• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/v8.h"
6 
7 #if V8_TARGET_ARCH_X87
8 
9 #include "src/x87/lithium-codegen-x87.h"
10 #include "src/ic.h"
11 #include "src/code-stubs.h"
12 #include "src/deoptimizer.h"
13 #include "src/stub-cache.h"
14 #include "src/codegen.h"
15 #include "src/hydrogen-osr.h"
16 
17 namespace v8 {
18 namespace internal {
19 
20 
21 // When invoking builtins, we need to record the safepoint in the middle of
22 // the invoke instruction sequence generated by the macro assembler.
23 class SafepointGenerator V8_FINAL : public CallWrapper {
24  public:
SafepointGenerator(LCodeGen * codegen,LPointerMap * pointers,Safepoint::DeoptMode mode)25   SafepointGenerator(LCodeGen* codegen,
26                      LPointerMap* pointers,
27                      Safepoint::DeoptMode mode)
28       : codegen_(codegen),
29         pointers_(pointers),
30         deopt_mode_(mode) {}
~SafepointGenerator()31   virtual ~SafepointGenerator() {}
32 
BeforeCall(int call_size) const33   virtual void BeforeCall(int call_size) const V8_OVERRIDE {}
34 
AfterCall() const35   virtual void AfterCall() const V8_OVERRIDE {
36     codegen_->RecordSafepoint(pointers_, deopt_mode_);
37   }
38 
39  private:
40   LCodeGen* codegen_;
41   LPointerMap* pointers_;
42   Safepoint::DeoptMode deopt_mode_;
43 };
44 
45 
46 #define __ masm()->
47 
GenerateCode()48 bool LCodeGen::GenerateCode() {
49   LPhase phase("Z_Code generation", chunk());
50   ASSERT(is_unused());
51   status_ = GENERATING;
52 
53   // Open a frame scope to indicate that there is a frame on the stack.  The
54   // MANUAL indicates that the scope shouldn't actually generate code to set up
55   // the frame (that is done in GeneratePrologue).
56   FrameScope frame_scope(masm_, StackFrame::MANUAL);
57 
58   support_aligned_spilled_doubles_ = info()->IsOptimizing();
59 
60   dynamic_frame_alignment_ = info()->IsOptimizing() &&
61       ((chunk()->num_double_slots() > 2 &&
62         !chunk()->graph()->is_recursive()) ||
63        !info()->osr_ast_id().IsNone());
64 
65   return GeneratePrologue() &&
66       GenerateBody() &&
67       GenerateDeferredCode() &&
68       GenerateJumpTable() &&
69       GenerateSafepointTable();
70 }
71 
72 
FinishCode(Handle<Code> code)73 void LCodeGen::FinishCode(Handle<Code> code) {
74   ASSERT(is_done());
75   code->set_stack_slots(GetStackSlotCount());
76   code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
77   if (code->is_optimized_code()) RegisterWeakObjectsInOptimizedCode(code);
78   PopulateDeoptimizationData(code);
79   if (!info()->IsStub()) {
80     Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(code);
81   }
82 }
83 
84 
85 #ifdef _MSC_VER
MakeSureStackPagesMapped(int offset)86 void LCodeGen::MakeSureStackPagesMapped(int offset) {
87   const int kPageSize = 4 * KB;
88   for (offset -= kPageSize; offset > 0; offset -= kPageSize) {
89     __ mov(Operand(esp, offset), eax);
90   }
91 }
92 #endif
93 
94 
GeneratePrologue()95 bool LCodeGen::GeneratePrologue() {
96   ASSERT(is_generating());
97 
98   if (info()->IsOptimizing()) {
99     ProfileEntryHookStub::MaybeCallEntryHook(masm_);
100 
101 #ifdef DEBUG
102     if (strlen(FLAG_stop_at) > 0 &&
103         info_->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
104       __ int3();
105     }
106 #endif
107 
108     // Sloppy mode functions and builtins need to replace the receiver with the
109     // global proxy when called as functions (without an explicit receiver
110     // object).
111     if (info_->this_has_uses() &&
112         info_->strict_mode() == SLOPPY &&
113         !info_->is_native()) {
114       Label ok;
115       // +1 for return address.
116       int receiver_offset = (scope()->num_parameters() + 1) * kPointerSize;
117       __ mov(ecx, Operand(esp, receiver_offset));
118 
119       __ cmp(ecx, isolate()->factory()->undefined_value());
120       __ j(not_equal, &ok, Label::kNear);
121 
122       __ mov(ecx, GlobalObjectOperand());
123       __ mov(ecx, FieldOperand(ecx, GlobalObject::kGlobalReceiverOffset));
124 
125       __ mov(Operand(esp, receiver_offset), ecx);
126 
127       __ bind(&ok);
128     }
129 
130     if (support_aligned_spilled_doubles_ && dynamic_frame_alignment_) {
131       // Move state of dynamic frame alignment into edx.
132       __ Move(edx, Immediate(kNoAlignmentPadding));
133 
134       Label do_not_pad, align_loop;
135       STATIC_ASSERT(kDoubleSize == 2 * kPointerSize);
136       // Align esp + 4 to a multiple of 2 * kPointerSize.
137       __ test(esp, Immediate(kPointerSize));
138       __ j(not_zero, &do_not_pad, Label::kNear);
139       __ push(Immediate(0));
140       __ mov(ebx, esp);
141       __ mov(edx, Immediate(kAlignmentPaddingPushed));
142       // Copy arguments, receiver, and return address.
143       __ mov(ecx, Immediate(scope()->num_parameters() + 2));
144 
145       __ bind(&align_loop);
146       __ mov(eax, Operand(ebx, 1 * kPointerSize));
147       __ mov(Operand(ebx, 0), eax);
148       __ add(Operand(ebx), Immediate(kPointerSize));
149       __ dec(ecx);
150       __ j(not_zero, &align_loop, Label::kNear);
151       __ mov(Operand(ebx, 0), Immediate(kAlignmentZapValue));
152       __ bind(&do_not_pad);
153     }
154   }
155 
156   info()->set_prologue_offset(masm_->pc_offset());
157   if (NeedsEagerFrame()) {
158     ASSERT(!frame_is_built_);
159     frame_is_built_ = true;
160     if (info()->IsStub()) {
161       __ StubPrologue();
162     } else {
163       __ Prologue(info()->IsCodePreAgingActive());
164     }
165     info()->AddNoFrameRange(0, masm_->pc_offset());
166   }
167 
168   if (info()->IsOptimizing() &&
169       dynamic_frame_alignment_ &&
170       FLAG_debug_code) {
171     __ test(esp, Immediate(kPointerSize));
172     __ Assert(zero, kFrameIsExpectedToBeAligned);
173   }
174 
175   // Reserve space for the stack slots needed by the code.
176   int slots = GetStackSlotCount();
177   ASSERT(slots != 0 || !info()->IsOptimizing());
178   if (slots > 0) {
179     if (slots == 1) {
180       if (dynamic_frame_alignment_) {
181         __ push(edx);
182       } else {
183         __ push(Immediate(kNoAlignmentPadding));
184       }
185     } else {
186       if (FLAG_debug_code) {
187         __ sub(Operand(esp), Immediate(slots * kPointerSize));
188 #ifdef _MSC_VER
189         MakeSureStackPagesMapped(slots * kPointerSize);
190 #endif
191         __ push(eax);
192         __ mov(Operand(eax), Immediate(slots));
193         Label loop;
194         __ bind(&loop);
195         __ mov(MemOperand(esp, eax, times_4, 0),
196                Immediate(kSlotsZapValue));
197         __ dec(eax);
198         __ j(not_zero, &loop);
199         __ pop(eax);
200       } else {
201         __ sub(Operand(esp), Immediate(slots * kPointerSize));
202 #ifdef _MSC_VER
203         MakeSureStackPagesMapped(slots * kPointerSize);
204 #endif
205       }
206 
207       if (support_aligned_spilled_doubles_) {
208         Comment(";;; Store dynamic frame alignment tag for spilled doubles");
209         // Store dynamic frame alignment state in the first local.
210         int offset = JavaScriptFrameConstants::kDynamicAlignmentStateOffset;
211         if (dynamic_frame_alignment_) {
212           __ mov(Operand(ebp, offset), edx);
213         } else {
214           __ mov(Operand(ebp, offset), Immediate(kNoAlignmentPadding));
215         }
216       }
217     }
218   }
219 
220   // Possibly allocate a local context.
221   int heap_slots = info_->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
222   if (heap_slots > 0) {
223     Comment(";;; Allocate local context");
224     bool need_write_barrier = true;
225     // Argument to NewContext is the function, which is still in edi.
226     if (heap_slots <= FastNewContextStub::kMaximumSlots) {
227       FastNewContextStub stub(isolate(), heap_slots);
228       __ CallStub(&stub);
229       // Result of FastNewContextStub is always in new space.
230       need_write_barrier = false;
231     } else {
232       __ push(edi);
233       __ CallRuntime(Runtime::kHiddenNewFunctionContext, 1);
234     }
235     RecordSafepoint(Safepoint::kNoLazyDeopt);
236     // Context is returned in eax.  It replaces the context passed to us.
237     // It's saved in the stack and kept live in esi.
238     __ mov(esi, eax);
239     __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), eax);
240 
241     // Copy parameters into context if necessary.
242     int num_parameters = scope()->num_parameters();
243     for (int i = 0; i < num_parameters; i++) {
244       Variable* var = scope()->parameter(i);
245       if (var->IsContextSlot()) {
246         int parameter_offset = StandardFrameConstants::kCallerSPOffset +
247             (num_parameters - 1 - i) * kPointerSize;
248         // Load parameter from stack.
249         __ mov(eax, Operand(ebp, parameter_offset));
250         // Store it in the context.
251         int context_offset = Context::SlotOffset(var->index());
252         __ mov(Operand(esi, context_offset), eax);
253         // Update the write barrier. This clobbers eax and ebx.
254         if (need_write_barrier) {
255           __ RecordWriteContextSlot(esi,
256                                     context_offset,
257                                     eax,
258                                     ebx);
259         } else if (FLAG_debug_code) {
260           Label done;
261           __ JumpIfInNewSpace(esi, eax, &done, Label::kNear);
262           __ Abort(kExpectedNewSpaceObject);
263           __ bind(&done);
264         }
265       }
266     }
267     Comment(";;; End allocate local context");
268   }
269 
270   // Trace the call.
271   if (FLAG_trace && info()->IsOptimizing()) {
272     // We have not executed any compiled code yet, so esi still holds the
273     // incoming context.
274     __ CallRuntime(Runtime::kTraceEnter, 0);
275   }
276   return !is_aborted();
277 }
278 
279 
GenerateOsrPrologue()280 void LCodeGen::GenerateOsrPrologue() {
281   // Generate the OSR entry prologue at the first unknown OSR value, or if there
282   // are none, at the OSR entrypoint instruction.
283   if (osr_pc_offset_ >= 0) return;
284 
285   osr_pc_offset_ = masm()->pc_offset();
286 
287     // Move state of dynamic frame alignment into edx.
288   __ Move(edx, Immediate(kNoAlignmentPadding));
289 
290   if (support_aligned_spilled_doubles_ && dynamic_frame_alignment_) {
291     Label do_not_pad, align_loop;
292     // Align ebp + 4 to a multiple of 2 * kPointerSize.
293     __ test(ebp, Immediate(kPointerSize));
294     __ j(zero, &do_not_pad, Label::kNear);
295     __ push(Immediate(0));
296     __ mov(ebx, esp);
297     __ mov(edx, Immediate(kAlignmentPaddingPushed));
298 
299     // Move all parts of the frame over one word. The frame consists of:
300     // unoptimized frame slots, alignment state, context, frame pointer, return
301     // address, receiver, and the arguments.
302     __ mov(ecx, Immediate(scope()->num_parameters() +
303            5 + graph()->osr()->UnoptimizedFrameSlots()));
304 
305     __ bind(&align_loop);
306     __ mov(eax, Operand(ebx, 1 * kPointerSize));
307     __ mov(Operand(ebx, 0), eax);
308     __ add(Operand(ebx), Immediate(kPointerSize));
309     __ dec(ecx);
310     __ j(not_zero, &align_loop, Label::kNear);
311     __ mov(Operand(ebx, 0), Immediate(kAlignmentZapValue));
312     __ sub(Operand(ebp), Immediate(kPointerSize));
313     __ bind(&do_not_pad);
314   }
315 
316   // Save the first local, which is overwritten by the alignment state.
317   Operand alignment_loc = MemOperand(ebp, -3 * kPointerSize);
318   __ push(alignment_loc);
319 
320   // Set the dynamic frame alignment state.
321   __ mov(alignment_loc, edx);
322 
323   // Adjust the frame size, subsuming the unoptimized frame into the
324   // optimized frame.
325   int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
326   ASSERT(slots >= 1);
327   __ sub(esp, Immediate((slots - 1) * kPointerSize));
328 }
329 
330 
GenerateBodyInstructionPre(LInstruction * instr)331 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
332   if (instr->IsCall()) {
333     EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
334   }
335   if (!instr->IsLazyBailout() && !instr->IsGap()) {
336     safepoints_.BumpLastLazySafepointIndex();
337   }
338   FlushX87StackIfNecessary(instr);
339 }
340 
341 
GenerateBodyInstructionPost(LInstruction * instr)342 void LCodeGen::GenerateBodyInstructionPost(LInstruction* instr) {
343   if (instr->IsGoto()) {
344     x87_stack_.LeavingBlock(current_block_, LGoto::cast(instr));
345   } else if (FLAG_debug_code && FLAG_enable_slow_asserts &&
346              !instr->IsGap() && !instr->IsReturn()) {
347     if (instr->ClobbersDoubleRegisters(isolate())) {
348       if (instr->HasDoubleRegisterResult()) {
349         ASSERT_EQ(1, x87_stack_.depth());
350       } else {
351         ASSERT_EQ(0, x87_stack_.depth());
352       }
353     }
354     __ VerifyX87StackDepth(x87_stack_.depth());
355   }
356 }
357 
358 
GenerateJumpTable()359 bool LCodeGen::GenerateJumpTable() {
360   Label needs_frame;
361   if (jump_table_.length() > 0) {
362     Comment(";;; -------------------- Jump table --------------------");
363   }
364   for (int i = 0; i < jump_table_.length(); i++) {
365     __ bind(&jump_table_[i].label);
366     Address entry = jump_table_[i].address;
367     Deoptimizer::BailoutType type = jump_table_[i].bailout_type;
368     int id = Deoptimizer::GetDeoptimizationId(isolate(), entry, type);
369     if (id == Deoptimizer::kNotDeoptimizationEntry) {
370       Comment(";;; jump table entry %d.", i);
371     } else {
372       Comment(";;; jump table entry %d: deoptimization bailout %d.", i, id);
373     }
374     if (jump_table_[i].needs_frame) {
375       ASSERT(!info()->saves_caller_doubles());
376       __ push(Immediate(ExternalReference::ForDeoptEntry(entry)));
377       if (needs_frame.is_bound()) {
378         __ jmp(&needs_frame);
379       } else {
380         __ bind(&needs_frame);
381         __ push(MemOperand(ebp, StandardFrameConstants::kContextOffset));
382         // This variant of deopt can only be used with stubs. Since we don't
383         // have a function pointer to install in the stack frame that we're
384         // building, install a special marker there instead.
385         ASSERT(info()->IsStub());
386         __ push(Immediate(Smi::FromInt(StackFrame::STUB)));
387         // Push a PC inside the function so that the deopt code can find where
388         // the deopt comes from. It doesn't have to be the precise return
389         // address of a "calling" LAZY deopt, it only has to be somewhere
390         // inside the code body.
391         Label push_approx_pc;
392         __ call(&push_approx_pc);
393         __ bind(&push_approx_pc);
394         // Push the continuation which was stashed were the ebp should
395         // be. Replace it with the saved ebp.
396         __ push(MemOperand(esp, 3 * kPointerSize));
397         __ mov(MemOperand(esp, 4 * kPointerSize), ebp);
398         __ lea(ebp, MemOperand(esp, 4 * kPointerSize));
399         __ ret(0);  // Call the continuation without clobbering registers.
400       }
401     } else {
402       __ call(entry, RelocInfo::RUNTIME_ENTRY);
403     }
404   }
405   return !is_aborted();
406 }
407 
408 
GenerateDeferredCode()409 bool LCodeGen::GenerateDeferredCode() {
410   ASSERT(is_generating());
411   if (deferred_.length() > 0) {
412     for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
413       LDeferredCode* code = deferred_[i];
414       X87Stack copy(code->x87_stack());
415       x87_stack_ = copy;
416 
417       HValue* value =
418           instructions_->at(code->instruction_index())->hydrogen_value();
419       RecordAndWritePosition(
420           chunk()->graph()->SourcePositionToScriptPosition(value->position()));
421 
422       Comment(";;; <@%d,#%d> "
423               "-------------------- Deferred %s --------------------",
424               code->instruction_index(),
425               code->instr()->hydrogen_value()->id(),
426               code->instr()->Mnemonic());
427       __ bind(code->entry());
428       if (NeedsDeferredFrame()) {
429         Comment(";;; Build frame");
430         ASSERT(!frame_is_built_);
431         ASSERT(info()->IsStub());
432         frame_is_built_ = true;
433         // Build the frame in such a way that esi isn't trashed.
434         __ push(ebp);  // Caller's frame pointer.
435         __ push(Operand(ebp, StandardFrameConstants::kContextOffset));
436         __ push(Immediate(Smi::FromInt(StackFrame::STUB)));
437         __ lea(ebp, Operand(esp, 2 * kPointerSize));
438         Comment(";;; Deferred code");
439       }
440       code->Generate();
441       if (NeedsDeferredFrame()) {
442         __ bind(code->done());
443         Comment(";;; Destroy frame");
444         ASSERT(frame_is_built_);
445         frame_is_built_ = false;
446         __ mov(esp, ebp);
447         __ pop(ebp);
448       }
449       __ jmp(code->exit());
450     }
451   }
452 
453   // Deferred code is the last part of the instruction sequence. Mark
454   // the generated code as done unless we bailed out.
455   if (!is_aborted()) status_ = DONE;
456   return !is_aborted();
457 }
458 
459 
GenerateSafepointTable()460 bool LCodeGen::GenerateSafepointTable() {
461   ASSERT(is_done());
462   if (!info()->IsStub()) {
463     // For lazy deoptimization we need space to patch a call after every call.
464     // Ensure there is always space for such patching, even if the code ends
465     // in a call.
466     int target_offset = masm()->pc_offset() + Deoptimizer::patch_size();
467     while (masm()->pc_offset() < target_offset) {
468       masm()->nop();
469     }
470   }
471   safepoints_.Emit(masm(), GetStackSlotCount());
472   return !is_aborted();
473 }
474 
475 
ToRegister(int index) const476 Register LCodeGen::ToRegister(int index) const {
477   return Register::FromAllocationIndex(index);
478 }
479 
480 
ToX87Register(int index) const481 X87Register LCodeGen::ToX87Register(int index) const {
482   return X87Register::FromAllocationIndex(index);
483 }
484 
485 
X87LoadForUsage(X87Register reg)486 void LCodeGen::X87LoadForUsage(X87Register reg) {
487   ASSERT(x87_stack_.Contains(reg));
488   x87_stack_.Fxch(reg);
489   x87_stack_.pop();
490 }
491 
492 
X87LoadForUsage(X87Register reg1,X87Register reg2)493 void LCodeGen::X87LoadForUsage(X87Register reg1, X87Register reg2) {
494   ASSERT(x87_stack_.Contains(reg1));
495   ASSERT(x87_stack_.Contains(reg2));
496   x87_stack_.Fxch(reg1, 1);
497   x87_stack_.Fxch(reg2);
498   x87_stack_.pop();
499   x87_stack_.pop();
500 }
501 
502 
Fxch(X87Register reg,int other_slot)503 void LCodeGen::X87Stack::Fxch(X87Register reg, int other_slot) {
504   ASSERT(is_mutable_);
505   ASSERT(Contains(reg) && stack_depth_ > other_slot);
506   int i  = ArrayIndex(reg);
507   int st = st2idx(i);
508   if (st != other_slot) {
509     int other_i = st2idx(other_slot);
510     X87Register other = stack_[other_i];
511     stack_[other_i]   = reg;
512     stack_[i]         = other;
513     if (st == 0) {
514       __ fxch(other_slot);
515     } else if (other_slot == 0) {
516       __ fxch(st);
517     } else {
518       __ fxch(st);
519       __ fxch(other_slot);
520       __ fxch(st);
521     }
522   }
523 }
524 
525 
st2idx(int pos)526 int LCodeGen::X87Stack::st2idx(int pos) {
527   return stack_depth_ - pos - 1;
528 }
529 
530 
ArrayIndex(X87Register reg)531 int LCodeGen::X87Stack::ArrayIndex(X87Register reg) {
532   for (int i = 0; i < stack_depth_; i++) {
533     if (stack_[i].is(reg)) return i;
534   }
535   UNREACHABLE();
536   return -1;
537 }
538 
539 
Contains(X87Register reg)540 bool LCodeGen::X87Stack::Contains(X87Register reg) {
541   for (int i = 0; i < stack_depth_; i++) {
542     if (stack_[i].is(reg)) return true;
543   }
544   return false;
545 }
546 
547 
Free(X87Register reg)548 void LCodeGen::X87Stack::Free(X87Register reg) {
549   ASSERT(is_mutable_);
550   ASSERT(Contains(reg));
551   int i  = ArrayIndex(reg);
552   int st = st2idx(i);
553   if (st > 0) {
554     // keep track of how fstp(i) changes the order of elements
555     int tos_i = st2idx(0);
556     stack_[i] = stack_[tos_i];
557   }
558   pop();
559   __ fstp(st);
560 }
561 
562 
X87Mov(X87Register dst,Operand src,X87OperandType opts)563 void LCodeGen::X87Mov(X87Register dst, Operand src, X87OperandType opts) {
564   if (x87_stack_.Contains(dst)) {
565     x87_stack_.Fxch(dst);
566     __ fstp(0);
567   } else {
568     x87_stack_.push(dst);
569   }
570   X87Fld(src, opts);
571 }
572 
573 
X87Fld(Operand src,X87OperandType opts)574 void LCodeGen::X87Fld(Operand src, X87OperandType opts) {
575   ASSERT(!src.is_reg_only());
576   switch (opts) {
577     case kX87DoubleOperand:
578       __ fld_d(src);
579       break;
580     case kX87FloatOperand:
581       __ fld_s(src);
582       break;
583     case kX87IntOperand:
584       __ fild_s(src);
585       break;
586     default:
587       UNREACHABLE();
588   }
589 }
590 
591 
X87Mov(Operand dst,X87Register src,X87OperandType opts)592 void LCodeGen::X87Mov(Operand dst, X87Register src, X87OperandType opts) {
593   ASSERT(!dst.is_reg_only());
594   x87_stack_.Fxch(src);
595   switch (opts) {
596     case kX87DoubleOperand:
597       __ fst_d(dst);
598       break;
599     case kX87IntOperand:
600       __ fist_s(dst);
601       break;
602     default:
603       UNREACHABLE();
604   }
605 }
606 
607 
PrepareToWrite(X87Register reg)608 void LCodeGen::X87Stack::PrepareToWrite(X87Register reg) {
609   ASSERT(is_mutable_);
610   if (Contains(reg)) {
611     Free(reg);
612   }
613   // Mark this register as the next register to write to
614   stack_[stack_depth_] = reg;
615 }
616 
617 
CommitWrite(X87Register reg)618 void LCodeGen::X87Stack::CommitWrite(X87Register reg) {
619   ASSERT(is_mutable_);
620   // Assert the reg is prepared to write, but not on the virtual stack yet
621   ASSERT(!Contains(reg) && stack_[stack_depth_].is(reg) &&
622       stack_depth_ < X87Register::kMaxNumAllocatableRegisters);
623   stack_depth_++;
624 }
625 
626 
X87PrepareBinaryOp(X87Register left,X87Register right,X87Register result)627 void LCodeGen::X87PrepareBinaryOp(
628     X87Register left, X87Register right, X87Register result) {
629   // You need to use DefineSameAsFirst for x87 instructions
630   ASSERT(result.is(left));
631   x87_stack_.Fxch(right, 1);
632   x87_stack_.Fxch(left);
633 }
634 
635 
FlushIfNecessary(LInstruction * instr,LCodeGen * cgen)636 void LCodeGen::X87Stack::FlushIfNecessary(LInstruction* instr, LCodeGen* cgen) {
637   if (stack_depth_ > 0 && instr->ClobbersDoubleRegisters(isolate())) {
638     bool double_inputs = instr->HasDoubleRegisterInput();
639 
640     // Flush stack from tos down, since FreeX87() will mess with tos
641     for (int i = stack_depth_-1; i >= 0; i--) {
642       X87Register reg = stack_[i];
643       // Skip registers which contain the inputs for the next instruction
644       // when flushing the stack
645       if (double_inputs && instr->IsDoubleInput(reg, cgen)) {
646         continue;
647       }
648       Free(reg);
649       if (i < stack_depth_-1) i++;
650     }
651   }
652   if (instr->IsReturn()) {
653     while (stack_depth_ > 0) {
654       __ fstp(0);
655       stack_depth_--;
656     }
657     if (FLAG_debug_code && FLAG_enable_slow_asserts) __ VerifyX87StackDepth(0);
658   }
659 }
660 
661 
LeavingBlock(int current_block_id,LGoto * goto_instr)662 void LCodeGen::X87Stack::LeavingBlock(int current_block_id, LGoto* goto_instr) {
663   ASSERT(stack_depth_ <= 1);
664   // If ever used for new stubs producing two pairs of doubles joined into two
665   // phis this assert hits. That situation is not handled, since the two stacks
666   // might have st0 and st1 swapped.
667   if (current_block_id + 1 != goto_instr->block_id()) {
668     // If we have a value on the x87 stack on leaving a block, it must be a
669     // phi input. If the next block we compile is not the join block, we have
670     // to discard the stack state.
671     stack_depth_ = 0;
672   }
673 }
674 
675 
EmitFlushX87ForDeopt()676 void LCodeGen::EmitFlushX87ForDeopt() {
677   // The deoptimizer does not support X87 Registers. But as long as we
678   // deopt from a stub its not a problem, since we will re-materialize the
679   // original stub inputs, which can't be double registers.
680   ASSERT(info()->IsStub());
681   if (FLAG_debug_code && FLAG_enable_slow_asserts) {
682     __ pushfd();
683     __ VerifyX87StackDepth(x87_stack_.depth());
684     __ popfd();
685   }
686   for (int i = 0; i < x87_stack_.depth(); i++) __ fstp(0);
687 }
688 
689 
ToRegister(LOperand * op) const690 Register LCodeGen::ToRegister(LOperand* op) const {
691   ASSERT(op->IsRegister());
692   return ToRegister(op->index());
693 }
694 
695 
ToX87Register(LOperand * op) const696 X87Register LCodeGen::ToX87Register(LOperand* op) const {
697   ASSERT(op->IsDoubleRegister());
698   return ToX87Register(op->index());
699 }
700 
701 
ToInteger32(LConstantOperand * op) const702 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
703   return ToRepresentation(op, Representation::Integer32());
704 }
705 
706 
ToRepresentation(LConstantOperand * op,const Representation & r) const707 int32_t LCodeGen::ToRepresentation(LConstantOperand* op,
708                                    const Representation& r) const {
709   HConstant* constant = chunk_->LookupConstant(op);
710   int32_t value = constant->Integer32Value();
711   if (r.IsInteger32()) return value;
712   ASSERT(r.IsSmiOrTagged());
713   return reinterpret_cast<int32_t>(Smi::FromInt(value));
714 }
715 
716 
ToHandle(LConstantOperand * op) const717 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
718   HConstant* constant = chunk_->LookupConstant(op);
719   ASSERT(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
720   return constant->handle(isolate());
721 }
722 
723 
ToDouble(LConstantOperand * op) const724 double LCodeGen::ToDouble(LConstantOperand* op) const {
725   HConstant* constant = chunk_->LookupConstant(op);
726   ASSERT(constant->HasDoubleValue());
727   return constant->DoubleValue();
728 }
729 
730 
ToExternalReference(LConstantOperand * op) const731 ExternalReference LCodeGen::ToExternalReference(LConstantOperand* op) const {
732   HConstant* constant = chunk_->LookupConstant(op);
733   ASSERT(constant->HasExternalReferenceValue());
734   return constant->ExternalReferenceValue();
735 }
736 
737 
IsInteger32(LConstantOperand * op) const738 bool LCodeGen::IsInteger32(LConstantOperand* op) const {
739   return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
740 }
741 
742 
IsSmi(LConstantOperand * op) const743 bool LCodeGen::IsSmi(LConstantOperand* op) const {
744   return chunk_->LookupLiteralRepresentation(op).IsSmi();
745 }
746 
747 
ArgumentsOffsetWithoutFrame(int index)748 static int ArgumentsOffsetWithoutFrame(int index) {
749   ASSERT(index < 0);
750   return -(index + 1) * kPointerSize + kPCOnStackSize;
751 }
752 
753 
ToOperand(LOperand * op) const754 Operand LCodeGen::ToOperand(LOperand* op) const {
755   if (op->IsRegister()) return Operand(ToRegister(op));
756   ASSERT(!op->IsDoubleRegister());
757   ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot());
758   if (NeedsEagerFrame()) {
759     return Operand(ebp, StackSlotOffset(op->index()));
760   } else {
761     // Retrieve parameter without eager stack-frame relative to the
762     // stack-pointer.
