code for one byte.
1457   __ bind(&seq_one_byte_string);
1458   // rax: RegExp data (FixedArray)
1459   __ movp(r11, FieldOperand(rax, JSRegExp::kDataAsciiCodeOffset));
1460   __ Set(rcx, 1);  // Type is one byte.
1461 
1462   // (E) Carry on.  String handling is done.
1463   __ bind(&check_code);
1464   // r11: irregexp code
1465   // Check that the irregexp code has been generated for the actual string
1466   // encoding. If it has, the field contains a code object otherwise it contains
1467   // smi (code flushing support)
1468   __ JumpIfSmi(r11, &runtime);
1469 
1470   // rdi: sequential subject string (or look-alike, external string)
1471   // r15: original subject string
1472   // rcx: encoding of subject string (1 if ASCII, 0 if two_byte);
1473   // r11: code
1474   // Load used arguments before starting to push arguments for call to native
1475   // RegExp code to avoid handling changing stack height.
1476   // We have to use r15 instead of rdi to load the length because rdi might
1477   // have been only made to look like a sequential string when it actually
1478   // is an external string.
1479   __ movp(rbx, args.GetArgumentOperand(PREVIOUS_INDEX_ARGUMENT_INDEX));
1480   __ JumpIfNotSmi(rbx, &runtime);
1481   __ SmiCompare(rbx, FieldOperand(r15, String::kLengthOffset));
1482   __ j(above_equal, &runtime);
1483   __ SmiToInteger64(rbx, rbx);
1484 
1485   // rdi: subject string
1486   // rbx: previous index
1487   // rcx: encoding of subject string (1 if ASCII 0 if two_byte);
1488   // r11: code
1489   // All checks done. Now push arguments for native regexp code.
1490   Counters* counters = isolate()->counters();
1491   __ IncrementCounter(counters->regexp_entry_native(), 1);
1492 
1493   // Isolates: note we add an additional parameter here (isolate pointer).
1494   static const int kRegExpExecuteArguments = 9;
1495   int argument_slots_on_stack =
1496       masm->ArgumentStackSlotsForCFunctionCall(kRegExpExecuteArguments);
1497   __ EnterApiExitFrame(argument_slots_on_stack);
1498 
1499   // Argument 9: Pass current isolate address.
1500   __ LoadAddress(kScratchRegister,
1501                  ExternalReference::isolate_address(isolate()));
1502   __ movq(Operand(rsp, (argument_slots_on_stack - 1) * kRegisterSize),
1503           kScratchRegister);
1504 
1505   // Argument 8: Indicate that this is a direct call from JavaScript.
1506   __ movq(Operand(rsp, (argument_slots_on_stack - 2) * kRegisterSize),
1507           Immediate(1));
1508 
1509   // Argument 7: Start (high end) of backtracking stack memory area.
1510   __ Move(kScratchRegister, address_of_regexp_stack_memory_address);
1511   __ movp(r9, Operand(kScratchRegister, 0));
1512   __ Move(kScratchRegister, address_of_regexp_stack_memory_size);
1513   __ addp(r9, Operand(kScratchRegister, 0));
1514   __ movq(Operand(rsp, (argument_slots_on_stack - 3) * kRegisterSize), r9);
1515 
1516   // Argument 6: Set the number of capture registers to zero to force global
1517   // regexps to behave as non-global.  This does not affect non-global regexps.
1518   // Argument 6 is passed in r9 on Linux and on the stack on Windows.
1519 #ifdef _WIN64
1520   __ movq(Operand(rsp, (argument_slots_on_stack - 4) * kRegisterSize),
1521           Immediate(0));
1522 #else
1523   __ Set(r9, 0);
1524 #endif
1525 
1526   // Argument 5: static offsets vector buffer.
1527   __ LoadAddress(
1528       r8, ExternalReference::address_of_static_offsets_vector(isolate()));
1529   // Argument 5 passed in r8 on Linux and on the stack on Windows.
1530 #ifdef _WIN64
1531   __ movq(Operand(rsp, (argument_slots_on_stack - 5) * kRegisterSize), r8);
1532 #endif
1533 
1534   // rdi: subject string
1535   // rbx: previous index
1536   // rcx: encoding of subject string (1 if ASCII 0 if two_byte);
1537   // r11: code
1538   // r14: slice offset
1539   // r15: original subject string
1540 
1541   // Argument 2: Previous index.
1542   __ movp(arg_reg_2, rbx);
1543 
1544   // Argument 4: End of string data
1545   // Argument 3: Start of string data
1546   Label setup_two_byte, setup_rest, got_length, length_not_from_slice;
1547   // Prepare start and end index of the input.
1548   // Load the length from the original sliced string if that is the case.
1549   __ addp(rbx, r14);
1550   __ SmiToInteger32(arg_reg_3, FieldOperand(r15, String::kLengthOffset));
1551   __ addp(r14, arg_reg_3);  // Using arg3 as scratch.
1552 
1553   // rbx: start index of the input
1554   // r14: end index of the input
1555   // r15: original subject string
1556   __ testb(rcx, rcx);  // Last use of rcx as encoding of subject string.
1557   __ j(zero, &setup_two_byte, Label::kNear);
1558   __ leap(arg_reg_4,
1559          FieldOperand(rdi, r14, times_1, SeqOneByteString::kHeaderSize));
1560   __ leap(arg_reg_3,
1561          FieldOperand(rdi, rbx, times_1, SeqOneByteString::kHeaderSize));
1562   __ jmp(&setup_rest, Label::kNear);
1563   __ bind(&setup_two_byte);
1564   __ leap(arg_reg_4,
1565          FieldOperand(rdi, r14, times_2, SeqTwoByteString::kHeaderSize));
1566   __ leap(arg_reg_3,
1567          FieldOperand(rdi, rbx, times_2, SeqTwoByteString::kHeaderSize));
1568   __ bind(&setup_rest);
1569 
1570   // Argument 1: Original subject string.
1571   // The original subject is in the previous stack frame. Therefore we have to
1572   // use rbp, which points exactly to one pointer size below the previous rsp.
1573   // (Because creating a new stack frame pushes the previous rbp onto the stack
1574   // and thereby moves up rsp by one kPointerSize.)
1575   __ movp(arg_reg_1, r15);
1576 
1577   // Locate the code entry and call it.
1578   __ addp(r11, Immediate(Code::kHeaderSize - kHeapObjectTag));
1579   __ call(r11);
1580 
1581   __ LeaveApiExitFrame(true);
1582 
1583   // Check the result.
1584   Label success;
1585   Label exception;
1586   __ cmpl(rax, Immediate(1));
1587   // We expect exactly one result since we force the called regexp to behave
1588   // as non-global.
1589   __ j(equal, &success, Label::kNear);
1590   __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::EXCEPTION));
1591   __ j(equal, &exception);
1592   __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::FAILURE));
1593   // If none of the above, it can only be retry.
1594   // Handle that in the runtime system.
1595   __ j(not_equal, &runtime);
1596 
1597   // For failure return null.
1598   __ LoadRoot(rax, Heap::kNullValueRootIndex);
1599   __ ret(REG_EXP_EXEC_ARGUMENT_COUNT * kPointerSize);
1600 
1601   // Load RegExp data.
1602   __ bind(&success);
1603   __ movp(rax, args.GetArgumentOperand(JS_REG_EXP_OBJECT_ARGUMENT_INDEX));
1604   __ movp(rcx, FieldOperand(rax, JSRegExp::kDataOffset));
1605   __ SmiToInteger32(rax,
1606                     FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset));
1607   // Calculate number of capture registers (number_of_captures + 1) * 2.
1608   __ leal(rdx, Operand(rax, rax, times_1, 2));
1609 
1610   // rdx: Number of capture registers
1611   // Check that the fourth object is a JSArray object.
1612   __ movp(r15, args.GetArgumentOperand(LAST_MATCH_INFO_ARGUMENT_INDEX));
1613   __ JumpIfSmi(r15, &runtime);
1614   __ CmpObjectType(r15, JS_ARRAY_TYPE, kScratchRegister);
1615   __ j(not_equal, &runtime);
1616   // Check that the JSArray is in fast case.
1617   __ movp(rbx, FieldOperand(r15, JSArray::kElementsOffset));
1618   __ movp(rax, FieldOperand(rbx, HeapObject::kMapOffset));
1619   __ CompareRoot(rax, Heap::kFixedArrayMapRootIndex);
1620   __ j(not_equal, &runtime);
1621   // Check that the last match info has space for the capture registers and the
1622   // additional information. Ensure no overflow in add.
1623   STATIC_ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset);
1624   __ SmiToInteger32(rax, FieldOperand(rbx, FixedArray::kLengthOffset));
1625   __ subl(rax, Immediate(RegExpImpl::kLastMatchOverhead));
1626   __ cmpl(rdx, rax);
1627   __ j(greater, &runtime);
1628 
1629   // rbx: last_match_info backing store (FixedArray)
1630   // rdx: number of capture registers
1631   // Store the capture count.
1632   __ Integer32ToSmi(kScratchRegister, rdx);
1633   __ movp(FieldOperand(rbx, RegExpImpl::kLastCaptureCountOffset),
1634           kScratchRegister);
1635   // Store last subject and last input.
1636   __ movp(rax, args.GetArgumentOperand(SUBJECT_STRING_ARGUMENT_INDEX));
1637   __ movp(FieldOperand(rbx, RegExpImpl::kLastSubjectOffset), rax);
1638   __ movp(rcx, rax);
1639   __ RecordWriteField(rbx,
1640                       RegExpImpl::kLastSubjectOffset,
1641                       rax,
1642                       rdi,
1643                       kDontSaveFPRegs);
1644   __ movp(rax, rcx);
1645   __ movp(FieldOperand(rbx, RegExpImpl::kLastInputOffset), rax);
1646   __ RecordWriteField(rbx,
1647                       RegExpImpl::kLastInputOffset,
1648                       rax,
1649                       rdi,
1650                       kDontSaveFPRegs);
1651 
1652   // Get the static offsets vector filled by the native regexp code.
1653   __ LoadAddress(
1654       rcx, ExternalReference::address_of_static_offsets_vector(isolate()));
1655 
1656   // rbx: last_match_info backing store (FixedArray)
1657   // rcx: offsets vector
1658   // rdx: number of capture registers
1659   Label next_capture, done;
1660   // Capture register counter starts from number of capture registers and
1661   // counts down until wraping after zero.
1662   __ bind(&next_capture);
1663   __ subp(rdx, Immediate(1));
1664   __ j(negative, &done, Label::kNear);
1665   // Read the value from the static offsets vector buffer and make it a smi.
1666   __ movl(rdi, Operand(rcx, rdx, times_int_size, 0));
1667   __ Integer32ToSmi(rdi, rdi);
1668   // Store the smi value in the last match info.
1669   __ movp(FieldOperand(rbx,
1670                        rdx,
1671                        times_pointer_size,
1672                        RegExpImpl::kFirstCaptureOffset),
1673           rdi);
1674   __ jmp(&next_capture);
1675   __ bind(&done);
1676 
1677   // Return last match info.
1678   __ movp(rax, r15);
1679   __ ret(REG_EXP_EXEC_ARGUMENT_COUNT * kPointerSize);
1680 
1681   __ bind(&exception);
1682   // Result must now be exception. If there is no pending exception already a
1683   // stack overflow (on the backtrack stack) was detected in RegExp code but
1684   // haven't created the exception yet. Handle that in the runtime system.
1685   // TODO(592): Rerunning the RegExp to get the stack overflow exception.
1686   ExternalReference pending_exception_address(
1687       Isolate::kPendingExceptionAddress, isolate());
1688   Operand pending_exception_operand =
1689       masm->ExternalOperand(pending_exception_address, rbx);
1690   __ movp(rax, pending_exception_operand);
1691   __ LoadRoot(rdx, Heap::kTheHoleValueRootIndex);
1692   __ cmpp(rax, rdx);
1693   __ j(equal, &runtime);
1694   __ movp(pending_exception_operand, rdx);
1695 
1696   __ CompareRoot(rax, Heap::kTerminationExceptionRootIndex);
1697   Label termination_exception;
1698   __ j(equal, &termination_exception, Label::kNear);
1699   __ Throw(rax);
1700 
1701   __ bind(&termination_exception);
1702   __ ThrowUncatchable(rax);
1703 
1704   // Do the runtime call to execute the regexp.
1705   __ bind(&runtime);
1706   __ TailCallRuntime(Runtime::kHiddenRegExpExec, 4, 1);
1707 
1708   // Deferred code for string handling.
1709   // (7) Not a long external string?  If yes, go to (10).
1710   __ bind(&not_seq_nor_cons);
1711   // Compare flags are still set from (3).
1712   __ j(greater, &not_long_external, Label::kNear);  // Go to (10).
1713 
1714   // (8) External string.  Short external strings have been ruled out.
1715   __ bind(&external_string);
1716   __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
1717   __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
1718   if (FLAG_debug_code) {
1719     // Assert that we do not have a cons or slice (indirect strings) here.
1720     // Sequential strings have already been ruled out.
1721     __ testb(rbx, Immediate(kIsIndirectStringMask));
1722     __ Assert(zero, kExternalStringExpectedButNotFound);
1723   }
1724   __ movp(rdi, FieldOperand(rdi, ExternalString::kResourceDataOffset));
1725   // Move the pointer so that offset-wise, it looks like a sequential string.
1726   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
1727   __ subp(rdi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
1728   STATIC_ASSERT(kTwoByteStringTag == 0);
1729   // (8a) Is the external string one byte?  If yes, go to (6).
1730   __ testb(rbx, Immediate(kStringEncodingMask));
1731   __ j(not_zero, &seq_one_byte_string);  // Goto (6).
1732 
1733   // rdi: subject string (flat two-byte)
1734   // rax: RegExp data (FixedArray)
1735   // (9) Two byte sequential.  Load regexp code for one byte.  Go to (E).
1736   __ bind(&seq_two_byte_string);
1737   __ movp(r11, FieldOperand(rax, JSRegExp::kDataUC16CodeOffset));
1738   __ Set(rcx, 0);  // Type is two byte.
1739   __ jmp(&check_code);  // Go to (E).
1740 
1741   // (10) Not a string or a short external string?  If yes, bail out to runtime.
1742   __ bind(&not_long_external);
1743   // Catch non-string subject or short external string.
1744   STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
1745   __ testb(rbx, Immediate(kIsNotStringMask | kShortExternalStringMask));
1746   __ j(not_zero, &runtime);
1747 
1748   // (11) Sliced string.  Replace subject with parent. Go to (5a).
1749   // Load offset into r14 and replace subject string with parent.
1750   __ SmiToInteger32(r14, FieldOperand(rdi, SlicedString::kOffsetOffset));
1751   __ movp(rdi, FieldOperand(rdi, SlicedString::kParentOffset));
1752   __ jmp(&check_underlying);
1753 #endif  // V8_INTERPRETED_REGEXP
1754 }
1755 
1756 
NegativeComparisonResult(Condition cc)1757 static int NegativeComparisonResult(Condition cc) {
1758   ASSERT(cc != equal);
1759   ASSERT((cc == less) || (cc == less_equal)
1760       || (cc == greater) || (cc == greater_equal));
1761   return (cc == greater || cc == greater_equal) ? LESS : GREATER;
1762 }
1763 
1764 
CheckInputType(MacroAssembler * masm,Register input,CompareIC::State expected,Label * fail)1765 static void CheckInputType(MacroAssembler* masm,
1766                            Register input,
1767                            CompareIC::State expected,
1768                            Label* fail) {
1769   Label ok;
1770   if (expected == CompareIC::SMI) {
1771     __ JumpIfNotSmi(input, fail);
1772   } else if (expected == CompareIC::NUMBER) {
1773     __ JumpIfSmi(input, &ok);
1774     __ CompareMap(input, masm->isolate()->factory()->heap_number_map());
1775     __ j(not_equal, fail);
1776   }
1777   // We could be strict about internalized/non-internalized here, but as long as
1778   // hydrogen doesn't care, the stub doesn't have to care either.
1779   __ bind(&ok);
1780 }
1781 
1782 
BranchIfNotInternalizedString(MacroAssembler * masm,Label * label,Register object,Register scratch)1783 static void BranchIfNotInternalizedString(MacroAssembler* masm,
1784                                           Label* label,
1785                                           Register object,
1786                                           Register scratch) {
1787   __ JumpIfSmi(object, label);
1788   __ movp(scratch, FieldOperand(object, HeapObject::kMapOffset));
1789   __ movzxbp(scratch,
1790              FieldOperand(scratch, Map::kInstanceTypeOffset));
1791   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
1792   __ testb(scratch, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
1793   __ j(not_zero, label);
1794 }
1795 
1796 
GenerateGeneric(MacroAssembler * masm)1797 void ICCompareStub::GenerateGeneric(MacroAssembler* masm) {
1798   Label check_unequal_objects, done;
1799   Condition cc = GetCondition();
1800   Factory* factory = isolate()->factory();
1801 
1802   Label miss;
1803   CheckInputType(masm, rdx, left_, &miss);
1804   CheckInputType(masm, rax, right_, &miss);
1805 
1806   // Compare two smis.
1807   Label non_smi, smi_done;
1808   __ JumpIfNotBothSmi(rax, rdx, &non_smi);
1809   __ subp(rdx, rax);
1810   __ j(no_overflow, &smi_done);
1811   __ notp(rdx);  // Correct sign in case of overflow. rdx cannot be 0 here.
1812   __ bind(&smi_done);
1813   __ movp(rax, rdx);
1814   __ ret(0);
1815   __ bind(&non_smi);
1816 
1817   // The compare stub returns a positive, negative, or zero 64-bit integer
1818   // value in rax, corresponding to result of comparing the two inputs.
1819   // NOTICE! This code is only reached after a smi-fast-case check, so
1820   // it is certain that at least one operand isn't a smi.
1821 
1822   // Two identical objects are equal unless they are both NaN or undefined.
1823   {
1824     Label not_identical;
1825     __ cmpp(rax, rdx);
1826     __ j(not_equal, &not_identical, Label::kNear);
1827 
1828     if (cc != equal) {
1829       // Check for undefined.  undefined OP undefined is false even though
1830       // undefined == undefined.
1831       Label check_for_nan;
1832       __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex);
1833       __ j(not_equal, &check_for_nan, Label::kNear);
1834       __ Set(rax, NegativeComparisonResult(cc));
1835       __ ret(0);
1836       __ bind(&check_for_nan);
1837     }
1838 
1839     // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
1840     // so we do the second best thing - test it ourselves.
1841     Label heap_number;
1842     // If it's not a heap number, then return equal for (in)equality operator.
1843     __ Cmp(FieldOperand(rdx, HeapObject::kMapOffset),
1844            factory->heap_number_map());
1845     __ j(equal, &heap_number, Label::kNear);
1846     if (cc != equal) {
1847       // Call runtime on identical objects.  Otherwise return equal.
