1 //===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This provides C++ name mangling targeting the Microsoft Visual C++ ABI.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/Mangle.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/VTableBuilder.h"
26 #include "clang/Basic/ABI.h"
27 #include "clang/Basic/DiagnosticOptions.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringMap.h"
31 #include "llvm/Support/MathExtras.h"
32
33 using namespace clang;
34
35 namespace {
36
37 /// \brief Retrieve the declaration context that should be used when mangling
38 /// the given declaration.
getEffectiveDeclContext(const Decl * D)39 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
40 // The ABI assumes that lambda closure types that occur within
41 // default arguments live in the context of the function. However, due to
42 // the way in which Clang parses and creates function declarations, this is
43 // not the case: the lambda closure type ends up living in the context
44 // where the function itself resides, because the function declaration itself
45 // had not yet been created. Fix the context here.
46 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
47 if (RD->isLambda())
48 if (ParmVarDecl *ContextParam =
49 dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
50 return ContextParam->getDeclContext();
51 }
52
53 // Perform the same check for block literals.
54 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
55 if (ParmVarDecl *ContextParam =
56 dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
57 return ContextParam->getDeclContext();
58 }
59
60 const DeclContext *DC = D->getDeclContext();
61 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC))
62 return getEffectiveDeclContext(CD);
63
64 return DC;
65 }
66
getEffectiveParentContext(const DeclContext * DC)67 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
68 return getEffectiveDeclContext(cast<Decl>(DC));
69 }
70
getStructor(const FunctionDecl * fn)71 static const FunctionDecl *getStructor(const FunctionDecl *fn) {
72 if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
73 return ftd->getTemplatedDecl();
74
75 return fn;
76 }
77
isLambda(const NamedDecl * ND)78 static bool isLambda(const NamedDecl *ND) {
79 const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
80 if (!Record)
81 return false;
82
83 return Record->isLambda();
84 }
85
86 /// MicrosoftMangleContextImpl - Overrides the default MangleContext for the
87 /// Microsoft Visual C++ ABI.
88 class MicrosoftMangleContextImpl : public MicrosoftMangleContext {
89 typedef std::pair<const DeclContext *, IdentifierInfo *> DiscriminatorKeyTy;
90 llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
91 llvm::DenseMap<const NamedDecl *, unsigned> Uniquifier;
92 llvm::DenseMap<const CXXRecordDecl *, unsigned> LambdaIds;
93
94 public:
MicrosoftMangleContextImpl(ASTContext & Context,DiagnosticsEngine & Diags)95 MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags)
96 : MicrosoftMangleContext(Context, Diags) {}
97 bool shouldMangleCXXName(const NamedDecl *D) override;
98 bool shouldMangleStringLiteral(const StringLiteral *SL) override;
99 void mangleCXXName(const NamedDecl *D, raw_ostream &Out) override;
100 void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
101 raw_ostream &) override;
102 void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
103 raw_ostream &) override;
104 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
105 const ThisAdjustment &ThisAdjustment,
106 raw_ostream &) override;
107 void mangleCXXVFTable(const CXXRecordDecl *Derived,
108 ArrayRef<const CXXRecordDecl *> BasePath,
109 raw_ostream &Out) override;
110 void mangleCXXVBTable(const CXXRecordDecl *Derived,
111 ArrayRef<const CXXRecordDecl *> BasePath,
112 raw_ostream &Out) override;
113 void mangleCXXRTTI(QualType T, raw_ostream &Out) override;
114 void mangleCXXRTTIName(QualType T, raw_ostream &Out) override;
115 void mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl *Derived,
116 uint32_t NVOffset, int32_t VBPtrOffset,
117 uint32_t VBTableOffset, uint32_t Flags,
118 raw_ostream &Out) override;
119 void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived,
120 raw_ostream &Out) override;
121 void mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived,
122 raw_ostream &Out) override;
123 void
124 mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived,
125 ArrayRef<const CXXRecordDecl *> BasePath,
126 raw_ostream &Out) override;
127 void mangleTypeName(QualType T, raw_ostream &) override;
128 void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
129 raw_ostream &) override;
130 void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
131 raw_ostream &) override;
132 void mangleReferenceTemporary(const VarDecl *, unsigned ManglingNumber,
133 raw_ostream &) override;
134 void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) override;
135 void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
136 void mangleDynamicAtExitDestructor(const VarDecl *D,
137 raw_ostream &Out) override;
138 void mangleStringLiteral(const StringLiteral *SL, raw_ostream &Out) override;
getNextDiscriminator(const NamedDecl * ND,unsigned & disc)139 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
140 // Lambda closure types are already numbered.
141 if (isLambda(ND))
142 return false;
143
144 const DeclContext *DC = getEffectiveDeclContext(ND);
145 if (!DC->isFunctionOrMethod())
146 return false;
147
148 // Use the canonical number for externally visible decls.