763     return Operand(esp, ArgumentsOffsetWithoutFrame(op->index()));
764   }
765 }
766 
767 
HighOperand(LOperand * op)768 Operand LCodeGen::HighOperand(LOperand* op) {
769   ASSERT(op->IsDoubleStackSlot());
770   if (NeedsEagerFrame()) {
771     return Operand(ebp, StackSlotOffset(op->index()) + kPointerSize);
772   } else {
773     // Retrieve parameter without eager stack-frame relative to the
774     // stack-pointer.
775     return Operand(
776         esp, ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
777   }
778 }
779 
780 
WriteTranslation(LEnvironment * environment,Translation * translation)781 void LCodeGen::WriteTranslation(LEnvironment* environment,
782                                 Translation* translation) {
783   if (environment == NULL) return;
784 
785   // The translation includes one command per value in the environment.
786   int translation_size = environment->translation_size();
787   // The output frame height does not include the parameters.
788   int height = translation_size - environment->parameter_count();
789 
790   WriteTranslation(environment->outer(), translation);
791   bool has_closure_id = !info()->closure().is_null() &&
792       !info()->closure().is_identical_to(environment->closure());
793   int closure_id = has_closure_id
794       ? DefineDeoptimizationLiteral(environment->closure())
795       : Translation::kSelfLiteralId;
796   switch (environment->frame_type()) {
797     case JS_FUNCTION:
798       translation->BeginJSFrame(environment->ast_id(), closure_id, height);
799       break;
800     case JS_CONSTRUCT:
801       translation->BeginConstructStubFrame(closure_id, translation_size);
802       break;
803     case JS_GETTER:
804       ASSERT(translation_size == 1);
805       ASSERT(height == 0);
806       translation->BeginGetterStubFrame(closure_id);
807       break;
808     case JS_SETTER:
809       ASSERT(translation_size == 2);
810       ASSERT(height == 0);
811       translation->BeginSetterStubFrame(closure_id);
812       break;
813     case ARGUMENTS_ADAPTOR:
814       translation->BeginArgumentsAdaptorFrame(closure_id, translation_size);
815       break;
816     case STUB:
817       translation->BeginCompiledStubFrame();
818       break;
819     default:
820       UNREACHABLE();
821   }
822 
823   int object_index = 0;
824   int dematerialized_index = 0;
825   for (int i = 0; i < translation_size; ++i) {
826     LOperand* value = environment->values()->at(i);
827     AddToTranslation(environment,
828                      translation,
829                      value,
830                      environment->HasTaggedValueAt(i),
831                      environment->HasUint32ValueAt(i),
832                      &object_index,
833                      &dematerialized_index);
834   }
835 }
836 
837 
AddToTranslation(LEnvironment * environment,Translation * translation,LOperand * op,bool is_tagged,bool is_uint32,int * object_index_pointer,int * dematerialized_index_pointer)838 void LCodeGen::AddToTranslation(LEnvironment* environment,
839                                 Translation* translation,
840                                 LOperand* op,
841                                 bool is_tagged,
842                                 bool is_uint32,
843                                 int* object_index_pointer,
844                                 int* dematerialized_index_pointer) {
845   if (op == LEnvironment::materialization_marker()) {
846     int object_index = (*object_index_pointer)++;
847     if (environment->ObjectIsDuplicateAt(object_index)) {
848       int dupe_of = environment->ObjectDuplicateOfAt(object_index);
849       translation->DuplicateObject(dupe_of);
850       return;
851     }
852     int object_length = environment->ObjectLengthAt(object_index);
853     if (environment->ObjectIsArgumentsAt(object_index)) {
854       translation->BeginArgumentsObject(object_length);
855     } else {
856       translation->BeginCapturedObject(object_length);
857     }
858     int dematerialized_index = *dematerialized_index_pointer;
859     int env_offset = environment->translation_size() + dematerialized_index;
860     *dematerialized_index_pointer += object_length;
861     for (int i = 0; i < object_length; ++i) {
862       LOperand* value = environment->values()->at(env_offset + i);
863       AddToTranslation(environment,
864                        translation,
865                        value,
866                        environment->HasTaggedValueAt(env_offset + i),
867                        environment->HasUint32ValueAt(env_offset + i),
868                        object_index_pointer,
869                        dematerialized_index_pointer);
870     }
871     return;
872   }
873 
874   if (op->IsStackSlot()) {
875     if (is_tagged) {
876       translation->StoreStackSlot(op->index());
877     } else if (is_uint32) {
878       translation->StoreUint32StackSlot(op->index());
879     } else {
880       translation->StoreInt32StackSlot(op->index());
881     }
882   } else if (op->IsDoubleStackSlot()) {
883     translation->StoreDoubleStackSlot(op->index());
884   } else if (op->IsRegister()) {
885     Register reg = ToRegister(op);
886     if (is_tagged) {
887       translation->StoreRegister(reg);
888     } else if (is_uint32) {
889       translation->StoreUint32Register(reg);
890     } else {
891       translation->StoreInt32Register(reg);
892     }
893   } else if (op->IsConstantOperand()) {
894     HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
895     int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
896     translation->StoreLiteral(src_index);
897   } else {
898     UNREACHABLE();
899   }
900 }
901 
902 
CallCodeGeneric(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr,SafepointMode safepoint_mode)903 void LCodeGen::CallCodeGeneric(Handle<Code> code,
904                                RelocInfo::Mode mode,
905                                LInstruction* instr,
906                                SafepointMode safepoint_mode) {
907   ASSERT(instr != NULL);
908   __ call(code, mode);
909   RecordSafepointWithLazyDeopt(instr, safepoint_mode);
910 
911   // Signal that we don't inline smi code before these stubs in the
912   // optimizing code generator.
913   if (code->kind() == Code::BINARY_OP_IC ||
914       code->kind() == Code::COMPARE_IC) {
915     __ nop();
916   }
917 }
918 
919 
CallCode(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr)920 void LCodeGen::CallCode(Handle<Code> code,
921                         RelocInfo::Mode mode,
922                         LInstruction* instr) {
923   CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
924 }
925 
926 
CallRuntime(const Runtime::Function * fun,int argc,LInstruction * instr)927 void LCodeGen::CallRuntime(const Runtime::Function* fun,
928                            int argc,
929                            LInstruction* instr) {
930   ASSERT(instr != NULL);
931   ASSERT(instr->HasPointerMap());
932 
933   __ CallRuntime(fun, argc);
934 
935   RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
936 
937   ASSERT(info()->is_calling());
938 }
939 
940 
LoadContextFromDeferred(LOperand * context)941 void LCodeGen::LoadContextFromDeferred(LOperand* context) {
942   if (context->IsRegister()) {
943     if (!ToRegister(context).is(esi)) {
944       __ mov(esi, ToRegister(context));
945     }
946   } else if (context->IsStackSlot()) {
947     __ mov(esi, ToOperand(context));
948   } else if (context->IsConstantOperand()) {
949     HConstant* constant =
950         chunk_->LookupConstant(LConstantOperand::cast(context));
951     __ LoadObject(esi, Handle<Object>::cast(constant->handle(isolate())));
952   } else {
953     UNREACHABLE();
954   }
955 }
956 
CallRuntimeFromDeferred(Runtime::FunctionId id,int argc,LInstruction * instr,LOperand * context)957 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
958                                        int argc,
959                                        LInstruction* instr,
960                                        LOperand* context) {
961   LoadContextFromDeferred(context);
962 
963   __ CallRuntime(id);
964   RecordSafepointWithRegisters(
965       instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
966 
967   ASSERT(info()->is_calling());
968 }
969 
970 
RegisterEnvironmentForDeoptimization(LEnvironment * environment,Safepoint::DeoptMode mode)971 void LCodeGen::RegisterEnvironmentForDeoptimization(
972     LEnvironment* environment, Safepoint::DeoptMode mode) {
973   environment->set_has_been_used();
974   if (!environment->HasBeenRegistered()) {
975     // Physical stack frame layout:
976     // -x ............. -4  0 ..................................... y
977     // [incoming arguments] [spill slots] [pushed outgoing arguments]
978 
979     // Layout of the environment:
980     // 0 ..................................................... size-1
981     // [parameters] [locals] [expression stack including arguments]
982 
983     // Layout of the translation:
984     // 0 ........................................................ size - 1 + 4
985     // [expression stack including arguments] [locals] [4 words] [parameters]
986     // |>------------  translation_size ------------<|
987 
988     int frame_count = 0;
989     int jsframe_count = 0;
990     for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
991       ++frame_count;
992       if (e->frame_type() == JS_FUNCTION) {
993         ++jsframe_count;
994       }
995     }
996     Translation translation(&translations_, frame_count, jsframe_count, zone());
997     WriteTranslation(environment, &translation);
998     int deoptimization_index = deoptimizations_.length();
999     int pc_offset = masm()->pc_offset();
1000     environment->Register(deoptimization_index,
1001                           translation.index(),
1002                           (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
1003     deoptimizations_.Add(environment, zone());
1004   }
1005 }
1006 
1007 
DeoptimizeIf(Condition cc,LEnvironment * environment,Deoptimizer::BailoutType bailout_type)1008 void LCodeGen::DeoptimizeIf(Condition cc,
1009                             LEnvironment* environment,
1010                             Deoptimizer::BailoutType bailout_type) {
1011   RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
1012   ASSERT(environment->HasBeenRegistered());
1013   int id = environment->deoptimization_index();
1014   ASSERT(info()->IsOptimizing() || info()->IsStub());
1015   Address entry =
1016       Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
1017   if (entry == NULL) {
1018     Abort(kBailoutWasNotPrepared);
1019     return;
1020   }
1021 
1022   if (DeoptEveryNTimes()) {
1023     ExternalReference count = ExternalReference::stress_deopt_count(isolate());
1024     Label no_deopt;
1025     __ pushfd();
1026     __ push(eax);
1027     __ mov(eax, Operand::StaticVariable(count));
1028     __ sub(eax, Immediate(1));
1029     __ j(not_zero, &no_deopt, Label::kNear);
1030     if (FLAG_trap_on_deopt) __ int3();
1031     __ mov(eax, Immediate(FLAG_deopt_every_n_times));
1032     __ mov(Operand::StaticVariable(count), eax);
1033     __ pop(eax);
1034     __ popfd();
1035     ASSERT(frame_is_built_);
1036     __ call(entry, RelocInfo::RUNTIME_ENTRY);
1037     __ bind(&no_deopt);
1038     __ mov(Operand::StaticVariable(count), eax);
1039     __ pop(eax);
1040     __ popfd();
1041   }
1042 
1043   // Before Instructions which can deopt, we normally flush the x87 stack. But
1044   // we can have inputs or outputs of the current instruction on the stack,
1045   // thus we need to flush them here from the physical stack to leave it in a
1046   // consistent state.
1047   if (x87_stack_.depth() > 0) {
1048     Label done;
1049     if (cc != no_condition) __ j(NegateCondition(cc), &done, Label::kNear);
1050     EmitFlushX87ForDeopt();
1051     __ bind(&done);
1052   }
1053 
1054   if (info()->ShouldTrapOnDeopt()) {
1055     Label done;
1056     if (cc != no_condition) __ j(NegateCondition(cc), &done, Label::kNear);
1057     __ int3();
1058     __ bind(&done);
1059   }
1060 
1061   ASSERT(info()->IsStub() || frame_is_built_);
1062   if (cc == no_condition && frame_is_built_) {
1063     __ call(entry, RelocInfo::RUNTIME_ENTRY);
1064   } else {
1065     // We often have several deopts to the same entry, reuse the last
1066     // jump entry if this is the case.
1067     if (jump_table_.is_empty() ||
1068         jump_table_.last().address != entry ||
1069         jump_table_.last().needs_frame != !frame_is_built_ ||
1070         jump_table_.last().bailout_type != bailout_type) {
1071       Deoptimizer::JumpTableEntry table_entry(entry,
1072                                               bailout_type,
1073                                               !frame_is_built_);
1074       jump_table_.Add(table_entry, zone());
1075     }
1076     if (cc == no_condition) {
1077       __ jmp(&jump_table_.last().label);
1078     } else {
1079       __ j(cc, &jump_table_.last().label);
1080     }
1081   }
1082 }
1083 
1084 
DeoptimizeIf(Condition cc,LEnvironment * environment)1085 void LCodeGen::DeoptimizeIf(Condition cc,
1086                             LEnvironment* environment) {
1087   Deoptimizer::BailoutType bailout_type = info()->IsStub()
1088       ? Deoptimizer::LAZY
1089       : Deoptimizer::EAGER;
1090   DeoptimizeIf(cc, environment, bailout_type);
1091 }
1092 
1093 
PopulateDeoptimizationData(Handle<Code> code)1094 void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
1095   int length = deoptimizations_.length();
1096   if (length == 0) return;
1097   Handle<DeoptimizationInputData> data =
1098       DeoptimizationInputData::New(isolate(), length, TENURED);
1099 
1100   Handle<ByteArray> translations =
1101       translations_.CreateByteArray(isolate()->factory());
1102   data->SetTranslationByteArray(*translations);
1103   data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
1104   data->SetOptimizationId(Smi::FromInt(info_->optimization_id()));
1105   if (info_->IsOptimizing()) {
1106     // Reference to shared function info does not change between phases.
1107     AllowDeferredHandleDereference allow_handle_dereference;
1108     data->SetSharedFunctionInfo(*info_->shared_info());
1109   } else {
1110     data->SetSharedFunctionInfo(Smi::FromInt(0));
1111   }
1112 
1113   Handle<FixedArray> literals =
1114       factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
1115   { AllowDeferredHandleDereference copy_handles;
1116     for (int i = 0; i < deoptimization_literals_.length(); i++) {
1117       literals->set(i, *deoptimization_literals_[i]);
1118     }
1119     data->SetLiteralArray(*literals);
1120   }
1121 
1122   data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt()));
1123   data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
1124 
1125   // Populate the deoptimization entries.
1126   for (int i = 0; i < length; i++) {
1127     LEnvironment* env = deoptimizations_[i];
1128     data->SetAstId(i, env->ast_id());
1129     data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
1130     data->SetArgumentsStackHeight(i,
1131                                   Smi::FromInt(env->arguments_stack_height()));
1132     data->SetPc(i, Smi::FromInt(env->pc_offset()));
1133   }
1134   code->set_deoptimization_data(*data);
1135 }
1136 
1137 
DefineDeoptimizationLiteral(Handle<Object> literal)1138 int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
1139   int result = deoptimization_literals_.length();
1140   for (int i = 0; i < deoptimization_literals_.length(); ++i) {
1141     if (deoptimization_literals_[i].is_identical_to(literal)) return i;
1142   }
1143   deoptimization_literals_.Add(literal, zone());
1144   return result;
1145 }
1146 
1147 
PopulateDeoptimizationLiteralsWithInlinedFunctions()1148 void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
1149   ASSERT(deoptimization_literals_.length() == 0);
1150 
1151   const ZoneList<Handle<JSFunction> >* inlined_closures =
1152       chunk()->inlined_closures();
1153 
1154   for (int i = 0, length = inlined_closures->length();
1155        i < length;
1156        i++) {
1157     DefineDeoptimizationLiteral(inlined_closures->at(i));
1158   }
1159 
1160   inlined_function_count_ = deoptimization_literals_.length();
1161 }
1162 
1163 
RecordSafepointWithLazyDeopt(LInstruction * instr,SafepointMode safepoint_mode)1164 void LCodeGen::RecordSafepointWithLazyDeopt(
1165     LInstruction* instr, SafepointMode safepoint_mode) {
1166   if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
1167     RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
1168   } else {
1169     ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
1170     RecordSafepointWithRegisters(
1171         instr->pointer_map(), 0, Safepoint::kLazyDeopt);
1172   }
1173 }
1174 
1175 
RecordSafepoint(LPointerMap * pointers,Safepoint::Kind kind,int arguments,Safepoint::DeoptMode deopt_mode)1176 void LCodeGen::RecordSafepoint(
1177     LPointerMap* pointers,
1178     Safepoint::Kind kind,
1179     int arguments,
1180     Safepoint::DeoptMode deopt_mode) {
1181   ASSERT(kind == expected_safepoint_kind_);
1182   const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
1183   Safepoint safepoint =
1184       safepoints_.DefineSafepoint(masm(), kind, arguments, deopt_mode);
1185   for (int i = 0; i < operands->length(); i++) {
1186     LOperand* pointer = operands->at(i);
1187     if (pointer->IsStackSlot()) {
1188       safepoint.DefinePointerSlot(pointer->index(), zone());
1189     } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
1190       safepoint.DefinePointerRegister(ToRegister(pointer), zone());
1191     }
1192   }
1193 }
1194 
1195 
RecordSafepoint(LPointerMap * pointers,Safepoint::DeoptMode mode)1196 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
1197                                Safepoint::DeoptMode mode) {
1198   RecordSafepoint(pointers, Safepoint::kSimple, 0, mode);
1199 }
1200 
1201 
RecordSafepoint(Safepoint::DeoptMode mode)1202 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode mode) {
1203   LPointerMap empty_pointers(zone());
1204   RecordSafepoint(&empty_pointers, mode);
1205 }
1206 
1207 
RecordSafepointWithRegisters(LPointerMap * pointers,int arguments,Safepoint::DeoptMode mode)1208 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
1209                                             int arguments,
1210                                             Safepoint::DeoptMode mode) {
1211   RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, mode);
1212 }
1213 
1214 
RecordAndWritePosition(int position)1215 void LCodeGen::RecordAndWritePosition(int position) {
1216   if (position == RelocInfo::kNoPosition) return;
1217   masm()->positions_recorder()->RecordPosition(position);
1218   masm()->positions_recorder()->WriteRecordedPositions();
1219 }
1220 
1221 
LabelType(LLabel * label)1222 static const char* LabelType(LLabel* label) {
1223   if (label->is_loop_header()) return " (loop header)";
1224   if (label->is_osr_entry()) return " (OSR entry)";
1225   return "";
1226 }
1227 
1228 
DoLabel(LLabel * label)1229 void LCodeGen::DoLabel(LLabel* label) {
1230   Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
1231           current_instruction_,
1232           label->hydrogen_value()->id(),
1233           label->block_id(),
1234           LabelType(label));
1235   __ bind(label->label());
1236   current_block_ = label->block_id();
1237   DoGap(label);
1238 }
1239 
1240 
DoParallelMove(LParallelMove * move)1241 void LCodeGen::DoParallelMove(LParallelMove* move) {
1242   resolver_.Resolve(move);
1243 }
1244 
1245 
DoGap(LGap * gap)1246 void LCodeGen::DoGap(LGap* gap) {
1247   for (int i = LGap::FIRST_INNER_POSITION;
1248        i <= LGap::LAST_INNER_POSITION;
1249        i++) {
1250     LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
1251     LParallelMove* move = gap->GetParallelMove(inner_pos);
1252     if (move != NULL) DoParallelMove(move);
1253   }
1254 }
1255 
1256 
DoInstructionGap(LInstructionGap * instr)1257 void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
1258   DoGap(instr);
1259 }
1260 
1261 
DoParameter(LParameter * instr)1262 void LCodeGen::DoParameter(LParameter* instr) {
1263   // Nothing to do.
1264 }
1265 
1266 
DoCallStub(LCallStub * instr)1267 void LCodeGen::DoCallStub(LCallStub* instr) {
1268   ASSERT(ToRegister(instr->context()).is(esi));
1269   ASSERT(ToRegister(instr->result()).is(eax));
1270   switch (instr->hydrogen()->major_key()) {
1271     case CodeStub::RegExpExec: {
1272       RegExpExecStub stub(isolate());
1273       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
1274       break;
1275     }
1276     case CodeStub::SubString: {
1277       SubStringStub stub(isolate());
1278       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
1279       break;
1280     }
1281     case CodeStub::StringCompare: {
1282       StringCompareStub stub(isolate());
1283       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
1284       break;
1285     }
1286     default:
1287       UNREACHABLE();
1288   }
1289 }
1290 
1291 
DoUnknownOSRValue(LUnknownOSRValue * instr)1292 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
1293   GenerateOsrPrologue();
1294 }
1295 
1296 
DoModByPowerOf2I(LModByPowerOf2I * instr)1297 void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
1298   Register dividend = ToRegister(instr->dividend());
1299   int32_t divisor = instr->divisor();
1300   ASSERT(dividend.is(ToRegister(instr->result())));
1301 
1302   // Theoretically, a variation of the branch-free code for integer division by
1303   // a power of 2 (calculating the remainder via an additional multiplication
1304   // (which gets simplified to an 'and') and subtraction) should be faster, and
1305   // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
1306   // indicate that positive dividends are heavily favored, so the branching
1307   // version performs better.
1308   HMod* hmod = instr->hydrogen();
1309   int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
1310   Label dividend_is_not_negative, done;
1311   if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
1312     __ test(dividend, dividend);
1313     __ j(not_sign, &dividend_is_not_negative, Label::kNear);
1314     // Note that this is correct even for kMinInt operands.
1315     __ neg(dividend);
1316     __ and_(dividend, mask);
1317     __ neg(dividend);
1318     if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1319       DeoptimizeIf(zero, instr->environment());
1320     }
1321     __ jmp(&done, Label::kNear);
1322   }
1323 
1324   __ bind(&dividend_is_not_negative);
1325   __ and_(dividend, mask);
1326   __ bind(&done);
1327 }
1328 
1329 
DoModByConstI(LModByConstI * instr)1330 void LCodeGen::DoModByConstI(LModByConstI* instr) {
1331   Register dividend = ToRegister(instr->dividend());
1332   int32_t divisor = instr->divisor();
1333   ASSERT(ToRegister(instr->result()).is(eax));
1334 
1335   if (divisor == 0) {
1336     DeoptimizeIf(no_condition, instr->environment());
1337     return;
1338   }
1339 
1340   __ TruncatingDiv(dividend, Abs(divisor));
1341   __ imul(edx, edx, Abs(divisor));
1342   __ mov(eax, dividend);
1343   __ sub(eax, edx);
1344 
1345   // Check for negative zero.
1346   HMod* hmod = instr->hydrogen();
1347   if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1348     Label remainder_not_zero;
1349     __ j(not_zero, &remainder_not_zero, Label::kNear);
1350     __ cmp(dividend, Immediate(0));
1351     DeoptimizeIf(less, instr->environment());
1352     __ bind(&remainder_not_zero);
1353   }
1354 }
1355 
1356 
DoModI(LModI * instr)1357 void LCodeGen::DoModI(LModI* instr) {
1358   HMod* hmod = instr->hydrogen();
1359 
1360   Register left_reg = ToRegister(instr->left());
1361   ASSERT(left_reg.is(eax));
1362   Register right_reg = ToRegister(instr->right());
1363   ASSERT(!right_reg.is(eax));
1364   ASSERT(!right_reg.is(edx));
1365   Register result_reg = ToRegister(instr->result());
1366   ASSERT(result_reg.is(edx));
1367 
1368   Label done;
1369   // Check for x % 0, idiv would signal a divide error. We have to
1370   // deopt in this case because we can't return a NaN.
1371   if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
1372     __ test(right_reg, Operand(right_reg));
1373     DeoptimizeIf(zero, instr->environment());
1374   }
1375 
1376   // Check for kMinInt % -1, idiv would signal a divide error. We
1377   // have to deopt if we care about -0, because we can't return that.
1378   if (hmod->CheckFlag(HValue::kCanOverflow)) {
1379     Label no_overflow_possible;
1380     __ cmp(left_reg, kMinInt);
1381     __ j(not_equal, &no_overflow_possible, Label::kNear);
1382     __ cmp(right_reg, -1);
1383     if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1384       DeoptimizeIf(equal, instr->environment());
1385     } else {
1386       __ j(not_equal, &no_overflow_possible, Label::kNear);
1387       __ Move(result_reg, Immediate(0));
1388       __ jmp(&done, Label::kNear);
1389     }
1390     __ bind(&no_overflow_possible);
1391   }
1392 
1393   // Sign extend dividend in eax into edx:eax.
1394   __ cdq();
1395 
1396   // If we care about -0, test if the dividend is <0 and the result is 0.
1397   if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1398     Label positive_left;
1399     __ test(left_reg, Operand(left_reg));
1400     __ j(not_sign, &positive_left, Label::kNear);
1401     __ idiv(right_reg);
1402     __ test(result_reg, Operand(result_reg));
1403     DeoptimizeIf(zero, instr->environment());
1404     __ jmp(&done, Label::kNear);
1405     __ bind(&positive_left);
1406   }
1407   __ idiv(right_reg);
1408   __ bind(&done);
1409 }
1410 
1411 
DoDivByPowerOf2I(LDivByPowerOf2I * instr)1412 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
1413   Register dividend = ToRegister(instr->dividend());
1414   int32_t divisor = instr->divisor();
1415   Register result = ToRegister(instr->result());
1416   ASSERT(divisor == kMinInt || IsPowerOf2(Abs(divisor)));
1417   ASSERT(!result.is(dividend));
1418 
1419   // Check for (0 / -x) that will produce negative zero.
1420   HDiv* hdiv = instr->hydrogen();
1421   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1422     __ test(dividend, dividend);
1423     DeoptimizeIf(zero, instr->environment());
1424   }
1425   // Check for (kMinInt / -1).
1426   if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
1427     __ cmp(dividend, kMinInt);
1428     DeoptimizeIf(zero, instr->environment());
1429   }
1430   // Deoptimize if remainder will not be 0.
1431   if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
1432       divisor != 1 && divisor != -1) {
1433     int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
1434     __ test(dividend, Immediate(mask));
1435     DeoptimizeIf(not_zero, instr->environment());
1436   }
1437   __ Move(result, dividend);
1438   int32_t shift = WhichPowerOf2Abs(divisor);
1439   if (shift > 0) {
1440     // The arithmetic shift is always OK, the 'if' is an optimization only.
1441     if (shift > 1) __ sar(result, 31);
1442     __ shr(result, 32 - shift);
1443     __ add(result, dividend);
1444     __ sar(result, shift);
1445   }
1446   if (divisor < 0) __ neg(result);
1447 }
1448 
1449 
DoDivByConstI(LDivByConstI * instr)1450 void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
1451   Register dividend = ToRegister(instr->dividend());
1452   int32_t divisor = instr->divisor();
1453   ASSERT(ToRegister(instr->result()).is(edx));
1454 
1455   if (divisor == 0) {
1456     DeoptimizeIf(no_condition, instr->environment());
1457     return;
1458   }
1459 
1460   // Check for (0 / -x) that will produce negative zero.
1461   HDiv* hdiv = instr->hydrogen();
1462   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1463     __ test(dividend, dividend);
1464     DeoptimizeIf(zero, instr->environment());
1465   }
1466 
1467   __ TruncatingDiv(dividend, Abs(divisor));
1468   if (divisor < 0) __ neg(edx);
1469 
1470   if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
1471     __ mov(eax, edx);
1472     __ imul(eax, eax, divisor);
1473     __ sub(eax, dividend);
1474     DeoptimizeIf(not_equal, instr->environment());
1475   }
1476 }
1477 
1478 
1479 // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
DoDivI(LDivI * instr)1480 void LCodeGen::DoDivI(LDivI* instr) {
1481   HBinaryOperation* hdiv = instr->hydrogen();
1482   Register dividend = ToRegister(instr->dividend());
1483   Register divisor = ToRegister(instr->divisor());
1484   Register remainder = ToRegister(instr->temp());
1485   ASSERT(dividend.is(eax));
1486   ASSERT(remainder.is(edx));
1487   ASSERT(ToRegister(instr->result()).is(eax));
1488   ASSERT(!divisor.is(eax));
1489   ASSERT(!divisor.is(edx));
1490 
1491   // Check for x / 0.