1848       __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx);
1849       __ j(above_equal, &not_identical, Label::kNear);
1850     }
1851     __ Set(rax, EQUAL);
1852     __ ret(0);
1853 
1854     __ bind(&heap_number);
1855     // It is a heap number, so return  equal if it's not NaN.
1856     // For NaN, return 1 for every condition except greater and
1857     // greater-equal.  Return -1 for them, so the comparison yields
1858     // false for all conditions except not-equal.
1859     __ Set(rax, EQUAL);
1860     __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
1861     __ ucomisd(xmm0, xmm0);
1862     __ setcc(parity_even, rax);
1863     // rax is 0 for equal non-NaN heapnumbers, 1 for NaNs.
1864     if (cc == greater_equal || cc == greater) {
1865       __ negp(rax);
1866     }
1867     __ ret(0);
1868 
1869     __ bind(&not_identical);
1870   }
1871 
1872   if (cc == equal) {  // Both strict and non-strict.
1873     Label slow;  // Fallthrough label.
1874 
1875     // If we're doing a strict equality comparison, we don't have to do
1876     // type conversion, so we generate code to do fast comparison for objects
1877     // and oddballs. Non-smi numbers and strings still go through the usual
1878     // slow-case code.
1879     if (strict()) {
1880       // If either is a Smi (we know that not both are), then they can only
1881       // be equal if the other is a HeapNumber. If so, use the slow case.
1882       {
1883         Label not_smis;
1884         __ SelectNonSmi(rbx, rax, rdx, &not_smis);
1885 
1886         // Check if the non-smi operand is a heap number.
1887         __ Cmp(FieldOperand(rbx, HeapObject::kMapOffset),
1888                factory->heap_number_map());
1889         // If heap number, handle it in the slow case.
1890         __ j(equal, &slow);
1891         // Return non-equal.  ebx (the lower half of rbx) is not zero.
1892         __ movp(rax, rbx);
1893         __ ret(0);
1894 
1895         __ bind(&not_smis);
1896       }
1897 
1898       // If either operand is a JSObject or an oddball value, then they are not
1899       // equal since their pointers are different
1900       // There is no test for undetectability in strict equality.
1901 
1902       // If the first object is a JS object, we have done pointer comparison.
1903       STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
1904       Label first_non_object;
1905       __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx);
1906       __ j(below, &first_non_object, Label::kNear);
1907       // Return non-zero (rax (not rax) is not zero)
1908       Label return_not_equal;
1909       STATIC_ASSERT(kHeapObjectTag != 0);
1910       __ bind(&return_not_equal);
1911       __ ret(0);
1912 
1913       __ bind(&first_non_object);
1914       // Check for oddballs: true, false, null, undefined.
1915       __ CmpInstanceType(rcx, ODDBALL_TYPE);
1916       __ j(equal, &return_not_equal);
1917 
1918       __ CmpObjectType(rdx, FIRST_SPEC_OBJECT_TYPE, rcx);
1919       __ j(above_equal, &return_not_equal);
1920 
1921       // Check for oddballs: true, false, null, undefined.
1922       __ CmpInstanceType(rcx, ODDBALL_TYPE);
1923       __ j(equal, &return_not_equal);
1924 
1925       // Fall through to the general case.
1926     }
1927     __ bind(&slow);
1928   }
1929 
1930   // Generate the number comparison code.
1931   Label non_number_comparison;
1932   Label unordered;
1933   FloatingPointHelper::LoadSSE2UnknownOperands(masm, &non_number_comparison);
1934   __ xorl(rax, rax);
1935   __ xorl(rcx, rcx);
1936   __ ucomisd(xmm0, xmm1);
1937 
1938   // Don't base result on EFLAGS when a NaN is involved.
1939   __ j(parity_even, &unordered, Label::kNear);
1940   // Return a result of -1, 0, or 1, based on EFLAGS.
1941   __ setcc(above, rax);
1942   __ setcc(below, rcx);
1943   __ subp(rax, rcx);
1944   __ ret(0);
1945 
1946   // If one of the numbers was NaN, then the result is always false.
1947   // The cc is never not-equal.
1948   __ bind(&unordered);
1949   ASSERT(cc != not_equal);
1950   if (cc == less || cc == less_equal) {
1951     __ Set(rax, 1);
1952   } else {
1953     __ Set(rax, -1);
1954   }
1955   __ ret(0);
1956 
1957   // The number comparison code did not provide a valid result.
1958   __ bind(&non_number_comparison);
1959 
1960   // Fast negative check for internalized-to-internalized equality.
1961   Label check_for_strings;
1962   if (cc == equal) {
1963     BranchIfNotInternalizedString(
1964         masm, &check_for_strings, rax, kScratchRegister);
1965     BranchIfNotInternalizedString(
1966         masm, &check_for_strings, rdx, kScratchRegister);
1967 
1968     // We've already checked for object identity, so if both operands are
1969     // internalized strings they aren't equal. Register rax (not rax) already
1970     // holds a non-zero value, which indicates not equal, so just return.
1971     __ ret(0);
1972   }
1973 
1974   __ bind(&check_for_strings);
1975 
1976   __ JumpIfNotBothSequentialAsciiStrings(
1977       rdx, rax, rcx, rbx, &check_unequal_objects);
1978 
1979   // Inline comparison of ASCII strings.
1980   if (cc == equal) {
1981     StringCompareStub::GenerateFlatAsciiStringEquals(masm,
1982                                                      rdx,
1983                                                      rax,
1984                                                      rcx,
1985                                                      rbx);
1986   } else {
1987     StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
1988                                                        rdx,
1989                                                        rax,
1990                                                        rcx,
1991                                                        rbx,
1992                                                        rdi,
1993                                                        r8);
1994   }
1995 
1996 #ifdef DEBUG
1997   __ Abort(kUnexpectedFallThroughFromStringComparison);
1998 #endif
1999 
2000   __ bind(&check_unequal_objects);
2001   if (cc == equal && !strict()) {
2002     // Not strict equality.  Objects are unequal if
2003     // they are both JSObjects and not undetectable,
2004     // and their pointers are different.
2005     Label not_both_objects, return_unequal;
2006     // At most one is a smi, so we can test for smi by adding the two.
2007     // A smi plus a heap object has the low bit set, a heap object plus
2008     // a heap object has the low bit clear.
2009     STATIC_ASSERT(kSmiTag == 0);
2010     STATIC_ASSERT(kSmiTagMask == 1);
2011     __ leap(rcx, Operand(rax, rdx, times_1, 0));
2012     __ testb(rcx, Immediate(kSmiTagMask));
2013     __ j(not_zero, &not_both_objects, Label::kNear);
2014     __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rbx);
2015     __ j(below, &not_both_objects, Label::kNear);
2016     __ CmpObjectType(rdx, FIRST_SPEC_OBJECT_TYPE, rcx);
2017     __ j(below, &not_both_objects, Label::kNear);
2018     __ testb(FieldOperand(rbx, Map::kBitFieldOffset),
2019              Immediate(1 << Map::kIsUndetectable));
2020     __ j(zero, &return_unequal, Label::kNear);
2021     __ testb(FieldOperand(rcx, Map::kBitFieldOffset),
2022              Immediate(1 << Map::kIsUndetectable));
2023     __ j(zero, &return_unequal, Label::kNear);
2024     // The objects are both undetectable, so they both compare as the value
2025     // undefined, and are equal.
2026     __ Set(rax, EQUAL);
2027     __ bind(&return_unequal);
2028     // Return non-equal by returning the non-zero object pointer in rax,
2029     // or return equal if we fell through to here.
2030     __ ret(0);
2031     __ bind(&not_both_objects);
2032   }
2033 
2034   // Push arguments below the return address to prepare jump to builtin.
2035   __ PopReturnAddressTo(rcx);
2036   __ Push(rdx);
2037   __ Push(rax);
2038 
2039   // Figure out which native to call and setup the arguments.
2040   Builtins::JavaScript builtin;
2041   if (cc == equal) {
2042     builtin = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
2043   } else {
2044     builtin = Builtins::COMPARE;
2045     __ Push(Smi::FromInt(NegativeComparisonResult(cc)));
2046   }
2047 
2048   __ PushReturnAddressFrom(rcx);
2049 
2050   // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
2051   // tagged as a small integer.
2052   __ InvokeBuiltin(builtin, JUMP_FUNCTION);
2053 
2054   __ bind(&miss);
2055   GenerateMiss(masm);
2056 }
2057 
2058 
GenerateRecordCallTarget(MacroAssembler * masm)2059 static void GenerateRecordCallTarget(MacroAssembler* masm) {
2060   // Cache the called function in a feedback vector slot.  Cache states
2061   // are uninitialized, monomorphic (indicated by a JSFunction), and
2062   // megamorphic.
2063   // rax : number of arguments to the construct function
2064   // rbx : Feedback vector
2065   // rdx : slot in feedback vector (Smi)
2066   // rdi : the function to call
2067   Isolate* isolate = masm->isolate();
2068   Label initialize, done, miss, megamorphic, not_array_function,
2069       done_no_smi_convert;
2070 
2071   // Load the cache state into rcx.
2072   __ SmiToInteger32(rdx, rdx);
2073   __ movp(rcx, FieldOperand(rbx, rdx, times_pointer_size,
2074                             FixedArray::kHeaderSize));
2075 
2076   // A monomorphic cache hit or an already megamorphic state: invoke the
2077   // function without changing the state.
2078   __ cmpp(rcx, rdi);
2079   __ j(equal, &done);
2080   __ Cmp(rcx, TypeFeedbackInfo::MegamorphicSentinel(isolate));
2081   __ j(equal, &done);
2082 
2083   if (!FLAG_pretenuring_call_new) {
2084     // If we came here, we need to see if we are the array function.
2085     // If we didn't have a matching function, and we didn't find the megamorph
2086     // sentinel, then we have in the slot either some other function or an
2087     // AllocationSite. Do a map check on the object in rcx.
2088     Handle<Map> allocation_site_map =
2089         masm->isolate()->factory()->allocation_site_map();
2090     __ Cmp(FieldOperand(rcx, 0), allocation_site_map);
2091     __ j(not_equal, &miss);
2092 
2093     // Make sure the function is the Array() function
2094     __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, rcx);
2095     __ cmpp(rdi, rcx);
2096     __ j(not_equal, &megamorphic);
2097     __ jmp(&done);
2098   }
2099 
2100   __ bind(&miss);
2101 
2102   // A monomorphic miss (i.e, here the cache is not uninitialized) goes
2103   // megamorphic.
2104   __ Cmp(rcx, TypeFeedbackInfo::UninitializedSentinel(isolate));
2105   __ j(equal, &initialize);
2106   // MegamorphicSentinel is an immortal immovable object (undefined) so no
2107   // write-barrier is needed.
2108   __ bind(&megamorphic);
2109   __ Move(FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize),
2110           TypeFeedbackInfo::MegamorphicSentinel(isolate));
2111   __ jmp(&done);
2112 
2113   // An uninitialized cache is patched with the function or sentinel to
2114   // indicate the ElementsKind if function is the Array constructor.
2115   __ bind(&initialize);
2116 
2117   if (!FLAG_pretenuring_call_new) {
2118     // Make sure the function is the Array() function
2119     __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, rcx);
2120     __ cmpp(rdi, rcx);
2121     __ j(not_equal, &not_array_function);
2122 
2123     {
2124       FrameScope scope(masm, StackFrame::INTERNAL);
2125 
2126       // Arguments register must be smi-tagged to call out.
2127       __ Integer32ToSmi(rax, rax);
2128       __ Push(rax);
2129       __ Push(rdi);
2130       __ Integer32ToSmi(rdx, rdx);
2131       __ Push(rdx);
2132       __ Push(rbx);
2133 
2134       CreateAllocationSiteStub create_stub(isolate);
2135       __ CallStub(&create_stub);
2136 
2137       __ Pop(rbx);
2138       __ Pop(rdx);
2139       __ Pop(rdi);
2140       __ Pop(rax);
2141       __ SmiToInteger32(rax, rax);
2142     }
2143     __ jmp(&done_no_smi_convert);
2144 
2145     __ bind(&not_array_function);
2146   }
2147 
2148   __ movp(FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize),
2149           rdi);
2150 
2151   // We won't need rdx or rbx anymore, just save rdi
2152   __ Push(rdi);
2153   __ Push(rbx);
2154   __ Push(rdx);
2155   __ RecordWriteArray(rbx, rdi, rdx, kDontSaveFPRegs,
2156                       EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
2157   __ Pop(rdx);
2158   __ Pop(rbx);
2159   __ Pop(rdi);
2160 
2161   __ bind(&done);
2162   __ Integer32ToSmi(rdx, rdx);
2163 
2164   __ bind(&done_no_smi_convert);
2165 }
2166 
2167 
EmitContinueIfStrictOrNative(MacroAssembler * masm,Label * cont)2168 static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
2169   // Do not transform the receiver for strict mode functions.
2170   __ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
2171   __ testb(FieldOperand(rcx, SharedFunctionInfo::kStrictModeByteOffset),
2172            Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
2173   __ j(not_equal, cont);
2174 
2175   // Do not transform the receiver for natives.
2176   // SharedFunctionInfo is already loaded into rcx.
2177   __ testb(FieldOperand(rcx, SharedFunctionInfo::kNativeByteOffset),
2178            Immediate(1 << SharedFunctionInfo::kNativeBitWithinByte));
2179   __ j(not_equal, cont);
2180 }
2181 
2182 
EmitSlowCase(Isolate * isolate,MacroAssembler * masm,StackArgumentsAccessor * args,int argc,Label * non_function)2183 static void EmitSlowCase(Isolate* isolate,
2184                          MacroAssembler* masm,
2185                          StackArgumentsAccessor* args,
2186                          int argc,
2187                          Label* non_function) {
2188   // Check for function proxy.
2189   __ CmpInstanceType(rcx, JS_FUNCTION_PROXY_TYPE);
2190   __ j(not_equal, non_function);
2191   __ PopReturnAddressTo(rcx);
2192   __ Push(rdi);  // put proxy as additional argument under return address
2193   __ PushReturnAddressFrom(rcx);
2194   __ Set(rax, argc + 1);
2195   __ Set(rbx, 0);
2196   __ GetBuiltinEntry(rdx, Builtins::CALL_FUNCTION_PROXY);
2197   {
2198     Handle<Code> adaptor =
2199         masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
2200     __ jmp(adaptor, RelocInfo::CODE_TARGET);
2201   }
2202 
2203   // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
2204   // of the original receiver from the call site).
2205   __ bind(non_function);
2206   __ movp(args->GetReceiverOperand(), rdi);
2207   __ Set(rax, argc);
2208   __ Set(rbx, 0);
2209   __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION);
2210   Handle<Code> adaptor =
2211       isolate->builtins()->ArgumentsAdaptorTrampoline();
2212   __ Jump(adaptor, RelocInfo::CODE_TARGET);
2213 }
2214 
2215 
EmitWrapCase(MacroAssembler * masm,StackArgumentsAccessor * args,Label * cont)2216 static void EmitWrapCase(MacroAssembler* masm,
2217                          StackArgumentsAccessor* args,
2218                          Label* cont) {
2219   // Wrap the receiver and patch it back onto the stack.
2220   { FrameScope frame_scope(masm, StackFrame::INTERNAL);
2221     __ Push(rdi);
2222     __ Push(rax);
2223     __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
2224     __ Pop(rdi);
2225   }
2226   __ movp(args->GetReceiverOperand(), rax);
2227   __ jmp(cont);
2228 }
2229 
2230 
CallFunctionNoFeedback(MacroAssembler * masm,int argc,bool needs_checks,bool call_as_method)2231 static void CallFunctionNoFeedback(MacroAssembler* masm,
2232                                    int argc, bool needs_checks,
2233                                    bool call_as_method) {
2234   // rdi : the function to call
2235 
2236   // wrap_and_call can only be true if we are compiling a monomorphic method.
2237   Isolate* isolate = masm->isolate();
2238   Label slow, non_function, wrap, cont;
2239   StackArgumentsAccessor args(rsp, argc);
2240 
2241   if (needs_checks) {
2242     // Check that the function really is a JavaScript function.
2243     __ JumpIfSmi(rdi, &non_function);
2244 
2245     // Goto slow case if we do not have a function.
2246     __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
2247     __ j(not_equal, &slow);
2248   }
2249 
2250   // Fast-case: Just invoke the function.
2251   ParameterCount actual(argc);
2252 
2253   if (call_as_method) {
2254     if (needs_checks) {
2255       EmitContinueIfStrictOrNative(masm, &cont);
2256     }
2257 
2258     // Load the receiver from the stack.
2259     __ movp(rax, args.GetReceiverOperand());
2260 
2261     if (needs_checks) {
2262       __ JumpIfSmi(rax, &wrap);
2263 
2264       __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx);
2265       __ j(below, &wrap);
2266     } else {
2267       __ jmp(&wrap);
2268     }
2269 
2270     __ bind(&cont);
2271   }
2272 
2273   __ InvokeFunction(rdi, actual, JUMP_FUNCTION, NullCallWrapper());
2274 
2275   if (needs_checks) {
2276     // Slow-case: Non-function called.
2277     __ bind(&slow);
2278     EmitSlowCase(isolate, masm, &args, argc, &non_function);
2279   }
2280 
2281   if (call_as_method) {
2282     __ bind(&wrap);
2283     EmitWrapCase(masm, &args, &cont);
2284   }
2285 }
2286 
2287 
Generate(MacroAssembler * masm)2288 void CallFunctionStub::Generate(MacroAssembler* masm) {
2289   CallFunctionNoFeedback(masm, argc_, NeedsChecks(), CallAsMethod());
2290 }
2291 
2292 
Generate(MacroAssembler * masm)2293 void CallConstructStub::Generate(MacroAssembler* masm) {
2294   // rax : number of arguments
2295   // rbx : feedback vector
2296   // rdx : (only if rbx is not the megamorphic symbol) slot in feedback
2297   //       vector (Smi)
2298   // rdi : constructor function
2299   Label slow, non_function_call;
2300 
2301   // Check that function is not a smi.
2302   __ JumpIfSmi(rdi, &non_function_call);
2303   // Check that function is a JSFunction.
2304   __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
2305   __ j(not_equal, &slow);
2306 
2307   if (RecordCallTarget()) {
2308     GenerateRecordCallTarget(masm);
2309 
2310     __ SmiToInteger32(rdx, rdx);
2311     if (FLAG_pretenuring_call_new) {
2312       // Put the AllocationSite from the feedback vector into ebx.
2313       // By adding kPointerSize we encode that we know the AllocationSite
2314       // entry is at the feedback vector slot given by rdx + 1.
2315       __ movp(rbx, FieldOperand(rbx, rdx, times_pointer_size,
2316                                 FixedArray::kHeaderSize + kPointerSize));
2317     } else {
2318       Label feedback_register_initialized;
2319       // Put the AllocationSite from the feedback vector into rbx, or undefined.