149 if (ND->isExternallyVisible()) {
150 disc = getASTContext().getManglingNumber(ND);
151 return true;
152 }
153
154 // Anonymous tags are already numbered.
155 if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
156 if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
157 return false;
158 }
159
160 // Make up a reasonable number for internal decls.
161 unsigned &discriminator = Uniquifier[ND];
162 if (!discriminator)
163 discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
164 disc = discriminator;
165 return true;
166 }
167
getLambdaId(const CXXRecordDecl * RD)168 unsigned getLambdaId(const CXXRecordDecl *RD) {
169 assert(RD->isLambda() && "RD must be a lambda!");
170 assert(!RD->isExternallyVisible() && "RD must not be visible!");
171 assert(RD->getLambdaManglingNumber() == 0 &&
172 "RD must not have a mangling number!");
173 std::pair<llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator, bool>
174 Result = LambdaIds.insert(std::make_pair(RD, LambdaIds.size()));
175 return Result.first->second;
176 }
177
178 private:
179 void mangleInitFiniStub(const VarDecl *D, raw_ostream &Out, char CharCode);
180 };
181
182 /// MicrosoftCXXNameMangler - Manage the mangling of a single name for the
183 /// Microsoft Visual C++ ABI.
184 class MicrosoftCXXNameMangler {
185 MicrosoftMangleContextImpl &Context;
186 raw_ostream &Out;
187
188 /// The "structor" is the top-level declaration being mangled, if
189 /// that's not a template specialization; otherwise it's the pattern
190 /// for that specialization.
191 const NamedDecl *Structor;
192 unsigned StructorType;
193
194 typedef llvm::StringMap<unsigned> BackRefMap;
195 BackRefMap NameBackReferences;
196
197 typedef llvm::DenseMap<void *, unsigned> ArgBackRefMap;
198 ArgBackRefMap TypeBackReferences;
199
getASTContext() const200 ASTContext &getASTContext() const { return Context.getASTContext(); }
201
202 // FIXME: If we add support for __ptr32/64 qualifiers, then we should push
203 // this check into mangleQualifiers().
204 const bool PointersAre64Bit;
205
206 public:
207 enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result };
208
MicrosoftCXXNameMangler(MicrosoftMangleContextImpl & C,raw_ostream & Out_)209 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_)
210 : Context(C), Out(Out_), Structor(nullptr), StructorType(-1),
211 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
212 64) {}
213
MicrosoftCXXNameMangler(MicrosoftMangleContextImpl & C,raw_ostream & Out_,const CXXDestructorDecl * D,CXXDtorType Type)214 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
215 const CXXDestructorDecl *D, CXXDtorType Type)
216 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
217 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
218 64) {}
219
getStream() const220 raw_ostream &getStream() const { return Out; }
221
222 void mangle(const NamedDecl *D, StringRef Prefix = "\01?");
223 void mangleName(const NamedDecl *ND);
224 void mangleFunctionEncoding(const FunctionDecl *FD);
225 void mangleVariableEncoding(const VarDecl *VD);
226 void mangleMemberDataPointer(const CXXRecordDecl *RD, const ValueDecl *VD);
227 void mangleMemberFunctionPointer(const CXXRecordDecl *RD,
228 const CXXMethodDecl *MD);
229 void mangleVirtualMemPtrThunk(
230 const CXXMethodDecl *MD,
231 const MicrosoftVTableContext::MethodVFTableLocation &ML);
232 void mangleNumber(int64_t Number);
233 void mangleType(QualType T, SourceRange Range,
234 QualifierMangleMode QMM = QMM_Mangle);
235 void mangleFunctionType(const FunctionType *T,
236 const FunctionDecl *D = nullptr,
237 bool ForceInstMethod = false);
238 void mangleNestedName(const NamedDecl *ND);
239
240 private:
mangleUnqualifiedName(const NamedDecl * ND)241 void mangleUnqualifiedName(const NamedDecl *ND) {
242 mangleUnqualifiedName(ND, ND->getDeclName());
243 }
244 void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name);
245 void mangleSourceName(StringRef Name);
246 void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc);
247 void mangleCXXDtorType(CXXDtorType T);
248 void mangleQualifiers(Qualifiers Quals, bool IsMember);
249 void mangleRefQualifier(RefQualifierKind RefQualifier);
250 void manglePointerCVQualifiers(Qualifiers Quals);
251 void manglePointerExtQualifiers(Qualifiers Quals, const Type *PointeeType);
252
253 void mangleUnscopedTemplateName(const TemplateDecl *ND);
254 void
255 mangleTemplateInstantiationName(const TemplateDecl *TD,
256 const TemplateArgumentList &TemplateArgs);
257 void mangleObjCMethodName(const ObjCMethodDecl *MD);
258
259 void mangleArgumentType(QualType T, SourceRange Range);
260
261 // Declare manglers for every type class.