1492   if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1493     __ test(divisor, divisor);
1494     DeoptimizeIf(zero, instr->environment());
1495   }
1496 
1497   // Check for (0 / -x) that will produce negative zero.
1498   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1499     Label dividend_not_zero;
1500     __ test(dividend, dividend);
1501     __ j(not_zero, &dividend_not_zero, Label::kNear);
1502     __ test(divisor, divisor);
1503     DeoptimizeIf(sign, instr->environment());
1504     __ bind(&dividend_not_zero);
1505   }
1506 
1507   // Check for (kMinInt / -1).
1508   if (hdiv->CheckFlag(HValue::kCanOverflow)) {
1509     Label dividend_not_min_int;
1510     __ cmp(dividend, kMinInt);
1511     __ j(not_zero, &dividend_not_min_int, Label::kNear);
1512     __ cmp(divisor, -1);
1513     DeoptimizeIf(zero, instr->environment());
1514     __ bind(&dividend_not_min_int);
1515   }
1516 
1517   // Sign extend to edx (= remainder).
1518   __ cdq();
1519   __ idiv(divisor);
1520 
1521   if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1522     // Deoptimize if remainder is not 0.
1523     __ test(remainder, remainder);
1524     DeoptimizeIf(not_zero, instr->environment());
1525   }
1526 }
1527 
1528 
DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I * instr)1529 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
1530   Register dividend = ToRegister(instr->dividend());
1531   int32_t divisor = instr->divisor();
1532   ASSERT(dividend.is(ToRegister(instr->result())));
1533 
1534   // If the divisor is positive, things are easy: There can be no deopts and we
1535   // can simply do an arithmetic right shift.
1536   if (divisor == 1) return;
1537   int32_t shift = WhichPowerOf2Abs(divisor);
1538   if (divisor > 1) {
1539     __ sar(dividend, shift);
1540     return;
1541   }
1542 
1543   // If the divisor is negative, we have to negate and handle edge cases.
1544   __ neg(dividend);
1545   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1546     DeoptimizeIf(zero, instr->environment());
1547   }
1548 
1549   // Dividing by -1 is basically negation, unless we overflow.
1550   if (divisor == -1) {
1551     if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
1552       DeoptimizeIf(overflow, instr->environment());
1553     }
1554     return;
1555   }
1556 
1557   // If the negation could not overflow, simply shifting is OK.
1558   if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
1559     __ sar(dividend, shift);
1560     return;
1561   }
1562 
1563   Label not_kmin_int, done;
1564   __ j(no_overflow, &not_kmin_int, Label::kNear);
1565   __ mov(dividend, Immediate(kMinInt / divisor));
1566   __ jmp(&done, Label::kNear);
1567   __ bind(&not_kmin_int);
1568   __ sar(dividend, shift);
1569   __ bind(&done);
1570 }
1571 
1572 
DoFlooringDivByConstI(LFlooringDivByConstI * instr)1573 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
1574   Register dividend = ToRegister(instr->dividend());
1575   int32_t divisor = instr->divisor();
1576   ASSERT(ToRegister(instr->result()).is(edx));
1577 
1578   if (divisor == 0) {
1579     DeoptimizeIf(no_condition, instr->environment());
1580     return;
1581   }
1582 
1583   // Check for (0 / -x) that will produce negative zero.
1584   HMathFloorOfDiv* hdiv = instr->hydrogen();
1585   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1586     __ test(dividend, dividend);
1587     DeoptimizeIf(zero, instr->environment());
1588   }
1589 
1590   // Easy case: We need no dynamic check for the dividend and the flooring
1591   // division is the same as the truncating division.
1592   if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
1593       (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
1594     __ TruncatingDiv(dividend, Abs(divisor));
1595     if (divisor < 0) __ neg(edx);
1596     return;
1597   }
1598 
1599   // In the general case we may need to adjust before and after the truncating
1600   // division to get a flooring division.
1601   Register temp = ToRegister(instr->temp3());
1602   ASSERT(!temp.is(dividend) && !temp.is(eax) && !temp.is(edx));
1603   Label needs_adjustment, done;
1604   __ cmp(dividend, Immediate(0));
1605   __ j(divisor > 0 ? less : greater, &needs_adjustment, Label::kNear);
1606   __ TruncatingDiv(dividend, Abs(divisor));
1607   if (divisor < 0) __ neg(edx);
1608   __ jmp(&done, Label::kNear);
1609   __ bind(&needs_adjustment);
1610   __ lea(temp, Operand(dividend, divisor > 0 ? 1 : -1));
1611   __ TruncatingDiv(temp, Abs(divisor));
1612   if (divisor < 0) __ neg(edx);
1613   __ dec(edx);
1614   __ bind(&done);
1615 }
1616 
1617 
1618 // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
DoFlooringDivI(LFlooringDivI * instr)1619 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
1620   HBinaryOperation* hdiv = instr->hydrogen();
1621   Register dividend = ToRegister(instr->dividend());
1622   Register divisor = ToRegister(instr->divisor());
1623   Register remainder = ToRegister(instr->temp());
1624   Register result = ToRegister(instr->result());
1625   ASSERT(dividend.is(eax));
1626   ASSERT(remainder.is(edx));
1627   ASSERT(result.is(eax));
1628   ASSERT(!divisor.is(eax));
1629   ASSERT(!divisor.is(edx));
1630 
1631   // Check for x / 0.
1632   if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1633     __ test(divisor, divisor);
1634     DeoptimizeIf(zero, instr->environment());
1635   }
1636 
1637   // Check for (0 / -x) that will produce negative zero.
1638   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1639     Label dividend_not_zero;
1640     __ test(dividend, dividend);
1641     __ j(not_zero, &dividend_not_zero, Label::kNear);
1642     __ test(divisor, divisor);
1643     DeoptimizeIf(sign, instr->environment());
1644     __ bind(&dividend_not_zero);
1645   }
1646 
1647   // Check for (kMinInt / -1).
1648   if (hdiv->CheckFlag(HValue::kCanOverflow)) {
1649     Label dividend_not_min_int;
1650     __ cmp(dividend, kMinInt);
1651     __ j(not_zero, &dividend_not_min_int, Label::kNear);
1652     __ cmp(divisor, -1);
1653     DeoptimizeIf(zero, instr->environment());
1654     __ bind(&dividend_not_min_int);
1655   }
1656 
1657   // Sign extend to edx (= remainder).
1658   __ cdq();
1659   __ idiv(divisor);
1660 
1661   Label done;
1662   __ test(remainder, remainder);
1663   __ j(zero, &done, Label::kNear);
1664   __ xor_(remainder, divisor);
1665   __ sar(remainder, 31);
1666   __ add(result, remainder);
1667   __ bind(&done);
1668 }
1669 
1670 
DoMulI(LMulI * instr)1671 void LCodeGen::DoMulI(LMulI* instr) {
1672   Register left = ToRegister(instr->left());
1673   LOperand* right = instr->right();
1674 
1675   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1676     __ mov(ToRegister(instr->temp()), left);
1677   }
1678 
1679   if (right->IsConstantOperand()) {
1680     // Try strength reductions on the multiplication.
1681     // All replacement instructions are at most as long as the imul
1682     // and have better latency.
1683     int constant = ToInteger32(LConstantOperand::cast(right));
1684     if (constant == -1) {
1685       __ neg(left);
1686     } else if (constant == 0) {
1687       __ xor_(left, Operand(left));
1688     } else if (constant == 2) {
1689       __ add(left, Operand(left));
1690     } else if (!instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1691       // If we know that the multiplication can't overflow, it's safe to
1692       // use instructions that don't set the overflow flag for the
1693       // multiplication.
1694       switch (constant) {
1695         case 1:
1696           // Do nothing.
1697           break;
1698         case 3:
1699           __ lea(left, Operand(left, left, times_2, 0));
1700           break;
1701         case 4:
1702           __ shl(left, 2);
1703           break;
1704         case 5:
1705           __ lea(left, Operand(left, left, times_4, 0));
1706           break;
1707         case 8:
1708           __ shl(left, 3);
1709           break;
1710         case 9:
1711           __ lea(left, Operand(left, left, times_8, 0));
1712           break;
1713         case 16:
1714           __ shl(left, 4);
1715           break;
1716         default:
1717           __ imul(left, left, constant);
1718           break;
1719       }
1720     } else {
1721       __ imul(left, left, constant);
1722     }
1723   } else {
1724     if (instr->hydrogen()->representation().IsSmi()) {
1725       __ SmiUntag(left);
1726     }
1727     __ imul(left, ToOperand(right));
1728   }
1729 
1730   if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1731     DeoptimizeIf(overflow, instr->environment());
1732   }
1733 
1734   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1735     // Bail out if the result is supposed to be negative zero.
1736     Label done;
1737     __ test(left, Operand(left));
1738     __ j(not_zero, &done, Label::kNear);
1739     if (right->IsConstantOperand()) {
1740       if (ToInteger32(LConstantOperand::cast(right)) < 0) {
1741         DeoptimizeIf(no_condition, instr->environment());
1742       } else if (ToInteger32(LConstantOperand::cast(right)) == 0) {
1743         __ cmp(ToRegister(instr->temp()), Immediate(0));
1744         DeoptimizeIf(less, instr->environment());
1745       }
1746     } else {
1747       // Test the non-zero operand for negative sign.
1748       __ or_(ToRegister(instr->temp()), ToOperand(right));
1749       DeoptimizeIf(sign, instr->environment());
1750     }
1751     __ bind(&done);
1752   }
1753 }
1754 
1755 
DoBitI(LBitI * instr)1756 void LCodeGen::DoBitI(LBitI* instr) {
1757   LOperand* left = instr->left();
1758   LOperand* right = instr->right();
1759   ASSERT(left->Equals(instr->result()));
1760   ASSERT(left->IsRegister());
1761 
1762   if (right->IsConstantOperand()) {
1763     int32_t right_operand =
1764         ToRepresentation(LConstantOperand::cast(right),
1765                          instr->hydrogen()->representation());
1766     switch (instr->op()) {
1767       case Token::BIT_AND:
1768         __ and_(ToRegister(left), right_operand);
1769         break;
1770       case Token::BIT_OR:
1771         __ or_(ToRegister(left), right_operand);
1772         break;
1773       case Token::BIT_XOR:
1774         if (right_operand == int32_t(~0)) {
1775           __ not_(ToRegister(left));
1776         } else {
1777           __ xor_(ToRegister(left), right_operand);
1778         }
1779         break;
1780       default:
1781         UNREACHABLE();
1782         break;
1783     }
1784   } else {
1785     switch (instr->op()) {
1786       case Token::BIT_AND:
1787         __ and_(ToRegister(left), ToOperand(right));
1788         break;
1789       case Token::BIT_OR:
1790         __ or_(ToRegister(left), ToOperand(right));
1791         break;
1792       case Token::BIT_XOR:
1793         __ xor_(ToRegister(left), ToOperand(right));
1794         break;
1795       default:
1796         UNREACHABLE();
1797         break;
1798     }
1799   }
1800 }
1801 
1802 
DoShiftI(LShiftI * instr)1803 void LCodeGen::DoShiftI(LShiftI* instr) {
1804   LOperand* left = instr->left();
1805   LOperand* right = instr->right();
1806   ASSERT(left->Equals(instr->result()));
1807   ASSERT(left->IsRegister());
1808   if (right->IsRegister()) {
1809     ASSERT(ToRegister(right).is(ecx));
1810 
1811     switch (instr->op()) {
1812       case Token::ROR:
1813         __ ror_cl(ToRegister(left));
1814         if (instr->can_deopt()) {
1815           __ test(ToRegister(left), ToRegister(left));
1816           DeoptimizeIf(sign, instr->environment());
1817         }
1818         break;
1819       case Token::SAR:
1820         __ sar_cl(ToRegister(left));
1821         break;
1822       case Token::SHR:
1823         __ shr_cl(ToRegister(left));
1824         if (instr->can_deopt()) {
1825           __ test(ToRegister(left), ToRegister(left));
1826           DeoptimizeIf(sign, instr->environment());
1827         }
1828         break;
1829       case Token::SHL:
1830         __ shl_cl(ToRegister(left));
1831         break;
1832       default:
1833         UNREACHABLE();
1834         break;
1835     }
1836   } else {
1837     int value = ToInteger32(LConstantOperand::cast(right));
1838     uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
1839     switch (instr->op()) {
1840       case Token::ROR:
1841         if (shift_count == 0 && instr->can_deopt()) {
1842           __ test(ToRegister(left), ToRegister(left));
1843           DeoptimizeIf(sign, instr->environment());
1844         } else {
1845           __ ror(ToRegister(left), shift_count);
1846         }
1847         break;
1848       case Token::SAR:
1849         if (shift_count != 0) {
1850           __ sar(ToRegister(left), shift_count);
1851         }
1852         break;
1853       case Token::SHR:
1854         if (shift_count != 0) {
1855           __ shr(ToRegister(left), shift_count);
1856         } else if (instr->can_deopt()) {
1857           __ test(ToRegister(left), ToRegister(left));
1858           DeoptimizeIf(sign, instr->environment());
1859         }
1860         break;
1861       case Token::SHL:
1862         if (shift_count != 0) {
1863           if (instr->hydrogen_value()->representation().IsSmi() &&
1864               instr->can_deopt()) {
1865             if (shift_count != 1) {
1866               __ shl(ToRegister(left), shift_count - 1);
1867             }
1868             __ SmiTag(ToRegister(left));
1869             DeoptimizeIf(overflow, instr->environment());
1870           } else {
1871             __ shl(ToRegister(left), shift_count);
1872           }
1873         }
1874         break;
1875       default:
1876         UNREACHABLE();
1877         break;
1878     }
1879   }
1880 }
1881 
1882 
DoSubI(LSubI * instr)1883 void LCodeGen::DoSubI(LSubI* instr) {
1884   LOperand* left = instr->left();
1885   LOperand* right = instr->right();
1886   ASSERT(left->Equals(instr->result()));
1887 
1888   if (right->IsConstantOperand()) {
1889     __ sub(ToOperand(left),
1890            ToImmediate(right, instr->hydrogen()->representation()));
1891   } else {
1892     __ sub(ToRegister(left), ToOperand(right));
1893   }
1894   if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1895     DeoptimizeIf(overflow, instr->environment());
1896   }
1897 }
1898 
1899 
DoConstantI(LConstantI * instr)1900 void LCodeGen::DoConstantI(LConstantI* instr) {
1901   __ Move(ToRegister(instr->result()), Immediate(instr->value()));
1902 }
1903 
1904 
DoConstantS(LConstantS * instr)1905 void LCodeGen::DoConstantS(LConstantS* instr) {
1906   __ Move(ToRegister(instr->result()), Immediate(instr->value()));
1907 }
1908 
1909 
DoConstantD(LConstantD * instr)1910 void LCodeGen::DoConstantD(LConstantD* instr) {
1911   double v = instr->value();
1912   uint64_t int_val = BitCast<uint64_t, double>(v);
1913   int32_t lower = static_cast<int32_t>(int_val);
1914   int32_t upper = static_cast<int32_t>(int_val >> (kBitsPerInt));
1915   ASSERT(instr->result()->IsDoubleRegister());
1916 
1917   __ push(Immediate(upper));
1918   __ push(Immediate(lower));
1919   X87Register reg = ToX87Register(instr->result());
1920   X87Mov(reg, Operand(esp, 0));
1921   __ add(Operand(esp), Immediate(kDoubleSize));
1922 }
1923 
1924 
DoConstantE(LConstantE * instr)1925 void LCodeGen::DoConstantE(LConstantE* instr) {
1926   __ lea(ToRegister(instr->result()), Operand::StaticVariable(instr->value()));
1927 }
1928 
1929 
DoConstantT(LConstantT * instr)1930 void LCodeGen::DoConstantT(LConstantT* instr) {
1931   Register reg = ToRegister(instr->result());
1932   Handle<Object> object = instr->value(isolate());
1933   AllowDeferredHandleDereference smi_check;
1934   __ LoadObject(reg, object);
1935 }
1936 
1937 
DoMapEnumLength(LMapEnumLength * instr)1938 void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) {
1939   Register result = ToRegister(instr->result());
1940   Register map = ToRegister(instr->value());
1941   __ EnumLength(result, map);
1942 }
1943 
1944 
DoDateField(LDateField * instr)1945 void LCodeGen::DoDateField(LDateField* instr) {
1946   Register object = ToRegister(instr->date());
1947   Register result = ToRegister(instr->result());
1948   Register scratch = ToRegister(instr->temp());
1949   Smi* index = instr->index();
1950   Label runtime, done;
1951   ASSERT(object.is(result));
1952   ASSERT(object.is(eax));
1953 
1954   __ test(object, Immediate(kSmiTagMask));
1955   DeoptimizeIf(zero, instr->environment());
1956   __ CmpObjectType(object, JS_DATE_TYPE, scratch);
1957   DeoptimizeIf(not_equal, instr->environment());
1958 
1959   if (index->value() == 0) {
1960     __ mov(result, FieldOperand(object, JSDate::kValueOffset));
1961   } else {
1962     if (index->value() < JSDate::kFirstUncachedField) {
1963       ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
1964       __ mov(scratch, Operand::StaticVariable(stamp));
1965       __ cmp(scratch, FieldOperand(object, JSDate::kCacheStampOffset));
1966       __ j(not_equal, &runtime, Label::kNear);
1967       __ mov(result, FieldOperand(object, JSDate::kValueOffset +
1968                                           kPointerSize * index->value()));
1969       __ jmp(&done, Label::kNear);
1970     }
1971     __ bind(&runtime);
1972     __ PrepareCallCFunction(2, scratch);
1973     __ mov(Operand(esp, 0), object);
1974     __ mov(Operand(esp, 1 * kPointerSize), Immediate(index));
1975     __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
1976     __ bind(&done);
1977   }
1978 }
1979 
1980 
BuildSeqStringOperand(Register string,LOperand * index,String::Encoding encoding)1981 Operand LCodeGen::BuildSeqStringOperand(Register string,
1982                                         LOperand* index,
1983                                         String::Encoding encoding) {
1984   if (index->IsConstantOperand()) {
1985     int offset = ToRepresentation(LConstantOperand::cast(index),
1986                                   Representation::Integer32());
1987     if (encoding == String::TWO_BYTE_ENCODING) {
1988       offset *= kUC16Size;
1989     }
1990     STATIC_ASSERT(kCharSize == 1);
1991     return FieldOperand(string, SeqString::kHeaderSize + offset);
1992   }
1993   return FieldOperand(
1994       string, ToRegister(index),
1995       encoding == String::ONE_BYTE_ENCODING ? times_1 : times_2,
1996       SeqString::kHeaderSize);
1997 }
1998 
1999 
DoSeqStringGetChar(LSeqStringGetChar * instr)2000 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
2001   String::Encoding encoding = instr->hydrogen()->encoding();
2002   Register result = ToRegister(instr->result());
2003   Register string = ToRegister(instr->string());
2004 
2005   if (FLAG_debug_code) {
2006     __ push(string);
2007     __ mov(string, FieldOperand(string, HeapObject::kMapOffset));
2008     __ movzx_b(string, FieldOperand(string, Map::kInstanceTypeOffset));
2009 
2010     __ and_(string, Immediate(kStringRepresentationMask | kStringEncodingMask));
2011     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
2012     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
2013     __ cmp(string, Immediate(encoding == String::ONE_BYTE_ENCODING
2014                              ? one_byte_seq_type : two_byte_seq_type));
2015     __ Check(equal, kUnexpectedStringType);
2016     __ pop(string);
2017   }
2018 
2019   Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
2020   if (encoding == String::ONE_BYTE_ENCODING) {
2021     __ movzx_b(result, operand);
2022   } else {
2023     __ movzx_w(result, operand);
2024   }
2025 }
2026 
2027 
DoSeqStringSetChar(LSeqStringSetChar * instr)2028 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
2029   String::Encoding encoding = instr->hydrogen()->encoding();
2030   Register string = ToRegister(instr->string());
2031 
2032   if (FLAG_debug_code) {
2033     Register value = ToRegister(instr->value());
2034     Register index = ToRegister(instr->index());
2035     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
2036     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
2037     int encoding_mask =
2038         instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
2039         ? one_byte_seq_type : two_byte_seq_type;
2040     __ EmitSeqStringSetCharCheck(string, index, value, encoding_mask);
2041   }
2042 
2043   Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
2044   if (instr->value()->IsConstantOperand()) {
2045     int value = ToRepresentation(LConstantOperand::cast(instr->value()),
2046                                  Representation::Integer32());
2047     ASSERT_LE(0, value);
2048     if (encoding == String::ONE_BYTE_ENCODING) {
2049       ASSERT_LE(value, String::kMaxOneByteCharCode);
2050       __ mov_b(operand, static_cast<int8_t>(value));
2051     } else {
2052       ASSERT_LE(value, String::kMaxUtf16CodeUnit);
2053       __ mov_w(operand, static_cast<int16_t>(value));
2054     }
2055   } else {
2056     Register value = ToRegister(instr->value());
2057     if (encoding == String::ONE_BYTE_ENCODING) {
2058       __ mov_b(operand, value);
2059     } else {
2060       __ mov_w(operand, value);
2061     }
2062   }
2063 }
2064 
2065 
DoAddI(LAddI * instr)2066 void LCodeGen::DoAddI(LAddI* instr) {
2067   LOperand* left = instr->left();
2068   LOperand* right = instr->right();
2069 
2070   if (LAddI::UseLea(instr->hydrogen()) && !left->Equals(instr->result())) {
2071     if (right->IsConstantOperand()) {
2072       int32_t offset = ToRepresentation(LConstantOperand::cast(right),
2073                                         instr->hydrogen()->representation());
2074       __ lea(ToRegister(instr->result()), MemOperand(ToRegister(left), offset));
2075     } else {
2076       Operand address(ToRegister(left), ToRegister(right), times_1, 0);
2077       __ lea(ToRegister(instr->result()), address);
2078     }
2079   } else {
2080     if (right->IsConstantOperand()) {
2081       __ add(ToOperand(left),
2082              ToImmediate(right, instr->hydrogen()->representation()));
2083     } else {
2084       __ add(ToRegister(left), ToOperand(right));
2085     }
2086     if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
2087       DeoptimizeIf(overflow, instr->environment());
2088     }
2089   }
2090 }
2091 
2092 
DoMathMinMax(LMathMinMax * instr)2093 void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
2094   LOperand* left = instr->left();
2095   LOperand* right = instr->right();
2096   ASSERT(left->Equals(instr->result()));
2097   HMathMinMax::Operation operation = instr->hydrogen()->operation();
2098   if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
2099     Label return_left;
2100     Condition condition = (operation == HMathMinMax::kMathMin)
2101         ? less_equal
2102         : greater_equal;
2103     if (right->IsConstantOperand()) {
2104       Operand left_op = ToOperand(left);
2105       Immediate immediate = ToImmediate(LConstantOperand::cast(instr->right()),
2106                                         instr->hydrogen()->representation());
2107       __ cmp(left_op, immediate);
2108       __ j(condition, &return_left, Label::kNear);
2109       __ mov(left_op, immediate);
2110     } else {
2111       Register left_reg = ToRegister(left);
2112       Operand right_op = ToOperand(right);
2113       __ cmp(left_reg, right_op);
2114       __ j(condition, &return_left, Label::kNear);
2115       __ mov(left_reg, right_op);
2116     }
2117     __ bind(&return_left);
2118   } else {
2119     // TODO(weiliang) use X87 for double representation.
2120     UNIMPLEMENTED();
2121   }
2122 }
2123 
2124 
DoArithmeticD(LArithmeticD * instr)2125 void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
2126   X87Register left = ToX87Register(instr->left());
2127   X87Register right = ToX87Register(instr->right());
2128   X87Register result = ToX87Register(instr->result());
2129   if (instr->op() != Token::MOD) {
2130     X87PrepareBinaryOp(left, right, result);
2131   }
2132   switch (instr->op()) {
2133     case Token::ADD:
2134       __ fadd_i(1);
2135       break;
2136     case Token::SUB:
2137       __ fsub_i(1);
2138       break;
2139     case Token::MUL:
2140       __ fmul_i(1);
2141       break;
2142     case Token::DIV:
2143       __ fdiv_i(1);
2144       break;
2145     case Token::MOD: {
2146       // Pass two doubles as arguments on the stack.
2147       __ PrepareCallCFunction(4, eax);
2148       X87Mov(Operand(esp, 1 * kDoubleSize), right);
2149       X87Mov(Operand(esp, 0), left);
2150       X87Free(right);
2151       ASSERT(left.is(result));
2152       X87PrepareToWrite(result);
2153       __ CallCFunction(
2154           ExternalReference::mod_two_doubles_operation(isolate()),
2155           4);
2156 
2157       // Return value is in st(0) on ia32.
2158       X87CommitWrite(result);
2159       break;
2160     }
2161     default:
2162       UNREACHABLE();
2163       break;
2164   }
2165 }
2166 
2167 
DoArithmeticT(LArithmeticT * instr)2168 void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
2169   ASSERT(ToRegister(instr->context()).is(esi));
2170   ASSERT(ToRegister(instr->left()).is(edx));
2171   ASSERT(ToRegister(instr->right()).is(eax));
2172   ASSERT(ToRegister(instr->result()).is(eax));
2173 
2174   BinaryOpICStub stub(isolate(), instr->op(), NO_OVERWRITE);
2175   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2176 }
2177 
2178 
2179 template<class InstrType>
EmitBranch(InstrType instr,Condition cc)2180 void LCodeGen::EmitBranch(InstrType instr, Condition cc) {
2181   int left_block = instr->TrueDestination(chunk_);
2182   int right_block = instr->FalseDestination(chunk_);
2183 
2184   int next_block = GetNextEmittedBlock();
2185 
2186   if (right_block == left_block || cc == no_condition) {
2187     EmitGoto(left_block);
2188   } else if (left_block == next_block) {
2189     __ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block));
2190   } else if (right_block == next_block) {
2191     __ j(cc, chunk_->GetAssemblyLabel(left_block));
2192   } else {
2193     __ j(cc, chunk_->GetAssemblyLabel(left_block));
2194     __ jmp(chunk_->GetAssemblyLabel(right_block));
2195   }
2196 }
2197 
2198 
2199 template<class InstrType>
EmitFalseBranch(InstrType instr,Condition cc)2200 void LCodeGen::EmitFalseBranch(InstrType instr, Condition cc) {
2201   int false_block = instr->FalseDestination(chunk_);
2202   if (cc == no_condition) {
2203     __ jmp(chunk_->GetAssemblyLabel(false_block));
2204   } else {
2205     __ j(cc, chunk_->GetAssemblyLabel(false_block));
2206   }
2207 }
2208 
2209 
DoBranch(LBranch * instr)2210 void LCodeGen::DoBranch(LBranch* instr) {
2211   Representation r = instr->hydrogen()->value()->representation();
2212   if (r.IsSmiOrInteger32()) {
2213     Register reg = ToRegister(instr->value());
2214     __ test(reg, Operand(reg));
2215     EmitBranch(instr, not_zero);
2216   } else if (r.IsDouble()) {
2217     UNREACHABLE();
2218   } else {
2219     ASSERT(r.IsTagged());
2220     Register reg = ToRegister(instr->value());
2221     HType type = instr->hydrogen()->value()->type();
2222     if (type.IsBoolean()) {
2223       ASSERT(!info()->IsStub());
2224       __ cmp(reg, factory()->true_value());
2225       EmitBranch(instr, equal);
2226     } else if (type.IsSmi()) {
2227       ASSERT(!info()->IsStub());
2228       __ test(reg, Operand(reg));
2229       EmitBranch(instr, not_equal);
2230     } else if (type.IsJSArray()) {
2231       ASSERT(!info()->IsStub());
2232       EmitBranch(instr, no_condition);
2233     } else if (type.IsHeapNumber()) {
2234       UNREACHABLE();
2235     } else if (type.IsString()) {
2236       ASSERT(!info()->IsStub());
2237       __ cmp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
2238       EmitBranch(instr, not_equal);
2239     } else {
2240       ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
2241       if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
2242 
2243       if (expected.Contains(ToBooleanStub::UNDEFINED)) {
2244         // undefined -> false.