2320       __ movp(rbx, FieldOperand(rbx, rdx, times_pointer_size,
2321                                 FixedArray::kHeaderSize));
2322       __ CompareRoot(FieldOperand(rbx, 0), Heap::kAllocationSiteMapRootIndex);
2323       __ j(equal, &feedback_register_initialized);
2324       __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
2325       __ bind(&feedback_register_initialized);
2326     }
2327 
2328     __ AssertUndefinedOrAllocationSite(rbx);
2329   }
2330 
2331   // Jump to the function-specific construct stub.
2332   Register jmp_reg = rcx;
2333   __ movp(jmp_reg, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
2334   __ movp(jmp_reg, FieldOperand(jmp_reg,
2335                                 SharedFunctionInfo::kConstructStubOffset));
2336   __ leap(jmp_reg, FieldOperand(jmp_reg, Code::kHeaderSize));
2337   __ jmp(jmp_reg);
2338 
2339   // rdi: called object
2340   // rax: number of arguments
2341   // rcx: object map
2342   Label do_call;
2343   __ bind(&slow);
2344   __ CmpInstanceType(rcx, JS_FUNCTION_PROXY_TYPE);
2345   __ j(not_equal, &non_function_call);
2346   __ GetBuiltinEntry(rdx, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
2347   __ jmp(&do_call);
2348 
2349   __ bind(&non_function_call);
2350   __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
2351   __ bind(&do_call);
2352   // Set expected number of arguments to zero (not changing rax).
2353   __ Set(rbx, 0);
2354   __ Jump(isolate()->builtins()->ArgumentsAdaptorTrampoline(),
2355           RelocInfo::CODE_TARGET);
2356 }
2357 
2358 
EmitLoadTypeFeedbackVector(MacroAssembler * masm,Register vector)2359 static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
2360   __ movp(vector, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
2361   __ movp(vector, FieldOperand(vector, JSFunction::kSharedFunctionInfoOffset));
2362   __ movp(vector, FieldOperand(vector,
2363                                SharedFunctionInfo::kFeedbackVectorOffset));
2364 }
2365 
2366 
Generate(MacroAssembler * masm)2367 void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
2368   // rdi - function
2369   // rdx - slot id (as integer)
2370   Label miss;
2371   int argc = state_.arg_count();
2372   ParameterCount actual(argc);
2373 
2374   EmitLoadTypeFeedbackVector(masm, rbx);
2375   __ SmiToInteger32(rdx, rdx);
2376 
2377   __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, rcx);
2378   __ cmpq(rdi, rcx);
2379   __ j(not_equal, &miss);
2380 
2381   __ movp(rax, Immediate(arg_count()));
2382   __ movp(rcx, FieldOperand(rbx, rdx, times_pointer_size,
2383                             FixedArray::kHeaderSize));
2384   // Verify that ecx contains an AllocationSite
2385   Factory* factory = masm->isolate()->factory();
2386   __ Cmp(FieldOperand(rcx, HeapObject::kMapOffset),
2387          factory->allocation_site_map());
2388   __ j(not_equal, &miss);
2389 
2390   __ movp(rbx, rcx);
2391   ArrayConstructorStub stub(masm->isolate(), arg_count());
2392   __ TailCallStub(&stub);
2393 
2394   __ bind(&miss);
2395   GenerateMiss(masm, IC::kCallIC_Customization_Miss);
2396 
2397   // The slow case, we need this no matter what to complete a call after a miss.
2398   CallFunctionNoFeedback(masm,
2399                          arg_count(),
2400                          true,
2401                          CallAsMethod());
2402 
2403   // Unreachable.
2404   __ int3();
2405 }
2406 
2407 
Generate(MacroAssembler * masm)2408 void CallICStub::Generate(MacroAssembler* masm) {
2409   // rdi - function
2410   // rbx - vector
2411   // rdx - slot id
2412   Isolate* isolate = masm->isolate();
2413   Label extra_checks_or_miss, slow_start;
2414   Label slow, non_function, wrap, cont;
2415   Label have_js_function;
2416   int argc = state_.arg_count();
2417   StackArgumentsAccessor args(rsp, argc);
2418   ParameterCount actual(argc);
2419 
2420   EmitLoadTypeFeedbackVector(masm, rbx);
2421 
2422   // The checks. First, does rdi match the recorded monomorphic target?
2423   __ SmiToInteger32(rdx, rdx);
2424   __ cmpq(rdi, FieldOperand(rbx, rdx, times_pointer_size,
2425                             FixedArray::kHeaderSize));
2426   __ j(not_equal, &extra_checks_or_miss);
2427 
2428   __ bind(&have_js_function);
2429   if (state_.CallAsMethod()) {
2430     EmitContinueIfStrictOrNative(masm, &cont);
2431 
2432     // Load the receiver from the stack.
2433     __ movp(rax, args.GetReceiverOperand());
2434 
2435     __ JumpIfSmi(rax, &wrap);
2436 
2437     __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx);
2438     __ j(below, &wrap);
2439 
2440     __ bind(&cont);
2441   }
2442 
2443   __ InvokeFunction(rdi, actual, JUMP_FUNCTION, NullCallWrapper());
2444 
2445   __ bind(&slow);
2446   EmitSlowCase(isolate, masm, &args, argc, &non_function);
2447 
2448   if (state_.CallAsMethod()) {
2449     __ bind(&wrap);
2450     EmitWrapCase(masm, &args, &cont);
2451   }
2452 
2453   __ bind(&extra_checks_or_miss);
2454   Label miss;
2455 
2456   __ movp(rcx, FieldOperand(rbx, rdx, times_pointer_size,
2457                             FixedArray::kHeaderSize));
2458   __ Cmp(rcx, TypeFeedbackInfo::MegamorphicSentinel(isolate));
2459   __ j(equal, &slow_start);
2460   __ Cmp(rcx, TypeFeedbackInfo::UninitializedSentinel(isolate));
2461   __ j(equal, &miss);
2462 
2463   if (!FLAG_trace_ic) {
2464     // We are going megamorphic. If the feedback is a JSFunction, it is fine
2465     // to handle it here. More complex cases are dealt with in the runtime.
2466     __ AssertNotSmi(rcx);
2467     __ CmpObjectType(rcx, JS_FUNCTION_TYPE, rcx);
2468     __ j(not_equal, &miss);
2469     __ Move(FieldOperand(rbx, rdx, times_pointer_size,
2470                          FixedArray::kHeaderSize),
2471             TypeFeedbackInfo::MegamorphicSentinel(isolate));
2472     __ jmp(&slow_start);
2473   }
2474 
2475   // We are here because tracing is on or we are going monomorphic.
2476   __ bind(&miss);
2477   GenerateMiss(masm, IC::kCallIC_Miss);
2478 
2479   // the slow case
2480   __ bind(&slow_start);
2481   // Check that function is not a smi.
2482   __ JumpIfSmi(rdi, &non_function);
2483   // Check that function is a JSFunction.
2484   __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
2485   __ j(not_equal, &slow);
2486   __ jmp(&have_js_function);
2487 
2488   // Unreachable
2489   __ int3();
2490 }
2491 
2492 
GenerateMiss(MacroAssembler * masm,IC::UtilityId id)2493 void CallICStub::GenerateMiss(MacroAssembler* masm, IC::UtilityId id) {
2494   // Get the receiver of the function from the stack; 1 ~ return address.
2495   __ movp(rcx, Operand(rsp, (state_.arg_count() + 1) * kPointerSize));
2496 
2497   {
2498     FrameScope scope(masm, StackFrame::INTERNAL);
2499 
2500     // Push the receiver and the function and feedback info.
2501     __ Push(rcx);
2502     __ Push(rdi);
2503     __ Push(rbx);
2504     __ Integer32ToSmi(rdx, rdx);
2505     __ Push(rdx);
2506 
2507     // Call the entry.
2508     ExternalReference miss = ExternalReference(IC_Utility(id),
2509                                                masm->isolate());
2510     __ CallExternalReference(miss, 4);
2511 
2512     // Move result to edi and exit the internal frame.
2513     __ movp(rdi, rax);
2514   }
2515 }
2516 
2517 
NeedsImmovableCode()2518 bool CEntryStub::NeedsImmovableCode() {
2519   return false;
2520 }
2521 
2522 
GenerateStubsAheadOfTime(Isolate * isolate)2523 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
2524   CEntryStub::GenerateAheadOfTime(isolate);
2525   StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
2526   StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
2527   // It is important that the store buffer overflow stubs are generated first.
2528   ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
2529   CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
2530   BinaryOpICStub::GenerateAheadOfTime(isolate);
2531   BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
2532 }
2533 
2534 
GenerateFPStubs(Isolate * isolate)2535 void CodeStub::GenerateFPStubs(Isolate* isolate) {
2536 }
2537 
2538 
GenerateAheadOfTime(Isolate * isolate)2539 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
2540   CEntryStub stub(isolate, 1, kDontSaveFPRegs);
2541   stub.GetCode();
2542   CEntryStub save_doubles(isolate, 1, kSaveFPRegs);
2543   save_doubles.GetCode();
2544 }
2545 
2546 
Generate(MacroAssembler * masm)2547 void CEntryStub::Generate(MacroAssembler* masm) {
2548   // rax: number of arguments including receiver
2549   // rbx: pointer to C function  (C callee-saved)
2550   // rbp: frame pointer of calling JS frame (restored after C call)
2551   // rsp: stack pointer  (restored after C call)
2552   // rsi: current context (restored)
2553 
2554   ProfileEntryHookStub::MaybeCallEntryHook(masm);
2555 
2556   // Enter the exit frame that transitions from JavaScript to C++.
2557 #ifdef _WIN64
2558   int arg_stack_space = (result_size_ < 2 ? 2 : 4);
2559 #else
2560   int arg_stack_space = 0;
2561 #endif
2562   __ EnterExitFrame(arg_stack_space, save_doubles_);
2563 
2564   // rbx: pointer to builtin function  (C callee-saved).
2565   // rbp: frame pointer of exit frame  (restored after C call).
2566   // rsp: stack pointer (restored after C call).
2567   // r14: number of arguments including receiver (C callee-saved).
2568   // r15: argv pointer (C callee-saved).
2569 
2570   // Simple results returned in rax (both AMD64 and Win64 calling conventions).
2571   // Complex results must be written to address passed as first argument.
2572   // AMD64 calling convention: a struct of two pointers in rax+rdx
2573 
2574   // Check stack alignment.
2575   if (FLAG_debug_code) {
2576     __ CheckStackAlignment();
2577   }
2578 
2579   // Call C function.
2580 #ifdef _WIN64
2581   // Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9.
2582   // Pass argv and argc as two parameters. The arguments object will
2583   // be created by stubs declared by DECLARE_RUNTIME_FUNCTION().
2584   if (result_size_ < 2) {
2585     // Pass a pointer to the Arguments object as the first argument.
2586     // Return result in single register (rax).
2587     __ movp(rcx, r14);  // argc.
2588     __ movp(rdx, r15);  // argv.
2589     __ Move(r8, ExternalReference::isolate_address(isolate()));
2590   } else {
2591     ASSERT_EQ(2, result_size_);
2592     // Pass a pointer to the result location as the first argument.
2593     __ leap(rcx, StackSpaceOperand(2));
2594     // Pass a pointer to the Arguments object as the second argument.
2595     __ movp(rdx, r14);  // argc.
2596     __ movp(r8, r15);   // argv.
2597     __ Move(r9, ExternalReference::isolate_address(isolate()));
2598   }
2599 
2600 #else  // _WIN64
2601   // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9.
2602   __ movp(rdi, r14);  // argc.
2603   __ movp(rsi, r15);  // argv.
2604   __ Move(rdx, ExternalReference::isolate_address(isolate()));
2605 #endif
2606   __ call(rbx);
2607   // Result is in rax - do not destroy this register!
2608 
2609 #ifdef _WIN64
2610   // If return value is on the stack, pop it to registers.
2611   if (result_size_ > 1) {
2612     ASSERT_EQ(2, result_size_);
2613     // Read result values stored on stack. Result is stored
2614     // above the four argument mirror slots and the two
2615     // Arguments object slots.
2616     __ movq(rax, Operand(rsp, 6 * kRegisterSize));
2617     __ movq(rdx, Operand(rsp, 7 * kRegisterSize));
2618   }
2619 #endif
2620 
2621   // Runtime functions should not return 'the hole'.  Allowing it to escape may
2622   // lead to crashes in the IC code later.
2623   if (FLAG_debug_code) {
2624     Label okay;
2625     __ CompareRoot(rax, Heap::kTheHoleValueRootIndex);
2626     __ j(not_equal, &okay, Label::kNear);
2627     __ int3();
2628     __ bind(&okay);
2629   }
2630 
2631   // Check result for exception sentinel.
2632   Label exception_returned;
2633   __ CompareRoot(rax, Heap::kExceptionRootIndex);
2634   __ j(equal, &exception_returned);
2635 
2636   ExternalReference pending_exception_address(
2637       Isolate::kPendingExceptionAddress, isolate());
2638 
2639   // Check that there is no pending exception, otherwise we
2640   // should have returned the exception sentinel.
2641   if (FLAG_debug_code) {
2642     Label okay;
2643     __ LoadRoot(r14, Heap::kTheHoleValueRootIndex);
2644     Operand pending_exception_operand =
2645         masm->ExternalOperand(pending_exception_address);
2646     __ cmpp(r14, pending_exception_operand);
2647     __ j(equal, &okay, Label::kNear);
2648     __ int3();
2649     __ bind(&okay);
2650   }
2651 
2652   // Exit the JavaScript to C++ exit frame.
2653   __ LeaveExitFrame(save_doubles_);
2654   __ ret(0);
2655 
2656   // Handling of exception.
2657   __ bind(&exception_returned);
2658 
2659   // Retrieve the pending exception.
2660   Operand pending_exception_operand =
2661       masm->ExternalOperand(pending_exception_address);
2662   __ movp(rax, pending_exception_operand);
2663 
2664   // Clear the pending exception.
2665   __ LoadRoot(rdx, Heap::kTheHoleValueRootIndex);
2666   __ movp(pending_exception_operand, rdx);
2667 
2668   // Special handling of termination exceptions which are uncatchable
2669   // by javascript code.
2670   Label throw_termination_exception;
2671   __ CompareRoot(rax, Heap::kTerminationExceptionRootIndex);
2672   __ j(equal, &throw_termination_exception);
2673 
2674   // Handle normal exception.
2675   __ Throw(rax);
2676 
2677   __ bind(&throw_termination_exception);
2678   __ ThrowUncatchable(rax);
2679 }
2680 
2681 
GenerateBody(MacroAssembler * masm,bool is_construct)2682 void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
2683   Label invoke, handler_entry, exit;
2684   Label not_outermost_js, not_outermost_js_2;
2685 
2686   ProfileEntryHookStub::MaybeCallEntryHook(masm);
2687 
2688   {  // NOLINT. Scope block confuses linter.
2689     MacroAssembler::NoRootArrayScope uninitialized_root_register(masm);
2690     // Set up frame.
2691     __ pushq(rbp);
2692     __ movp(rbp, rsp);
2693 
2694     // Push the stack frame type marker twice.
2695     int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
2696     // Scratch register is neither callee-save, nor an argument register on any
2697     // platform. It's free to use at this point.
2698     // Cannot use smi-register for loading yet.
2699     __ Move(kScratchRegister, Smi::FromInt(marker), Assembler::RelocInfoNone());
2700     __ Push(kScratchRegister);  // context slot
2701     __ Push(kScratchRegister);  // function slot
2702     // Save callee-saved registers (X64/X32/Win64 calling conventions).
2703     __ pushq(r12);
2704     __ pushq(r13);
2705     __ pushq(r14);
2706     __ pushq(r15);
2707 #ifdef _WIN64
2708     __ pushq(rdi);  // Only callee save in Win64 ABI, argument in AMD64 ABI.
2709     __ pushq(rsi);  // Only callee save in Win64 ABI, argument in AMD64 ABI.
2710 #endif
2711     __ pushq(rbx);
2712 
2713 #ifdef _WIN64
2714     // On Win64 XMM6-XMM15 are callee-save
2715     __ subp(rsp, Immediate(EntryFrameConstants::kXMMRegistersBlockSize));
2716     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0), xmm6);
2717     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1), xmm7);
2718     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2), xmm8);
2719     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3), xmm9);
2720     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4), xmm10);
2721     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5), xmm11);
2722     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6), xmm12);
2723     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7), xmm13);
2724     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8), xmm14);
2725     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9), xmm15);
2726 #endif
2727 
2728     // Set up the roots and smi constant registers.
2729     // Needs to be done before any further smi loads.
2730     __ InitializeSmiConstantRegister();
2731     __ InitializeRootRegister();
2732   }
2733 
2734   // Save copies of the top frame descriptor on the stack.
2735   ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate());
2736   {
2737     Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp);
2738     __ Push(c_entry_fp_operand);
2739   }
2740 
2741   // If this is the outermost JS call, set js_entry_sp value.
2742   ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
2743   __ Load(rax, js_entry_sp);
2744   __ testp(rax, rax);
2745   __ j(not_zero, &not_outermost_js);
2746   __ Push(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
2747   __ movp(rax, rbp);
2748   __ Store(js_entry_sp, rax);
2749   Label cont;
2750   __ jmp(&cont);
2751   __ bind(&not_outermost_js);
2752   __ Push(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME));
2753   __ bind(&cont);
2754 
2755   // Jump to a faked try block that does the invoke, with a faked catch
2756   // block that sets the pending exception.
2757   __ jmp(&invoke);
2758   __ bind(&handler_entry);
2759   handler_offset_ = handler_entry.pos();
2760   // Caught exception: Store result (exception) in the pending exception
2761   // field in the JSEnv and return a failure sentinel.
2762   ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
2763                                       isolate());
2764   __ Store(pending_exception, rax);
2765   __ LoadRoot(rax, Heap::kExceptionRootIndex);
2766   __ jmp(&exit);
2767 
2768   // Invoke: Link this frame into the handler chain.  There's only one
2769   // handler block in this code object, so its index is 0.
2770   __ bind(&invoke);
2771   __ PushTryHandler(StackHandler::JS_ENTRY, 0);
2772 
2773   // Clear any pending exceptions.
2774   __ LoadRoot(rax, Heap::kTheHoleValueRootIndex);
2775   __ Store(pending_exception, rax);
2776 
2777   // Fake a receiver (NULL).
2778   __ Push(Immediate(0));  // receiver
2779 
2780   // Invoke the function by calling through JS entry trampoline builtin and
2781   // pop the faked function when we return. We load the address from an
2782   // external reference instead of inlining the call target address directly
2783   // in the code, because the builtin stubs may not have been generated yet
2784   // at the time this code is generated.
2785   if (is_construct) {
2786     ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
2787                                       isolate());
2788     __ Load(rax, construct_entry);
2789   } else {
2790     ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
2791     __ Load(rax, entry);
2792   }
2793   __ leap(kScratchRegister, FieldOperand(rax, Code::kHeaderSize));
2794   __ call(kScratchRegister);
2795 
2796   // Unlink this frame from the handler chain.