2245         __ cmp(reg, factory()->undefined_value());
2246         __ j(equal, instr->FalseLabel(chunk_));
2247       }
2248       if (expected.Contains(ToBooleanStub::BOOLEAN)) {
2249         // true -> true.
2250         __ cmp(reg, factory()->true_value());
2251         __ j(equal, instr->TrueLabel(chunk_));
2252         // false -> false.
2253         __ cmp(reg, factory()->false_value());
2254         __ j(equal, instr->FalseLabel(chunk_));
2255       }
2256       if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
2257         // 'null' -> false.
2258         __ cmp(reg, factory()->null_value());
2259         __ j(equal, instr->FalseLabel(chunk_));
2260       }
2261 
2262       if (expected.Contains(ToBooleanStub::SMI)) {
2263         // Smis: 0 -> false, all other -> true.
2264         __ test(reg, Operand(reg));
2265         __ j(equal, instr->FalseLabel(chunk_));
2266         __ JumpIfSmi(reg, instr->TrueLabel(chunk_));
2267       } else if (expected.NeedsMap()) {
2268         // If we need a map later and have a Smi -> deopt.
2269         __ test(reg, Immediate(kSmiTagMask));
2270         DeoptimizeIf(zero, instr->environment());
2271       }
2272 
2273       Register map = no_reg;  // Keep the compiler happy.
2274       if (expected.NeedsMap()) {
2275         map = ToRegister(instr->temp());
2276         ASSERT(!map.is(reg));
2277         __ mov(map, FieldOperand(reg, HeapObject::kMapOffset));
2278 
2279         if (expected.CanBeUndetectable()) {
2280           // Undetectable -> false.
2281           __ test_b(FieldOperand(map, Map::kBitFieldOffset),
2282                     1 << Map::kIsUndetectable);
2283           __ j(not_zero, instr->FalseLabel(chunk_));
2284         }
2285       }
2286 
2287       if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
2288         // spec object -> true.
2289         __ CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE);
2290         __ j(above_equal, instr->TrueLabel(chunk_));
2291       }
2292 
2293       if (expected.Contains(ToBooleanStub::STRING)) {
2294         // String value -> false iff empty.
2295         Label not_string;
2296         __ CmpInstanceType(map, FIRST_NONSTRING_TYPE);
2297         __ j(above_equal, &not_string, Label::kNear);
2298         __ cmp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
2299         __ j(not_zero, instr->TrueLabel(chunk_));
2300         __ jmp(instr->FalseLabel(chunk_));
2301         __ bind(&not_string);
2302       }
2303 
2304       if (expected.Contains(ToBooleanStub::SYMBOL)) {
2305         // Symbol value -> true.
2306         __ CmpInstanceType(map, SYMBOL_TYPE);
2307         __ j(equal, instr->TrueLabel(chunk_));
2308       }
2309 
2310       if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
2311         // heap number -> false iff +0, -0, or NaN.
2312         Label not_heap_number;
2313         __ cmp(FieldOperand(reg, HeapObject::kMapOffset),
2314                factory()->heap_number_map());
2315         __ j(not_equal, &not_heap_number, Label::kNear);
2316         __ fldz();
2317         __ fld_d(FieldOperand(reg, HeapNumber::kValueOffset));
2318         __ FCmp();
2319         __ j(zero, instr->FalseLabel(chunk_));
2320         __ jmp(instr->TrueLabel(chunk_));
2321         __ bind(&not_heap_number);
2322       }
2323 
2324       if (!expected.IsGeneric()) {
2325         // We've seen something for the first time -> deopt.
2326         // This can only happen if we are not generic already.
2327         DeoptimizeIf(no_condition, instr->environment());
2328       }
2329     }
2330   }
2331 }
2332 
2333 
EmitGoto(int block)2334 void LCodeGen::EmitGoto(int block) {
2335   if (!IsNextEmittedBlock(block)) {
2336     __ jmp(chunk_->GetAssemblyLabel(LookupDestination(block)));
2337   }
2338 }
2339 
2340 
DoClobberDoubles(LClobberDoubles * instr)2341 void LCodeGen::DoClobberDoubles(LClobberDoubles* instr) {
2342 }
2343 
2344 
DoGoto(LGoto * instr)2345 void LCodeGen::DoGoto(LGoto* instr) {
2346   EmitGoto(instr->block_id());
2347 }
2348 
2349 
TokenToCondition(Token::Value op,bool is_unsigned)2350 Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
2351   Condition cond = no_condition;
2352   switch (op) {
2353     case Token::EQ:
2354     case Token::EQ_STRICT:
2355       cond = equal;
2356       break;
2357     case Token::NE:
2358     case Token::NE_STRICT:
2359       cond = not_equal;
2360       break;
2361     case Token::LT:
2362       cond = is_unsigned ? below : less;
2363       break;
2364     case Token::GT:
2365       cond = is_unsigned ? above : greater;
2366       break;
2367     case Token::LTE:
2368       cond = is_unsigned ? below_equal : less_equal;
2369       break;
2370     case Token::GTE:
2371       cond = is_unsigned ? above_equal : greater_equal;
2372       break;
2373     case Token::IN:
2374     case Token::INSTANCEOF:
2375     default:
2376       UNREACHABLE();
2377   }
2378   return cond;
2379 }
2380 
2381 
DoCompareNumericAndBranch(LCompareNumericAndBranch * instr)2382 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
2383   LOperand* left = instr->left();
2384   LOperand* right = instr->right();
2385   bool is_unsigned =
2386       instr->is_double() ||
2387       instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
2388       instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
2389   Condition cc = TokenToCondition(instr->op(), is_unsigned);
2390 
2391   if (left->IsConstantOperand() && right->IsConstantOperand()) {
2392     // We can statically evaluate the comparison.
2393     double left_val = ToDouble(LConstantOperand::cast(left));
2394     double right_val = ToDouble(LConstantOperand::cast(right));
2395     int next_block = EvalComparison(instr->op(), left_val, right_val) ?
2396         instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_);
2397     EmitGoto(next_block);
2398   } else {
2399     if (instr->is_double()) {
2400       X87LoadForUsage(ToX87Register(right), ToX87Register(left));
2401       __ FCmp();
2402       // Don't base result on EFLAGS when a NaN is involved. Instead
2403       // jump to the false block.
2404       __ j(parity_even, instr->FalseLabel(chunk_));
2405     } else {
2406       if (right->IsConstantOperand()) {
2407         __ cmp(ToOperand(left),
2408                ToImmediate(right, instr->hydrogen()->representation()));
2409       } else if (left->IsConstantOperand()) {
2410         __ cmp(ToOperand(right),
2411                ToImmediate(left, instr->hydrogen()->representation()));
2412         // We commuted the operands, so commute the condition.
2413         cc = CommuteCondition(cc);
2414       } else {
2415         __ cmp(ToRegister(left), ToOperand(right));
2416       }
2417     }
2418     EmitBranch(instr, cc);
2419   }
2420 }
2421 
2422 
DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch * instr)2423 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
2424   Register left = ToRegister(instr->left());
2425 
2426   if (instr->right()->IsConstantOperand()) {
2427     Handle<Object> right = ToHandle(LConstantOperand::cast(instr->right()));
2428     __ CmpObject(left, right);
2429   } else {
2430     Operand right = ToOperand(instr->right());
2431     __ cmp(left, right);
2432   }
2433   EmitBranch(instr, equal);
2434 }
2435 
2436 
DoCmpHoleAndBranch(LCmpHoleAndBranch * instr)2437 void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
2438   if (instr->hydrogen()->representation().IsTagged()) {
2439     Register input_reg = ToRegister(instr->object());
2440     __ cmp(input_reg, factory()->the_hole_value());
2441     EmitBranch(instr, equal);
2442     return;
2443   }
2444 
2445   // Put the value to the top of stack
2446   X87Register src = ToX87Register(instr->object());
2447   X87LoadForUsage(src);
2448   __ fld(0);
2449   __ fld(0);
2450   __ FCmp();
2451   Label ok;
2452   __ j(parity_even, &ok, Label::kNear);
2453   __ fstp(0);
2454   EmitFalseBranch(instr, no_condition);
2455   __ bind(&ok);
2456 
2457 
2458   __ sub(esp, Immediate(kDoubleSize));
2459   __ fstp_d(MemOperand(esp, 0));
2460 
2461   __ add(esp, Immediate(kDoubleSize));
2462   int offset = sizeof(kHoleNanUpper32);
2463   __ cmp(MemOperand(esp, -offset), Immediate(kHoleNanUpper32));
2464   EmitBranch(instr, equal);
2465 }
2466 
2467 
DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch * instr)2468 void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) {
2469   Representation rep = instr->hydrogen()->value()->representation();
2470   ASSERT(!rep.IsInteger32());
2471 
2472   if (rep.IsDouble()) {
2473     UNREACHABLE();
2474   } else {
2475     Register value = ToRegister(instr->value());
2476     Handle<Map> map = masm()->isolate()->factory()->heap_number_map();
2477     __ CheckMap(value, map, instr->FalseLabel(chunk()), DO_SMI_CHECK);
2478     __ cmp(FieldOperand(value, HeapNumber::kExponentOffset),
2479            Immediate(0x1));
2480     EmitFalseBranch(instr, no_overflow);
2481     __ cmp(FieldOperand(value, HeapNumber::kMantissaOffset),
2482            Immediate(0x00000000));
2483     EmitBranch(instr, equal);
2484   }
2485 }
2486 
2487 
EmitIsObject(Register input,Register temp1,Label * is_not_object,Label * is_object)2488 Condition LCodeGen::EmitIsObject(Register input,
2489                                  Register temp1,
2490                                  Label* is_not_object,
2491                                  Label* is_object) {
2492   __ JumpIfSmi(input, is_not_object);
2493 
2494   __ cmp(input, isolate()->factory()->null_value());
2495   __ j(equal, is_object);
2496 
2497   __ mov(temp1, FieldOperand(input, HeapObject::kMapOffset));
2498   // Undetectable objects behave like undefined.
2499   __ test_b(FieldOperand(temp1, Map::kBitFieldOffset),
2500             1 << Map::kIsUndetectable);
2501   __ j(not_zero, is_not_object);
2502 
2503   __ movzx_b(temp1, FieldOperand(temp1, Map::kInstanceTypeOffset));
2504   __ cmp(temp1, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
2505   __ j(below, is_not_object);
2506   __ cmp(temp1, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
2507   return below_equal;
2508 }
2509 
2510 
DoIsObjectAndBranch(LIsObjectAndBranch * instr)2511 void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
2512   Register reg = ToRegister(instr->value());
2513   Register temp = ToRegister(instr->temp());
2514 
2515   Condition true_cond = EmitIsObject(
2516       reg, temp, instr->FalseLabel(chunk_), instr->TrueLabel(chunk_));
2517 
2518   EmitBranch(instr, true_cond);
2519 }
2520 
2521 
EmitIsString(Register input,Register temp1,Label * is_not_string,SmiCheck check_needed=INLINE_SMI_CHECK)2522 Condition LCodeGen::EmitIsString(Register input,
2523                                  Register temp1,
2524                                  Label* is_not_string,
2525                                  SmiCheck check_needed = INLINE_SMI_CHECK) {
2526   if (check_needed == INLINE_SMI_CHECK) {
2527     __ JumpIfSmi(input, is_not_string);
2528   }
2529 
2530   Condition cond = masm_->IsObjectStringType(input, temp1, temp1);
2531 
2532   return cond;
2533 }
2534 
2535 
DoIsStringAndBranch(LIsStringAndBranch * instr)2536 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
2537   Register reg = ToRegister(instr->value());
2538   Register temp = ToRegister(instr->temp());
2539 
2540   SmiCheck check_needed =
2541       instr->hydrogen()->value()->type().IsHeapObject()
2542           ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2543 
2544   Condition true_cond = EmitIsString(
2545       reg, temp, instr->FalseLabel(chunk_), check_needed);
2546 
2547   EmitBranch(instr, true_cond);
2548 }
2549 
2550 
DoIsSmiAndBranch(LIsSmiAndBranch * instr)2551 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
2552   Operand input = ToOperand(instr->value());
2553 
2554   __ test(input, Immediate(kSmiTagMask));
2555   EmitBranch(instr, zero);
2556 }
2557 
2558 
DoIsUndetectableAndBranch(LIsUndetectableAndBranch * instr)2559 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
2560   Register input = ToRegister(instr->value());
2561   Register temp = ToRegister(instr->temp());
2562 
2563   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2564     STATIC_ASSERT(kSmiTag == 0);
2565     __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2566   }
2567   __ mov(temp, FieldOperand(input, HeapObject::kMapOffset));
2568   __ test_b(FieldOperand(temp, Map::kBitFieldOffset),
2569             1 << Map::kIsUndetectable);
2570   EmitBranch(instr, not_zero);
2571 }
2572 
2573 
ComputeCompareCondition(Token::Value op)2574 static Condition ComputeCompareCondition(Token::Value op) {
2575   switch (op) {
2576     case Token::EQ_STRICT:
2577     case Token::EQ:
2578       return equal;
2579     case Token::LT:
2580       return less;
2581     case Token::GT:
2582       return greater;
2583     case Token::LTE:
2584       return less_equal;
2585     case Token::GTE:
2586       return greater_equal;
2587     default:
2588       UNREACHABLE();
2589       return no_condition;
2590   }
2591 }
2592 
2593 
DoStringCompareAndBranch(LStringCompareAndBranch * instr)2594 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
2595   Token::Value op = instr->op();
2596 
2597   Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op);
2598   CallCode(ic, RelocInfo::CODE_TARGET, instr);
2599 
2600   Condition condition = ComputeCompareCondition(op);
2601   __ test(eax, Operand(eax));
2602 
2603   EmitBranch(instr, condition);
2604 }
2605 
2606 
TestType(HHasInstanceTypeAndBranch * instr)2607 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
2608   InstanceType from = instr->from();
2609   InstanceType to = instr->to();
2610   if (from == FIRST_TYPE) return to;
2611   ASSERT(from == to || to == LAST_TYPE);
2612   return from;
2613 }
2614 
2615 
BranchCondition(HHasInstanceTypeAndBranch * instr)2616 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
2617   InstanceType from = instr->from();
2618   InstanceType to = instr->to();
2619   if (from == to) return equal;
2620   if (to == LAST_TYPE) return above_equal;
2621   if (from == FIRST_TYPE) return below_equal;
2622   UNREACHABLE();
2623   return equal;
2624 }
2625 
2626 
DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch * instr)2627 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
2628   Register input = ToRegister(instr->value());
2629   Register temp = ToRegister(instr->temp());
2630 
2631   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2632     __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2633   }
2634 
2635   __ CmpObjectType(input, TestType(instr->hydrogen()), temp);
2636   EmitBranch(instr, BranchCondition(instr->hydrogen()));
2637 }
2638 
2639 
DoGetCachedArrayIndex(LGetCachedArrayIndex * instr)2640 void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
2641   Register input = ToRegister(instr->value());
2642   Register result = ToRegister(instr->result());
2643 
2644   __ AssertString(input);
2645 
2646   __ mov(result, FieldOperand(input, String::kHashFieldOffset));
2647   __ IndexFromHash(result, result);
2648 }
2649 
2650 
DoHasCachedArrayIndexAndBranch(LHasCachedArrayIndexAndBranch * instr)2651 void LCodeGen::DoHasCachedArrayIndexAndBranch(
2652     LHasCachedArrayIndexAndBranch* instr) {
2653   Register input = ToRegister(instr->value());
2654 
2655   __ test(FieldOperand(input, String::kHashFieldOffset),
2656           Immediate(String::kContainsCachedArrayIndexMask));
2657   EmitBranch(instr, equal);
2658 }
2659 
2660 
2661 // Branches to a label or falls through with the answer in the z flag.  Trashes
2662 // the temp registers, but not the input.
EmitClassOfTest(Label * is_true,Label * is_false,Handle<String> class_name,Register input,Register temp,Register temp2)2663 void LCodeGen::EmitClassOfTest(Label* is_true,
2664                                Label* is_false,
2665                                Handle<String>class_name,
2666                                Register input,
2667                                Register temp,
2668                                Register temp2) {
2669   ASSERT(!input.is(temp));
2670   ASSERT(!input.is(temp2));
2671   ASSERT(!temp.is(temp2));
2672   __ JumpIfSmi(input, is_false);
2673 
2674   if (class_name->IsOneByteEqualTo(STATIC_ASCII_VECTOR("Function"))) {
2675     // Assuming the following assertions, we can use the same compares to test
2676     // for both being a function type and being in the object type range.
2677     STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
2678     STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
2679                   FIRST_SPEC_OBJECT_TYPE + 1);
2680     STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
2681                   LAST_SPEC_OBJECT_TYPE - 1);
2682     STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
2683     __ CmpObjectType(input, FIRST_SPEC_OBJECT_TYPE, temp);
2684     __ j(below, is_false);
2685     __ j(equal, is_true);
2686     __ CmpInstanceType(temp, LAST_SPEC_OBJECT_TYPE);
2687     __ j(equal, is_true);
2688   } else {
2689     // Faster code path to avoid two compares: subtract lower bound from the
2690     // actual type and do a signed compare with the width of the type range.
2691     __ mov(temp, FieldOperand(input, HeapObject::kMapOffset));
2692     __ movzx_b(temp2, FieldOperand(temp, Map::kInstanceTypeOffset));
2693     __ sub(Operand(temp2), Immediate(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
2694     __ cmp(Operand(temp2), Immediate(LAST_NONCALLABLE_SPEC_OBJECT_TYPE -
2695                                      FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
2696     __ j(above, is_false);
2697   }
2698 
2699   // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
2700   // Check if the constructor in the map is a function.
2701   __ mov(temp, FieldOperand(temp, Map::kConstructorOffset));
2702   // Objects with a non-function constructor have class 'Object'.
2703   __ CmpObjectType(temp, JS_FUNCTION_TYPE, temp2);
2704   if (class_name->IsOneByteEqualTo(STATIC_ASCII_VECTOR("Object"))) {
2705     __ j(not_equal, is_true);
2706   } else {
2707     __ j(not_equal, is_false);
2708   }
2709 
2710   // temp now contains the constructor function. Grab the
2711   // instance class name from there.
2712   __ mov(temp, FieldOperand(temp, JSFunction::kSharedFunctionInfoOffset));
2713   __ mov(temp, FieldOperand(temp,
2714                             SharedFunctionInfo::kInstanceClassNameOffset));
2715   // The class name we are testing against is internalized since it's a literal.
2716   // The name in the constructor is internalized because of the way the context
2717   // is booted.  This routine isn't expected to work for random API-created
2718   // classes and it doesn't have to because you can't access it with natives
2719   // syntax.  Since both sides are internalized it is sufficient to use an
2720   // identity comparison.
2721   __ cmp(temp, class_name);
2722   // End with the answer in the z flag.
2723 }
2724 
2725 
DoClassOfTestAndBranch(LClassOfTestAndBranch * instr)2726 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
2727   Register input = ToRegister(instr->value());
2728   Register temp = ToRegister(instr->temp());
2729   Register temp2 = ToRegister(instr->temp2());
2730 
2731   Handle<String> class_name = instr->hydrogen()->class_name();
2732 
2733   EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
2734       class_name, input, temp, temp2);
2735 
2736   EmitBranch(instr, equal);
2737 }
2738 
2739 
DoCmpMapAndBranch(LCmpMapAndBranch * instr)2740 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
2741   Register reg = ToRegister(instr->value());
2742   __ cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->map());
2743   EmitBranch(instr, equal);
2744 }
2745 
2746 
DoInstanceOf(LInstanceOf * instr)2747 void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
2748   // Object and function are in fixed registers defined by the stub.
2749   ASSERT(ToRegister(instr->context()).is(esi));
2750   InstanceofStub stub(isolate(), InstanceofStub::kArgsInRegisters);
2751   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2752 
2753   Label true_value, done;
2754   __ test(eax, Operand(eax));
2755   __ j(zero, &true_value, Label::kNear);
2756   __ mov(ToRegister(instr->result()), factory()->false_value());
2757   __ jmp(&done, Label::kNear);
2758   __ bind(&true_value);
2759   __ mov(ToRegister(instr->result()), factory()->true_value());
2760   __ bind(&done);
2761 }
2762 
2763 
DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal * instr)2764 void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
2765   class DeferredInstanceOfKnownGlobal V8_FINAL : public LDeferredCode {
2766    public:
2767     DeferredInstanceOfKnownGlobal(LCodeGen* codegen,
2768                                   LInstanceOfKnownGlobal* instr,
2769                                   const X87Stack& x87_stack)
2770         : LDeferredCode(codegen, x87_stack), instr_(instr) { }
2771     virtual void Generate() V8_OVERRIDE {
2772       codegen()->DoDeferredInstanceOfKnownGlobal(instr_, &map_check_);
2773     }
2774     virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
2775     Label* map_check() { return &map_check_; }
2776    private:
2777     LInstanceOfKnownGlobal* instr_;
2778     Label map_check_;
2779   };
2780 
2781   DeferredInstanceOfKnownGlobal* deferred;
2782   deferred = new(zone()) DeferredInstanceOfKnownGlobal(this, instr, x87_stack_);
2783 
2784   Label done, false_result;
2785   Register object = ToRegister(instr->value());
2786   Register temp = ToRegister(instr->temp());
2787 
2788   // A Smi is not an instance of anything.
2789   __ JumpIfSmi(object, &false_result, Label::kNear);
2790 
2791   // This is the inlined call site instanceof cache. The two occurences of the
2792   // hole value will be patched to the last map/result pair generated by the
2793   // instanceof stub.
2794   Label cache_miss;
2795   Register map = ToRegister(instr->temp());
2796   __ mov(map, FieldOperand(object, HeapObject::kMapOffset));
2797   __ bind(deferred->map_check());  // Label for calculating code patching.
2798   Handle<Cell> cache_cell = factory()->NewCell(factory()->the_hole_value());
2799   __ cmp(map, Operand::ForCell(cache_cell));  // Patched to cached map.
2800   __ j(not_equal, &cache_miss, Label::kNear);
2801   __ mov(eax, factory()->the_hole_value());  // Patched to either true or false.
2802   __ jmp(&done, Label::kNear);
2803 
2804   // The inlined call site cache did not match. Check for null and string
2805   // before calling the deferred code.
2806   __ bind(&cache_miss);
2807   // Null is not an instance of anything.
2808   __ cmp(object, factory()->null_value());
2809   __ j(equal, &false_result, Label::kNear);
2810 
2811   // String values are not instances of anything.
2812   Condition is_string = masm_->IsObjectStringType(object, temp, temp);
2813   __ j(is_string, &false_result, Label::kNear);
2814 
2815   // Go to the deferred code.
2816   __ jmp(deferred->entry());
2817 
2818   __ bind(&false_result);
2819   __ mov(ToRegister(instr->result()), factory()->false_value());
2820 
2821   // Here result has either true or false. Deferred code also produces true or
2822   // false object.
2823   __ bind(deferred->exit());
2824   __ bind(&done);
2825 }
2826 
2827 
DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal * instr,Label * map_check)2828 void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr,
2829                                                Label* map_check) {
2830   PushSafepointRegistersScope scope(this);
2831 
2832   InstanceofStub::Flags flags = InstanceofStub::kNoFlags;
2833   flags = static_cast<InstanceofStub::Flags>(
2834       flags | InstanceofStub::kArgsInRegisters);
2835   flags = static_cast<InstanceofStub::Flags>(
2836       flags | InstanceofStub::kCallSiteInlineCheck);
2837   flags = static_cast<InstanceofStub::Flags>(
2838       flags | InstanceofStub::kReturnTrueFalseObject);
2839   InstanceofStub stub(isolate(), flags);
2840 
2841   // Get the temp register reserved by the instruction. This needs to be a
2842   // register which is pushed last by PushSafepointRegisters as top of the
2843   // stack is used to pass the offset to the location of the map check to
2844   // the stub.
2845   Register temp = ToRegister(instr->temp());
2846   ASSERT(MacroAssembler::SafepointRegisterStackIndex(temp) == 0);
2847   __ LoadHeapObject(InstanceofStub::right(), instr->function());
2848   static const int kAdditionalDelta = 13;
2849   int delta = masm_->SizeOfCodeGeneratedSince(map_check) + kAdditionalDelta;
2850   __ mov(temp, Immediate(delta));
2851   __ StoreToSafepointRegisterSlot(temp, temp);
2852   CallCodeGeneric(stub.GetCode(),
2853                   RelocInfo::CODE_TARGET,
2854                   instr,
2855                   RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
2856   // Get the deoptimization index of the LLazyBailout-environment that
2857   // corresponds to this instruction.
2858   LEnvironment* env = instr->GetDeferredLazyDeoptimizationEnvironment();
2859   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
2860 
2861   // Put the result value into the eax slot and restore all registers.
2862   __ StoreToSafepointRegisterSlot(eax, eax);
2863 }
2864 
2865 
DoCmpT(LCmpT * instr)2866 void LCodeGen::DoCmpT(LCmpT* instr) {
2867   Token::Value op = instr->op();
2868 
2869   Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op);
2870   CallCode(ic, RelocInfo::CODE_TARGET, instr);
2871 
2872   Condition condition = ComputeCompareCondition(op);
2873   Label true_value, done;
2874   __ test(eax, Operand(eax));
2875   __ j(condition, &true_value, Label::kNear);
2876   __ mov(ToRegister(instr->result()), factory()->false_value());
2877   __ jmp(&done, Label::kNear);
2878   __ bind(&true_value);
2879   __ mov(ToRegister(instr->result()), factory()->true_value());
2880   __ bind(&done);
2881 }
2882 
2883 
EmitReturn(LReturn * instr,bool dynamic_frame_alignment)2884 void LCodeGen::EmitReturn(LReturn* instr, bool dynamic_frame_alignment) {
2885   int extra_value_count = dynamic_frame_alignment ? 2 : 1;
2886 
2887   if (instr->has_constant_parameter_count()) {
2888     int parameter_count = ToInteger32(instr->constant_parameter_count());
2889     if (dynamic_frame_alignment && FLAG_debug_code) {
2890       __ cmp(Operand(esp,
2891                      (parameter_count + extra_value_count) * kPointerSize),
2892              Immediate(kAlignmentZapValue));
2893       __ Assert(equal, kExpectedAlignmentMarker);
2894     }
2895     __ Ret((parameter_count + extra_value_count) * kPointerSize, ecx);
2896   } else {
2897     Register reg = ToRegister(instr->parameter_count());
2898     // The argument count parameter is a smi
2899     __ SmiUntag(reg);
2900     Register return_addr_reg = reg.is(ecx) ? ebx : ecx;
2901     if (dynamic_frame_alignment && FLAG_debug_code) {
2902       ASSERT(extra_value_count == 2);
2903       __ cmp(Operand(esp, reg, times_pointer_size,
2904                      extra_value_count * kPointerSize),
2905              Immediate(kAlignmentZapValue));
2906       __ Assert(equal, kExpectedAlignmentMarker);
2907     }
2908 
2909     // emit code to restore stack based on instr->parameter_count()
2910     __ pop(return_addr_reg);  // save return address
2911     if (dynamic_frame_alignment) {
2912       __ inc(reg);  // 1 more for alignment
2913     }
2914     __ shl(reg, kPointerSizeLog2);
2915     __ add(esp, reg);
2916     __ jmp(return_addr_reg);
2917   }
2918 }
2919 
2920 
DoReturn(LReturn * instr)2921 void LCodeGen::DoReturn(LReturn* instr) {
2922   if (FLAG_trace && info()->IsOptimizing()) {
2923     // Preserve the return value on the stack and rely on the runtime call
2924     // to return the value in the same register.  We're leaving the code
2925     // managed by the register allocator and tearing down the frame, it's
2926     // safe to write to the context register.
2927     __ push(eax);
2928     __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
2929     __ CallRuntime(Runtime::kTraceExit, 1);
2930   }
2931   if (dynamic_frame_alignment_) {
2932     // Fetch the state of the dynamic frame alignment.
2933     __ mov(edx, Operand(ebp,
2934       JavaScriptFrameConstants::kDynamicAlignmentStateOffset));
2935   }
2936   int no_frame_start = -1;
2937   if (NeedsEagerFrame()) {
2938     __ mov(esp, ebp);
2939     __ pop(ebp);
2940     no_frame_start = masm_->pc_offset();
2941   }
2942   if (dynamic_frame_alignment_) {
2943     Label no_padding;
2944     __ cmp(edx, Immediate(kNoAlignmentPadding));
2945     __ j(equal, &no_padding, Label::kNear);
2946 
2947     EmitReturn(instr, true);
2948     __ bind(&no_padding);
2949   }
2950 
2951   EmitReturn(instr, false);
2952   if (no_frame_start != -1) {
2953     info()->AddNoFrameRange(no_frame_start, masm_->pc_offset());
2954   }
2955 }
2956 
2957 
DoLoadGlobalCell(LLoadGlobalCell * instr)2958 void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) {
2959   Register result = ToRegister(instr->result());
2960   __ mov(result, Operand::ForCell(instr->hydrogen()->cell().handle()));
2961   if (instr->hydrogen()->RequiresHoleCheck()) {
2962     __ cmp(result, factory()->the_hole_value());
2963     DeoptimizeIf(equal, instr->environment());
2964   }
2965 }
2966 
2967 
DoLoadGlobalGeneric(LLoadGlobalGeneric * instr)2968 void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
2969   ASSERT(ToRegister(instr->context()).is(esi));
2970   ASSERT(ToRegister(instr->global_object()).is(edx));
2971   ASSERT(ToRegister(instr->result()).is(eax));
2972 
2973   __ mov(ecx, instr->name());
2974   ContextualMode mode = instr->for_typeof() ? NOT_CONTEXTUAL : CONTEXTUAL;
2975   Handle<Code> ic = LoadIC::initialize_stub(isolate(), mode);
2976   CallCode(ic, RelocInfo::CODE_TARGET, instr);
2977 }
2978 
2979 
DoStoreGlobalCell(LStoreGlobalCell * instr)2980 void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) {
2981   Register value = ToRegister(instr->value());
2982   Handle<PropertyCell> cell_handle = instr->hydrogen()->cell().handle();
2983 
2984   // If the cell we are storing to contains the hole it could have
2985   // been deleted from the property dictionary. In that case, we need
2986   // to update the property details in the property dictionary to mark
2987   // it as no longer deleted. We deoptimize in that case.
2988   if (instr->hydrogen()->RequiresHoleCheck()) {
2989     __ cmp(Operand::ForCell(cell_handle), factory()->the_hole_value());
2990     DeoptimizeIf(equal, instr->environment());
2991   }
2992 
2993   // Store the value.
2994   __ mov(Operand::ForCell(cell_handle), value);
2995   // Cells are always rescanned, so no write barrier here.
2996 }
2997 
2998 
DoLoadContextSlot(LLoadContextSlot * instr)2999 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
3000   Register context = ToRegister(instr->context());
3001   Register result = ToRegister(instr->result());
3002   __ mov(result, ContextOperand(context, instr->slot_index()));
3003 
3004   if (instr->hydrogen()->RequiresHoleCheck()) {
3005     __ cmp(result, factory()->the_hole_value());
3006     if (instr->hydrogen()->DeoptimizesOnHole()) {
3007       DeoptimizeIf(equal, instr->environment());
3008     } else {
3009       Label is_not_hole;
3010       __ j(not_equal, &is_not_hole, Label::kNear);
3011       __ mov(result, factory()->undefined_value());
3012       __ bind(&is_not_hole);
3013     }
3014   }
3015 }
3016 
3017 
DoStoreContextSlot(LStoreContextSlot * instr)3018 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
3019   Register context = ToRegister(instr->context());
3020   Register value = ToRegister(instr->value());
3021 
3022   Label skip_assignment;
3023 
3024   Operand target = ContextOperand(context, instr->slot_index());
3025   if (instr->hydrogen()->RequiresHoleCheck()) {
3026     __ cmp(target, factory()->the_hole_value());
3027     if (instr->hydrogen()->DeoptimizesOnHole()) {
3028       DeoptimizeIf(equal, instr->environment());
3029     } else {
3030       __ j(not_equal, &skip_assignment, Label::kNear);
3031     }
3032   }
3033 
3034   __ mov(target, value);
3035   if (instr->hydrogen()->NeedsWriteBarrier()) {
3036     SmiCheck check_needed =
3037         instr->hydrogen()->value()->type().IsHeapObject()
3038             ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
3039     Register temp = ToRegister(instr->temp());
3040     int offset = Context::SlotOffset(instr->slot_index());
3041     __ RecordWriteContextSlot(context,
3042                               offset,
3043                               value,
3044                               temp,
3045                               EMIT_REMEMBERED_SET,
3046                               check_needed);
3047   }
3048 
3049   __ bind(&skip_assignment);
3050 }
3051 
3052 
DoLoadNamedField(LLoadNamedField * instr)3053 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
3054   HObjectAccess access = instr->hydrogen()->access();
3055   int offset = access.offset();
3056 
3057   if (access.IsExternalMemory()) {
3058     Register result = ToRegister(instr->result());
3059     MemOperand operand = instr->object()->IsConstantOperand()
3060         ? MemOperand::StaticVariable(ToExternalReference(
3061                 LConstantOperand::cast(instr->object())))
3062         : MemOperand(ToRegister(instr->object()), offset);
3063     __ Load(result, operand, access.representation());
3064     return;
3065   }
3066 
3067   Register object = ToRegister(instr->object());
3068   if (instr->hydrogen()->representation().IsDouble()) {
3069     X87Mov(ToX87Register(instr->result()), FieldOperand(object, offset));
3070     return;
3071   }
3072 
3073   Register result = ToRegister(instr->result());
3074   if (!access.IsInobject()) {
3075     __ mov(result, FieldOperand(object, JSObject::kPropertiesOffset));
3076     object = result;
3077   }
3078   __ Load(result, FieldOperand(object, offset), access.representation());
3079 }
3080 
3081 
EmitPushTaggedOperand(LOperand * operand)3082 void LCodeGen::EmitPushTaggedOperand(LOperand* operand) {
3083   ASSERT(!operand->IsDoubleRegister());
3084   if (operand->IsConstantOperand()) {
3085     Handle<Object> object = ToHandle(LConstantOperand::cast(operand));
3086     AllowDeferredHandleDereference smi_check;
3087     if (object->IsSmi()) {
3088       __ Push(Handle<Smi>::cast(object));
3089     } else {
3090       __ PushHeapObject(Handle<HeapObject>::cast(object));
3091     }
3092   } else if (operand->IsRegister()) {
3093     __ push(ToRegister(operand));
3094   } else {
3095     __ push(ToOperand(operand));
3096   }
3097 }
3098 
3099 
DoLoadNamedGeneric(LLoadNamedGeneric * instr)3100 void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
3101   ASSERT(ToRegister(instr->context()).is(esi));
3102   ASSERT(ToRegister(instr->object()).is(edx));
3103   ASSERT(ToRegister(instr->result()).is(eax));
3104 
3105   __ mov(ecx, instr->name());
3106   Handle<Code> ic = LoadIC::initialize_stub(isolate(), NOT_CONTEXTUAL);
3107   CallCode(ic, RelocInfo::CODE_TARGET, instr);
3108 }
3109 
3110 
DoLoadFunctionPrototype(LLoadFunctionPrototype * instr)3111 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
3112   Register function = ToRegister(instr->function());
3113   Register temp = ToRegister(instr->temp());
3114   Register result = ToRegister(instr->result());
3115 
3116   // Check that the function really is a function.
3117   __ CmpObjectType(function, JS_FUNCTION_TYPE, result);
3118   DeoptimizeIf(not_equal, instr->environment());
3119 
3120   // Check whether the function has an instance prototype.
3121   Label non_instance;
3122   __ test_b(FieldOperand(result, Map::kBitFieldOffset),
3123             1 << Map::kHasNonInstancePrototype);
3124   __ j(not_zero, &non_instance, Label::kNear);
3125 
3126   // Get the prototype or initial map from the function.
3127   __ mov(result,
3128          FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
3129 
3130   // Check that the function has a prototype or an initial map.
3131   __ cmp(Operand(result), Immediate(factory()->the_hole_value()));
3132   DeoptimizeIf(equal, instr->environment());
3133 
3134   // If the function does not have an initial map, we're done.
3135   Label done;
3136   __ CmpObjectType(result, MAP_TYPE, temp);
3137   __ j(not_equal, &done, Label::kNear);
3138 
3139   // Get the prototype from the initial map.
3140   __ mov(result, FieldOperand(result, Map::kPrototypeOffset));
3141   __ jmp(&done, Label::kNear);
3142 
3143   // Non-instance prototype: Fetch prototype from constructor field
3144   // in the function's map.
3145   __ bind(&non_instance);
3146   __ mov(result, FieldOperand(result, Map::kConstructorOffset));
3147 
3148   // All done.
3149   __ bind(&done);
3150 }
3151 
3152 
DoLoadRoot(LLoadRoot * instr)3153 void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
3154   Register result = ToRegister(instr->result());
3155   __ LoadRoot(result, instr->index());
3156 }
3157 
3158 
DoAccessArgumentsAt(LAccessArgumentsAt * instr)3159 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
3160   Register arguments = ToRegister(instr->arguments());
3161   Register result = ToRegister(instr->result());
3162   if (instr->length()->IsConstantOperand() &&
3163       instr->index()->IsConstantOperand()) {
3164     int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
3165     int const_length = ToInteger32(LConstantOperand::cast(instr->length()));
3166     int index = (const_length - const_index) + 1;
3167     __ mov(result, Operand(arguments, index * kPointerSize));
3168   } else {
3169     Register length = ToRegister(instr->length());
3170     Operand index = ToOperand(instr->index());
3171     // There are two words between the frame pointer and the last argument.
3172     // Subtracting from length accounts for one of them add one more.
3173     __ sub(length, index);
3174     __ mov(result, Operand(arguments, length, times_4, kPointerSize));
3175   }
3176 }
3177 
3178 
DoLoadKeyedExternalArray(LLoadKeyed * instr)3179 void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
3180   ElementsKind elements_kind = instr->elements_kind();
3181   LOperand* key = instr->key();
3182   if (!key->IsConstantOperand() &&
3183       ExternalArrayOpRequiresTemp(instr->hydrogen()->key()->representation(),
3184                                   elements_kind)) {
3185     __ SmiUntag(ToRegister(key));
3186   }
3187   Operand operand(BuildFastArrayOperand(
3188       instr->elements(),
3189       key,
3190       instr->hydrogen()->key()->representation(),
3191       elements_kind,
3192       instr->base_offset()));
3193   if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS ||
3194       elements_kind == FLOAT32_ELEMENTS) {
3195     X87Mov(ToX87Register(instr->result()), operand, kX87FloatOperand);
3196   } else if (elements_kind == EXTERNAL_FLOAT64_ELEMENTS ||
3197              elements_kind == FLOAT64_ELEMENTS) {
3198     X87Mov(ToX87Register(instr->result()), operand);
3199   } else {
3200     Register result(ToRegister(instr->result()));
3201     switch (elements_kind) {
3202       case EXTERNAL_INT8_ELEMENTS:
3203       case INT8_ELEMENTS:
3204         __ movsx_b(result, operand);
3205         break;
3206       case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
3207       case EXTERNAL_UINT8_ELEMENTS:
3208       case UINT8_ELEMENTS:
3209       case UINT8_CLAMPED_ELEMENTS:
3210         __ movzx_b(result, operand);
3211         break;
3212       case EXTERNAL_INT16_ELEMENTS:
3213       case INT16_ELEMENTS:
3214         __ movsx_w(result, operand);
3215         break;
3216       case EXTERNAL_UINT16_ELEMENTS:
3217       case UINT16_ELEMENTS:
3218         __ movzx_w(result, operand);
3219         break;
3220       case EXTERNAL_INT32_ELEMENTS:
3221       case INT32_ELEMENTS:
3222         __ mov(result, operand);
3223         break;
3224       case EXTERNAL_UINT32_ELEMENTS:
3225       case UINT32_ELEMENTS:
3226         __ mov(result, operand);
3227         if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
3228           __ test(result, Operand(result));
3229           DeoptimizeIf(negative, instr->environment());
3230         }
3231         break;
3232       case EXTERNAL_FLOAT32_ELEMENTS:
3233       case EXTERNAL_FLOAT64_ELEMENTS:
3234       case FLOAT32_ELEMENTS:
3235       case FLOAT64_ELEMENTS:
3236       case FAST_SMI_ELEMENTS:
3237       case FAST_ELEMENTS:
3238       case FAST_DOUBLE_ELEMENTS:
3239       case FAST_HOLEY_SMI_ELEMENTS:
3240       case FAST_HOLEY_ELEMENTS:
3241       case FAST_HOLEY_DOUBLE_ELEMENTS:
3242       case DICTIONARY_ELEMENTS:
3243       case SLOPPY_ARGUMENTS_ELEMENTS:
3244         UNREACHABLE();
3245         break;
3246     }
3247   }
3248 }
3249 
3250 
DoLoadKeyedFixedDoubleArray(LLoadKeyed * instr)3251 void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
3252   if (instr->hydrogen()->RequiresHoleCheck()) {
3253     Operand hole_check_operand = BuildFastArrayOperand(
3254         instr->elements(), instr->key(),
3255         instr->hydrogen()->key()->representation(),
3256         FAST_DOUBLE_ELEMENTS,
3257         instr->base_offset() + sizeof(kHoleNanLower32));
3258     __ cmp(hole_check_operand, Immediate(kHoleNanUpper32));
3259     DeoptimizeIf(equal, instr->environment());
3260   }
3261 
3262   Operand double_load_operand = BuildFastArrayOperand(
3263       instr->elements(),
3264       instr->key(),
3265       instr->hydrogen()->key()->representation(),
3266       FAST_DOUBLE_ELEMENTS,
3267       instr->base_offset());
3268   X87Mov(ToX87Register(instr->result()), double_load_operand);
3269 }
3270 
3271 
DoLoadKeyedFixedArray(LLoadKeyed * instr)3272 void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
3273   Register result = ToRegister(instr->result());
3274 
3275   // Load the result.
3276   __ mov(result,
3277          BuildFastArrayOperand(instr->elements(),
3278                                instr->key(),
3279                                instr->hydrogen()->key()->representation(),
3280                                FAST_ELEMENTS,
3281                                instr->base_offset()));
3282 
3283   // Check for the hole value.
3284   if (instr->hydrogen()->RequiresHoleCheck()) {
3285     if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
3286       __ test(result, Immediate(kSmiTagMask));
3287       DeoptimizeIf(not_equal, instr->environment());
3288     } else {
3289       __ cmp(result, factory()->the_hole_value());
3290       DeoptimizeIf(equal, instr->environment());
3291     }
3292   }
3293 }
3294 
3295 
DoLoadKeyed(LLoadKeyed * instr)3296 void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
3297   if (instr->is_typed_elements()) {
3298     DoLoadKeyedExternalArray(instr);
3299   } else if (instr->hydrogen()->representation().IsDouble()) {
3300     DoLoadKeyedFixedDoubleArray(instr);
3301   } else {
3302     DoLoadKeyedFixedArray(instr);
3303   }
3304 }
3305 
3306 
BuildFastArrayOperand(LOperand * elements_pointer,LOperand * key,Representation key_representation,ElementsKind elements_kind,uint32_t base_offset)3307 Operand LCodeGen::BuildFastArrayOperand(
3308     LOperand* elements_pointer,
3309     LOperand* key,
3310     Representation key_representation,
3311     ElementsKind elements_kind,
3312     uint32_t base_offset) {
3313   Register elements_pointer_reg = ToRegister(elements_pointer);
3314   int element_shift_size = ElementsKindToShiftSize(elements_kind);
3315   int shift_size = element_shift_size;
3316   if (key->IsConstantOperand()) {
3317     int constant_value = ToInteger32(LConstantOperand::cast(key));
3318     if (constant_value & 0xF0000000) {
3319       Abort(kArrayIndexConstantValueTooBig);
3320     }
3321     return Operand(elements_pointer_reg,
3322                    ((constant_value) << shift_size)
3323                        + base_offset);
3324   } else {
3325     // Take the tag bit into account while computing the shift size.
3326     if (key_representation.IsSmi() && (shift_size >= 1)) {
3327       shift_size -= kSmiTagSize;
3328     }
3329     ScaleFactor scale_factor = static_cast<ScaleFactor>(shift_size);
3330     return Operand(elements_pointer_reg,
3331                    ToRegister(key),
3332                    scale_factor,
3333                    base_offset);
3334   }
3335 }
3336 
3337 
DoLoadKeyedGeneric(LLoadKeyedGeneric * instr)3338 void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
3339   ASSERT(ToRegister(instr->context()).is(esi));
3340   ASSERT(ToRegister(instr->object()).is(edx));
3341   ASSERT(ToRegister(instr->key()).is(ecx));
3342 
3343   Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
3344   CallCode(ic, RelocInfo::CODE_TARGET, instr);
3345 }
3346 
3347 
DoArgumentsElements(LArgumentsElements * instr)3348 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
3349   Register result = ToRegister(instr->result());
3350 
3351   if (instr->hydrogen()->from_inlined()) {
3352     __ lea(result, Operand(esp, -2 * kPointerSize));
3353   } else {
3354     // Check for arguments adapter frame.
3355     Label done, adapted;
3356     __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
3357     __ mov(result, Operand(result, StandardFrameConstants::kContextOffset));
3358     __ cmp(Operand(result),
3359            Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
3360     __ j(equal, &adapted, Label::kNear);
3361 
3362     // No arguments adaptor frame.
3363     __ mov(result, Operand(ebp));
3364     __ jmp(&done, Label::kNear);
3365 
3366     // Arguments adaptor frame present.
3367     __ bind(&adapted);
3368     __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
3369 
3370     // Result is the frame pointer for the frame if not adapted and for the real
3371     // frame below the adaptor frame if adapted.
3372     __ bind(&done);
3373   }
3374 }
3375 
3376 
DoArgumentsLength(LArgumentsLength * instr)3377 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
3378   Operand elem = ToOperand(instr->elements());
3379   Register result = ToRegister(instr->result());
3380 
3381   Label done;
3382 
3383   // If no arguments adaptor frame the number of arguments is fixed.
3384   __ cmp(ebp, elem);
3385   __ mov(result, Immediate(scope()->num_parameters()));
3386   __ j(equal, &done, Label::kNear);
3387 
3388   // Arguments adaptor frame present. Get argument length from there.
3389   __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
3390   __ mov(result, Operand(result,
3391                          ArgumentsAdaptorFrameConstants::kLengthOffset));
3392   __ SmiUntag(result);
3393 
3394   // Argument length is in result register.
3395   __ bind(&done);
3396 }
3397 
3398 
DoWrapReceiver(LWrapReceiver * instr)3399 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
3400   Register receiver = ToRegister(instr->receiver());
3401   Register function = ToRegister(instr->function());
3402 
3403   // If the receiver is null or undefined, we have to pass the global
3404   // object as a receiver to normal functions. Values have to be
3405   // passed unchanged to builtins and strict-mode functions.
3406   Label receiver_ok, global_object;
3407   Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
3408   Register scratch = ToRegister(instr->temp());
3409 
3410   if (!instr->hydrogen()->known_function()) {
3411     // Do not transform the receiver to object for strict mode
3412     // functions.
3413     __ mov(scratch,
3414            FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
3415     __ test_b(FieldOperand(scratch, SharedFunctionInfo::kStrictModeByteOffset),
3416               1 << SharedFunctionInfo::kStrictModeBitWithinByte);
3417     __ j(not_equal, &receiver_ok, dist);
3418 
3419     // Do not transform the receiver to object for builtins.
3420     __ test_b(FieldOperand(scratch, SharedFunctionInfo::kNativeByteOffset),
3421               1 << SharedFunctionInfo::kNativeBitWithinByte);
3422     __ j(not_equal, &receiver_ok, dist);
3423   }
3424 
3425   // Normal function. Replace undefined or null with global receiver.
3426   __ cmp(receiver, factory()->null_value());
3427   __ j(equal, &global_object, Label::kNear);
3428   __ cmp(receiver, factory()->undefined_value());
3429   __ j(equal, &global_object, Label::kNear);
3430 
3431   // The receiver should be a JS object.
3432   __ test(receiver, Immediate(kSmiTagMask));
3433   DeoptimizeIf(equal, instr->environment());
3434   __ CmpObjectType(receiver, FIRST_SPEC_OBJECT_TYPE, scratch);
3435   DeoptimizeIf(below, instr->environment());
3436 
3437   __ jmp(&receiver_ok, Label::kNear);
3438   __ bind(&global_object);
3439   __ mov(receiver, FieldOperand(function, JSFunction::kContextOffset));
3440   const int global_offset = Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX);
3441   __ mov(receiver, Operand(receiver, global_offset));
3442   const int receiver_offset = GlobalObject::kGlobalReceiverOffset;
3443   __ mov(receiver, FieldOperand(receiver, receiver_offset));
3444   __ bind(&receiver_ok);
3445 }
3446 
3447 
DoApplyArguments(LApplyArguments * instr)3448 void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
3449   Register receiver = ToRegister(instr->receiver());
3450   Register function = ToRegister(instr->function());
3451   Register length = ToRegister(instr->length());
3452   Register elements = ToRegister(instr->elements());
3453   ASSERT(receiver.is(eax));  // Used for parameter count.
3454   ASSERT(function.is(edi));  // Required by InvokeFunction.
3455   ASSERT(ToRegister(instr->result()).is(eax));
3456 
3457   // Copy the arguments to this function possibly from the
3458   // adaptor frame below it.
3459   const uint32_t kArgumentsLimit = 1 * KB;
3460   __ cmp(length, kArgumentsLimit);
3461   DeoptimizeIf(above, instr->environment());
3462 
3463   __ push(receiver);
3464   __ mov(receiver, length);
3465 
3466   // Loop through the arguments pushing them onto the execution
3467   // stack.
3468   Label invoke, loop;
3469   // length is a small non-negative integer, due to the test above.
3470   __ test(length, Operand(length));
3471   __ j(zero, &invoke, Label::kNear);
3472   __ bind(&loop);
3473   __ push(Operand(elements, length, times_pointer_size, 1 * kPointerSize));
3474   __ dec(length);
3475   __ j(not_zero, &loop);
3476 
3477   // Invoke the function.
3478   __ bind(&invoke);
3479   ASSERT(instr->HasPointerMap());
3480   LPointerMap* pointers = instr->pointer_map();
3481   SafepointGenerator safepoint_generator(
3482       this, pointers, Safepoint::kLazyDeopt);
3483   ParameterCount actual(eax);
3484   __ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator);
3485 }
3486 
3487 
DoDebugBreak(LDebugBreak * instr)3488 void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
3489   __ int3();
3490 }
3491 
3492 
DoPushArgument(LPushArgument * instr)3493 void LCodeGen::DoPushArgument(LPushArgument* instr) {
3494   LOperand* argument = instr->value();
3495   EmitPushTaggedOperand(argument);
3496 }
3497 
3498 
DoDrop(LDrop * instr)3499 void LCodeGen::DoDrop(LDrop* instr) {
3500   __ Drop(instr->count());
3501 }
3502 
3503 
DoThisFunction(LThisFunction * instr)3504 void LCodeGen::DoThisFunction(LThisFunction* instr) {
3505   Register result = ToRegister(instr->result());
3506   __ mov(result, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
3507 }
3508 
3509 
DoContext(LContext * instr)3510 void LCodeGen::DoContext(LContext* instr) {
3511   Register result = ToRegister(instr->result());
3512   if (info()->IsOptimizing()) {
3513     __ mov(result, Operand(ebp, StandardFrameConstants::kContextOffset));
3514   } else {
3515     // If there is no frame, the context must be in esi.
3516     ASSERT(result.is(esi));
3517   }
3518 }
3519 
3520 
DoDeclareGlobals(LDeclareGlobals * instr)3521 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
3522   ASSERT(ToRegister(instr->context()).is(esi));
3523   __ push(esi);  // The context is the first argument.
3524   __ push(Immediate(instr->hydrogen()->pairs()));
3525   __ push(Immediate(Smi::FromInt(instr->hydrogen()->flags())));
3526   CallRuntime(Runtime::kHiddenDeclareGlobals, 3, instr);
3527 }
3528 
3529 
CallKnownFunction(Handle<JSFunction> function,int formal_parameter_count,int arity,LInstruction * instr,EDIState edi_state)3530 void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
3531                                  int formal_parameter_count,
3532                                  int arity,
3533                                  LInstruction* instr,
3534                                  EDIState edi_state) {
3535   bool dont_adapt_arguments =
3536       formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
3537   bool can_invoke_directly =
3538       dont_adapt_arguments || formal_parameter_count == arity;
3539 
3540   if (can_invoke_directly) {
3541     if (edi_state == EDI_UNINITIALIZED) {
3542       __ LoadHeapObject(edi, function);
3543     }
3544 
3545     // Change context.
3546     __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
3547 
3548     // Set eax to arguments count if adaption is not needed. Assumes that eax
3549     // is available to write to at this point.
3550     if (dont_adapt_arguments) {
3551       __ mov(eax, arity);
3552     }
3553 
3554     // Invoke function directly.
3555     if (function.is_identical_to(info()->closure())) {
3556       __ CallSelf();
3557     } else {
3558       __ call(FieldOperand(edi, JSFunction::kCodeEntryOffset));
3559     }
3560     RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
3561   } else {
3562     // We need to adapt arguments.
3563     LPointerMap* pointers = instr->pointer_map();
3564     SafepointGenerator generator(
3565         this, pointers, Safepoint::kLazyDeopt);
3566     ParameterCount count(arity);
3567     ParameterCount expected(formal_parameter_count);
3568     __ InvokeFunction(function, expected, count, CALL_FUNCTION, generator);
3569   }
3570 }
3571 
3572 
DoCallWithDescriptor(LCallWithDescriptor * instr)3573 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
3574   ASSERT(ToRegister(instr->result()).is(eax));
3575 
3576   LPointerMap* pointers = instr->pointer_map();
3577   SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3578 
3579   if (instr->target()->IsConstantOperand()) {
3580     LConstantOperand* target = LConstantOperand::cast(instr->target());
3581     Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3582     generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
3583     __ call(code, RelocInfo::CODE_TARGET);
3584   } else {
3585     ASSERT(instr->target()->IsRegister());
3586     Register target = ToRegister(instr->target());
3587     generator.BeforeCall(__ CallSize(Operand(target)));
3588     __ add(target, Immediate(Code::kHeaderSize - kHeapObjectTag));
3589     __ call(target);
3590   }
3591   generator.AfterCall();
3592 }
3593 
3594 
DoCallJSFunction(LCallJSFunction * instr)3595 void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) {
3596   ASSERT(ToRegister(instr->function()).is(edi));
3597   ASSERT(ToRegister(instr->result()).is(eax));
3598 
3599   if (instr->hydrogen()->pass_argument_count()) {
3600     __ mov(eax, instr->arity());
3601   }
3602 
3603   // Change context.
3604   __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
3605 
3606   bool is_self_call = false;
3607   if (instr->hydrogen()->function()->IsConstant()) {
3608     HConstant* fun_const = HConstant::cast(instr->hydrogen()->function());
3609     Handle<JSFunction> jsfun =
3610       Handle<JSFunction>::cast(fun_const->handle(isolate()));
3611     is_self_call = jsfun.is_identical_to(info()->closure());
3612   }
3613 
3614   if (is_self_call) {
3615     __ CallSelf();
3616   } else {
3617     __ call(FieldOperand(edi, JSFunction::kCodeEntryOffset));
3618   }
3619 
3620   RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
3621 }
3622 
3623 
DoDeferredMathAbsTaggedHeapNumber(LMathAbs * instr)3624 void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
3625   Register input_reg = ToRegister(instr->value());
3626   __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
3627          factory()->heap_number_map());
3628   DeoptimizeIf(not_equal, instr->environment());
3629 
3630   Label slow, allocated, done;
3631   Register tmp = input_reg.is(eax) ? ecx : eax;
3632   Register tmp2 = tmp.is(ecx) ? edx : input_reg.is(ecx) ? edx : ecx;
3633 
3634   // Preserve the value of all registers.
3635   PushSafepointRegistersScope scope(this);
3636 
3637   __ mov(tmp, FieldOperand(input_reg, HeapNumber::kExponentOffset));
3638   // Check the sign of the argument. If the argument is positive, just
3639   // return it. We do not need to patch the stack since |input| and
3640   // |result| are the same register and |input| will be restored
3641   // unchanged by popping safepoint registers.