2797   __ PopTryHandler();
2798 
2799   __ bind(&exit);
2800   // Check if the current stack frame is marked as the outermost JS frame.
2801   __ Pop(rbx);
2802   __ Cmp(rbx, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
2803   __ j(not_equal, &not_outermost_js_2);
2804   __ Move(kScratchRegister, js_entry_sp);
2805   __ movp(Operand(kScratchRegister, 0), Immediate(0));
2806   __ bind(&not_outermost_js_2);
2807 
2808   // Restore the top frame descriptor from the stack.
2809   { Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp);
2810     __ Pop(c_entry_fp_operand);
2811   }
2812 
2813   // Restore callee-saved registers (X64 conventions).
2814 #ifdef _WIN64
2815   // On Win64 XMM6-XMM15 are callee-save
2816   __ movdqu(xmm6, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0));
2817   __ movdqu(xmm7, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1));
2818   __ movdqu(xmm8, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2));
2819   __ movdqu(xmm9, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3));
2820   __ movdqu(xmm10, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4));
2821   __ movdqu(xmm11, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5));
2822   __ movdqu(xmm12, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6));
2823   __ movdqu(xmm13, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7));
2824   __ movdqu(xmm14, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8));
2825   __ movdqu(xmm15, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9));
2826   __ addp(rsp, Immediate(EntryFrameConstants::kXMMRegistersBlockSize));
2827 #endif
2828 
2829   __ popq(rbx);
2830 #ifdef _WIN64
2831   // Callee save on in Win64 ABI, arguments/volatile in AMD64 ABI.
2832   __ popq(rsi);
2833   __ popq(rdi);
2834 #endif
2835   __ popq(r15);
2836   __ popq(r14);
2837   __ popq(r13);
2838   __ popq(r12);
2839   __ addp(rsp, Immediate(2 * kPointerSize));  // remove markers
2840 
2841   // Restore frame pointer and return.
2842   __ popq(rbp);
2843   __ ret(0);
2844 }
2845 
2846 
Generate(MacroAssembler * masm)2847 void InstanceofStub::Generate(MacroAssembler* masm) {
2848   // Implements "value instanceof function" operator.
2849   // Expected input state with no inline cache:
2850   //   rsp[0]  : return address
2851   //   rsp[8]  : function pointer
2852   //   rsp[16] : value
2853   // Expected input state with an inline one-element cache:
2854   //   rsp[0]  : return address
2855   //   rsp[8]  : offset from return address to location of inline cache
2856   //   rsp[16] : function pointer
2857   //   rsp[24] : value
2858   // Returns a bitwise zero to indicate that the value
2859   // is and instance of the function and anything else to
2860   // indicate that the value is not an instance.
2861 
2862   static const int kOffsetToMapCheckValue = 2;
2863   static const int kOffsetToResultValue = kPointerSize == kInt64Size ? 18 : 14;
2864   // The last 4 bytes of the instruction sequence
2865   //   movp(rdi, FieldOperand(rax, HeapObject::kMapOffset))
2866   //   Move(kScratchRegister, Factory::the_hole_value())
2867   // in front of the hole value address.
2868   static const unsigned int kWordBeforeMapCheckValue =
2869       kPointerSize == kInt64Size ? 0xBA49FF78 : 0xBA41FF78;
2870   // The last 4 bytes of the instruction sequence
2871   //   __ j(not_equal, &cache_miss);
2872   //   __ LoadRoot(ToRegister(instr->result()), Heap::kTheHoleValueRootIndex);
2873   // before the offset of the hole value in the root array.
2874   static const unsigned int kWordBeforeResultValue =
2875       kPointerSize == kInt64Size ? 0x458B4906 : 0x458B4106;
2876   // Only the inline check flag is supported on X64.
2877   ASSERT(flags_ == kNoFlags || HasCallSiteInlineCheck());
2878   int extra_argument_offset = HasCallSiteInlineCheck() ? 1 : 0;
2879 
2880   // Get the object - go slow case if it's a smi.
2881   Label slow;
2882   StackArgumentsAccessor args(rsp, 2 + extra_argument_offset,
2883                               ARGUMENTS_DONT_CONTAIN_RECEIVER);
2884   __ movp(rax, args.GetArgumentOperand(0));
2885   __ JumpIfSmi(rax, &slow);
2886 
2887   // Check that the left hand is a JS object. Leave its map in rax.
2888   __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rax);
2889   __ j(below, &slow);
2890   __ CmpInstanceType(rax, LAST_SPEC_OBJECT_TYPE);
2891   __ j(above, &slow);
2892 
2893   // Get the prototype of the function.
2894   __ movp(rdx, args.GetArgumentOperand(1));
2895   // rdx is function, rax is map.
2896 
2897   // If there is a call site cache don't look in the global cache, but do the
2898   // real lookup and update the call site cache.
2899   if (!HasCallSiteInlineCheck()) {
2900     // Look up the function and the map in the instanceof cache.
2901     Label miss;
2902     __ CompareRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex);
2903     __ j(not_equal, &miss, Label::kNear);
2904     __ CompareRoot(rax, Heap::kInstanceofCacheMapRootIndex);
2905     __ j(not_equal, &miss, Label::kNear);
2906     __ LoadRoot(rax, Heap::kInstanceofCacheAnswerRootIndex);
2907     __ ret(2 * kPointerSize);
2908     __ bind(&miss);
2909   }
2910 
2911   __ TryGetFunctionPrototype(rdx, rbx, &slow, true);
2912 
2913   // Check that the function prototype is a JS object.
2914   __ JumpIfSmi(rbx, &slow);
2915   __ CmpObjectType(rbx, FIRST_SPEC_OBJECT_TYPE, kScratchRegister);
2916   __ j(below, &slow);
2917   __ CmpInstanceType(kScratchRegister, LAST_SPEC_OBJECT_TYPE);
2918   __ j(above, &slow);
2919 
2920   // Register mapping:
2921   //   rax is object map.
2922   //   rdx is function.
2923   //   rbx is function prototype.
2924   if (!HasCallSiteInlineCheck()) {
2925     __ StoreRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex);
2926     __ StoreRoot(rax, Heap::kInstanceofCacheMapRootIndex);
2927   } else {
2928     // Get return address and delta to inlined map check.
2929     __ movq(kScratchRegister, StackOperandForReturnAddress(0));
2930     __ subp(kScratchRegister, args.GetArgumentOperand(2));
2931     if (FLAG_debug_code) {
2932       __ movl(rdi, Immediate(kWordBeforeMapCheckValue));
2933       __ cmpl(Operand(kScratchRegister, kOffsetToMapCheckValue - 4), rdi);
2934       __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheCheck);
2935     }
2936     __ movp(kScratchRegister,
2937             Operand(kScratchRegister, kOffsetToMapCheckValue));
2938     __ movp(Operand(kScratchRegister, 0), rax);
2939   }
2940 
2941   __ movp(rcx, FieldOperand(rax, Map::kPrototypeOffset));
2942 
2943   // Loop through the prototype chain looking for the function prototype.
2944   Label loop, is_instance, is_not_instance;
2945   __ LoadRoot(kScratchRegister, Heap::kNullValueRootIndex);
2946   __ bind(&loop);
2947   __ cmpp(rcx, rbx);
2948   __ j(equal, &is_instance, Label::kNear);
2949   __ cmpp(rcx, kScratchRegister);
2950   // The code at is_not_instance assumes that kScratchRegister contains a
2951   // non-zero GCable value (the null object in this case).
2952   __ j(equal, &is_not_instance, Label::kNear);
2953   __ movp(rcx, FieldOperand(rcx, HeapObject::kMapOffset));
2954   __ movp(rcx, FieldOperand(rcx, Map::kPrototypeOffset));
2955   __ jmp(&loop);
2956 
2957   __ bind(&is_instance);
2958   if (!HasCallSiteInlineCheck()) {
2959     __ xorl(rax, rax);
2960     // Store bitwise zero in the cache.  This is a Smi in GC terms.
2961     STATIC_ASSERT(kSmiTag == 0);
2962     __ StoreRoot(rax, Heap::kInstanceofCacheAnswerRootIndex);
2963   } else {
2964     // Store offset of true in the root array at the inline check site.
2965     int true_offset = 0x100 +
2966         (Heap::kTrueValueRootIndex << kPointerSizeLog2) - kRootRegisterBias;
2967     // Assert it is a 1-byte signed value.
2968     ASSERT(true_offset >= 0 && true_offset < 0x100);
2969     __ movl(rax, Immediate(true_offset));
2970     __ movq(kScratchRegister, StackOperandForReturnAddress(0));
2971     __ subp(kScratchRegister, args.GetArgumentOperand(2));
2972     __ movb(Operand(kScratchRegister, kOffsetToResultValue), rax);
2973     if (FLAG_debug_code) {
2974       __ movl(rax, Immediate(kWordBeforeResultValue));
2975       __ cmpl(Operand(kScratchRegister, kOffsetToResultValue - 4), rax);
2976       __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov);
2977     }
2978     __ Set(rax, 0);
2979   }
2980   __ ret((2 + extra_argument_offset) * kPointerSize);
2981 
2982   __ bind(&is_not_instance);
2983   if (!HasCallSiteInlineCheck()) {
2984     // We have to store a non-zero value in the cache.
2985     __ StoreRoot(kScratchRegister, Heap::kInstanceofCacheAnswerRootIndex);
2986   } else {
2987     // Store offset of false in the root array at the inline check site.
2988     int false_offset = 0x100 +
2989         (Heap::kFalseValueRootIndex << kPointerSizeLog2) - kRootRegisterBias;
2990     // Assert it is a 1-byte signed value.
2991     ASSERT(false_offset >= 0 && false_offset < 0x100);
2992     __ movl(rax, Immediate(false_offset));
2993     __ movq(kScratchRegister, StackOperandForReturnAddress(0));
2994     __ subp(kScratchRegister, args.GetArgumentOperand(2));
2995     __ movb(Operand(kScratchRegister, kOffsetToResultValue), rax);
2996     if (FLAG_debug_code) {
2997       __ movl(rax, Immediate(kWordBeforeResultValue));
2998       __ cmpl(Operand(kScratchRegister, kOffsetToResultValue - 4), rax);
2999       __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov);
3000     }
3001   }
3002   __ ret((2 + extra_argument_offset) * kPointerSize);
3003 
3004   // Slow-case: Go through the JavaScript implementation.
3005   __ bind(&slow);
3006   if (HasCallSiteInlineCheck()) {
3007     // Remove extra value from the stack.
3008     __ PopReturnAddressTo(rcx);
3009     __ Pop(rax);
3010     __ PushReturnAddressFrom(rcx);
3011   }
3012   __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
3013 }
3014 
3015 
3016 // Passing arguments in registers is not supported.
left()3017 Register InstanceofStub::left() { return no_reg; }
3018 
3019 
right()3020 Register InstanceofStub::right() { return no_reg; }
3021 
3022 
3023 // -------------------------------------------------------------------------
3024 // StringCharCodeAtGenerator
3025 
GenerateFast(MacroAssembler * masm)3026 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
3027   Label flat_string;
3028   Label ascii_string;
3029   Label got_char_code;
3030   Label sliced_string;
3031 
3032   // If the receiver is a smi trigger the non-string case.
3033   __ JumpIfSmi(object_, receiver_not_string_);
3034 
3035   // Fetch the instance type of the receiver into result register.
3036   __ movp(result_, FieldOperand(object_, HeapObject::kMapOffset));
3037   __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
3038   // If the receiver is not a string trigger the non-string case.
3039   __ testb(result_, Immediate(kIsNotStringMask));
3040   __ j(not_zero, receiver_not_string_);
3041 
3042   // If the index is non-smi trigger the non-smi case.
3043   __ JumpIfNotSmi(index_, &index_not_smi_);
3044   __ bind(&got_smi_index_);
3045 
3046   // Check for index out of range.
3047   __ SmiCompare(index_, FieldOperand(object_, String::kLengthOffset));
3048   __ j(above_equal, index_out_of_range_);
3049 
3050   __ SmiToInteger32(index_, index_);
3051 
3052   StringCharLoadGenerator::Generate(
3053       masm, object_, index_, result_, &call_runtime_);
3054 
3055   __ Integer32ToSmi(result_, result_);
3056   __ bind(&exit_);
3057 }
3058 
3059 
GenerateSlow(MacroAssembler * masm,const RuntimeCallHelper & call_helper)3060 void StringCharCodeAtGenerator::GenerateSlow(
3061     MacroAssembler* masm,
3062     const RuntimeCallHelper& call_helper) {
3063   __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
3064 
3065   Factory* factory = masm->isolate()->factory();
3066   // Index is not a smi.
3067   __ bind(&index_not_smi_);
3068   // If index is a heap number, try converting it to an integer.
3069   __ CheckMap(index_,
3070               factory->heap_number_map(),
3071               index_not_number_,
3072               DONT_DO_SMI_CHECK);
3073   call_helper.BeforeCall(masm);
3074   __ Push(object_);
3075   __ Push(index_);  // Consumed by runtime conversion function.
3076   if (index_flags_ == STRING_INDEX_IS_NUMBER) {
3077     __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
3078   } else {
3079     ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
3080     // NumberToSmi discards numbers that are not exact integers.
3081     __ CallRuntime(Runtime::kHiddenNumberToSmi, 1);
3082   }
3083   if (!index_.is(rax)) {
3084     // Save the conversion result before the pop instructions below
3085     // have a chance to overwrite it.
3086     __ movp(index_, rax);
3087   }
3088   __ Pop(object_);
3089   // Reload the instance type.
3090   __ movp(result_, FieldOperand(object_, HeapObject::kMapOffset));
3091   __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
3092   call_helper.AfterCall(masm);
3093   // If index is still not a smi, it must be out of range.
3094   __ JumpIfNotSmi(index_, index_out_of_range_);
3095   // Otherwise, return to the fast path.
3096   __ jmp(&got_smi_index_);
3097 
3098   // Call runtime. We get here when the receiver is a string and the
3099   // index is a number, but the code of getting the actual character
3100   // is too complex (e.g., when the string needs to be flattened).
3101   __ bind(&call_runtime_);
3102   call_helper.BeforeCall(masm);
3103   __ Push(object_);
3104   __ Integer32ToSmi(index_, index_);
3105   __ Push(index_);
3106   __ CallRuntime(Runtime::kHiddenStringCharCodeAt, 2);
3107   if (!result_.is(rax)) {
3108     __ movp(result_, rax);
3109   }
3110   call_helper.AfterCall(masm);
3111   __ jmp(&exit_);
3112 
3113   __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
3114 }
3115 
3116 
3117 // -------------------------------------------------------------------------
3118 // StringCharFromCodeGenerator
3119 
GenerateFast(MacroAssembler * masm)3120 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
3121   // Fast case of Heap::LookupSingleCharacterStringFromCode.
3122   __ JumpIfNotSmi(code_, &slow_case_);
3123   __ SmiCompare(code_, Smi::FromInt(String::kMaxOneByteCharCode));
3124   __ j(above, &slow_case_);
3125 
3126   __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
3127   SmiIndex index = masm->SmiToIndex(kScratchRegister, code_, kPointerSizeLog2);
3128   __ movp(result_, FieldOperand(result_, index.reg, index.scale,
3129                                 FixedArray::kHeaderSize));
3130   __ CompareRoot(result_, Heap::kUndefinedValueRootIndex);
3131   __ j(equal, &slow_case_);
3132   __ bind(&exit_);
3133 }
3134 
3135 
GenerateSlow(MacroAssembler * masm,const RuntimeCallHelper & call_helper)3136 void StringCharFromCodeGenerator::GenerateSlow(
3137     MacroAssembler* masm,
3138     const RuntimeCallHelper& call_helper) {
3139   __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
3140 
3141   __ bind(&slow_case_);
3142   call_helper.BeforeCall(masm);
3143   __ Push(code_);
3144   __ CallRuntime(Runtime::kCharFromCode, 1);
3145   if (!result_.is(rax)) {
3146     __ movp(result_, rax);
3147   }
3148   call_helper.AfterCall(masm);
3149   __ jmp(&exit_);
3150 
3151   __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
3152 }
3153 
3154 
GenerateCopyCharacters(MacroAssembler * masm,Register dest,Register src,Register count,String::Encoding encoding)3155 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
3156                                           Register dest,
3157                                           Register src,
3158                                           Register count,
3159                                           String::Encoding encoding) {
3160   // Nothing to do for zero characters.
3161   Label done;
3162   __ testl(count, count);
3163   __ j(zero, &done, Label::kNear);
3164 
3165   // Make count the number of bytes to copy.
3166   if (encoding == String::TWO_BYTE_ENCODING) {
3167     STATIC_ASSERT(2 == sizeof(uc16));
3168     __ addl(count, count);
3169   }
3170 
3171   // Copy remaining characters.
3172   Label loop;
3173   __ bind(&loop);
3174   __ movb(kScratchRegister, Operand(src, 0));
3175   __ movb(Operand(dest, 0), kScratchRegister);
3176   __ incp(src);
3177   __ incp(dest);
3178   __ decl(count);
3179   __ j(not_zero, &loop);
3180 
3181   __ bind(&done);
3182 }
3183 
3184 
GenerateHashInit(MacroAssembler * masm,Register hash,Register character,Register scratch)3185 void StringHelper::GenerateHashInit(MacroAssembler* masm,
3186                                     Register hash,
3187                                     Register character,
3188                                     Register scratch) {
3189   // hash = (seed + character) + ((seed + character) << 10);
3190   __ LoadRoot(scratch, Heap::kHashSeedRootIndex);
3191   __ SmiToInteger32(scratch, scratch);
3192   __ addl(scratch, character);
3193   __ movl(hash, scratch);
3194   __ shll(scratch, Immediate(10));
3195   __ addl(hash, scratch);
3196   // hash ^= hash >> 6;
3197   __ movl(scratch, hash);
3198   __ shrl(scratch, Immediate(6));
3199   __ xorl(hash, scratch);
3200 }
3201 
3202 
GenerateHashAddCharacter(MacroAssembler * masm,Register hash,Register character,Register scratch)3203 void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
3204                                             Register hash,
3205                                             Register character,
3206                                             Register scratch) {
3207   // hash += character;
3208   __ addl(hash, character);
3209   // hash += hash << 10;
3210   __ movl(scratch, hash);
3211   __ shll(scratch, Immediate(10));
3212   __ addl(hash, scratch);
3213   // hash ^= hash >> 6;
3214   __ movl(scratch, hash);
3215   __ shrl(scratch, Immediate(6));
3216   __ xorl(hash, scratch);
3217 }
3218 
3219 
GenerateHashGetHash(MacroAssembler * masm,Register hash,Register scratch)3220 void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
3221                                        Register hash,
3222                                        Register scratch) {
3223   // hash += hash << 3;
3224   __ leal(hash, Operand(hash, hash, times_8, 0));
3225   // hash ^= hash >> 11;
3226   __ movl(scratch, hash);
3227   __ shrl(scratch, Immediate(11));
3228   __ xorl(hash, scratch);
3229   // hash += hash << 15;
3230   __ movl(scratch, hash);
3231   __ shll(scratch, Immediate(15));
3232   __ addl(hash, scratch);
3233 
3234   __ andl(hash, Immediate(String::kHashBitMask));
3235 
3236   // if (hash == 0) hash = 27;
3237   Label hash_not_zero;
3238   __ j(not_zero, &hash_not_zero);
3239   __ Set(hash, StringHasher::kZeroHash);
3240   __ bind(&hash_not_zero);
3241 }
3242 
3243 
Generate(MacroAssembler * masm)3244 void SubStringStub::Generate(MacroAssembler* masm) {
3245   Label runtime;
3246 
3247   // Stack frame on entry.