3642   __ test(tmp, Immediate(HeapNumber::kSignMask));
3643   __ j(zero, &done, Label::kNear);
3644 
3645   __ AllocateHeapNumber(tmp, tmp2, no_reg, &slow);
3646   __ jmp(&allocated, Label::kNear);
3647 
3648   // Slow case: Call the runtime system to do the number allocation.
3649   __ bind(&slow);
3650   CallRuntimeFromDeferred(Runtime::kHiddenAllocateHeapNumber, 0,
3651                           instr, instr->context());
3652   // Set the pointer to the new heap number in tmp.
3653   if (!tmp.is(eax)) __ mov(tmp, eax);
3654   // Restore input_reg after call to runtime.
3655   __ LoadFromSafepointRegisterSlot(input_reg, input_reg);
3656 
3657   __ bind(&allocated);
3658   __ mov(tmp2, FieldOperand(input_reg, HeapNumber::kExponentOffset));
3659   __ and_(tmp2, ~HeapNumber::kSignMask);
3660   __ mov(FieldOperand(tmp, HeapNumber::kExponentOffset), tmp2);
3661   __ mov(tmp2, FieldOperand(input_reg, HeapNumber::kMantissaOffset));
3662   __ mov(FieldOperand(tmp, HeapNumber::kMantissaOffset), tmp2);
3663   __ StoreToSafepointRegisterSlot(input_reg, tmp);
3664 
3665   __ bind(&done);
3666 }
3667 
3668 
EmitIntegerMathAbs(LMathAbs * instr)3669 void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) {
3670   Register input_reg = ToRegister(instr->value());
3671   __ test(input_reg, Operand(input_reg));
3672   Label is_positive;
3673   __ j(not_sign, &is_positive, Label::kNear);
3674   __ neg(input_reg);  // Sets flags.
3675   DeoptimizeIf(negative, instr->environment());
3676   __ bind(&is_positive);
3677 }
3678 
3679 
DoMathAbs(LMathAbs * instr)3680 void LCodeGen::DoMathAbs(LMathAbs* instr) {
3681   // Class for deferred case.
3682   class DeferredMathAbsTaggedHeapNumber V8_FINAL : public LDeferredCode {
3683    public:
3684     DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen,
3685                                     LMathAbs* instr,
3686                                     const X87Stack& x87_stack)
3687         : LDeferredCode(codegen, x87_stack), instr_(instr) { }
3688     virtual void Generate() V8_OVERRIDE {
3689       codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
3690     }
3691     virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
3692    private:
3693     LMathAbs* instr_;
3694   };
3695 
3696   ASSERT(instr->value()->Equals(instr->result()));
3697   Representation r = instr->hydrogen()->value()->representation();
3698 
3699   if (r.IsDouble()) {
3700     UNIMPLEMENTED();
3701   } else if (r.IsSmiOrInteger32()) {
3702     EmitIntegerMathAbs(instr);
3703   } else {  // Tagged case.
3704     DeferredMathAbsTaggedHeapNumber* deferred =
3705         new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr, x87_stack_);
3706     Register input_reg = ToRegister(instr->value());
3707     // Smi check.
3708     __ JumpIfNotSmi(input_reg, deferred->entry());
3709     EmitIntegerMathAbs(instr);
3710     __ bind(deferred->exit());
3711   }
3712 }
3713 
3714 
DoMathFloor(LMathFloor * instr)3715 void LCodeGen::DoMathFloor(LMathFloor* instr) {
3716   UNIMPLEMENTED();
3717 }
3718 
3719 
DoMathRound(LMathRound * instr)3720 void LCodeGen::DoMathRound(LMathRound* instr) {
3721   UNIMPLEMENTED();
3722 }
3723 
3724 
DoMathSqrt(LMathSqrt * instr)3725 void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
3726   UNIMPLEMENTED();
3727 }
3728 
3729 
DoMathPowHalf(LMathPowHalf * instr)3730 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
3731   UNIMPLEMENTED();
3732 }
3733 
3734 
DoPower(LPower * instr)3735 void LCodeGen::DoPower(LPower* instr) {
3736   UNIMPLEMENTED();
3737 }
3738 
3739 
DoMathLog(LMathLog * instr)3740 void LCodeGen::DoMathLog(LMathLog* instr) {
3741   UNIMPLEMENTED();
3742 }
3743 
3744 
DoMathClz32(LMathClz32 * instr)3745 void LCodeGen::DoMathClz32(LMathClz32* instr) {
3746   UNIMPLEMENTED();
3747 }
3748 
3749 
DoMathExp(LMathExp * instr)3750 void LCodeGen::DoMathExp(LMathExp* instr) {
3751   UNIMPLEMENTED();
3752 }
3753 
3754 
DoInvokeFunction(LInvokeFunction * instr)3755 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
3756   ASSERT(ToRegister(instr->context()).is(esi));
3757   ASSERT(ToRegister(instr->function()).is(edi));
3758   ASSERT(instr->HasPointerMap());
3759 
3760   Handle<JSFunction> known_function = instr->hydrogen()->known_function();
3761   if (known_function.is_null()) {
3762     LPointerMap* pointers = instr->pointer_map();
3763     SafepointGenerator generator(
3764         this, pointers, Safepoint::kLazyDeopt);
3765     ParameterCount count(instr->arity());
3766     __ InvokeFunction(edi, count, CALL_FUNCTION, generator);
3767   } else {
3768     CallKnownFunction(known_function,
3769                       instr->hydrogen()->formal_parameter_count(),
3770                       instr->arity(),
3771                       instr,
3772                       EDI_CONTAINS_TARGET);
3773   }
3774 }
3775 
3776 
DoCallFunction(LCallFunction * instr)3777 void LCodeGen::DoCallFunction(LCallFunction* instr) {
3778   ASSERT(ToRegister(instr->context()).is(esi));
3779   ASSERT(ToRegister(instr->function()).is(edi));
3780   ASSERT(ToRegister(instr->result()).is(eax));
3781 
3782   int arity = instr->arity();
3783   CallFunctionStub stub(isolate(), arity, instr->hydrogen()->function_flags());
3784   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3785 }
3786 
3787 
DoCallNew(LCallNew * instr)3788 void LCodeGen::DoCallNew(LCallNew* instr) {
3789   ASSERT(ToRegister(instr->context()).is(esi));
3790   ASSERT(ToRegister(instr->constructor()).is(edi));
3791   ASSERT(ToRegister(instr->result()).is(eax));
3792 
3793   // No cell in ebx for construct type feedback in optimized code
3794   __ mov(ebx, isolate()->factory()->undefined_value());
3795   CallConstructStub stub(isolate(), NO_CALL_CONSTRUCTOR_FLAGS);
3796   __ Move(eax, Immediate(instr->arity()));
3797   CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
3798 }
3799 
3800 
DoCallNewArray(LCallNewArray * instr)3801 void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
3802   ASSERT(ToRegister(instr->context()).is(esi));
3803   ASSERT(ToRegister(instr->constructor()).is(edi));
3804   ASSERT(ToRegister(instr->result()).is(eax));
3805 
3806   __ Move(eax, Immediate(instr->arity()));
3807   __ mov(ebx, isolate()->factory()->undefined_value());
3808   ElementsKind kind = instr->hydrogen()->elements_kind();
3809   AllocationSiteOverrideMode override_mode =
3810       (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
3811           ? DISABLE_ALLOCATION_SITES
3812           : DONT_OVERRIDE;
3813 
3814   if (instr->arity() == 0) {
3815     ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
3816     CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
3817   } else if (instr->arity() == 1) {
3818     Label done;
3819     if (IsFastPackedElementsKind(kind)) {
3820       Label packed_case;
3821       // We might need a change here
3822       // look at the first argument
3823       __ mov(ecx, Operand(esp, 0));
3824       __ test(ecx, ecx);
3825       __ j(zero, &packed_case, Label::kNear);
3826 
3827       ElementsKind holey_kind = GetHoleyElementsKind(kind);
3828       ArraySingleArgumentConstructorStub stub(isolate(),
3829                                               holey_kind,
3830                                               override_mode);
3831       CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
3832       __ jmp(&done, Label::kNear);
3833       __ bind(&packed_case);
3834     }
3835 
3836     ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
3837     CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
3838     __ bind(&done);
3839   } else {
3840     ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode);
3841     CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
3842   }
3843 }
3844 
3845 
DoCallRuntime(LCallRuntime * instr)3846 void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
3847   ASSERT(ToRegister(instr->context()).is(esi));
3848   CallRuntime(instr->function(), instr->arity(), instr);
3849 }
3850 
3851 
DoStoreCodeEntry(LStoreCodeEntry * instr)3852 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
3853   Register function = ToRegister(instr->function());
3854   Register code_object = ToRegister(instr->code_object());
3855   __ lea(code_object, FieldOperand(code_object, Code::kHeaderSize));
3856   __ mov(FieldOperand(function, JSFunction::kCodeEntryOffset), code_object);
3857 }
3858 
3859 
DoInnerAllocatedObject(LInnerAllocatedObject * instr)3860 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
3861   Register result = ToRegister(instr->result());
3862   Register base = ToRegister(instr->base_object());
3863   if (instr->offset()->IsConstantOperand()) {
3864     LConstantOperand* offset = LConstantOperand::cast(instr->offset());
3865     __ lea(result, Operand(base, ToInteger32(offset)));
3866   } else {
3867     Register offset = ToRegister(instr->offset());
3868     __ lea(result, Operand(base, offset, times_1, 0));
3869   }
3870 }
3871 
3872 
DoStoreNamedField(LStoreNamedField * instr)3873 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
3874   Representation representation = instr->hydrogen()->field_representation();
3875 
3876   HObjectAccess access = instr->hydrogen()->access();
3877   int offset = access.offset();
3878 
3879   if (access.IsExternalMemory()) {
3880     ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
3881     MemOperand operand = instr->object()->IsConstantOperand()
3882         ? MemOperand::StaticVariable(
3883             ToExternalReference(LConstantOperand::cast(instr->object())))
3884         : MemOperand(ToRegister(instr->object()), offset);
3885     if (instr->value()->IsConstantOperand()) {
3886       LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
3887       __ mov(operand, Immediate(ToInteger32(operand_value)));
3888     } else {
3889       Register value = ToRegister(instr->value());
3890       __ Store(value, operand, representation);
3891     }
3892     return;
3893   }
3894 
3895   Register object = ToRegister(instr->object());
3896   __ AssertNotSmi(object);
3897   ASSERT(!representation.IsSmi() ||
3898          !instr->value()->IsConstantOperand() ||
3899          IsSmi(LConstantOperand::cast(instr->value())));
3900   if (representation.IsDouble()) {
3901     ASSERT(access.IsInobject());
3902     ASSERT(!instr->hydrogen()->has_transition());
3903     ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
3904     X87Register value = ToX87Register(instr->value());
3905     X87Mov(FieldOperand(object, offset), value);
3906     return;
3907   }
3908 
3909   if (instr->hydrogen()->has_transition()) {
3910     Handle<Map> transition = instr->hydrogen()->transition_map();
3911     AddDeprecationDependency(transition);
3912     __ mov(FieldOperand(object, HeapObject::kMapOffset), transition);
3913     if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
3914       Register temp = ToRegister(instr->temp());
3915       Register temp_map = ToRegister(instr->temp_map());
3916       __ mov(temp_map, transition);
3917       __ mov(FieldOperand(object, HeapObject::kMapOffset), temp_map);
3918       // Update the write barrier for the map field.
3919       __ RecordWriteForMap(object, transition, temp_map, temp);
3920     }
3921   }
3922 
3923   // Do the store.
3924   Register write_register = object;
3925   if (!access.IsInobject()) {
3926     write_register = ToRegister(instr->temp());
3927     __ mov(write_register, FieldOperand(object, JSObject::kPropertiesOffset));
3928   }
3929 
3930   MemOperand operand = FieldOperand(write_register, offset);
3931   if (instr->value()->IsConstantOperand()) {
3932     LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
3933     if (operand_value->IsRegister()) {
3934       Register value = ToRegister(operand_value);
3935       __ Store(value, operand, representation);
3936     } else if (representation.IsInteger32()) {
3937       Immediate immediate = ToImmediate(operand_value, representation);
3938       ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
3939       __ mov(operand, immediate);
3940     } else {
3941       Handle<Object> handle_value = ToHandle(operand_value);
3942       ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
3943       __ mov(operand, handle_value);
3944     }
3945   } else {
3946     Register value = ToRegister(instr->value());
3947     __ Store(value, operand, representation);
3948   }
3949 
3950   if (instr->hydrogen()->NeedsWriteBarrier()) {
3951     Register value = ToRegister(instr->value());
3952     Register temp = access.IsInobject() ? ToRegister(instr->temp()) : object;
3953     // Update the write barrier for the object for in-object properties.
3954     __ RecordWriteField(write_register,
3955                         offset,
3956                         value,
3957                         temp,
3958                         EMIT_REMEMBERED_SET,
3959                         instr->hydrogen()->SmiCheckForWriteBarrier(),
3960                         instr->hydrogen()->PointersToHereCheckForValue());
3961   }
3962 }
3963 
3964 
DoStoreNamedGeneric(LStoreNamedGeneric * instr)3965 void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
3966   ASSERT(ToRegister(instr->context()).is(esi));
3967   ASSERT(ToRegister(instr->object()).is(edx));
3968   ASSERT(ToRegister(instr->value()).is(eax));
3969 
3970   __ mov(ecx, instr->name());
3971   Handle<Code> ic = StoreIC::initialize_stub(isolate(), instr->strict_mode());
3972   CallCode(ic, RelocInfo::CODE_TARGET, instr);
3973 }
3974 
3975 
DoBoundsCheck(LBoundsCheck * instr)3976 void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
3977   Condition cc = instr->hydrogen()->allow_equality() ? above : above_equal;
3978   if (instr->index()->IsConstantOperand()) {
3979     __ cmp(ToOperand(instr->length()),
3980            ToImmediate(LConstantOperand::cast(instr->index()),
3981                        instr->hydrogen()->length()->representation()));
3982     cc = CommuteCondition(cc);
3983   } else if (instr->length()->IsConstantOperand()) {
3984     __ cmp(ToOperand(instr->index()),
3985            ToImmediate(LConstantOperand::cast(instr->length()),
3986                        instr->hydrogen()->index()->representation()));
3987   } else {
3988     __ cmp(ToRegister(instr->index()), ToOperand(instr->length()));
3989   }
3990   if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
3991     Label done;
3992     __ j(NegateCondition(cc), &done, Label::kNear);
3993     __ int3();
3994     __ bind(&done);
3995   } else {
3996     DeoptimizeIf(cc, instr->environment());
3997   }
3998 }
3999 
4000 
DoStoreKeyedExternalArray(LStoreKeyed * instr)4001 void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
4002   ElementsKind elements_kind = instr->elements_kind();
4003   LOperand* key = instr->key();
4004   if (!key->IsConstantOperand() &&
4005       ExternalArrayOpRequiresTemp(instr->hydrogen()->key()->representation(),
4006                                   elements_kind)) {
4007     __ SmiUntag(ToRegister(key));
4008   }
4009   Operand operand(BuildFastArrayOperand(
4010       instr->elements(),
4011       key,
4012       instr->hydrogen()->key()->representation(),
4013       elements_kind,
4014       instr->base_offset()));
4015   if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS ||
4016       elements_kind == FLOAT32_ELEMENTS) {
4017     __ fld(0);
4018     __ fstp_s(operand);
4019   } else if (elements_kind == EXTERNAL_FLOAT64_ELEMENTS ||
4020              elements_kind == FLOAT64_ELEMENTS) {
4021     X87Mov(operand, ToX87Register(instr->value()));
4022   } else {
4023     Register value = ToRegister(instr->value());
4024     switch (elements_kind) {
4025       case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
4026       case EXTERNAL_UINT8_ELEMENTS:
4027       case EXTERNAL_INT8_ELEMENTS:
4028       case UINT8_ELEMENTS:
4029       case INT8_ELEMENTS:
4030       case UINT8_CLAMPED_ELEMENTS:
4031         __ mov_b(operand, value);
4032         break;
4033       case EXTERNAL_INT16_ELEMENTS:
4034       case EXTERNAL_UINT16_ELEMENTS:
4035       case UINT16_ELEMENTS:
4036       case INT16_ELEMENTS:
4037         __ mov_w(operand, value);
4038         break;
4039       case EXTERNAL_INT32_ELEMENTS:
4040       case EXTERNAL_UINT32_ELEMENTS:
4041       case UINT32_ELEMENTS:
4042       case INT32_ELEMENTS:
4043         __ mov(operand, value);
4044         break;
4045       case EXTERNAL_FLOAT32_ELEMENTS:
4046       case EXTERNAL_FLOAT64_ELEMENTS:
4047       case FLOAT32_ELEMENTS:
4048       case FLOAT64_ELEMENTS:
4049       case FAST_SMI_ELEMENTS:
4050       case FAST_ELEMENTS:
4051       case FAST_DOUBLE_ELEMENTS:
4052       case FAST_HOLEY_SMI_ELEMENTS:
4053       case FAST_HOLEY_ELEMENTS:
4054       case FAST_HOLEY_DOUBLE_ELEMENTS:
4055       case DICTIONARY_ELEMENTS:
4056       case SLOPPY_ARGUMENTS_ELEMENTS:
4057         UNREACHABLE();
4058         break;
4059     }
4060   }
4061 }
4062 
4063 
DoStoreKeyedFixedDoubleArray(LStoreKeyed * instr)4064 void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
4065   ExternalReference canonical_nan_reference =
4066       ExternalReference::address_of_canonical_non_hole_nan();
4067   Operand double_store_operand = BuildFastArrayOperand(
4068       instr->elements(),
4069       instr->key(),
4070       instr->hydrogen()->key()->representation(),
4071       FAST_DOUBLE_ELEMENTS,
4072       instr->base_offset());
4073 
4074   // Can't use SSE2 in the serializer
4075   if (instr->hydrogen()->IsConstantHoleStore()) {
4076     // This means we should store the (double) hole. No floating point
4077     // registers required.
4078     double nan_double = FixedDoubleArray::hole_nan_as_double();
4079     uint64_t int_val = BitCast<uint64_t, double>(nan_double);
4080     int32_t lower = static_cast<int32_t>(int_val);
4081     int32_t upper = static_cast<int32_t>(int_val >> (kBitsPerInt));
4082 
4083     __ mov(double_store_operand, Immediate(lower));
4084     Operand double_store_operand2 = BuildFastArrayOperand(
4085         instr->elements(),
4086         instr->key(),
4087         instr->hydrogen()->key()->representation(),
4088         FAST_DOUBLE_ELEMENTS,
4089         instr->base_offset() + kPointerSize);
4090     __ mov(double_store_operand2, Immediate(upper));
4091   } else {
4092     Label no_special_nan_handling;
4093     X87Register value = ToX87Register(instr->value());
4094     X87Fxch(value);
4095 
4096     if (instr->NeedsCanonicalization()) {
4097       __ fld(0);
4098       __ fld(0);
4099       __ FCmp();
4100 
4101       __ j(parity_odd, &no_special_nan_handling, Label::kNear);
4102       __ sub(esp, Immediate(kDoubleSize));
4103       __ fst_d(MemOperand(esp, 0));
4104       __ cmp(MemOperand(esp, sizeof(kHoleNanLower32)),
4105              Immediate(kHoleNanUpper32));
4106       __ add(esp, Immediate(kDoubleSize));
4107       Label canonicalize;
4108       __ j(not_equal, &canonicalize, Label::kNear);
4109       __ jmp(&no_special_nan_handling, Label::kNear);
4110       __ bind(&canonicalize);
4111       __ fstp(0);
4112       __ fld_d(Operand::StaticVariable(canonical_nan_reference));
4113     }
4114 
4115     __ bind(&no_special_nan_handling);
4116     __ fst_d(double_store_operand);
4117   }
4118 }
4119 
4120 
DoStoreKeyedFixedArray(LStoreKeyed * instr)4121 void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
4122   Register elements = ToRegister(instr->elements());
4123   Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg;
4124 
4125   Operand operand = BuildFastArrayOperand(
4126       instr->elements(),
4127       instr->key(),
4128       instr->hydrogen()->key()->representation(),
4129       FAST_ELEMENTS,
4130       instr->base_offset());
4131   if (instr->value()->IsRegister()) {
4132     __ mov(operand, ToRegister(instr->value()));
4133   } else {
4134     LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
4135     if (IsSmi(operand_value)) {
4136       Immediate immediate = ToImmediate(operand_value, Representation::Smi());
4137       __ mov(operand, immediate);
4138     } else {
4139       ASSERT(!IsInteger32(operand_value));
4140       Handle<Object> handle_value = ToHandle(operand_value);
4141       __ mov(operand, handle_value);
4142     }
4143   }
4144 
4145   if (instr->hydrogen()->NeedsWriteBarrier()) {
4146     ASSERT(instr->value()->IsRegister());
4147     Register value = ToRegister(instr->value());
4148     ASSERT(!instr->key()->IsConstantOperand());
4149     SmiCheck check_needed =
4150         instr->hydrogen()->value()->type().IsHeapObject()
4151           ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
4152     // Compute address of modified element and store it into key register.
4153     __ lea(key, operand);
4154     __ RecordWrite(elements,
4155                    key,
4156                    value,
4157                    EMIT_REMEMBERED_SET,
4158                    check_needed,
4159                    instr->hydrogen()->PointersToHereCheckForValue());
4160   }
4161 }
4162 
4163 
DoStoreKeyed(LStoreKeyed * instr)4164 void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
4165   // By cases...external, fast-double, fast
4166   if (instr->is_typed_elements()) {
4167     DoStoreKeyedExternalArray(instr);
4168   } else if (instr->hydrogen()->value()->representation().IsDouble()) {
4169     DoStoreKeyedFixedDoubleArray(instr);
4170   } else {
4171     DoStoreKeyedFixedArray(instr);
4172   }
4173 }
4174 
4175 
DoStoreKeyedGeneric(LStoreKeyedGeneric * instr)4176 void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
4177   ASSERT(ToRegister(instr->context()).is(esi));
4178   ASSERT(ToRegister(instr->object()).is(edx));
4179   ASSERT(ToRegister(instr->key()).is(ecx));
4180   ASSERT(ToRegister(instr->value()).is(eax));
4181 
4182   Handle<Code> ic = instr->strict_mode() == STRICT
4183       ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
4184       : isolate()->builtins()->KeyedStoreIC_Initialize();
4185   CallCode(ic, RelocInfo::CODE_TARGET, instr);
4186 }
4187 
4188 
DoTrapAllocationMemento(LTrapAllocationMemento * instr)4189 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
4190   Register object = ToRegister(instr->object());
4191   Register temp = ToRegister(instr->temp());
4192   Label no_memento_found;
4193   __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found);
4194   DeoptimizeIf(equal, instr->environment());
4195   __ bind(&no_memento_found);
4196 }
4197 
4198 
DoTransitionElementsKind(LTransitionElementsKind * instr)4199 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
4200   Register object_reg = ToRegister(instr->object());
4201 
4202   Handle<Map> from_map = instr->original_map();
4203   Handle<Map> to_map = instr->transitioned_map();
4204   ElementsKind from_kind = instr->from_kind();
4205   ElementsKind to_kind = instr->to_kind();
4206 
4207   Label not_applicable;
4208   bool is_simple_map_transition =
4209       IsSimpleMapChangeTransition(from_kind, to_kind);
4210   Label::Distance branch_distance =
4211       is_simple_map_transition ? Label::kNear : Label::kFar;
4212   __ cmp(FieldOperand(object_reg, HeapObject::kMapOffset), from_map);
4213   __ j(not_equal, &not_applicable, branch_distance);
4214   if (is_simple_map_transition) {
4215     Register new_map_reg = ToRegister(instr->new_map_temp());
4216     __ mov(FieldOperand(object_reg, HeapObject::kMapOffset),
4217            Immediate(to_map));
4218     // Write barrier.
4219     ASSERT_NE(instr->temp(), NULL);
4220     __ RecordWriteForMap(object_reg, to_map, new_map_reg,
4221                          ToRegister(instr->temp()));
4222   } else {
4223     ASSERT(ToRegister(instr->context()).is(esi));
4224     ASSERT(object_reg.is(eax));
4225     PushSafepointRegistersScope scope(this);
4226     __ mov(ebx, to_map);
4227     bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE;
4228     TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array);
4229     __ CallStub(&stub);
4230     RecordSafepointWithLazyDeopt(instr,
4231         RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
4232   }
4233   __ bind(&not_applicable);
4234 }
4235 
4236 
DoStringCharCodeAt(LStringCharCodeAt * instr)4237 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
4238   class DeferredStringCharCodeAt V8_FINAL : public LDeferredCode {
4239    public:
4240     DeferredStringCharCodeAt(LCodeGen* codegen,
4241                              LStringCharCodeAt* instr,
4242                              const X87Stack& x87_stack)
4243         : LDeferredCode(codegen, x87_stack), instr_(instr) { }
4244     virtual void Generate() V8_OVERRIDE {
4245       codegen()->DoDeferredStringCharCodeAt(instr_);
4246     }
4247     virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
4248    private:
4249     LStringCharCodeAt* instr_;
4250   };
4251 
4252   DeferredStringCharCodeAt* deferred =
4253       new(zone()) DeferredStringCharCodeAt(this, instr, x87_stack_);
4254 
4255   StringCharLoadGenerator::Generate(masm(),
4256                                     factory(),
4257                                     ToRegister(instr->string()),
4258                                     ToRegister(instr->index()),
4259                                     ToRegister(instr->result()),
4260                                     deferred->entry());
4261   __ bind(deferred->exit());
4262 }
4263 
4264 
DoDeferredStringCharCodeAt(LStringCharCodeAt * instr)4265 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
4266   Register string = ToRegister(instr->string());
4267   Register result = ToRegister(instr->result());
4268 
4269   // TODO(3095996): Get rid of this. For now, we need to make the
4270   // result register contain a valid pointer because it is already
4271   // contained in the register pointer map.
4272   __ Move(result, Immediate(0));
4273 
4274   PushSafepointRegistersScope scope(this);
4275   __ push(string);
4276   // Push the index as a smi. This is safe because of the checks in
4277   // DoStringCharCodeAt above.
4278   STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
4279   if (instr->index()->IsConstantOperand()) {
4280     Immediate immediate = ToImmediate(LConstantOperand::cast(instr->index()),
4281                                       Representation::Smi());
4282     __ push(immediate);
4283   } else {
4284     Register index = ToRegister(instr->index());
4285     __ SmiTag(index);
4286     __ push(index);
4287   }
4288   CallRuntimeFromDeferred(Runtime::kHiddenStringCharCodeAt, 2,
4289                           instr, instr->context());
4290   __ AssertSmi(eax);
4291   __ SmiUntag(eax);
4292   __ StoreToSafepointRegisterSlot(result, eax);
4293 }
4294 
4295 
DoStringCharFromCode(LStringCharFromCode * instr)4296 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
4297   class DeferredStringCharFromCode V8_FINAL : public LDeferredCode {
4298    public:
4299     DeferredStringCharFromCode(LCodeGen* codegen,
4300                                LStringCharFromCode* instr,
4301                                const X87Stack& x87_stack)
4302         : LDeferredCode(codegen, x87_stack), instr_(instr) { }
4303     virtual void Generate() V8_OVERRIDE {
4304       codegen()->DoDeferredStringCharFromCode(instr_);
4305     }
4306     virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
4307    private:
4308     LStringCharFromCode* instr_;
4309   };
4310 
4311   DeferredStringCharFromCode* deferred =
4312       new(zone()) DeferredStringCharFromCode(this, instr, x87_stack_);
4313 
4314   ASSERT(instr->hydrogen()->value()->representation().IsInteger32());
4315   Register char_code = ToRegister(instr->char_code());
4316   Register result = ToRegister(instr->result());
4317   ASSERT(!char_code.is(result));
4318 
4319   __ cmp(char_code, String::kMaxOneByteCharCode);
4320   __ j(above, deferred->entry());
4321   __ Move(result, Immediate(factory()->single_character_string_cache()));
4322   __ mov(result, FieldOperand(result,
4323                               char_code, times_pointer_size,
4324                               FixedArray::kHeaderSize));
4325   __ cmp(result, factory()->undefined_value());
4326   __ j(equal, deferred->entry());
4327   __ bind(deferred->exit());
4328 }
4329 
4330 
DoDeferredStringCharFromCode(LStringCharFromCode * instr)4331 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
4332   Register char_code = ToRegister(instr->char_code());
4333   Register result = ToRegister(instr->result());
4334 
4335   // TODO(3095996): Get rid of this. For now, we need to make the
4336   // result register contain a valid pointer because it is already
4337   // contained in the register pointer map.