3248   //  rsp[0]  : return address
3249   //  rsp[8]  : to
3250   //  rsp[16] : from
3251   //  rsp[24] : string
3252 
3253   enum SubStringStubArgumentIndices {
3254     STRING_ARGUMENT_INDEX,
3255     FROM_ARGUMENT_INDEX,
3256     TO_ARGUMENT_INDEX,
3257     SUB_STRING_ARGUMENT_COUNT
3258   };
3259 
3260   StackArgumentsAccessor args(rsp, SUB_STRING_ARGUMENT_COUNT,
3261                               ARGUMENTS_DONT_CONTAIN_RECEIVER);
3262 
3263   // Make sure first argument is a string.
3264   __ movp(rax, args.GetArgumentOperand(STRING_ARGUMENT_INDEX));
3265   STATIC_ASSERT(kSmiTag == 0);
3266   __ testl(rax, Immediate(kSmiTagMask));
3267   __ j(zero, &runtime);
3268   Condition is_string = masm->IsObjectStringType(rax, rbx, rbx);
3269   __ j(NegateCondition(is_string), &runtime);
3270 
3271   // rax: string
3272   // rbx: instance type
3273   // Calculate length of sub string using the smi values.
3274   __ movp(rcx, args.GetArgumentOperand(TO_ARGUMENT_INDEX));
3275   __ movp(rdx, args.GetArgumentOperand(FROM_ARGUMENT_INDEX));
3276   __ JumpUnlessBothNonNegativeSmi(rcx, rdx, &runtime);
3277 
3278   __ SmiSub(rcx, rcx, rdx);  // Overflow doesn't happen.
3279   __ cmpp(rcx, FieldOperand(rax, String::kLengthOffset));
3280   Label not_original_string;
3281   // Shorter than original string's length: an actual substring.
3282   __ j(below, &not_original_string, Label::kNear);
3283   // Longer than original string's length or negative: unsafe arguments.
3284   __ j(above, &runtime);
3285   // Return original string.
3286   Counters* counters = isolate()->counters();
3287   __ IncrementCounter(counters->sub_string_native(), 1);
3288   __ ret(SUB_STRING_ARGUMENT_COUNT * kPointerSize);
3289   __ bind(&not_original_string);
3290 
3291   Label single_char;
3292   __ SmiCompare(rcx, Smi::FromInt(1));
3293   __ j(equal, &single_char);
3294 
3295   __ SmiToInteger32(rcx, rcx);
3296 
3297   // rax: string
3298   // rbx: instance type
3299   // rcx: sub string length
3300   // rdx: from index (smi)
3301   // Deal with different string types: update the index if necessary
3302   // and put the underlying string into edi.
3303   Label underlying_unpacked, sliced_string, seq_or_external_string;
3304   // If the string is not indirect, it can only be sequential or external.
3305   STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
3306   STATIC_ASSERT(kIsIndirectStringMask != 0);
3307   __ testb(rbx, Immediate(kIsIndirectStringMask));
3308   __ j(zero, &seq_or_external_string, Label::kNear);
3309 
3310   __ testb(rbx, Immediate(kSlicedNotConsMask));
3311   __ j(not_zero, &sliced_string, Label::kNear);
3312   // Cons string.  Check whether it is flat, then fetch first part.
3313   // Flat cons strings have an empty second part.
3314   __ CompareRoot(FieldOperand(rax, ConsString::kSecondOffset),
3315                  Heap::kempty_stringRootIndex);
3316   __ j(not_equal, &runtime);
3317   __ movp(rdi, FieldOperand(rax, ConsString::kFirstOffset));
3318   // Update instance type.
3319   __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
3320   __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
3321   __ jmp(&underlying_unpacked, Label::kNear);
3322 
3323   __ bind(&sliced_string);
3324   // Sliced string.  Fetch parent and correct start index by offset.
3325   __ addp(rdx, FieldOperand(rax, SlicedString::kOffsetOffset));
3326   __ movp(rdi, FieldOperand(rax, SlicedString::kParentOffset));
3327   // Update instance type.
3328   __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
3329   __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
3330   __ jmp(&underlying_unpacked, Label::kNear);
3331 
3332   __ bind(&seq_or_external_string);
3333   // Sequential or external string.  Just move string to the correct register.
3334   __ movp(rdi, rax);
3335 
3336   __ bind(&underlying_unpacked);
3337 
3338   if (FLAG_string_slices) {
3339     Label copy_routine;
3340     // rdi: underlying subject string
3341     // rbx: instance type of underlying subject string
3342     // rdx: adjusted start index (smi)
3343     // rcx: length
3344     // If coming from the make_two_character_string path, the string
3345     // is too short to be sliced anyways.
3346     __ cmpp(rcx, Immediate(SlicedString::kMinLength));
3347     // Short slice.  Copy instead of slicing.
3348     __ j(less, &copy_routine);
3349     // Allocate new sliced string.  At this point we do not reload the instance
3350     // type including the string encoding because we simply rely on the info
3351     // provided by the original string.  It does not matter if the original
3352     // string's encoding is wrong because we always have to recheck encoding of
3353     // the newly created string's parent anyways due to externalized strings.
3354     Label two_byte_slice, set_slice_header;
3355     STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
3356     STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
3357     __ testb(rbx, Immediate(kStringEncodingMask));
3358     __ j(zero, &two_byte_slice, Label::kNear);
3359     __ AllocateAsciiSlicedString(rax, rbx, r14, &runtime);
3360     __ jmp(&set_slice_header, Label::kNear);
3361     __ bind(&two_byte_slice);
3362     __ AllocateTwoByteSlicedString(rax, rbx, r14, &runtime);
3363     __ bind(&set_slice_header);
3364     __ Integer32ToSmi(rcx, rcx);
3365     __ movp(FieldOperand(rax, SlicedString::kLengthOffset), rcx);
3366     __ movp(FieldOperand(rax, SlicedString::kHashFieldOffset),
3367            Immediate(String::kEmptyHashField));
3368     __ movp(FieldOperand(rax, SlicedString::kParentOffset), rdi);
3369     __ movp(FieldOperand(rax, SlicedString::kOffsetOffset), rdx);
3370     __ IncrementCounter(counters->sub_string_native(), 1);
3371     __ ret(3 * kPointerSize);
3372 
3373     __ bind(&copy_routine);
3374   }
3375 
3376   // rdi: underlying subject string
3377   // rbx: instance type of underlying subject string
3378   // rdx: adjusted start index (smi)
3379   // rcx: length
3380   // The subject string can only be external or sequential string of either
3381   // encoding at this point.
3382   Label two_byte_sequential, sequential_string;
3383   STATIC_ASSERT(kExternalStringTag != 0);
3384   STATIC_ASSERT(kSeqStringTag == 0);
3385   __ testb(rbx, Immediate(kExternalStringTag));
3386   __ j(zero, &sequential_string);
3387 
3388   // Handle external string.
3389   // Rule out short external strings.
3390   STATIC_ASSERT(kShortExternalStringTag != 0);
3391   __ testb(rbx, Immediate(kShortExternalStringMask));
3392   __ j(not_zero, &runtime);
3393   __ movp(rdi, FieldOperand(rdi, ExternalString::kResourceDataOffset));
3394   // Move the pointer so that offset-wise, it looks like a sequential string.
3395   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
3396   __ subp(rdi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
3397 
3398   __ bind(&sequential_string);
3399   STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
3400   __ testb(rbx, Immediate(kStringEncodingMask));
3401   __ j(zero, &two_byte_sequential);
3402 
3403   // Allocate the result.
3404   __ AllocateAsciiString(rax, rcx, r11, r14, r15, &runtime);
3405 
3406   // rax: result string
3407   // rcx: result string length
3408   {  // Locate character of sub string start.
3409     SmiIndex smi_as_index = masm->SmiToIndex(rdx, rdx, times_1);
3410     __ leap(r14, Operand(rdi, smi_as_index.reg, smi_as_index.scale,
3411                         SeqOneByteString::kHeaderSize - kHeapObjectTag));
3412   }
3413   // Locate first character of result.
3414   __ leap(rdi, FieldOperand(rax, SeqOneByteString::kHeaderSize));
3415 
3416   // rax: result string
3417   // rcx: result length
3418   // r14: first character of result
3419   // rsi: character of sub string start
3420   StringHelper::GenerateCopyCharacters(
3421       masm, rdi, r14, rcx, String::ONE_BYTE_ENCODING);
3422   __ IncrementCounter(counters->sub_string_native(), 1);
3423   __ ret(SUB_STRING_ARGUMENT_COUNT * kPointerSize);
3424 
3425   __ bind(&two_byte_sequential);
3426   // Allocate the result.
3427   __ AllocateTwoByteString(rax, rcx, r11, r14, r15, &runtime);
3428 
3429   // rax: result string
3430   // rcx: result string length
3431   {  // Locate character of sub string start.
3432     SmiIndex smi_as_index = masm->SmiToIndex(rdx, rdx, times_2);
3433     __ leap(r14, Operand(rdi, smi_as_index.reg, smi_as_index.scale,
3434                         SeqOneByteString::kHeaderSize - kHeapObjectTag));
3435   }
3436   // Locate first character of result.
3437   __ leap(rdi, FieldOperand(rax, SeqTwoByteString::kHeaderSize));
3438 
3439   // rax: result string
3440   // rcx: result length
3441   // rdi: first character of result
3442   // r14: character of sub string start
3443   StringHelper::GenerateCopyCharacters(
3444       masm, rdi, r14, rcx, String::TWO_BYTE_ENCODING);
3445   __ IncrementCounter(counters->sub_string_native(), 1);
3446   __ ret(SUB_STRING_ARGUMENT_COUNT * kPointerSize);
3447 
3448   // Just jump to runtime to create the sub string.
3449   __ bind(&runtime);
3450   __ TailCallRuntime(Runtime::kHiddenSubString, 3, 1);
3451 
3452   __ bind(&single_char);
3453   // rax: string
3454   // rbx: instance type
3455   // rcx: sub string length (smi)
3456   // rdx: from index (smi)
3457   StringCharAtGenerator generator(
3458       rax, rdx, rcx, rax, &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER);
3459   generator.GenerateFast(masm);
3460   __ ret(SUB_STRING_ARGUMENT_COUNT * kPointerSize);
3461   generator.SkipSlow(masm, &runtime);
3462 }
3463 
3464 
GenerateFlatAsciiStringEquals(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2)3465 void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm,
3466                                                       Register left,
3467                                                       Register right,
3468                                                       Register scratch1,
3469                                                       Register scratch2) {
3470   Register length = scratch1;
3471 
3472   // Compare lengths.
3473   Label check_zero_length;
3474   __ movp(length, FieldOperand(left, String::kLengthOffset));
3475   __ SmiCompare(length, FieldOperand(right, String::kLengthOffset));
3476   __ j(equal, &check_zero_length, Label::kNear);
3477   __ Move(rax, Smi::FromInt(NOT_EQUAL));
3478   __ ret(0);
3479 
3480   // Check if the length is zero.
3481   Label compare_chars;
3482   __ bind(&check_zero_length);
3483   STATIC_ASSERT(kSmiTag == 0);
3484   __ SmiTest(length);
3485   __ j(not_zero, &compare_chars, Label::kNear);
3486   __ Move(rax, Smi::FromInt(EQUAL));
3487   __ ret(0);
3488 
3489   // Compare characters.
3490   __ bind(&compare_chars);
3491   Label strings_not_equal;
3492   GenerateAsciiCharsCompareLoop(masm, left, right, length, scratch2,
3493                                 &strings_not_equal, Label::kNear);
3494 
3495   // Characters are equal.
3496   __ Move(rax, Smi::FromInt(EQUAL));
3497   __ ret(0);
3498 
3499   // Characters are not equal.
3500   __ bind(&strings_not_equal);
3501   __ Move(rax, Smi::FromInt(NOT_EQUAL));
3502   __ ret(0);
3503 }
3504 
3505 
GenerateCompareFlatAsciiStrings(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2,Register scratch3,Register scratch4)3506 void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
3507                                                         Register left,
3508                                                         Register right,
3509                                                         Register scratch1,
3510                                                         Register scratch2,
3511                                                         Register scratch3,
3512                                                         Register scratch4) {
3513   // Ensure that you can always subtract a string length from a non-negative
3514   // number (e.g. another length).
3515   STATIC_ASSERT(String::kMaxLength < 0x7fffffff);
3516 
3517   // Find minimum length and length difference.
3518   __ movp(scratch1, FieldOperand(left, String::kLengthOffset));
3519   __ movp(scratch4, scratch1);
3520   __ SmiSub(scratch4,
3521             scratch4,
3522             FieldOperand(right, String::kLengthOffset));
3523   // Register scratch4 now holds left.length - right.length.
3524   const Register length_difference = scratch4;
3525   Label left_shorter;
3526   __ j(less, &left_shorter, Label::kNear);
3527   // The right string isn't longer that the left one.
3528   // Get the right string's length by subtracting the (non-negative) difference
3529   // from the left string's length.
3530   __ SmiSub(scratch1, scratch1, length_difference);
3531   __ bind(&left_shorter);
3532   // Register scratch1 now holds Min(left.length, right.length).
3533   const Register min_length = scratch1;
3534 
3535   Label compare_lengths;
3536   // If min-length is zero, go directly to comparing lengths.
3537   __ SmiTest(min_length);
3538   __ j(zero, &compare_lengths, Label::kNear);
3539 
3540   // Compare loop.
3541   Label result_not_equal;
3542   GenerateAsciiCharsCompareLoop(masm, left, right, min_length, scratch2,
3543                                 &result_not_equal,
3544                                 // In debug-code mode, SmiTest below might push
3545                                 // the target label outside the near range.
3546                                 Label::kFar);
3547 
3548   // Completed loop without finding different characters.
3549   // Compare lengths (precomputed).
3550   __ bind(&compare_lengths);
3551   __ SmiTest(length_difference);
3552   Label length_not_equal;
3553   __ j(not_zero, &length_not_equal, Label::kNear);
3554 
3555   // Result is EQUAL.
3556   __ Move(rax, Smi::FromInt(EQUAL));
3557   __ ret(0);
3558 
3559   Label result_greater;
3560   Label result_less;
3561   __ bind(&length_not_equal);
3562   __ j(greater, &result_greater, Label::kNear);
3563   __ jmp(&result_less, Label::kNear);
3564   __ bind(&result_not_equal);
3565   // Unequal comparison of left to right, either character or length.
3566   __ j(above, &result_greater, Label::kNear);
3567   __ bind(&result_less);
3568 
3569   // Result is LESS.
3570   __ Move(rax, Smi::FromInt(LESS));
3571   __ ret(0);
3572 
3573   // Result is GREATER.
3574   __ bind(&result_greater);
3575   __ Move(rax, Smi::FromInt(GREATER));
3576   __ ret(0);
3577 }
3578 
3579 
GenerateAsciiCharsCompareLoop(MacroAssembler * masm,Register left,Register right,Register length,Register scratch,Label * chars_not_equal,Label::Distance near_jump)3580 void StringCompareStub::GenerateAsciiCharsCompareLoop(
3581     MacroAssembler* masm,
3582     Register left,
3583     Register right,
3584     Register length,
3585     Register scratch,
3586     Label* chars_not_equal,
3587     Label::Distance near_jump) {
3588   // Change index to run from -length to -1 by adding length to string
3589   // start. This means that loop ends when index reaches zero, which
3590   // doesn't need an additional compare.
3591   __ SmiToInteger32(length, length);
3592   __ leap(left,
3593          FieldOperand(left, length, times_1, SeqOneByteString::kHeaderSize));
3594   __ leap(right,
3595          FieldOperand(right, length, times_1, SeqOneByteString::kHeaderSize));
3596   __ negq(length);
3597   Register index = length;  // index = -length;
3598 
3599   // Compare loop.
3600   Label loop;
3601   __ bind(&loop);
3602   __ movb(scratch, Operand(left, index, times_1, 0));
3603   __ cmpb(scratch, Operand(right, index, times_1, 0));
3604   __ j(not_equal, chars_not_equal, near_jump);
3605   __ incq(index);
3606   __ j(not_zero, &loop);
3607 }
3608 
3609 
Generate(MacroAssembler * masm)3610 void StringCompareStub::Generate(MacroAssembler* masm) {
3611   Label runtime;
3612 
3613   // Stack frame on entry.
3614   //  rsp[0]  : return address
3615   //  rsp[8]  : right string
3616   //  rsp[16] : left string
3617 
3618   StackArgumentsAccessor args(rsp, 2, ARGUMENTS_DONT_CONTAIN_RECEIVER);
3619   __ movp(rdx, args.GetArgumentOperand(0));  // left
3620   __ movp(rax, args.GetArgumentOperand(1));  // right
3621 
3622   // Check for identity.
3623   Label not_same;
3624   __ cmpp(rdx, rax);
3625   __ j(not_equal, &not_same, Label::kNear);
3626   __ Move(rax, Smi::FromInt(EQUAL));
3627   Counters* counters = isolate()->counters();
3628   __ IncrementCounter(counters->string_compare_native(), 1);
3629   __ ret(2 * kPointerSize);
3630 
3631   __ bind(&not_same);
3632 
3633   // Check that both are sequential ASCII strings.
3634   __ JumpIfNotBothSequentialAsciiStrings(rdx, rax, rcx, rbx, &runtime);
3635 
3636   // Inline comparison of ASCII strings.
3637   __ IncrementCounter(counters->string_compare_native(), 1);
3638   // Drop arguments from the stack
3639   __ PopReturnAddressTo(rcx);
3640   __ addp(rsp, Immediate(2 * kPointerSize));
3641   __ PushReturnAddressFrom(rcx);
3642   GenerateCompareFlatAsciiStrings(masm, rdx, rax, rcx, rbx, rdi, r8);
3643 
3644   // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
3645   // tagged as a small integer.
3646   __ bind(&runtime);
3647   __ TailCallRuntime(Runtime::kHiddenStringCompare, 2, 1);
3648 }
3649 
3650 
Generate(MacroAssembler * masm)3651 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
3652   // ----------- S t a t e -------------
3653   //  -- rdx    : left
3654   //  -- rax    : right
3655   //  -- rsp[0] : return address
3656   // -----------------------------------
3657 
3658   // Load rcx with the allocation site.  We stick an undefined dummy value here
3659   // and replace it with the real allocation site later when we instantiate this
3660   // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
3661   __ Move(rcx, handle(isolate()->heap()->undefined_value()));
3662 
3663   // Make sure that we actually patched the allocation site.
3664   if (FLAG_debug_code) {
3665     __ testb(rcx, Immediate(kSmiTagMask));
3666     __ Assert(not_equal, kExpectedAllocationSite);
3667     __ Cmp(FieldOperand(rcx, HeapObject::kMapOffset),
3668            isolate()->factory()->allocation_site_map());
3669     __ Assert(equal, kExpectedAllocationSite);
3670   }
3671 
3672   // Tail call into the stub that handles binary operations with allocation
3673   // sites.
3674   BinaryOpWithAllocationSiteStub stub(isolate(), state_);
3675   __ TailCallStub(&stub);
3676 }
3677 
3678 
GenerateSmis(MacroAssembler * masm)3679 void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
3680   ASSERT(state_ == CompareIC::SMI);
3681   Label miss;
3682   __ JumpIfNotBothSmi(rdx, rax, &miss, Label::kNear);
3683 
3684   if (GetCondition() == equal) {
3685     // For equality we do not care about the sign of the result.
3686     __ subp(rax, rdx);
3687   } else {
3688     Label done;
3689     __ subp(rdx, rax);
3690     __ j(no_overflow, &done, Label::kNear);
3691     // Correct sign of result in case of overflow.
3692     __ notp(rdx);
3693     __ bind(&done);
3694     __ movp(rax, rdx);
3695   }
3696   __ ret(0);
3697 
3698   __ bind(&miss);
3699   GenerateMiss(masm);
3700 }
3701 
3702 
GenerateNumbers(MacroAssembler * masm)3703 void ICCompareStub::GenerateNumbers(MacroAssembler* masm) {
3704   ASSERT(state_ == CompareIC::NUMBER);
3705 
3706   Label generic_stub;
3707   Label unordered, maybe_undefined1, maybe_undefined2;
3708   Label miss;
3709 
3710   if (left_ == CompareIC::SMI) {
3711     __ JumpIfNotSmi(rdx, &miss);
3712   }
3713   if (right_ == CompareIC::SMI) {
3714     __ JumpIfNotSmi(rax, &miss);
3715   }
3716 
3717   // Load left and right operand.
3718   Label done, left, left_smi, right_smi;
3719   __ JumpIfSmi(rax, &right_smi, Label::kNear);
3720   __ CompareMap(rax, isolate()->factory()->heap_number_map());
3721   __ j(not_equal, &maybe_undefined1, Label::kNear);
3722   __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
3723   __ jmp(&left, Label::kNear);
3724   __ bind(&right_smi);
3725   __ SmiToInteger32(rcx, rax);  // Can't clobber rax yet.
3726   __ Cvtlsi2sd(xmm1, rcx);
3727 
3728   __ bind(&left);
3729   __ JumpIfSmi(rdx, &left_smi, Label::kNear);
3730   __ CompareMap(rdx, isolate()->factory()->heap_number_map());
3731   __ j(not_equal, &maybe_undefined2, Label::kNear);
3732   __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
3733   __ jmp(&done);
3734   __ bind(&left_smi);
3735   __ SmiToInteger32(rcx, rdx);  // Can't clobber rdx yet.
3736   __ Cvtlsi2sd(xmm0, rcx);
3737 
3738   __ bind(&done);
3739   // Compare operands
3740   __ ucomisd(xmm0, xmm1);
3741 
3742   // Don't base result on EFLAGS when a NaN is involved.
3743   __ j(parity_even, &unordered, Label::kNear);
3744 
3745   // Return a result of -1, 0, or 1, based on EFLAGS.
3746   // Performing mov, because xor would destroy the flag register.
3747   __ movl(rax, Immediate(0));
3748   __ movl(rcx, Immediate(0));
3749   __ setcc(above, rax);  // Add one to zero if carry clear and not equal.
3750   __ sbbp(rax, rcx);  // Subtract one if below (aka. carry set).
3751   __ ret(0);
3752 
3753   __ bind(&unordered);
3754   __ bind(&generic_stub);
3755   ICCompareStub stub(isolate(), op_, CompareIC::GENERIC, CompareIC::GENERIC,
3756                      CompareIC::GENERIC);
3757   __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
3758 
3759   __ bind(&maybe_undefined1);
3760   if (Token::IsOrderedRelationalCompareOp(op_)) {
3761     __ Cmp(rax, isolate()->factory()->undefined_value());
3762     __ j(not_equal, &miss);
3763     __ JumpIfSmi(rdx, &unordered);
3764     __ CmpObjectType(rdx, HEAP_NUMBER_TYPE, rcx);
3765     __ j(not_equal, &maybe_undefined2, Label::kNear);
3766     __ jmp(&unordered);
3767   }
3768 
3769   __ bind(&maybe_undefined2);
3770   if (Token::IsOrderedRelationalCompareOp(op_)) {
3771     __ Cmp(rdx, isolate()->factory()->undefined_value());
3772     __ j(equal, &unordered);
3773   }
3774 
3775   __ bind(&miss);
3776   GenerateMiss(masm);
3777 }
3778 
3779 
GenerateInternalizedStrings(MacroAssembler * masm)3780 void ICCompareStub::GenerateInternalizedStrings(MacroAssembler* masm) {
3781   ASSERT(state_ == CompareIC::INTERNALIZED_STRING);
3782   ASSERT(GetCondition() == equal);
3783 
3784   // Registers containing left and right operands respectively.
3785   Register left = rdx;
3786   Register right = rax;
3787   Register tmp1 = rcx;
3788   Register tmp2 = rbx;
3789 
3790   // Check that both operands are heap objects.
3791   Label miss;
3792   Condition cond = masm->CheckEitherSmi(left, right, tmp1);
3793   __ j(cond, &miss, Label::kNear);
3794 
3795   // Check that both operands are internalized strings.
3796   __ movp(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3797   __ movp(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3798   __ movzxbp(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3799   __ movzxbp(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3800   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
3801   __ orp(tmp1, tmp2);
3802   __ testb(tmp1, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
3803   __ j(not_zero, &miss, Label::kNear);
3804 
3805   // Internalized strings are compared by identity.
3806   Label done;
3807   __ cmpp(left, right);
3808   // Make sure rax is non-zero. At this point input operands are
3809   // guaranteed to be non-zero.
3810   ASSERT(right.is(rax));
3811   __ j(not_equal, &done, Label::kNear);
3812   STATIC_ASSERT(EQUAL == 0);
3813   STATIC_ASSERT(kSmiTag == 0);
3814   __ Move(rax, Smi::FromInt(EQUAL));
3815   __ bind(&done);
3816   __ ret(0);
3817 
3818   __ bind(&miss);
3819   GenerateMiss(masm);
3820 }
3821 
3822 
GenerateUniqueNames(MacroAssembler * masm)3823 void ICCompareStub::GenerateUniqueNames(MacroAssembler* masm) {
3824   ASSERT(state_ == CompareIC::UNIQUE_NAME);
3825   ASSERT(GetCondition() == equal);
3826 
3827   // Registers containing left and right operands respectively.
3828   Register left = rdx;
3829   Register right = rax;
3830   Register tmp1 = rcx;
3831   Register tmp2 = rbx;
3832 
3833   // Check that both operands are heap objects.
3834   Label miss;
3835   Condition cond = masm->CheckEitherSmi(left, right, tmp1);
3836   __ j(cond, &miss, Label::kNear);
3837 
3838   // Check that both operands are unique names. This leaves the instance
3839   // types loaded in tmp1 and tmp2.
3840   __ movp(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3841   __ movp(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3842   __ movzxbp(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3843   __ movzxbp(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3844 
3845   __ JumpIfNotUniqueName(tmp1, &miss, Label::kNear);
3846   __ JumpIfNotUniqueName(tmp2, &miss, Label::kNear);
3847 
3848   // Unique names are compared by identity.
3849   Label done;
3850   __ cmpp(left, right);
3851   // Make sure rax is non-zero. At this point input operands are
3852   // guaranteed to be non-zero.
3853   ASSERT(right.is(rax));
3854   __ j(not_equal, &done, Label::kNear);
3855   STATIC_ASSERT(EQUAL == 0);
3856   STATIC_ASSERT(kSmiTag == 0);
3857   __ Move(rax, Smi::FromInt(EQUAL));
3858   __ bind(&done);
3859   __ ret(0);
3860 
3861   __ bind(&miss);
3862   GenerateMiss(masm);
3863 }
3864 
3865 
GenerateStrings(MacroAssembler * masm)3866 void ICCompareStub::GenerateStrings(MacroAssembler* masm) {
3867   ASSERT(state_ == CompareIC::STRING);
3868   Label miss;
3869 
3870   bool equality = Token::IsEqualityOp(op_);
3871 
3872   // Registers containing left and right operands respectively.
3873   Register left = rdx;
3874   Register right = rax;
3875   Register tmp1 = rcx;
3876   Register tmp2 = rbx;
3877   Register tmp3 = rdi;
3878 
3879   // Check that both operands are heap objects.
3880   Condition cond = masm->CheckEitherSmi(left, right, tmp1);
3881   __ j(cond, &miss);
3882 
3883   // Check that both operands are strings. This leaves the instance
3884   // types loaded in tmp1 and tmp2.
3885   __ movp(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3886   __ movp(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3887   __ movzxbp(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3888   __ movzxbp(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3889   __ movp(tmp3, tmp1);
3890   STATIC_ASSERT(kNotStringTag != 0);
3891   __ orp(tmp3, tmp2);
3892   __ testb(tmp3, Immediate(kIsNotStringMask));
3893   __ j(not_zero, &miss);
3894 
3895   // Fast check for identical strings.
3896   Label not_same;
3897   __ cmpp(left, right);
3898   __ j(not_equal, &not_same, Label::kNear);
3899   STATIC_ASSERT(EQUAL == 0);
3900   STATIC_ASSERT(kSmiTag == 0);
3901   __ Move(rax, Smi::FromInt(EQUAL));
3902   __ ret(0);
3903 
3904   // Handle not identical strings.
3905   __ bind(&not_same);
3906 
3907   // Check that both strings are internalized strings. If they are, we're done
3908   // because we already know they are not identical. We also know they are both
3909   // strings.
3910   if (equality) {
3911     Label do_compare;
3912     STATIC_ASSERT(kInternalizedTag == 0);
3913     __ orp(tmp1, tmp2);
3914     __ testb(tmp1, Immediate(kIsNotInternalizedMask));
3915     __ j(not_zero, &do_compare, Label::kNear);
3916     // Make sure rax is non-zero. At this point input operands are
3917     // guaranteed to be non-zero.
3918     ASSERT(right.is(rax));
3919     __ ret(0);
3920     __ bind(&do_compare);
3921   }
3922 
3923   // Check that both strings are sequential ASCII.
3924   Label runtime;
3925   __ JumpIfNotBothSequentialAsciiStrings(left, right, tmp1, tmp2, &runtime);
3926 
3927   // Compare flat ASCII strings. Returns when done.
3928   if (equality) {
3929     StringCompareStub::GenerateFlatAsciiStringEquals(
3930         masm, left, right, tmp1, tmp2);
3931   } else {
3932     StringCompareStub::GenerateCompareFlatAsciiStrings(
3933         masm, left, right, tmp1, tmp2, tmp3, kScratchRegister);
3934   }
3935 
3936   // Handle more complex cases in runtime.
3937   __ bind(&runtime);
3938   __ PopReturnAddressTo(tmp1);
3939   __ Push(left);
3940   __ Push(right);
3941   __ PushReturnAddressFrom(tmp1);
3942   if (equality) {
3943     __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
3944   } else {
3945     __ TailCallRuntime(Runtime::kHiddenStringCompare, 2, 1);
3946   }
3947 
3948   __ bind(&miss);
3949   GenerateMiss(masm);
3950 }
3951 
3952 
GenerateObjects(MacroAssembler * masm)3953 void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
3954   ASSERT(state_ == CompareIC::OBJECT);
3955   Label miss;
3956   Condition either_smi = masm->CheckEitherSmi(rdx, rax);
3957   __ j(either_smi, &miss, Label::kNear);
3958 
3959   __ CmpObjectType(rax, JS_OBJECT_TYPE, rcx);
3960   __ j(not_equal, &miss, Label::kNear);
3961   __ CmpObjectType(rdx, JS_OBJECT_TYPE, rcx);
3962   __ j(not_equal, &miss, Label::kNear);
3963 
3964   ASSERT(GetCondition() == equal);
3965   __ subp(rax, rdx);
3966   __ ret(0);
3967 
3968   __ bind(&miss);
3969   GenerateMiss(masm);
3970 }
3971 
3972 
GenerateKnownObjects(MacroAssembler * masm)3973 void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) {
3974   Label miss;
3975   Condition either_smi = masm->CheckEitherSmi(rdx, rax);
3976   __ j(either_smi, &miss, Label::kNear);
3977 
3978   __ movp(rcx, FieldOperand(rax, HeapObject::kMapOffset));
3979   __ movp(rbx, FieldOperand(rdx, HeapObject::kMapOffset));
3980   __ Cmp(rcx, known_map_);
3981   __ j(not_equal, &miss, Label::kNear);
3982   __ Cmp(rbx, known_map_);
3983   __ j(not_equal, &miss, Label::kNear);
3984 
3985   __ subp(rax, rdx);
3986   __ ret(0);
3987 
3988   __ bind(&miss);
3989   GenerateMiss(masm);
3990 }
3991 
3992 
GenerateMiss(MacroAssembler * masm)3993 void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
3994   {
3995     // Call the runtime system in a fresh internal frame.
3996     ExternalReference miss =
3997         ExternalReference(IC_Utility(IC::kCompareIC_Miss), isolate());
3998 
3999     FrameScope scope(masm, StackFrame::INTERNAL);
4000     __ Push(rdx);
4001     __ Push(rax);
4002     __ Push(rdx);
4003     __ Push(rax);
4004     __ Push(Smi::FromInt(op_));
4005     __ CallExternalReference(miss, 3);
4006 
4007     // Compute the entry point of the rewritten stub.
4008     __ leap(rdi, FieldOperand(rax, Code::kHeaderSize));
4009     __ Pop(rax);
4010     __ Pop(rdx);
4011   }
4012 
4013   // Do a tail call to the rewritten stub.
4014   __ jmp(rdi);
4015 }
4016 
4017 
GenerateNegativeLookup(MacroAssembler * masm,Label * miss,Label * done,Register properties,Handle<Name> name,Register r0)4018 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
4019                                                       Label* miss,
4020                                                       Label* done,
4021                                                       Register properties,
4022                                                       Handle<Name> name,
4023                                                       Register r0) {
4024   ASSERT(name->IsUniqueName());
4025   // If names of slots in range from 1 to kProbes - 1 for the hash value are
4026   // not equal to the name and kProbes-th slot is not used (its name is the
4027   // undefined value), it guarantees the hash table doesn't contain the
4028   // property. It's true even if some slots represent deleted properties
4029   // (their names are the hole value).
4030   for (int i = 0; i < kInlinedProbes; i++) {
4031     // r0 points to properties hash.
4032     // Compute the masked index: (hash + i + i * i) & mask.
4033     Register index = r0;
4034     // Capacity is smi 2^n.
4035     __ SmiToInteger32(index, FieldOperand(properties, kCapacityOffset));
4036     __ decl(index);
4037     __ andp(index,
4038             Immediate(name->Hash() + NameDictionary::GetProbeOffset(i)));
4039 
4040     // Scale the index by multiplying by the entry size.
4041     ASSERT(NameDictionary::kEntrySize == 3);
4042     __ leap(index, Operand(index, index, times_2, 0));  // index *= 3.
4043 
4044     Register entity_name = r0;
4045     // Having undefined at this place means the name is not contained.
4046     ASSERT_EQ(kSmiTagSize, 1);
4047     __ movp(entity_name, Operand(properties,
4048                                  index,
4049                                  times_pointer_size,
4050                                  kElementsStartOffset - kHeapObjectTag));
4051     __ Cmp(entity_name, masm->isolate()->factory()->undefined_value());
4052     __ j(equal, done);
4053 
4054     // Stop if found the property.
4055     __ Cmp(entity_name, Handle<Name>(name));
4056     __ j(equal, miss);
4057 
4058     Label good;
4059     // Check for the hole and skip.
4060     __ CompareRoot(entity_name, Heap::kTheHoleValueRootIndex);
4061     __ j(equal, &good, Label::kNear);
4062 
4063     // Check if the entry name is not a unique name.
4064     __ movp(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset));
4065     __ JumpIfNotUniqueName(FieldOperand(entity_name, Map::kInstanceTypeOffset),
4066                            miss);
4067     __ bind(&good);
4068   }
4069 
4070   NameDictionaryLookupStub stub(masm->isolate(), properties, r0, r0,
4071                                 NEGATIVE_LOOKUP);
4072   __ Push(Handle<Object>(name));
4073   __ Push(Immediate(name->Hash()));
4074   __ CallStub(&stub);
4075   __ testp(r0, r0);
4076   __ j(not_zero, miss);
4077   __ jmp(done);
4078 }
4079 
4080 
4081 // Probe the name dictionary in the |elements| register. Jump to the
4082 // |done| label if a property with the given name is found leaving the
4083 // index into the dictionary in |r1|. Jump to the |miss| label
4084 // otherwise.
GeneratePositiveLookup(MacroAssembler * masm,Label * miss,Label * done,Register elements,Register name,Register r0,Register r1)4085 void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
4086                                                       Label* miss,
4087                                                       Label* done,
4088                                                       Register elements,
4089                                                       Register name,
4090                                                       Register r0,
4091                                                       Register r1) {
4092   ASSERT(!elements.is(r0));
4093   ASSERT(!elements.is(r1));
4094   ASSERT(!name.is(r0));
4095   ASSERT(!name.is(r1));
4096 
4097   __ AssertName(name);
4098 
4099   __ SmiToInteger32(r0, FieldOperand(elements, kCapacityOffset));
4100   __ decl(r0);
4101 
4102   for (int i = 0; i < kInlinedProbes; i++) {
4103     // Compute the masked index: (hash + i + i * i) & mask.
4104     __ movl(r1, FieldOperand(name, Name::kHashFieldOffset));
4105     __ shrl(r1, Immediate(Name::kHashShift));
4106     if (i > 0) {
4107       __ addl(r1, Immediate(NameDictionary::GetProbeOffset(i)));
4108     }
4109     __ andp(r1, r0);
4110 
4111     // Scale the index by multiplying by the entry size.
4112     ASSERT(NameDictionary::kEntrySize == 3);
4113     __ leap(r1, Operand(r1, r1, times_2, 0));  // r1 = r1 * 3
4114 
4115     // Check if the key is identical to the name.