4338   __ Move(result, Immediate(0));
4339 
4340   PushSafepointRegistersScope scope(this);
4341   __ SmiTag(char_code);
4342   __ push(char_code);
4343   CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr, instr->context());
4344   __ StoreToSafepointRegisterSlot(result, eax);
4345 }
4346 
4347 
DoStringAdd(LStringAdd * instr)4348 void LCodeGen::DoStringAdd(LStringAdd* instr) {
4349   ASSERT(ToRegister(instr->context()).is(esi));
4350   ASSERT(ToRegister(instr->left()).is(edx));
4351   ASSERT(ToRegister(instr->right()).is(eax));
4352   StringAddStub stub(isolate(),
4353                      instr->hydrogen()->flags(),
4354                      instr->hydrogen()->pretenure_flag());
4355   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4356 }
4357 
4358 
DoInteger32ToDouble(LInteger32ToDouble * instr)4359 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
4360   LOperand* input = instr->value();
4361   LOperand* output = instr->result();
4362   ASSERT(input->IsRegister() || input->IsStackSlot());
4363   ASSERT(output->IsDoubleRegister());
4364   if (input->IsRegister()) {
4365     Register input_reg = ToRegister(input);
4366     __ push(input_reg);
4367     X87Mov(ToX87Register(output), Operand(esp, 0), kX87IntOperand);
4368     __ pop(input_reg);
4369   } else {
4370     X87Mov(ToX87Register(output), ToOperand(input), kX87IntOperand);
4371   }
4372 }
4373 
4374 
DoUint32ToDouble(LUint32ToDouble * instr)4375 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
4376   LOperand* input = instr->value();
4377   LOperand* output = instr->result();
4378   X87Register res = ToX87Register(output);
4379   X87PrepareToWrite(res);
4380   __ LoadUint32NoSSE2(ToRegister(input));
4381   X87CommitWrite(res);
4382 }
4383 
4384 
DoNumberTagI(LNumberTagI * instr)4385 void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
4386   class DeferredNumberTagI V8_FINAL : public LDeferredCode {
4387    public:
4388     DeferredNumberTagI(LCodeGen* codegen,
4389                        LNumberTagI* instr,
4390                        const X87Stack& x87_stack)
4391         : LDeferredCode(codegen, x87_stack), instr_(instr) { }
4392     virtual void Generate() V8_OVERRIDE {
4393       codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp(),
4394                                        SIGNED_INT32);
4395     }
4396     virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
4397    private:
4398     LNumberTagI* instr_;
4399   };
4400 
4401   LOperand* input = instr->value();
4402   ASSERT(input->IsRegister() && input->Equals(instr->result()));
4403   Register reg = ToRegister(input);
4404 
4405   DeferredNumberTagI* deferred =
4406       new(zone()) DeferredNumberTagI(this, instr, x87_stack_);
4407   __ SmiTag(reg);
4408   __ j(overflow, deferred->entry());
4409   __ bind(deferred->exit());
4410 }
4411 
4412 
DoNumberTagU(LNumberTagU * instr)4413 void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
4414   class DeferredNumberTagU V8_FINAL : public LDeferredCode {
4415    public:
4416     DeferredNumberTagU(LCodeGen* codegen,
4417                        LNumberTagU* instr,
4418                        const X87Stack& x87_stack)
4419         : LDeferredCode(codegen, x87_stack), instr_(instr) { }
4420     virtual void Generate() V8_OVERRIDE {
4421       codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp(),
4422                                        UNSIGNED_INT32);
4423     }
4424     virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
4425    private:
4426     LNumberTagU* instr_;
4427   };
4428 
4429   LOperand* input = instr->value();
4430   ASSERT(input->IsRegister() && input->Equals(instr->result()));
4431   Register reg = ToRegister(input);
4432 
4433   DeferredNumberTagU* deferred =
4434       new(zone()) DeferredNumberTagU(this, instr, x87_stack_);
4435   __ cmp(reg, Immediate(Smi::kMaxValue));
4436   __ j(above, deferred->entry());
4437   __ SmiTag(reg);
4438   __ bind(deferred->exit());
4439 }
4440 
4441 
DoDeferredNumberTagIU(LInstruction * instr,LOperand * value,LOperand * temp,IntegerSignedness signedness)4442 void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr,
4443                                      LOperand* value,
4444                                      LOperand* temp,
4445                                      IntegerSignedness signedness) {
4446   Label done, slow;
4447   Register reg = ToRegister(value);
4448   Register tmp = ToRegister(temp);
4449 
4450   if (signedness == SIGNED_INT32) {
4451     // There was overflow, so bits 30 and 31 of the original integer
4452     // disagree. Try to allocate a heap number in new space and store
4453     // the value in there. If that fails, call the runtime system.
4454     __ SmiUntag(reg);
4455     __ xor_(reg, 0x80000000);
4456     __ push(reg);
4457     __ fild_s(Operand(esp, 0));
4458     __ pop(reg);
4459   } else {
4460     // There's no fild variant for unsigned values, so zero-extend to a 64-bit
4461     // int manually.
4462     __ push(Immediate(0));
4463     __ push(reg);
4464     __ fild_d(Operand(esp, 0));
4465     __ pop(reg);
4466     __ pop(reg);
4467   }
4468 
4469   if (FLAG_inline_new) {
4470     __ AllocateHeapNumber(reg, tmp, no_reg, &slow);
4471     __ jmp(&done, Label::kNear);
4472   }
4473 
4474   // Slow case: Call the runtime system to do the number allocation.
4475   __ bind(&slow);
4476   {
4477     // TODO(3095996): Put a valid pointer value in the stack slot where the
4478     // result register is stored, as this register is in the pointer map, but
4479     // contains an integer value.
4480     __ Move(reg, Immediate(0));
4481 
4482     // Preserve the value of all registers.
4483     PushSafepointRegistersScope scope(this);
4484 
4485     // NumberTagI and NumberTagD use the context from the frame, rather than
4486     // the environment's HContext or HInlinedContext value.
4487     // They only call Runtime::kHiddenAllocateHeapNumber.
4488     // The corresponding HChange instructions are added in a phase that does
4489     // not have easy access to the local context.
4490     __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
4491     __ CallRuntime(Runtime::kHiddenAllocateHeapNumber);
4492     RecordSafepointWithRegisters(
4493         instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4494     __ StoreToSafepointRegisterSlot(reg, eax);
4495   }
4496 
4497   __ bind(&done);
4498   __ fstp_d(FieldOperand(reg, HeapNumber::kValueOffset));
4499 }
4500 
4501 
DoNumberTagD(LNumberTagD * instr)4502 void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
4503   class DeferredNumberTagD V8_FINAL : public LDeferredCode {
4504    public:
4505     DeferredNumberTagD(LCodeGen* codegen,
4506                        LNumberTagD* instr,
4507                        const X87Stack& x87_stack)
4508         : LDeferredCode(codegen, x87_stack), instr_(instr) { }
4509     virtual void Generate() V8_OVERRIDE {
4510       codegen()->DoDeferredNumberTagD(instr_);
4511     }
4512     virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
4513    private:
4514     LNumberTagD* instr_;
4515   };
4516 
4517   Register reg = ToRegister(instr->result());
4518 
4519   // Put the value to the top of stack
4520   X87Register src = ToX87Register(instr->value());
4521   X87LoadForUsage(src);
4522 
4523   DeferredNumberTagD* deferred =
4524       new(zone()) DeferredNumberTagD(this, instr, x87_stack_);
4525   if (FLAG_inline_new) {
4526     Register tmp = ToRegister(instr->temp());
4527     __ AllocateHeapNumber(reg, tmp, no_reg, deferred->entry());
4528   } else {
4529     __ jmp(deferred->entry());
4530   }
4531   __ bind(deferred->exit());
4532   __ fstp_d(FieldOperand(reg, HeapNumber::kValueOffset));
4533 }
4534 
4535 
DoDeferredNumberTagD(LNumberTagD * instr)4536 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
4537   // TODO(3095996): Get rid of this. For now, we need to make the
4538   // result register contain a valid pointer because it is already
4539   // contained in the register pointer map.
4540   Register reg = ToRegister(instr->result());
4541   __ Move(reg, Immediate(0));
4542 
4543   PushSafepointRegistersScope scope(this);
4544   // NumberTagI and NumberTagD use the context from the frame, rather than
4545   // the environment's HContext or HInlinedContext value.
4546   // They only call Runtime::kHiddenAllocateHeapNumber.
4547   // The corresponding HChange instructions are added in a phase that does
4548   // not have easy access to the local context.
4549   __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
4550   __ CallRuntime(Runtime::kHiddenAllocateHeapNumber);
4551   RecordSafepointWithRegisters(
4552       instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4553   __ StoreToSafepointRegisterSlot(reg, eax);
4554 }
4555 
4556 
DoSmiTag(LSmiTag * instr)4557 void LCodeGen::DoSmiTag(LSmiTag* instr) {
4558   HChange* hchange = instr->hydrogen();
4559   Register input = ToRegister(instr->value());
4560   if (hchange->CheckFlag(HValue::kCanOverflow) &&
4561       hchange->value()->CheckFlag(HValue::kUint32)) {
4562     __ test(input, Immediate(0xc0000000));
4563     DeoptimizeIf(not_zero, instr->environment());
4564   }
4565   __ SmiTag(input);
4566   if (hchange->CheckFlag(HValue::kCanOverflow) &&
4567       !hchange->value()->CheckFlag(HValue::kUint32)) {
4568     DeoptimizeIf(overflow, instr->environment());
4569   }
4570 }
4571 
4572 
DoSmiUntag(LSmiUntag * instr)4573 void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
4574   LOperand* input = instr->value();
4575   Register result = ToRegister(input);
4576   ASSERT(input->IsRegister() && input->Equals(instr->result()));
4577   if (instr->needs_check()) {
4578     __ test(result, Immediate(kSmiTagMask));
4579     DeoptimizeIf(not_zero, instr->environment());
4580   } else {
4581     __ AssertSmi(result);
4582   }
4583   __ SmiUntag(result);
4584 }
4585 
4586 
EmitNumberUntagDNoSSE2(Register input_reg,Register temp_reg,X87Register res_reg,bool can_convert_undefined_to_nan,bool deoptimize_on_minus_zero,LEnvironment * env,NumberUntagDMode mode)4587 void LCodeGen::EmitNumberUntagDNoSSE2(Register input_reg,
4588                                       Register temp_reg,
4589                                       X87Register res_reg,
4590                                       bool can_convert_undefined_to_nan,
4591                                       bool deoptimize_on_minus_zero,
4592                                       LEnvironment* env,
4593                                       NumberUntagDMode mode) {
4594   Label load_smi, done;
4595 
4596   X87PrepareToWrite(res_reg);
4597   if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
4598     // Smi check.
4599     __ JumpIfSmi(input_reg, &load_smi, Label::kNear);
4600 
4601     // Heap number map check.
4602     __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
4603            factory()->heap_number_map());
4604     if (!can_convert_undefined_to_nan) {
4605       DeoptimizeIf(not_equal, env);
4606     } else {
4607       Label heap_number, convert;
4608       __ j(equal, &heap_number, Label::kNear);
4609 
4610       // Convert undefined (or hole) to NaN.
4611       __ cmp(input_reg, factory()->undefined_value());
4612       DeoptimizeIf(not_equal, env);
4613 
4614       __ bind(&convert);
4615       ExternalReference nan =
4616           ExternalReference::address_of_canonical_non_hole_nan();
4617       __ fld_d(Operand::StaticVariable(nan));
4618       __ jmp(&done, Label::kNear);
4619 
4620       __ bind(&heap_number);
4621     }
4622     // Heap number to x87 conversion.
4623     __ fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset));
4624     if (deoptimize_on_minus_zero) {
4625       __ fldz();
4626       __ FCmp();
4627       __ fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset));
4628       __ j(not_zero, &done, Label::kNear);
4629 
4630       // Use general purpose registers to check if we have -0.0
4631       __ mov(temp_reg, FieldOperand(input_reg, HeapNumber::kExponentOffset));
4632       __ test(temp_reg, Immediate(HeapNumber::kSignMask));
4633       __ j(zero, &done, Label::kNear);
4634 
4635       // Pop FPU stack before deoptimizing.
4636       __ fstp(0);
4637       DeoptimizeIf(not_zero, env);
4638     }
4639     __ jmp(&done, Label::kNear);
4640   } else {
4641     ASSERT(mode == NUMBER_CANDIDATE_IS_SMI);
4642   }
4643 
4644   __ bind(&load_smi);
4645   // Clobbering a temp is faster than re-tagging the
4646   // input register since we avoid dependencies.
4647   __ mov(temp_reg, input_reg);
4648   __ SmiUntag(temp_reg);  // Untag smi before converting to float.
4649   __ push(temp_reg);
4650   __ fild_s(Operand(esp, 0));
4651   __ add(esp, Immediate(kPointerSize));
4652   __ bind(&done);
4653   X87CommitWrite(res_reg);
4654 }
4655 
4656 
DoDeferredTaggedToI(LTaggedToI * instr,Label * done)4657 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr, Label* done) {
4658   Register input_reg = ToRegister(instr->value());
4659 
4660   // The input was optimistically untagged; revert it.
4661   STATIC_ASSERT(kSmiTagSize == 1);
4662   __ lea(input_reg, Operand(input_reg, times_2, kHeapObjectTag));
4663 
4664   if (instr->truncating()) {
4665     Label no_heap_number, check_bools, check_false;
4666 
4667     // Heap number map check.
4668     __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
4669            factory()->heap_number_map());
4670     __ j(not_equal, &no_heap_number, Label::kNear);
4671     __ TruncateHeapNumberToI(input_reg, input_reg);
4672     __ jmp(done);
4673 
4674     __ bind(&no_heap_number);
4675     // Check for Oddballs. Undefined/False is converted to zero and True to one
4676     // for truncating conversions.
4677     __ cmp(input_reg, factory()->undefined_value());
4678     __ j(not_equal, &check_bools, Label::kNear);
4679     __ Move(input_reg, Immediate(0));
4680     __ jmp(done);
4681 
4682     __ bind(&check_bools);
4683     __ cmp(input_reg, factory()->true_value());
4684     __ j(not_equal, &check_false, Label::kNear);
4685     __ Move(input_reg, Immediate(1));
4686     __ jmp(done);
4687 
4688     __ bind(&check_false);
4689     __ cmp(input_reg, factory()->false_value());
4690     __ RecordComment("Deferred TaggedToI: cannot truncate");
4691     DeoptimizeIf(not_equal, instr->environment());
4692     __ Move(input_reg, Immediate(0));
4693   } else {
4694     Label bailout;
4695     __ TaggedToI(input_reg, input_reg,
4696                  instr->hydrogen()->GetMinusZeroMode(), &bailout);
4697     __ jmp(done);
4698     __ bind(&bailout);
4699     DeoptimizeIf(no_condition, instr->environment());
4700   }
4701 }
4702 
4703 
DoTaggedToI(LTaggedToI * instr)4704 void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
4705   class DeferredTaggedToI V8_FINAL : public LDeferredCode {
4706    public:
4707     DeferredTaggedToI(LCodeGen* codegen,
4708                       LTaggedToI* instr,
4709                       const X87Stack& x87_stack)
4710         : LDeferredCode(codegen, x87_stack), instr_(instr) { }
4711     virtual void Generate() V8_OVERRIDE {
4712       codegen()->DoDeferredTaggedToI(instr_, done());
4713     }
4714     virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
4715    private:
4716     LTaggedToI* instr_;
4717   };
4718 
4719   LOperand* input = instr->value();
4720   ASSERT(input->IsRegister());
4721   Register input_reg = ToRegister(input);
4722   ASSERT(input_reg.is(ToRegister(instr->result())));
4723 
4724   if (instr->hydrogen()->value()->representation().IsSmi()) {
4725     __ SmiUntag(input_reg);
4726   } else {
4727     DeferredTaggedToI* deferred =
4728         new(zone()) DeferredTaggedToI(this, instr, x87_stack_);
4729     // Optimistically untag the input.
4730     // If the input is a HeapObject, SmiUntag will set the carry flag.
4731     STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
4732     __ SmiUntag(input_reg);
4733     // Branch to deferred code if the input was tagged.
4734     // The deferred code will take care of restoring the tag.
4735     __ j(carry, deferred->entry());
4736     __ bind(deferred->exit());
4737   }
4738 }
4739 
4740 
DoNumberUntagD(LNumberUntagD * instr)4741 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
4742   LOperand* input = instr->value();
4743   ASSERT(input->IsRegister());
4744   LOperand* temp = instr->temp();
4745   ASSERT(temp->IsRegister());
4746   LOperand* result = instr->result();
4747   ASSERT(result->IsDoubleRegister());
4748 
4749   Register input_reg = ToRegister(input);
4750   bool deoptimize_on_minus_zero =
4751       instr->hydrogen()->deoptimize_on_minus_zero();
4752   Register temp_reg = ToRegister(temp);
4753 
4754   HValue* value = instr->hydrogen()->value();
4755   NumberUntagDMode mode = value->representation().IsSmi()
4756       ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
4757 
4758   EmitNumberUntagDNoSSE2(input_reg,
4759                          temp_reg,
4760                          ToX87Register(result),
4761                          instr->hydrogen()->can_convert_undefined_to_nan(),
4762                          deoptimize_on_minus_zero,
4763                          instr->environment(),
4764                          mode);
4765 }
4766 
4767 
DoDoubleToI(LDoubleToI * instr)4768 void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
4769   LOperand* input = instr->value();
4770   ASSERT(input->IsDoubleRegister());
4771   LOperand* result = instr->result();
4772   ASSERT(result->IsRegister());
4773   Register result_reg = ToRegister(result);
4774 
4775   if (instr->truncating()) {
4776     X87Register input_reg = ToX87Register(input);
4777     X87Fxch(input_reg);
4778     __ TruncateX87TOSToI(result_reg);
4779   } else {
4780     Label bailout, done;
4781     X87Register input_reg = ToX87Register(input);
4782     X87Fxch(input_reg);
4783     __ X87TOSToI(result_reg, instr->hydrogen()->GetMinusZeroMode(),
4784                  &bailout, Label::kNear);
4785     __ jmp(&done, Label::kNear);
4786     __ bind(&bailout);
4787     DeoptimizeIf(no_condition, instr->environment());
4788     __ bind(&done);
4789   }
4790 }
4791 
4792 
DoDoubleToSmi(LDoubleToSmi * instr)4793 void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
4794   LOperand* input = instr->value();
4795   ASSERT(input->IsDoubleRegister());
4796   LOperand* result = instr->result();
4797   ASSERT(result->IsRegister());
4798   Register result_reg = ToRegister(result);
4799 
4800   Label bailout, done;
4801   X87Register input_reg = ToX87Register(input);
4802   X87Fxch(input_reg);
4803   __ X87TOSToI(result_reg, instr->hydrogen()->GetMinusZeroMode(),
4804       &bailout, Label::kNear);
4805   __ jmp(&done, Label::kNear);
4806   __ bind(&bailout);
4807   DeoptimizeIf(no_condition, instr->environment());
4808   __ bind(&done);
4809 
4810   __ SmiTag(result_reg);
4811   DeoptimizeIf(overflow, instr->environment());
4812 }
4813 
4814 
DoCheckSmi(LCheckSmi * instr)4815 void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
4816   LOperand* input = instr->value();
4817   __ test(ToOperand(input), Immediate(kSmiTagMask));
4818   DeoptimizeIf(not_zero, instr->environment());
4819 }
4820 
4821 
DoCheckNonSmi(LCheckNonSmi * instr)4822 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
4823   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
4824     LOperand* input = instr->value();
4825     __ test(ToOperand(input), Immediate(kSmiTagMask));
4826     DeoptimizeIf(zero, instr->environment());
4827   }
4828 }
4829 
4830 
DoCheckInstanceType(LCheckInstanceType * instr)4831 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
4832   Register input = ToRegister(instr->value());
4833   Register temp = ToRegister(instr->temp());
4834 
4835   __ mov(temp, FieldOperand(input, HeapObject::kMapOffset));
4836 
4837   if (instr->hydrogen()->is_interval_check()) {
4838     InstanceType first;
4839     InstanceType last;
4840     instr->hydrogen()->GetCheckInterval(&first, &last);
4841 
4842     __ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset),
4843             static_cast<int8_t>(first));
4844 
4845     // If there is only one type in the interval check for equality.
4846     if (first == last) {
4847       DeoptimizeIf(not_equal, instr->environment());
4848     } else {
4849       DeoptimizeIf(below, instr->environment());
4850       // Omit check for the last type.
4851       if (last != LAST_TYPE) {
4852         __ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset),
4853                 static_cast<int8_t>(last));
4854         DeoptimizeIf(above, instr->environment());
4855       }
4856     }
4857   } else {
4858     uint8_t mask;
4859     uint8_t tag;
4860     instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
4861 
4862     if (IsPowerOf2(mask)) {
4863       ASSERT(tag == 0 || IsPowerOf2(tag));
4864       __ test_b(FieldOperand(temp, Map::kInstanceTypeOffset), mask);
4865       DeoptimizeIf(tag == 0 ? not_zero : zero, instr->environment());
4866     } else {
4867       __ movzx_b(temp, FieldOperand(temp, Map::kInstanceTypeOffset));
4868       __ and_(temp, mask);
4869       __ cmp(temp, tag);
4870       DeoptimizeIf(not_equal, instr->environment());
4871     }
4872   }
4873 }
4874 
4875 
DoCheckValue(LCheckValue * instr)4876 void LCodeGen::DoCheckValue(LCheckValue* instr) {
4877   Handle<HeapObject> object = instr->hydrogen()->object().handle();
4878   if (instr->hydrogen()->object_in_new_space()) {
4879     Register reg = ToRegister(instr->value());
4880     Handle<Cell> cell = isolate()->factory()->NewCell(object);
4881     __ cmp(reg, Operand::ForCell(cell));
4882   } else {
4883     Operand operand = ToOperand(instr->value());
4884     __ cmp(operand, object);
4885   }
4886   DeoptimizeIf(not_equal, instr->environment());
4887 }
4888 
4889 
DoDeferredInstanceMigration(LCheckMaps * instr,Register object)4890 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
4891   {
4892     PushSafepointRegistersScope scope(this);
4893     __ push(object);
4894     __ xor_(esi, esi);
4895     __ CallRuntime(Runtime::kTryMigrateInstance);
4896     RecordSafepointWithRegisters(
4897         instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
4898 
4899     __ test(eax, Immediate(kSmiTagMask));
4900   }
4901   DeoptimizeIf(zero, instr->environment());
4902 }
4903 
4904 
DoCheckMaps(LCheckMaps * instr)4905 void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
4906   class DeferredCheckMaps V8_FINAL : public LDeferredCode {
4907    public:
4908     DeferredCheckMaps(LCodeGen* codegen,
4909                       LCheckMaps* instr,
4910                       Register object,
4911                       const X87Stack& x87_stack)
4912         : LDeferredCode(codegen, x87_stack), instr_(instr), object_(object) {
4913       SetExit(check_maps());
4914     }
4915     virtual void Generate() V8_OVERRIDE {
4916       codegen()->DoDeferredInstanceMigration(instr_, object_);
4917     }
4918     Label* check_maps() { return &check_maps_; }
4919     virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
4920    private:
4921     LCheckMaps* instr_;
4922     Label check_maps_;
4923     Register object_;
4924   };
4925 
4926   if (instr->hydrogen()->IsStabilityCheck()) {
4927     const UniqueSet<Map>* maps = instr->hydrogen()->maps();
4928     for (int i = 0; i < maps->size(); ++i) {
4929       AddStabilityDependency(maps->at(i).handle());
4930     }
4931     return;
4932   }
4933 
4934   LOperand* input = instr->value();
4935   ASSERT(input->IsRegister());
4936   Register reg = ToRegister(input);
4937 
4938   DeferredCheckMaps* deferred = NULL;
4939   if (instr->hydrogen()->HasMigrationTarget()) {
4940     deferred = new(zone()) DeferredCheckMaps(this, instr, reg, x87_stack_);
4941     __ bind(deferred->check_maps());
4942   }
4943 
4944   const UniqueSet<Map>* maps = instr->hydrogen()->maps();
4945   Label success;
4946   for (int i = 0; i < maps->size() - 1; i++) {
4947     Handle<Map> map = maps->at(i).handle();
4948     __ CompareMap(reg, map);
4949     __ j(equal, &success, Label::kNear);
4950   }
4951 
4952   Handle<Map> map = maps->at(maps->size() - 1).handle();
4953   __ CompareMap(reg, map);
4954   if (instr->hydrogen()->HasMigrationTarget()) {
4955     __ j(not_equal, deferred->entry());
4956   } else {
4957     DeoptimizeIf(not_equal, instr->environment());
4958   }
4959 
4960   __ bind(&success);
4961 }
4962 
4963 
DoClampDToUint8(LClampDToUint8 * instr)4964 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
4965   UNREACHABLE();
4966 }
4967 
4968 
DoClampIToUint8(LClampIToUint8 * instr)4969 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
4970   ASSERT(instr->unclamped()->Equals(instr->result()));
4971   Register value_reg = ToRegister(instr->result());
4972   __ ClampUint8(value_reg);
4973 }
4974 
4975 
DoClampTToUint8NoSSE2(LClampTToUint8NoSSE2 * instr)4976 void LCodeGen::DoClampTToUint8NoSSE2(LClampTToUint8NoSSE2* instr) {
4977   Register input_reg = ToRegister(instr->unclamped());
4978   Register result_reg = ToRegister(instr->result());
4979   Register scratch = ToRegister(instr->scratch());
4980   Register scratch2 = ToRegister(instr->scratch2());
4981   Register scratch3 = ToRegister(instr->scratch3());
4982   Label is_smi, done, heap_number, valid_exponent,
4983       largest_value, zero_result, maybe_nan_or_infinity;
4984 
4985   __ JumpIfSmi(input_reg, &is_smi);
4986 
4987   // Check for heap number
4988   __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
4989          factory()->heap_number_map());
4990   __ j(equal, &heap_number, Label::kNear);
4991 
4992   // Check for undefined. Undefined is converted to zero for clamping
4993   // conversions.
4994   __ cmp(input_reg, factory()->undefined_value());
4995   DeoptimizeIf(not_equal, instr->environment());
4996   __ jmp(&zero_result, Label::kNear);
4997 
4998   // Heap number
4999   __ bind(&heap_number);
5000 
5001   // Surprisingly, all of the hand-crafted bit-manipulations below are much
5002   // faster than the x86 FPU built-in instruction, especially since "banker's
5003   // rounding" would be additionally very expensive
5004 
5005   // Get exponent word.
5006   __ mov(scratch, FieldOperand(input_reg, HeapNumber::kExponentOffset));
5007   __ mov(scratch3, FieldOperand(input_reg, HeapNumber::kMantissaOffset));
5008 
5009   // Test for negative values --> clamp to zero
5010   __ test(scratch, scratch);
5011   __ j(negative, &zero_result, Label::kNear);
5012 
5013   // Get exponent alone in scratch2.
5014   __ mov(scratch2, scratch);
5015   __ and_(scratch2, HeapNumber::kExponentMask);
5016   __ shr(scratch2, HeapNumber::kExponentShift);
5017   __ j(zero, &zero_result, Label::kNear);
5018   __ sub(scratch2, Immediate(HeapNumber::kExponentBias - 1));
5019   __ j(negative, &zero_result, Label::kNear);
5020 
5021   const uint32_t non_int8_exponent = 7;
5022   __ cmp(scratch2, Immediate(non_int8_exponent + 1));
5023   // If the exponent is too big, check for special values.
5024   __ j(greater, &maybe_nan_or_infinity, Label::kNear);
5025 
5026   __ bind(&valid_exponent);
5027   // Exponent word in scratch, exponent in scratch2. We know that 0 <= exponent
5028   // < 7. The shift bias is the number of bits to shift the mantissa such that
5029   // with an exponent of 7 such the that top-most one is in bit 30, allowing
5030   // detection the rounding overflow of a 255.5 to 256 (bit 31 goes from 0 to
5031   // 1).