4116     __ cmpp(name, Operand(elements, r1, times_pointer_size,
4117                           kElementsStartOffset - kHeapObjectTag));
4118     __ j(equal, done);
4119   }
4120 
4121   NameDictionaryLookupStub stub(masm->isolate(), elements, r0, r1,
4122                                 POSITIVE_LOOKUP);
4123   __ Push(name);
4124   __ movl(r0, FieldOperand(name, Name::kHashFieldOffset));
4125   __ shrl(r0, Immediate(Name::kHashShift));
4126   __ Push(r0);
4127   __ CallStub(&stub);
4128 
4129   __ testp(r0, r0);
4130   __ j(zero, miss);
4131   __ jmp(done);
4132 }
4133 
4134 
Generate(MacroAssembler * masm)4135 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
4136   // This stub overrides SometimesSetsUpAFrame() to return false.  That means
4137   // we cannot call anything that could cause a GC from this stub.
4138   // Stack frame on entry:
4139   //  rsp[0 * kPointerSize] : return address.
4140   //  rsp[1 * kPointerSize] : key's hash.
4141   //  rsp[2 * kPointerSize] : key.
4142   // Registers:
4143   //  dictionary_: NameDictionary to probe.
4144   //  result_: used as scratch.
4145   //  index_: will hold an index of entry if lookup is successful.
4146   //          might alias with result_.
4147   // Returns:
4148   //  result_ is zero if lookup failed, non zero otherwise.
4149 
4150   Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
4151 
4152   Register scratch = result_;
4153 
4154   __ SmiToInteger32(scratch, FieldOperand(dictionary_, kCapacityOffset));
4155   __ decl(scratch);
4156   __ Push(scratch);
4157 
4158   // If names of slots in range from 1 to kProbes - 1 for the hash value are
4159   // not equal to the name and kProbes-th slot is not used (its name is the
4160   // undefined value), it guarantees the hash table doesn't contain the
4161   // property. It's true even if some slots represent deleted properties
4162   // (their names are the null value).
4163   StackArgumentsAccessor args(rsp, 2, ARGUMENTS_DONT_CONTAIN_RECEIVER,
4164                               kPointerSize);
4165   for (int i = kInlinedProbes; i < kTotalProbes; i++) {
4166     // Compute the masked index: (hash + i + i * i) & mask.
4167     __ movp(scratch, args.GetArgumentOperand(1));
4168     if (i > 0) {
4169       __ addl(scratch, Immediate(NameDictionary::GetProbeOffset(i)));
4170     }
4171     __ andp(scratch, Operand(rsp, 0));
4172 
4173     // Scale the index by multiplying by the entry size.
4174     ASSERT(NameDictionary::kEntrySize == 3);
4175     __ leap(index_, Operand(scratch, scratch, times_2, 0));  // index *= 3.
4176 
4177     // Having undefined at this place means the name is not contained.
4178     __ movp(scratch, Operand(dictionary_,
4179                              index_,
4180                              times_pointer_size,
4181                              kElementsStartOffset - kHeapObjectTag));
4182 
4183     __ Cmp(scratch, isolate()->factory()->undefined_value());
4184     __ j(equal, &not_in_dictionary);
4185 
4186     // Stop if found the property.
4187     __ cmpp(scratch, args.GetArgumentOperand(0));
4188     __ j(equal, &in_dictionary);
4189 
4190     if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) {
4191       // If we hit a key that is not a unique name during negative
4192       // lookup we have to bailout as this key might be equal to the
4193       // key we are looking for.
4194 
4195       // Check if the entry name is not a unique name.
4196       __ movp(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
4197       __ JumpIfNotUniqueName(FieldOperand(scratch, Map::kInstanceTypeOffset),
4198                              &maybe_in_dictionary);
4199     }
4200   }
4201 
4202   __ bind(&maybe_in_dictionary);
4203   // If we are doing negative lookup then probing failure should be
4204   // treated as a lookup success. For positive lookup probing failure
4205   // should be treated as lookup failure.
4206   if (mode_ == POSITIVE_LOOKUP) {
4207     __ movp(scratch, Immediate(0));
4208     __ Drop(1);
4209     __ ret(2 * kPointerSize);
4210   }
4211 
4212   __ bind(&in_dictionary);
4213   __ movp(scratch, Immediate(1));
4214   __ Drop(1);
4215   __ ret(2 * kPointerSize);
4216 
4217   __ bind(&not_in_dictionary);
4218   __ movp(scratch, Immediate(0));
4219   __ Drop(1);
4220   __ ret(2 * kPointerSize);
4221 }
4222 
4223 
GenerateFixedRegStubsAheadOfTime(Isolate * isolate)4224 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
4225     Isolate* isolate) {
4226   StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
4227   stub1.GetCode();
4228   StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
4229   stub2.GetCode();
4230 }
4231 
4232 
4233 // Takes the input in 3 registers: address_ value_ and object_.  A pointer to
4234 // the value has just been written into the object, now this stub makes sure
4235 // we keep the GC informed.  The word in the object where the value has been
4236 // written is in the address register.
Generate(MacroAssembler * masm)4237 void RecordWriteStub::Generate(MacroAssembler* masm) {
4238   Label skip_to_incremental_noncompacting;
4239   Label skip_to_incremental_compacting;
4240 
4241   // The first two instructions are generated with labels so as to get the
4242   // offset fixed up correctly by the bind(Label*) call.  We patch it back and
4243   // forth between a compare instructions (a nop in this position) and the
4244   // real branch when we start and stop incremental heap marking.
4245   // See RecordWriteStub::Patch for details.
4246   __ jmp(&skip_to_incremental_noncompacting, Label::kNear);
4247   __ jmp(&skip_to_incremental_compacting, Label::kFar);
4248 
4249   if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
4250     __ RememberedSetHelper(object_,
4251                            address_,
4252                            value_,
4253                            save_fp_regs_mode_,
4254                            MacroAssembler::kReturnAtEnd);
4255   } else {
4256     __ ret(0);
4257   }
4258 
4259   __ bind(&skip_to_incremental_noncompacting);
4260   GenerateIncremental(masm, INCREMENTAL);
4261 
4262   __ bind(&skip_to_incremental_compacting);
4263   GenerateIncremental(masm, INCREMENTAL_COMPACTION);
4264 
4265   // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
4266   // Will be checked in IncrementalMarking::ActivateGeneratedStub.
4267   masm->set_byte_at(0, kTwoByteNopInstruction);
4268   masm->set_byte_at(2, kFiveByteNopInstruction);
4269 }
4270 
4271 
GenerateIncremental(MacroAssembler * masm,Mode mode)4272 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
4273   regs_.Save(masm);
4274 
4275   if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
4276     Label dont_need_remembered_set;
4277 
4278     __ movp(regs_.scratch0(), Operand(regs_.address(), 0));
4279     __ JumpIfNotInNewSpace(regs_.scratch0(),
4280                            regs_.scratch0(),
4281                            &dont_need_remembered_set);
4282 
4283     __ CheckPageFlag(regs_.object(),
4284                      regs_.scratch0(),
4285                      1 << MemoryChunk::SCAN_ON_SCAVENGE,
4286                      not_zero,
4287                      &dont_need_remembered_set);
4288 
4289     // First notify the incremental marker if necessary, then update the
4290     // remembered set.
4291     CheckNeedsToInformIncrementalMarker(
4292         masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
4293     InformIncrementalMarker(masm);
4294     regs_.Restore(masm);
4295     __ RememberedSetHelper(object_,
4296                            address_,
4297                            value_,
4298                            save_fp_regs_mode_,
4299                            MacroAssembler::kReturnAtEnd);
4300 
4301     __ bind(&dont_need_remembered_set);
4302   }
4303 
4304   CheckNeedsToInformIncrementalMarker(
4305       masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
4306   InformIncrementalMarker(masm);
4307   regs_.Restore(masm);
4308   __ ret(0);
4309 }
4310 
4311 
InformIncrementalMarker(MacroAssembler * masm)4312 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
4313   regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_);
4314   Register address =
4315       arg_reg_1.is(regs_.address()) ? kScratchRegister : regs_.address();
4316   ASSERT(!address.is(regs_.object()));
4317   ASSERT(!address.is(arg_reg_1));
4318   __ Move(address, regs_.address());
4319   __ Move(arg_reg_1, regs_.object());
4320   // TODO(gc) Can we just set address arg2 in the beginning?
4321   __ Move(arg_reg_2, address);
4322   __ LoadAddress(arg_reg_3,
4323                  ExternalReference::isolate_address(isolate()));
4324   int argument_count = 3;
4325 
4326   AllowExternalCallThatCantCauseGC scope(masm);
4327   __ PrepareCallCFunction(argument_count);
4328   __ CallCFunction(
4329       ExternalReference::incremental_marking_record_write_function(isolate()),
4330       argument_count);
4331   regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_);
4332 }
4333 
4334 
CheckNeedsToInformIncrementalMarker(MacroAssembler * masm,OnNoNeedToInformIncrementalMarker on_no_need,Mode mode)4335 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
4336     MacroAssembler* masm,
4337     OnNoNeedToInformIncrementalMarker on_no_need,
4338     Mode mode) {
4339   Label on_black;
4340   Label need_incremental;
4341   Label need_incremental_pop_object;
4342 
4343   __ movp(regs_.scratch0(), Immediate(~Page::kPageAlignmentMask));
4344   __ andp(regs_.scratch0(), regs_.object());
4345   __ movp(regs_.scratch1(),
4346          Operand(regs_.scratch0(),
4347                  MemoryChunk::kWriteBarrierCounterOffset));
4348   __ subp(regs_.scratch1(), Immediate(1));
4349   __ movp(Operand(regs_.scratch0(),
4350                  MemoryChunk::kWriteBarrierCounterOffset),
4351          regs_.scratch1());
4352   __ j(negative, &need_incremental);
4353 
4354   // Let's look at the color of the object:  If it is not black we don't have
4355   // to inform the incremental marker.
4356   __ JumpIfBlack(regs_.object(),
4357                  regs_.scratch0(),
4358                  regs_.scratch1(),
4359                  &on_black,
4360                  Label::kNear);
4361 
4362   regs_.Restore(masm);
4363   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4364     __ RememberedSetHelper(object_,
4365                            address_,
4366                            value_,
4367                            save_fp_regs_mode_,
4368                            MacroAssembler::kReturnAtEnd);
4369   } else {
4370     __ ret(0);
4371   }
4372 
4373   __ bind(&on_black);
4374 
4375   // Get the value from the slot.
4376   __ movp(regs_.scratch0(), Operand(regs_.address(), 0));
4377 
4378   if (mode == INCREMENTAL_COMPACTION) {
4379     Label ensure_not_white;
4380 
4381     __ CheckPageFlag(regs_.scratch0(),  // Contains value.
4382                      regs_.scratch1(),  // Scratch.
4383                      MemoryChunk::kEvacuationCandidateMask,
4384                      zero,
4385                      &ensure_not_white,
4386                      Label::kNear);
4387 
4388     __ CheckPageFlag(regs_.object(),
4389                      regs_.scratch1(),  // Scratch.
4390                      MemoryChunk::kSkipEvacuationSlotsRecordingMask,
4391                      zero,
4392                      &need_incremental);
4393 
4394     __ bind(&ensure_not_white);
4395   }
4396 
4397   // We need an extra register for this, so we push the object register
4398   // temporarily.
4399   __ Push(regs_.object());
4400   __ EnsureNotWhite(regs_.scratch0(),  // The value.
4401                     regs_.scratch1(),  // Scratch.
4402                     regs_.object(),  // Scratch.
4403                     &need_incremental_pop_object,
4404                     Label::kNear);
4405   __ Pop(regs_.object());
4406 
4407   regs_.Restore(masm);
4408   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4409     __ RememberedSetHelper(object_,
4410                            address_,
4411                            value_,
4412                            save_fp_regs_mode_,
4413                            MacroAssembler::kReturnAtEnd);
4414   } else {
4415     __ ret(0);
4416   }
4417 
4418   __ bind(&need_incremental_pop_object);
4419   __ Pop(regs_.object());
4420 
4421   __ bind(&need_incremental);
4422 
4423   // Fall through when we need to inform the incremental marker.
4424 }
4425 
4426 
Generate(MacroAssembler * masm)4427 void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
4428   // ----------- S t a t e -------------
4429   //  -- rax     : element value to store
4430   //  -- rcx     : element index as smi
4431   //  -- rsp[0]  : return address
4432   //  -- rsp[8]  : array literal index in function
4433   //  -- rsp[16] : array literal
4434   // clobbers rbx, rdx, rdi
4435   // -----------------------------------
4436 
4437   Label element_done;
4438   Label double_elements;
4439   Label smi_element;
4440   Label slow_elements;
4441   Label fast_elements;
4442 
4443   // Get array literal index, array literal and its map.
4444   StackArgumentsAccessor args(rsp, 2, ARGUMENTS_DONT_CONTAIN_RECEIVER);
4445   __ movp(rdx, args.GetArgumentOperand(1));
4446   __ movp(rbx, args.GetArgumentOperand(0));
4447   __ movp(rdi, FieldOperand(rbx, JSObject::kMapOffset));
4448 
4449   __ CheckFastElements(rdi, &double_elements);
4450 
4451   // FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS
4452   __ JumpIfSmi(rax, &smi_element);
4453   __ CheckFastSmiElements(rdi, &fast_elements);
4454 
4455   // Store into the array literal requires a elements transition. Call into
4456   // the runtime.
4457 
4458   __ bind(&slow_elements);
4459   __ PopReturnAddressTo(rdi);
4460   __ Push(rbx);
4461   __ Push(rcx);
4462   __ Push(rax);
4463   __ movp(rbx, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
4464   __ Push(FieldOperand(rbx, JSFunction::kLiteralsOffset));
4465   __ Push(rdx);
4466   __ PushReturnAddressFrom(rdi);
4467   __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
4468 
4469   // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
4470   __ bind(&fast_elements);
4471   __ SmiToInteger32(kScratchRegister, rcx);
4472   __ movp(rbx, FieldOperand(rbx, JSObject::kElementsOffset));
4473   __ leap(rcx, FieldOperand(rbx, kScratchRegister, times_pointer_size,
4474                            FixedArrayBase::kHeaderSize));
4475   __ movp(Operand(rcx, 0), rax);
4476   // Update the write barrier for the array store.
4477   __ RecordWrite(rbx, rcx, rax,
4478                  kDontSaveFPRegs,
4479                  EMIT_REMEMBERED_SET,
4480                  OMIT_SMI_CHECK);
4481   __ ret(0);
4482 
4483   // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or
4484   // FAST_*_ELEMENTS, and value is Smi.
4485   __ bind(&smi_element);
4486   __ SmiToInteger32(kScratchRegister, rcx);
4487   __ movp(rbx, FieldOperand(rbx, JSObject::kElementsOffset));
4488   __ movp(FieldOperand(rbx, kScratchRegister, times_pointer_size,
4489                        FixedArrayBase::kHeaderSize), rax);
4490   __ ret(0);
4491 
4492   // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS.
4493   __ bind(&double_elements);
4494 
4495   __ movp(r9, FieldOperand(rbx, JSObject::kElementsOffset));
4496   __ SmiToInteger32(r11, rcx);
4497   __ StoreNumberToDoubleElements(rax,
4498                                  r9,
4499                                  r11,
4500                                  xmm0,
4501                                  &slow_elements);
4502   __ ret(0);
4503 }
4504 
4505 
Generate(MacroAssembler * masm)4506 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
4507   CEntryStub ces(isolate(), 1, kSaveFPRegs);
4508   __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
4509   int parameter_count_offset =
4510       StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
4511   __ movp(rbx, MemOperand(rbp, parameter_count_offset));
4512   masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
4513   __ PopReturnAddressTo(rcx);
4514   int additional_offset = function_mode_ == JS_FUNCTION_STUB_MODE
4515       ? kPointerSize
4516       : 0;
4517   __ leap(rsp, MemOperand(rsp, rbx, times_pointer_size, additional_offset));
4518   __ jmp(rcx);  // Return to IC Miss stub, continuation still on stack.
4519 }
4520 
4521 
MaybeCallEntryHook(MacroAssembler * masm)4522 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
4523   if (masm->isolate()->function_entry_hook() != NULL) {
4524     ProfileEntryHookStub stub(masm->isolate());
4525     masm->CallStub(&stub);
4526   }
4527 }
4528 
4529 
Generate(MacroAssembler * masm)4530 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
4531   // This stub can be called from essentially anywhere, so it needs to save
4532   // all volatile and callee-save registers.
4533   const size_t kNumSavedRegisters = 2;
4534   __ pushq(arg_reg_1);
4535   __ pushq(arg_reg_2);
4536 
4537   // Calculate the original stack pointer and store it in the second arg.
4538   __ leap(arg_reg_2,
4539          Operand(rsp, kNumSavedRegisters * kRegisterSize + kPCOnStackSize));
4540 
4541   // Calculate the function address to the first arg.
4542   __ movp(arg_reg_1, Operand(rsp, kNumSavedRegisters * kRegisterSize));
4543   __ subp(arg_reg_1, Immediate(Assembler::kShortCallInstructionLength));
4544 
4545   // Save the remainder of the volatile registers.
4546   masm->PushCallerSaved(kSaveFPRegs, arg_reg_1, arg_reg_2);
4547 
4548   // Call the entry hook function.
4549   __ Move(rax, FUNCTION_ADDR(isolate()->function_entry_hook()),
4550           Assembler::RelocInfoNone());
4551 
4552   AllowExternalCallThatCantCauseGC scope(masm);
4553 
4554   const int kArgumentCount = 2;
4555   __ PrepareCallCFunction(kArgumentCount);
4556   __ CallCFunction(rax, kArgumentCount);
4557 
4558   // Restore volatile regs.
4559   masm->PopCallerSaved(kSaveFPRegs, arg_reg_1, arg_reg_2);
4560   __ popq(arg_reg_2);
4561   __ popq(arg_reg_1);
4562 
4563   __ Ret();
4564 }
4565 
4566 
4567 template<class T>
CreateArrayDispatch(MacroAssembler * masm,AllocationSiteOverrideMode mode)4568 static void CreateArrayDispatch(MacroAssembler* masm,
4569                                 AllocationSiteOverrideMode mode) {
4570   if (mode == DISABLE_ALLOCATION_SITES) {
4571     T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
4572     __ TailCallStub(&stub);
4573   } else if (mode == DONT_OVERRIDE) {
4574     int last_index = GetSequenceIndexFromFastElementsKind(
4575         TERMINAL_FAST_ELEMENTS_KIND);
4576     for (int i = 0; i <= last_index; ++i) {
4577       Label next;
4578       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4579       __ cmpl(rdx, Immediate(kind));
4580       __ j(not_equal, &next);
4581       T stub(masm->isolate(), kind);
4582       __ TailCallStub(&stub);
4583       __ bind(&next);
4584     }
4585 
4586     // If we reached this point there is a problem.