5032   int shift_bias = (30 - HeapNumber::kExponentShift) - 7 - 1;
5033   __ lea(result_reg, MemOperand(scratch2, shift_bias));
5034   // Here result_reg (ecx) is the shift, scratch is the exponent word.  Get the
5035   // top bits of the mantissa.
5036   __ and_(scratch, HeapNumber::kMantissaMask);
5037   // Put back the implicit 1 of the mantissa
5038   __ or_(scratch, 1 << HeapNumber::kExponentShift);
5039   // Shift up to round
5040   __ shl_cl(scratch);
5041   // Use "banker's rounding" to spec: If fractional part of number is 0.5, then
5042   // use the bit in the "ones" place and add it to the "halves" place, which has
5043   // the effect of rounding to even.
5044   __ mov(scratch2, scratch);
5045   const uint32_t one_half_bit_shift = 30 - sizeof(uint8_t) * 8;
5046   const uint32_t one_bit_shift = one_half_bit_shift + 1;
5047   __ and_(scratch2, Immediate((1 << one_bit_shift) - 1));
5048   __ cmp(scratch2, Immediate(1 << one_half_bit_shift));
5049   Label no_round;
5050   __ j(less, &no_round, Label::kNear);
5051   Label round_up;
5052   __ mov(scratch2, Immediate(1 << one_half_bit_shift));
5053   __ j(greater, &round_up, Label::kNear);
5054   __ test(scratch3, scratch3);
5055   __ j(not_zero, &round_up, Label::kNear);
5056   __ mov(scratch2, scratch);
5057   __ and_(scratch2, Immediate(1 << one_bit_shift));
5058   __ shr(scratch2, 1);
5059   __ bind(&round_up);
5060   __ add(scratch, scratch2);
5061   __ j(overflow, &largest_value, Label::kNear);
5062   __ bind(&no_round);
5063   __ shr(scratch, 23);
5064   __ mov(result_reg, scratch);
5065   __ jmp(&done, Label::kNear);
5066 
5067   __ bind(&maybe_nan_or_infinity);
5068   // Check for NaN/Infinity, all other values map to 255
5069   __ cmp(scratch2, Immediate(HeapNumber::kInfinityOrNanExponent + 1));
5070   __ j(not_equal, &largest_value, Label::kNear);
5071 
5072   // Check for NaN, which differs from Infinity in that at least one mantissa
5073   // bit is set.
5074   __ and_(scratch, HeapNumber::kMantissaMask);
5075   __ or_(scratch, FieldOperand(input_reg, HeapNumber::kMantissaOffset));
5076   __ j(not_zero, &zero_result, Label::kNear);  // M!=0 --> NaN
5077   // Infinity -> Fall through to map to 255.
5078 
5079   __ bind(&largest_value);
5080   __ mov(result_reg, Immediate(255));
5081   __ jmp(&done, Label::kNear);
5082 
5083   __ bind(&zero_result);
5084   __ xor_(result_reg, result_reg);
5085   __ jmp(&done, Label::kNear);
5086 
5087   // smi
5088   __ bind(&is_smi);
5089   if (!input_reg.is(result_reg)) {
5090     __ mov(result_reg, input_reg);
5091   }
5092   __ SmiUntag(result_reg);
5093   __ ClampUint8(result_reg);
5094   __ bind(&done);
5095 }
5096 
5097 
DoDoubleBits(LDoubleBits * instr)5098 void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
5099   UNREACHABLE();
5100 }
5101 
5102 
DoConstructDouble(LConstructDouble * instr)5103 void LCodeGen::DoConstructDouble(LConstructDouble* instr) {
5104   UNREACHABLE();
5105 }
5106 
5107 
DoAllocate(LAllocate * instr)5108 void LCodeGen::DoAllocate(LAllocate* instr) {
5109   class DeferredAllocate V8_FINAL : public LDeferredCode {
5110    public:
5111     DeferredAllocate(LCodeGen* codegen,
5112                      LAllocate* instr,
5113                      const X87Stack& x87_stack)
5114         : LDeferredCode(codegen, x87_stack), instr_(instr) { }
5115     virtual void Generate() V8_OVERRIDE {
5116       codegen()->DoDeferredAllocate(instr_);
5117     }
5118     virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
5119    private:
5120     LAllocate* instr_;
5121   };
5122 
5123   DeferredAllocate* deferred =
5124       new(zone()) DeferredAllocate(this, instr, x87_stack_);
5125 
5126   Register result = ToRegister(instr->result());
5127   Register temp = ToRegister(instr->temp());
5128 
5129   // Allocate memory for the object.
5130   AllocationFlags flags = TAG_OBJECT;
5131   if (instr->hydrogen()->MustAllocateDoubleAligned()) {
5132     flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
5133   }
5134   if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
5135     ASSERT(!instr->hydrogen()->IsOldDataSpaceAllocation());
5136     ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
5137     flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_POINTER_SPACE);
5138   } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
5139     ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
5140     flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_DATA_SPACE);
5141   }
5142 
5143   if (instr->size()->IsConstantOperand()) {
5144     int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5145     if (size <= Page::kMaxRegularHeapObjectSize) {
5146       __ Allocate(size, result, temp, no_reg, deferred->entry(), flags);
5147     } else {
5148       __ jmp(deferred->entry());
5149     }
5150   } else {
5151     Register size = ToRegister(instr->size());
5152     __ Allocate(size, result, temp, no_reg, deferred->entry(), flags);
5153   }
5154 
5155   __ bind(deferred->exit());
5156 
5157   if (instr->hydrogen()->MustPrefillWithFiller()) {
5158     if (instr->size()->IsConstantOperand()) {
5159       int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5160       __ mov(temp, (size / kPointerSize) - 1);
5161     } else {
5162       temp = ToRegister(instr->size());
5163       __ shr(temp, kPointerSizeLog2);
5164       __ dec(temp);
5165     }
5166     Label loop;
5167     __ bind(&loop);
5168     __ mov(FieldOperand(result, temp, times_pointer_size, 0),
5169         isolate()->factory()->one_pointer_filler_map());
5170     __ dec(temp);
5171     __ j(not_zero, &loop);
5172   }
5173 }
5174 
5175 
DoDeferredAllocate(LAllocate * instr)5176 void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
5177   Register result = ToRegister(instr->result());
5178 
5179   // TODO(3095996): Get rid of this. For now, we need to make the
5180   // result register contain a valid pointer because it is already
5181   // contained in the register pointer map.
5182   __ Move(result, Immediate(Smi::FromInt(0)));
5183 
5184   PushSafepointRegistersScope scope(this);
5185   if (instr->size()->IsRegister()) {
5186     Register size = ToRegister(instr->size());
5187     ASSERT(!size.is(result));
5188     __ SmiTag(ToRegister(instr->size()));
5189     __ push(size);
5190   } else {
5191     int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5192     if (size >= 0 && size <= Smi::kMaxValue) {
5193       __ push(Immediate(Smi::FromInt(size)));
5194     } else {
5195       // We should never get here at runtime => abort
5196       __ int3();
5197       return;
5198     }
5199   }
5200 
5201   int flags = AllocateDoubleAlignFlag::encode(
5202       instr->hydrogen()->MustAllocateDoubleAligned());
5203   if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
5204     ASSERT(!instr->hydrogen()->IsOldDataSpaceAllocation());
5205     ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
5206     flags = AllocateTargetSpace::update(flags, OLD_POINTER_SPACE);
5207   } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
5208     ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
5209     flags = AllocateTargetSpace::update(flags, OLD_DATA_SPACE);
5210   } else {
5211     flags = AllocateTargetSpace::update(flags, NEW_SPACE);
5212   }
5213   __ push(Immediate(Smi::FromInt(flags)));
5214 
5215   CallRuntimeFromDeferred(
5216       Runtime::kHiddenAllocateInTargetSpace, 2, instr, instr->context());
5217   __ StoreToSafepointRegisterSlot(result, eax);
5218 }
5219 
5220 
DoToFastProperties(LToFastProperties * instr)5221 void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
5222   ASSERT(ToRegister(instr->value()).is(eax));
5223   __ push(eax);
5224   CallRuntime(Runtime::kToFastProperties, 1, instr);
5225 }
5226 
5227 
DoRegExpLiteral(LRegExpLiteral * instr)5228 void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
5229   ASSERT(ToRegister(instr->context()).is(esi));
5230   Label materialized;
5231   // Registers will be used as follows:
5232   // ecx = literals array.
5233   // ebx = regexp literal.
5234   // eax = regexp literal clone.
5235   // esi = context.
5236   int literal_offset =
5237       FixedArray::OffsetOfElementAt(instr->hydrogen()->literal_index());
5238   __ LoadHeapObject(ecx, instr->hydrogen()->literals());
5239   __ mov(ebx, FieldOperand(ecx, literal_offset));
5240   __ cmp(ebx, factory()->undefined_value());
5241   __ j(not_equal, &materialized, Label::kNear);
5242 
5243   // Create regexp literal using runtime function
5244   // Result will be in eax.
5245   __ push(ecx);
5246   __ push(Immediate(Smi::FromInt(instr->hydrogen()->literal_index())));
5247   __ push(Immediate(instr->hydrogen()->pattern()));
5248   __ push(Immediate(instr->hydrogen()->flags()));
5249   CallRuntime(Runtime::kHiddenMaterializeRegExpLiteral, 4, instr);
5250   __ mov(ebx, eax);
5251 
5252   __ bind(&materialized);
5253   int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
5254   Label allocated, runtime_allocate;
5255   __ Allocate(size, eax, ecx, edx, &runtime_allocate, TAG_OBJECT);
5256   __ jmp(&allocated, Label::kNear);
5257 
5258   __ bind(&runtime_allocate);
5259   __ push(ebx);
5260   __ push(Immediate(Smi::FromInt(size)));
5261   CallRuntime(Runtime::kHiddenAllocateInNewSpace, 1, instr);
5262   __ pop(ebx);
5263 
5264   __ bind(&allocated);
5265   // Copy the content into the newly allocated memory.
5266   // (Unroll copy loop once for better throughput).
5267   for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) {
5268     __ mov(edx, FieldOperand(ebx, i));
5269     __ mov(ecx, FieldOperand(ebx, i + kPointerSize));
5270     __ mov(FieldOperand(eax, i), edx);
5271     __ mov(FieldOperand(eax, i + kPointerSize), ecx);
5272   }
5273   if ((size % (2 * kPointerSize)) != 0) {
5274     __ mov(edx, FieldOperand(ebx, size - kPointerSize));
5275     __ mov(FieldOperand(eax, size - kPointerSize), edx);
5276   }
5277 }
5278 
5279 
DoFunctionLiteral(LFunctionLiteral * instr)5280 void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
5281   ASSERT(ToRegister(instr->context()).is(esi));
5282   // Use the fast case closure allocation code that allocates in new
5283   // space for nested functions that don't need literals cloning.
5284   bool pretenure = instr->hydrogen()->pretenure();
5285   if (!pretenure && instr->hydrogen()->has_no_literals()) {
5286     FastNewClosureStub stub(isolate(),
5287                             instr->hydrogen()->strict_mode(),
5288                             instr->hydrogen()->is_generator());
5289     __ mov(ebx, Immediate(instr->hydrogen()->shared_info()));
5290     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
5291   } else {
5292     __ push(esi);
5293     __ push(Immediate(instr->hydrogen()->shared_info()));
5294     __ push(Immediate(pretenure ? factory()->true_value()
5295                                 : factory()->false_value()));
5296     CallRuntime(Runtime::kHiddenNewClosure, 3, instr);
5297   }
5298 }
5299 
5300 
DoTypeof(LTypeof * instr)5301 void LCodeGen::DoTypeof(LTypeof* instr) {
5302   ASSERT(ToRegister(instr->context()).is(esi));
5303   LOperand* input = instr->value();
5304   EmitPushTaggedOperand(input);
5305   CallRuntime(Runtime::kTypeof, 1, instr);
5306 }
5307 
5308 
DoTypeofIsAndBranch(LTypeofIsAndBranch * instr)5309 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
5310   Register input = ToRegister(instr->value());
5311   Condition final_branch_condition = EmitTypeofIs(instr, input);
5312   if (final_branch_condition != no_condition) {
5313     EmitBranch(instr, final_branch_condition);
5314   }
5315 }
5316 
5317 
EmitTypeofIs(LTypeofIsAndBranch * instr,Register input)5318 Condition LCodeGen::EmitTypeofIs(LTypeofIsAndBranch* instr, Register input) {
5319   Label* true_label = instr->TrueLabel(chunk_);
5320   Label* false_label = instr->FalseLabel(chunk_);
5321   Handle<String> type_name = instr->type_literal();
5322   int left_block = instr->TrueDestination(chunk_);
5323   int right_block = instr->FalseDestination(chunk_);
5324   int next_block = GetNextEmittedBlock();
5325 
5326   Label::Distance true_distance = left_block == next_block ? Label::kNear
5327                                                            : Label::kFar;
5328   Label::Distance false_distance = right_block == next_block ? Label::kNear
5329                                                              : Label::kFar;
5330   Condition final_branch_condition = no_condition;
5331   if (String::Equals(type_name, factory()->number_string())) {
5332     __ JumpIfSmi(input, true_label, true_distance);
5333     __ cmp(FieldOperand(input, HeapObject::kMapOffset),
5334            factory()->heap_number_map());
5335     final_branch_condition = equal;
5336 
5337   } else if (String::Equals(type_name, factory()->string_string())) {
5338     __ JumpIfSmi(input, false_label, false_distance);
5339     __ CmpObjectType(input, FIRST_NONSTRING_TYPE, input);
5340     __ j(above_equal, false_label, false_distance);
5341     __ test_b(FieldOperand(input, Map::kBitFieldOffset),
5342               1 << Map::kIsUndetectable);
5343     final_branch_condition = zero;
5344 
5345   } else if (String::Equals(type_name, factory()->symbol_string())) {
5346     __ JumpIfSmi(input, false_label, false_distance);
5347     __ CmpObjectType(input, SYMBOL_TYPE, input);
5348     final_branch_condition = equal;
5349 
5350   } else if (String::Equals(type_name, factory()->boolean_string())) {
5351     __ cmp(input, factory()->true_value());
5352     __ j(equal, true_label, true_distance);
5353     __ cmp(input, factory()->false_value());
5354     final_branch_condition = equal;
5355 
5356   } else if (FLAG_harmony_typeof &&
5357              String::Equals(type_name, factory()->null_string())) {
5358     __ cmp(input, factory()->null_value());
5359     final_branch_condition = equal;
5360 
5361   } else if (String::Equals(type_name, factory()->undefined_string())) {
5362     __ cmp(input, factory()->undefined_value());
5363     __ j(equal, true_label, true_distance);
5364     __ JumpIfSmi(input, false_label, false_distance);
5365     // Check for undetectable objects => true.
5366     __ mov(input, FieldOperand(input, HeapObject::kMapOffset));
5367     __ test_b(FieldOperand(input, Map::kBitFieldOffset),
5368               1 << Map::kIsUndetectable);
5369     final_branch_condition = not_zero;
5370 
5371   } else if (String::Equals(type_name, factory()->function_string())) {
5372     STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
5373     __ JumpIfSmi(input, false_label, false_distance);
5374     __ CmpObjectType(input, JS_FUNCTION_TYPE, input);
5375     __ j(equal, true_label, true_distance);
5376     __ CmpInstanceType(input, JS_FUNCTION_PROXY_TYPE);
5377     final_branch_condition = equal;
5378 
5379   } else if (String::Equals(type_name, factory()->object_string())) {
5380     __ JumpIfSmi(input, false_label, false_distance);
5381     if (!FLAG_harmony_typeof) {
5382       __ cmp(input, factory()->null_value());
5383       __ j(equal, true_label, true_distance);
5384     }
5385     __ CmpObjectType(input, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE, input);
5386     __ j(below, false_label, false_distance);
5387     __ CmpInstanceType(input, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
5388     __ j(above, false_label, false_distance);
5389     // Check for undetectable objects => false.
5390     __ test_b(FieldOperand(input, Map::kBitFieldOffset),
5391               1 << Map::kIsUndetectable);
5392     final_branch_condition = zero;
5393 
5394   } else {
5395     __ jmp(false_label, false_distance);
5396   }
5397   return final_branch_condition;
5398 }
5399 
5400 
DoIsConstructCallAndBranch(LIsConstructCallAndBranch * instr)5401 void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
5402   Register temp = ToRegister(instr->temp());
5403 
5404   EmitIsConstructCall(temp);
5405   EmitBranch(instr, equal);
5406 }
5407 
5408 
EmitIsConstructCall(Register temp)5409 void LCodeGen::EmitIsConstructCall(Register temp) {
5410   // Get the frame pointer for the calling frame.
5411   __ mov(temp, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
5412 
5413   // Skip the arguments adaptor frame if it exists.
5414   Label check_frame_marker;
5415   __ cmp(Operand(temp, StandardFrameConstants::kContextOffset),
5416          Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
5417   __ j(not_equal, &check_frame_marker, Label::kNear);
5418   __ mov(temp, Operand(temp, StandardFrameConstants::kCallerFPOffset));
5419 
5420   // Check the marker in the calling frame.
5421   __ bind(&check_frame_marker);
5422   __ cmp(Operand(temp, StandardFrameConstants::kMarkerOffset),
5423          Immediate(Smi::FromInt(StackFrame::CONSTRUCT)));
5424 }
5425 
5426 
EnsureSpaceForLazyDeopt(int space_needed)5427 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
5428   if (!info()->IsStub()) {
5429     // Ensure that we have enough space after the previous lazy-bailout
5430     // instruction for patching the code here.
5431     int current_pc = masm()->pc_offset();
5432     if (current_pc < last_lazy_deopt_pc_ + space_needed) {
5433       int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
5434       __ Nop(padding_size);
5435     }
5436   }
5437   last_lazy_deopt_pc_ = masm()->pc_offset();
5438 }
5439 
5440 
DoLazyBailout(LLazyBailout * instr)5441 void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
5442   last_lazy_deopt_pc_ = masm()->pc_offset();
5443   ASSERT(instr->HasEnvironment());
5444   LEnvironment* env = instr->environment();
5445   RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5446   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5447 }
5448 
5449 
DoDeoptimize(LDeoptimize * instr)5450 void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
5451   Deoptimizer::BailoutType type = instr->hydrogen()->type();
5452   // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
5453   // needed return address), even though the implementation of LAZY and EAGER is
5454   // now identical. When LAZY is eventually completely folded into EAGER, remove
5455   // the special case below.
5456   if (info()->IsStub() && type == Deoptimizer::EAGER) {
5457     type = Deoptimizer::LAZY;
5458   }
5459   Comment(";;; deoptimize: %s", instr->hydrogen()->reason());
5460   DeoptimizeIf(no_condition, instr->environment(), type);
5461 }
5462 
5463 
DoDummy(LDummy * instr)5464 void LCodeGen::DoDummy(LDummy* instr) {
5465   // Nothing to see here, move on!
5466 }
5467 
5468 
DoDummyUse(LDummyUse * instr)5469 void LCodeGen::DoDummyUse(LDummyUse* instr) {
5470   // Nothing to see here, move on!
5471 }
5472 
5473 
DoDeferredStackCheck(LStackCheck * instr)5474 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
5475   PushSafepointRegistersScope scope(this);
5476   __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
5477   __ CallRuntime(Runtime::kHiddenStackGuard);
5478   RecordSafepointWithLazyDeopt(
5479       instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
5480   ASSERT(instr->HasEnvironment());
5481   LEnvironment* env = instr->environment();
5482   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5483 }
5484 
5485 
DoStackCheck(LStackCheck * instr)5486 void LCodeGen::DoStackCheck(LStackCheck* instr) {
5487   class DeferredStackCheck V8_FINAL : public LDeferredCode {
5488    public:
5489     DeferredStackCheck(LCodeGen* codegen,
5490                        LStackCheck* instr,
5491                        const X87Stack& x87_stack)
5492         : LDeferredCode(codegen, x87_stack), instr_(instr) { }
5493     virtual void Generate() V8_OVERRIDE {
5494       codegen()->DoDeferredStackCheck(instr_);
5495     }
5496     virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
5497    private:
5498     LStackCheck* instr_;
5499   };
5500 
5501   ASSERT(instr->HasEnvironment());
5502   LEnvironment* env = instr->environment();
5503   // There is no LLazyBailout instruction for stack-checks. We have to
5504   // prepare for lazy deoptimization explicitly here.
5505   if (instr->hydrogen()->is_function_entry()) {
5506     // Perform stack overflow check.
5507     Label done;
5508     ExternalReference stack_limit =
5509         ExternalReference::address_of_stack_limit(isolate());
5510     __ cmp(esp, Operand::StaticVariable(stack_limit));
5511     __ j(above_equal, &done, Label::kNear);
5512 
5513     ASSERT(instr->context()->IsRegister());
5514     ASSERT(ToRegister(instr->context()).is(esi));
5515     CallCode(isolate()->builtins()->StackCheck(),
5516              RelocInfo::CODE_TARGET,
5517              instr);
5518     __ bind(&done);
5519   } else {
5520     ASSERT(instr->hydrogen()->is_backwards_branch());
5521     // Perform stack overflow check if this goto needs it before jumping.
5522     DeferredStackCheck* deferred_stack_check =
5523         new(zone()) DeferredStackCheck(this, instr, x87_stack_);
5524     ExternalReference stack_limit =
5525         ExternalReference::address_of_stack_limit(isolate());
5526     __ cmp(esp, Operand::StaticVariable(stack_limit));
5527     __ j(below, deferred_stack_check->entry());
5528     EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
5529     __ bind(instr->done_label());
5530     deferred_stack_check->SetExit(instr->done_label());
5531     RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5532     // Don't record a deoptimization index for the safepoint here.
5533     // This will be done explicitly when emitting call and the safepoint in
5534     // the deferred code.
5535   }
5536 }
5537 
5538 
DoOsrEntry(LOsrEntry * instr)5539 void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
5540   // This is a pseudo-instruction that ensures that the environment here is
5541   // properly registered for deoptimization and records the assembler's PC
5542   // offset.
5543   LEnvironment* environment = instr->environment();
5544 
5545   // If the environment were already registered, we would have no way of
5546   // backpatching it with the spill slot operands.
5547   ASSERT(!environment->HasBeenRegistered());
5548   RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
5549 
5550   GenerateOsrPrologue();
5551 }
5552 
5553 
DoForInPrepareMap(LForInPrepareMap * instr)5554 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
5555   ASSERT(ToRegister(instr->context()).is(esi));
5556   __ cmp(eax, isolate()->factory()->undefined_value());
5557   DeoptimizeIf(equal, instr->environment());
5558 
5559   __ cmp(eax, isolate()->factory()->null_value());
5560   DeoptimizeIf(equal, instr->environment());
5561 
5562   __ test(eax, Immediate(kSmiTagMask));
5563   DeoptimizeIf(zero, instr->environment());
5564 
5565   STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
5566   __ CmpObjectType(eax, LAST_JS_PROXY_TYPE, ecx);
5567   DeoptimizeIf(below_equal, instr->environment());
5568 
5569   Label use_cache, call_runtime;
5570   __ CheckEnumCache(&call_runtime);
5571 
5572   __ mov(eax, FieldOperand(eax, HeapObject::kMapOffset));
5573   __ jmp(&use_cache, Label::kNear);
5574 
5575   // Get the set of properties to enumerate.
5576   __ bind(&call_runtime);
5577   __ push(eax);
5578   CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr);
5579 
5580   __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
5581          isolate()->factory()->meta_map());
5582   DeoptimizeIf(not_equal, instr->environment());
5583   __ bind(&use_cache);
5584 }
5585 
5586 
DoForInCacheArray(LForInCacheArray * instr)5587 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
5588   Register map = ToRegister(instr->map());
5589   Register result = ToRegister(instr->result());
5590   Label load_cache, done;
5591   __ EnumLength(result, map);
5592   __ cmp(result, Immediate(Smi::FromInt(0)));
5593   __ j(not_equal, &load_cache, Label::kNear);
5594   __ mov(result, isolate()->factory()->empty_fixed_array());
5595   __ jmp(&done, Label::kNear);
5596 
5597   __ bind(&load_cache);
5598   __ LoadInstanceDescriptors(map, result);
5599   __ mov(result,
5600          FieldOperand(result, DescriptorArray::kEnumCacheOffset));
5601   __ mov(result,
5602          FieldOperand(result, FixedArray::SizeFor(instr->idx())));
5603   __ bind(&done);
5604   __ test(result, result);
5605   DeoptimizeIf(equal, instr->environment());
5606 }
5607 
5608 
DoCheckMapValue(LCheckMapValue * instr)5609 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
5610   Register object = ToRegister(instr->value());
5611   __ cmp(ToRegister(instr->map()),
5612          FieldOperand(object, HeapObject::kMapOffset));
5613   DeoptimizeIf(not_equal, instr->environment());
5614 }
5615 
5616 
DoDeferredLoadMutableDouble(LLoadFieldByIndex * instr,Register object,Register index)5617 void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
5618                                            Register object,
5619                                            Register index) {
5620   PushSafepointRegistersScope scope(this);
5621   __ push(object);
5622   __ push(index);
5623   __ xor_(esi, esi);
5624   __ CallRuntime(Runtime::kLoadMutableDouble);
5625   RecordSafepointWithRegisters(
5626       instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
5627   __ StoreToSafepointRegisterSlot(object, eax);
5628 }
5629 
5630 
DoLoadFieldByIndex(LLoadFieldByIndex * instr)5631 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
5632   class DeferredLoadMutableDouble V8_FINAL : public LDeferredCode {
5633    public:
5634     DeferredLoadMutableDouble(LCodeGen* codegen,
5635                               LLoadFieldByIndex* instr,
5636                               Register object,
5637                               Register index,
5638                               const X87Stack& x87_stack)
5639         : LDeferredCode(codegen, x87_stack),
5640           instr_(instr),
5641           object_(object),
5642           index_(index) {
5643     }
5644     virtual void Generate() V8_OVERRIDE {
5645       codegen()->DoDeferredLoadMutableDouble(instr_, object_, index_);
5646     }
5647     virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
5648    private:
5649     LLoadFieldByIndex* instr_;
5650     Register object_;
5651     Register index_;
5652   };
5653 
5654   Register object = ToRegister(instr->object());
5655   Register index = ToRegister(instr->index());
5656 
5657   DeferredLoadMutableDouble* deferred;
5658   deferred = new(zone()) DeferredLoadMutableDouble(
5659       this, instr, object, index, x87_stack_);
5660 
5661   Label out_of_object, done;
5662   __ test(index, Immediate(Smi::FromInt(1)));
5663   __ j(not_zero, deferred->entry());
5664 
5665   __ sar(index, 1);
5666 
5667   __ cmp(index, Immediate(0));
5668   __ j(less, &out_of_object, Label::kNear);
5669   __ mov(object, FieldOperand(object,
5670                               index,
5671                               times_half_pointer_size,
5672                               JSObject::kHeaderSize));
5673   __ jmp(&done, Label::kNear);
5674 
5675   __ bind(&out_of_object);
5676   __ mov(object, FieldOperand(object, JSObject::kPropertiesOffset));
5677   __ neg(index);
5678   // Index is now equal to out of object property index plus 1.
5679   __ mov(object, FieldOperand(object,
5680                               index,
5681                               times_half_pointer_size,
5682                               FixedArray::kHeaderSize - kPointerSize));
5683   __ bind(deferred->exit());
5684   __ bind(&done);
5685 }
5686 
5687 
DoStoreFrameContext(LStoreFrameContext * instr)5688 void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) {
5689   Register context = ToRegister(instr->context());
5690   __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), context);
5691 }
5692 
5693 
DoAllocateBlockContext(LAllocateBlockContext * instr)5694 void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) {
5695   Handle<ScopeInfo> scope_info = instr->scope_info();
5696   __ Push(scope_info);
5697   __ push(ToRegister(instr->function()));
5698   CallRuntime(Runtime::kHiddenPushBlockContext, 2, instr);
5699   RecordSafepoint(Safepoint::kNoLazyDeopt);
5700 }
5701 
5702 
5703 #undef __
5704 
5705 } }  // namespace v8::internal
5706 
5707 #endif  // V8_TARGET_ARCH_X87
5708