4587     __ Abort(kUnexpectedElementsKindInArrayConstructor);
4588   } else {
4589     UNREACHABLE();
4590   }
4591 }
4592 
4593 
CreateArrayDispatchOneArgument(MacroAssembler * masm,AllocationSiteOverrideMode mode)4594 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
4595                                            AllocationSiteOverrideMode mode) {
4596   // rbx - allocation site (if mode != DISABLE_ALLOCATION_SITES)
4597   // rdx - kind (if mode != DISABLE_ALLOCATION_SITES)
4598   // rax - number of arguments
4599   // rdi - constructor?
4600   // rsp[0] - return address
4601   // rsp[8] - last argument
4602   Handle<Object> undefined_sentinel(
4603       masm->isolate()->heap()->undefined_value(),
4604       masm->isolate());
4605 
4606   Label normal_sequence;
4607   if (mode == DONT_OVERRIDE) {
4608     ASSERT(FAST_SMI_ELEMENTS == 0);
4609     ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
4610     ASSERT(FAST_ELEMENTS == 2);
4611     ASSERT(FAST_HOLEY_ELEMENTS == 3);
4612     ASSERT(FAST_DOUBLE_ELEMENTS == 4);
4613     ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
4614 
4615     // is the low bit set? If so, we are holey and that is good.
4616     __ testb(rdx, Immediate(1));
4617     __ j(not_zero, &normal_sequence);
4618   }
4619 
4620   // look at the first argument
4621   StackArgumentsAccessor args(rsp, 1, ARGUMENTS_DONT_CONTAIN_RECEIVER);
4622   __ movp(rcx, args.GetArgumentOperand(0));
4623   __ testp(rcx, rcx);
4624   __ j(zero, &normal_sequence);
4625 
4626   if (mode == DISABLE_ALLOCATION_SITES) {
4627     ElementsKind initial = GetInitialFastElementsKind();
4628     ElementsKind holey_initial = GetHoleyElementsKind(initial);
4629 
4630     ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
4631                                                   holey_initial,
4632                                                   DISABLE_ALLOCATION_SITES);
4633     __ TailCallStub(&stub_holey);
4634 
4635     __ bind(&normal_sequence);
4636     ArraySingleArgumentConstructorStub stub(masm->isolate(),
4637                                             initial,
4638                                             DISABLE_ALLOCATION_SITES);
4639     __ TailCallStub(&stub);
4640   } else if (mode == DONT_OVERRIDE) {
4641     // We are going to create a holey array, but our kind is non-holey.
4642     // Fix kind and retry (only if we have an allocation site in the slot).
4643     __ incl(rdx);
4644 
4645     if (FLAG_debug_code) {
4646       Handle<Map> allocation_site_map =
4647           masm->isolate()->factory()->allocation_site_map();
4648       __ Cmp(FieldOperand(rbx, 0), allocation_site_map);
4649       __ Assert(equal, kExpectedAllocationSite);
4650     }
4651 
4652     // Save the resulting elements kind in type info. We can't just store r3
4653     // in the AllocationSite::transition_info field because elements kind is
4654     // restricted to a portion of the field...upper bits need to be left alone.
4655     STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4656     __ SmiAddConstant(FieldOperand(rbx, AllocationSite::kTransitionInfoOffset),
4657                       Smi::FromInt(kFastElementsKindPackedToHoley));
4658 
4659     __ bind(&normal_sequence);
4660     int last_index = GetSequenceIndexFromFastElementsKind(
4661         TERMINAL_FAST_ELEMENTS_KIND);
4662     for (int i = 0; i <= last_index; ++i) {
4663       Label next;
4664       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4665       __ cmpl(rdx, Immediate(kind));
4666       __ j(not_equal, &next);
4667       ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
4668       __ TailCallStub(&stub);
4669       __ bind(&next);
4670     }
4671 
4672     // If we reached this point there is a problem.
4673     __ Abort(kUnexpectedElementsKindInArrayConstructor);
4674   } else {
4675     UNREACHABLE();
4676   }
4677 }
4678 
4679 
4680 template<class T>
ArrayConstructorStubAheadOfTimeHelper(Isolate * isolate)4681 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
4682   int to_index = GetSequenceIndexFromFastElementsKind(
4683       TERMINAL_FAST_ELEMENTS_KIND);
4684   for (int i = 0; i <= to_index; ++i) {
4685     ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4686     T stub(isolate, kind);
4687     stub.GetCode();
4688     if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
4689       T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
4690       stub1.GetCode();
4691     }
4692   }
4693 }
4694 
4695 
GenerateStubsAheadOfTime(Isolate * isolate)4696 void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
4697   ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
4698       isolate);
4699   ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
4700       isolate);
4701   ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
4702       isolate);
4703 }
4704 
4705 
GenerateStubsAheadOfTime(Isolate * isolate)4706 void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
4707     Isolate* isolate) {
4708   ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
4709   for (int i = 0; i < 2; i++) {
4710     // For internal arrays we only need a few things
4711     InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
4712     stubh1.GetCode();
4713     InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
4714     stubh2.GetCode();
4715     InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
4716     stubh3.GetCode();
4717   }
4718 }
4719 
4720 
GenerateDispatchToArrayStub(MacroAssembler * masm,AllocationSiteOverrideMode mode)4721 void ArrayConstructorStub::GenerateDispatchToArrayStub(
4722     MacroAssembler* masm,
4723     AllocationSiteOverrideMode mode) {
4724   if (argument_count_ == ANY) {
4725     Label not_zero_case, not_one_case;
4726     __ testp(rax, rax);
4727     __ j(not_zero, &not_zero_case);
4728     CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4729 
4730     __ bind(&not_zero_case);
4731     __ cmpl(rax, Immediate(1));
4732     __ j(greater, &not_one_case);
4733     CreateArrayDispatchOneArgument(masm, mode);
4734 
4735     __ bind(&not_one_case);
4736     CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4737   } else if (argument_count_ == NONE) {
4738     CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4739   } else if (argument_count_ == ONE) {
4740     CreateArrayDispatchOneArgument(masm, mode);
4741   } else if (argument_count_ == MORE_THAN_ONE) {
4742     CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4743   } else {
4744     UNREACHABLE();
4745   }
4746 }
4747 
4748 
Generate(MacroAssembler * masm)4749 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
4750   // ----------- S t a t e -------------
4751   //  -- rax    : argc
4752   //  -- rbx    : AllocationSite or undefined
4753   //  -- rdi    : constructor
4754   //  -- rsp[0] : return address
4755   //  -- rsp[8] : last argument
4756   // -----------------------------------
4757   if (FLAG_debug_code) {
4758     // The array construct code is only set for the global and natives
4759     // builtin Array functions which always have maps.
4760 
4761     // Initial map for the builtin Array function should be a map.
4762     __ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
4763     // Will both indicate a NULL and a Smi.
4764     STATIC_ASSERT(kSmiTag == 0);
4765     Condition not_smi = NegateCondition(masm->CheckSmi(rcx));
4766     __ Check(not_smi, kUnexpectedInitialMapForArrayFunction);
4767     __ CmpObjectType(rcx, MAP_TYPE, rcx);
4768     __ Check(equal, kUnexpectedInitialMapForArrayFunction);
4769 
4770     // We should either have undefined in rbx or a valid AllocationSite
4771     __ AssertUndefinedOrAllocationSite(rbx);
4772   }
4773 
4774   Label no_info;
4775   // If the feedback vector is the undefined value call an array constructor
4776   // that doesn't use AllocationSites.
4777   __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex);
4778   __ j(equal, &no_info);
4779 
4780   // Only look at the lower 16 bits of the transition info.
4781   __ movp(rdx, FieldOperand(rbx, AllocationSite::kTransitionInfoOffset));
4782   __ SmiToInteger32(rdx, rdx);
4783   STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4784   __ andp(rdx, Immediate(AllocationSite::ElementsKindBits::kMask));
4785   GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
4786 
4787   __ bind(&no_info);
4788   GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
4789 }
4790 
4791 
GenerateCase(MacroAssembler * masm,ElementsKind kind)4792 void InternalArrayConstructorStub::GenerateCase(
4793     MacroAssembler* masm, ElementsKind kind) {
4794   Label not_zero_case, not_one_case;
4795   Label normal_sequence;
4796 
4797   __ testp(rax, rax);
4798   __ j(not_zero, &not_zero_case);
4799   InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
4800   __ TailCallStub(&stub0);
4801 
4802   __ bind(&not_zero_case);
4803   __ cmpl(rax, Immediate(1));
4804   __ j(greater, &not_one_case);
4805 
4806   if (IsFastPackedElementsKind(kind)) {
4807     // We might need to create a holey array
4808     // look at the first argument
4809     StackArgumentsAccessor args(rsp, 1, ARGUMENTS_DONT_CONTAIN_RECEIVER);
4810     __ movp(rcx, args.GetArgumentOperand(0));
4811     __ testp(rcx, rcx);
4812     __ j(zero, &normal_sequence);
4813 
4814     InternalArraySingleArgumentConstructorStub
4815         stub1_holey(isolate(), GetHoleyElementsKind(kind));
4816     __ TailCallStub(&stub1_holey);
4817   }
4818 
4819   __ bind(&normal_sequence);
4820   InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
4821   __ TailCallStub(&stub1);
4822 
4823   __ bind(&not_one_case);
4824   InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
4825   __ TailCallStub(&stubN);
4826 }
4827 
4828 
Generate(MacroAssembler * masm)4829 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
4830   // ----------- S t a t e -------------
4831   //  -- rax    : argc
4832   //  -- rdi    : constructor
4833   //  -- rsp[0] : return address
4834   //  -- rsp[8] : last argument
4835   // -----------------------------------
4836 
4837   if (FLAG_debug_code) {
4838     // The array construct code is only set for the global and natives
4839     // builtin Array functions which always have maps.
4840 
4841     // Initial map for the builtin Array function should be a map.
4842     __ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
4843     // Will both indicate a NULL and a Smi.
4844     STATIC_ASSERT(kSmiTag == 0);
4845     Condition not_smi = NegateCondition(masm->CheckSmi(rcx));
4846     __ Check(not_smi, kUnexpectedInitialMapForArrayFunction);
4847     __ CmpObjectType(rcx, MAP_TYPE, rcx);
4848     __ Check(equal, kUnexpectedInitialMapForArrayFunction);
4849   }
4850 
4851   // Figure out the right elements kind
4852   __ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
4853 
4854   // Load the map's "bit field 2" into |result|. We only need the first byte,
4855   // but the following masking takes care of that anyway.
4856   __ movzxbp(rcx, FieldOperand(rcx, Map::kBitField2Offset));
4857   // Retrieve elements_kind from bit field 2.
4858   __ DecodeField<Map::ElementsKindBits>(rcx);
4859 
4860   if (FLAG_debug_code) {
4861     Label done;
4862     __ cmpl(rcx, Immediate(FAST_ELEMENTS));
4863     __ j(equal, &done);
4864     __ cmpl(rcx, Immediate(FAST_HOLEY_ELEMENTS));
4865     __ Assert(equal,
4866               kInvalidElementsKindForInternalArrayOrInternalPackedArray);
4867     __ bind(&done);
4868   }
4869 
4870   Label fast_elements_case;
4871   __ cmpl(rcx, Immediate(FAST_ELEMENTS));
4872   __ j(equal, &fast_elements_case);
4873   GenerateCase(masm, FAST_HOLEY_ELEMENTS);
4874 
4875   __ bind(&fast_elements_case);
4876   GenerateCase(masm, FAST_ELEMENTS);
4877 }
4878 
4879 
Generate(MacroAssembler * masm)4880 void CallApiFunctionStub::Generate(MacroAssembler* masm) {
4881   // ----------- S t a t e -------------
4882   //  -- rax                 : callee
4883   //  -- rbx                 : call_data
4884   //  -- rcx                 : holder
4885   //  -- rdx                 : api_function_address
4886   //  -- rsi                 : context
4887   //  --
4888   //  -- rsp[0]              : return address
4889   //  -- rsp[8]              : last argument
4890   //  -- ...
4891   //  -- rsp[argc * 8]       : first argument
4892   //  -- rsp[(argc + 1) * 8] : receiver
4893   // -----------------------------------
4894 
4895   Register callee = rax;
4896   Register call_data = rbx;
4897   Register holder = rcx;
4898   Register api_function_address = rdx;
4899   Register return_address = rdi;
4900   Register context = rsi;
4901 
4902   int argc = ArgumentBits::decode(bit_field_);
4903   bool is_store = IsStoreBits::decode(bit_field_);
4904   bool call_data_undefined = CallDataUndefinedBits::decode(bit_field_);
4905 
4906   typedef FunctionCallbackArguments FCA;
4907 
4908   STATIC_ASSERT(FCA::kContextSaveIndex == 6);
4909   STATIC_ASSERT(FCA::kCalleeIndex == 5);
4910   STATIC_ASSERT(FCA::kDataIndex == 4);
4911   STATIC_ASSERT(FCA::kReturnValueOffset == 3);
4912   STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
4913   STATIC_ASSERT(FCA::kIsolateIndex == 1);
4914   STATIC_ASSERT(FCA::kHolderIndex == 0);
4915   STATIC_ASSERT(FCA::kArgsLength == 7);
4916 
4917   __ PopReturnAddressTo(return_address);
4918 
4919   // context save
4920   __ Push(context);
4921   // load context from callee
4922   __ movp(context, FieldOperand(callee, JSFunction::kContextOffset));
4923 
4924   // callee
4925   __ Push(callee);
4926 
4927   // call data
4928   __ Push(call_data);
4929   Register scratch = call_data;
4930   if (!call_data_undefined) {
4931     __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
4932   }
4933   // return value
4934   __ Push(scratch);
4935   // return value default
4936   __ Push(scratch);
4937   // isolate
4938   __ Move(scratch,
4939           ExternalReference::isolate_address(isolate()));
4940   __ Push(scratch);
4941   // holder
4942   __ Push(holder);
4943 
4944   __ movp(scratch, rsp);
4945   // Push return address back on stack.
4946   __ PushReturnAddressFrom(return_address);
4947 
4948   // Allocate the v8::Arguments structure in the arguments' space since
4949   // it's not controlled by GC.
4950   const int kApiStackSpace = 4;
4951 
4952   __ PrepareCallApiFunction(kApiStackSpace);
4953 
4954   // FunctionCallbackInfo::implicit_args_.
4955   __ movp(StackSpaceOperand(0), scratch);
4956   __ addp(scratch, Immediate((argc + FCA::kArgsLength - 1) * kPointerSize));
4957   __ movp(StackSpaceOperand(1), scratch);  // FunctionCallbackInfo::values_.
4958   __ Set(StackSpaceOperand(2), argc);  // FunctionCallbackInfo::length_.
4959   // FunctionCallbackInfo::is_construct_call_.
4960   __ Set(StackSpaceOperand(3), 0);
4961 
4962 #if defined(__MINGW64__) || defined(_WIN64)
4963   Register arguments_arg = rcx;
4964   Register callback_arg = rdx;
4965 #else
4966   Register arguments_arg = rdi;
4967   Register callback_arg = rsi;
4968 #endif
4969 
4970   // It's okay if api_function_address == callback_arg
4971   // but not arguments_arg
4972   ASSERT(!api_function_address.is(arguments_arg));
4973 
4974   // v8::InvocationCallback's argument.
4975   __ leap(arguments_arg, StackSpaceOperand(0));
4976 
4977   ExternalReference thunk_ref =
4978       ExternalReference::invoke_function_callback(isolate());
4979 
4980   // Accessor for FunctionCallbackInfo and first js arg.
4981   StackArgumentsAccessor args_from_rbp(rbp, FCA::kArgsLength + 1,
4982                                        ARGUMENTS_DONT_CONTAIN_RECEIVER);
4983   Operand context_restore_operand = args_from_rbp.GetArgumentOperand(
4984       FCA::kArgsLength - FCA::kContextSaveIndex);
4985   // Stores return the first js argument
4986   Operand return_value_operand = args_from_rbp.GetArgumentOperand(
4987       is_store ? 0 : FCA::kArgsLength - FCA::kReturnValueOffset);
4988   __ CallApiFunctionAndReturn(
4989       api_function_address,
4990       thunk_ref,
4991       callback_arg,
4992       argc + FCA::kArgsLength + 1,
4993       return_value_operand,
4994       &context_restore_operand);
4995 }
4996 
4997 
Generate(MacroAssembler * masm)4998 void CallApiGetterStub::Generate(MacroAssembler* masm) {
4999   // ----------- S t a t e -------------
5000   //  -- rsp[0]                  : return address
5001   //  -- rsp[8]                  : name
5002   //  -- rsp[16 - kArgsLength*8] : PropertyCallbackArguments object
5003   //  -- ...
5004   //  -- r8                    : api_function_address
5005   // -----------------------------------
5006 
5007 #if defined(__MINGW64__) || defined(_WIN64)
5008   Register getter_arg = r8;
5009   Register accessor_info_arg = rdx;
5010   Register name_arg = rcx;
5011 #else
5012   Register getter_arg = rdx;
5013   Register accessor_info_arg = rsi;
5014   Register name_arg = rdi;
5015 #endif
5016   Register api_function_address = r8;
5017   Register scratch = rax;
5018 
5019   // v8::Arguments::values_ and handler for name.
5020   const int kStackSpace = PropertyCallbackArguments::kArgsLength + 1;
5021 
5022   // Allocate v8::AccessorInfo in non-GCed stack space.
5023   const int kArgStackSpace = 1;
5024 
5025   __ leap(name_arg, Operand(rsp, kPCOnStackSize));
5026 
5027   __ PrepareCallApiFunction(kArgStackSpace);
5028   __ leap(scratch, Operand(name_arg, 1 * kPointerSize));
5029 
5030   // v8::PropertyAccessorInfo::args_.
5031   __ movp(StackSpaceOperand(0), scratch);
5032 
5033   // The context register (rsi) has been saved in PrepareCallApiFunction and
5034   // could be used to pass arguments.
5035   __ leap(accessor_info_arg, StackSpaceOperand(0));
5036 
5037   ExternalReference thunk_ref =
5038       ExternalReference::invoke_accessor_getter_callback(isolate());
5039 
5040   // It's okay if api_function_address == getter_arg
5041   // but not accessor_info_arg or name_arg
5042   ASSERT(!api_function_address.is(accessor_info_arg) &&
5043          !api_function_address.is(name_arg));
5044 
5045   // The name handler is counted as an argument.
5046   StackArgumentsAccessor args(rbp, PropertyCallbackArguments::kArgsLength);
5047   Operand return_value_operand = args.GetArgumentOperand(
5048       PropertyCallbackArguments::kArgsLength - 1 -
5049       PropertyCallbackArguments::kReturnValueOffset);
5050   __ CallApiFunctionAndReturn(api_function_address,
5051                               thunk_ref,
5052                               getter_arg,
5053                               kStackSpace,
5054                               return_value_operand,
5055                               NULL);
5056 }
5057 
5058 
5059 #undef __
5060 
5061 } }  // namespace v8::internal
5062 
5063 #endif  // V8_TARGET_ARCH_X64
5064