262 #define ABSTRACT_TYPE(CLASS, PARENT)
263 #define NON_CANONICAL_TYPE(CLASS, PARENT)
264 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \
265 SourceRange Range);
266 #include "clang/AST/TypeNodes.def"
267 #undef ABSTRACT_TYPE
268 #undef NON_CANONICAL_TYPE
269 #undef TYPE
270
271 void mangleType(const TagDecl *TD);
272 void mangleDecayedArrayType(const ArrayType *T);
273 void mangleArrayType(const ArrayType *T);
274 void mangleFunctionClass(const FunctionDecl *FD);
275 void mangleCallingConvention(const FunctionType *T);
276 void mangleIntegerLiteral(const llvm::APSInt &Number, bool IsBoolean);
277 void mangleExpression(const Expr *E);
278 void mangleThrowSpecification(const FunctionProtoType *T);
279
280 void mangleTemplateArgs(const TemplateDecl *TD,
281 const TemplateArgumentList &TemplateArgs);
282 void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA);
283 };
284 }
285
shouldMangleCXXName(const NamedDecl * D)286 bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
287 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
288 LanguageLinkage L = FD->getLanguageLinkage();
289 // Overloadable functions need mangling.
290 if (FD->hasAttr<OverloadableAttr>())
291 return true;
292
293 // The ABI expects that we would never mangle "typical" user-defined entry
294 // points regardless of visibility or freestanding-ness.
295 //
296 // N.B. This is distinct from asking about "main". "main" has a lot of
297 // special rules associated with it in the standard while these
298 // user-defined entry points are outside of the purview of the standard.
299 // For example, there can be only one definition for "main" in a standards
300 // compliant program; however nothing forbids the existence of wmain and
301 // WinMain in the same translation unit.
302 if (FD->isMSVCRTEntryPoint())
303 return false;
304
305 // C++ functions and those whose names are not a simple identifier need
306 // mangling.
307 if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
308 return true;
309
310 // C functions are not mangled.
311 if (L == CLanguageLinkage)
312 return false;
313 }
314
315 // Otherwise, no mangling is done outside C++ mode.
316 if (!getASTContext().getLangOpts().CPlusPlus)
317 return false;
318
319 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
320 // C variables are not mangled.
321 if (VD->isExternC())
322 return false;
323
324 // Variables at global scope with non-internal linkage are not mangled.
325 const DeclContext *DC = getEffectiveDeclContext(D);
326 // Check for extern variable declared locally.
327 if (DC->isFunctionOrMethod() && D->hasLinkage())
328 while (!DC->isNamespace() && !DC->isTranslationUnit())
329 DC = getEffectiveParentContext(DC);
330
331 if (DC->isTranslationUnit() && D->getFormalLinkage() == InternalLinkage &&
332 !isa<VarTemplateSpecializationDecl>(D))
333 return false;
334 }
335
336 return true;
337 }
338
339 bool
shouldMangleStringLiteral(const StringLiteral * SL)340 MicrosoftMangleContextImpl::shouldMangleStringLiteral(const StringLiteral *SL) {
341 return SL->isAscii() || SL->isWide();
342 // TODO: This needs to be updated when MSVC gains support for Unicode
343 // literals.
344 }
345
mangle(const NamedDecl * D,StringRef Prefix)346 void MicrosoftCXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
347 // MSVC doesn't mangle C++ names the same way it mangles extern "C" names.
348 // Therefore it's really important that we don't decorate the
349 // name with leading underscores or leading/trailing at signs. So, by
350 // default, we emit an asm marker at the start so we get the name right.
351 // Callers can override this with a custom prefix.
352
353 // <mangled-name> ::= ? <name> <type-encoding>
354 Out << Prefix;
355 mangleName(D);
356 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
357 mangleFunctionEncoding(FD);
358 else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
359 mangleVariableEncoding(VD);
360 else {
361 // TODO: Fields? Can MSVC even mangle them?
362 // Issue a diagnostic for now.
363 DiagnosticsEngine &Diags = Context.getDiags();
364 unsigned DiagID = Diags.getCustomDiagID(
365 DiagnosticsEngine::Error, "cannot mangle this declaration yet");
366 Diags.Report(D->getLocation(), DiagID) << D->getSourceRange();
367 }
368 }
369
mangleFunctionEncoding(const FunctionDecl * FD)370 void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
371 // <type-encoding> ::= <function-class> <function-type>
372
373 // Since MSVC operates on the type as written and not the canonical type, it
374 // actually matters which decl we have here. MSVC appears to choose the
375 // first, since it is most likely to be the declaration in a header file.
376 FD = FD->getFirstDecl();
377
378 // We should never ever see a FunctionNoProtoType at this point.
379 // We don't even know how to mangle their types anyway :).
380 const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>();
381
382 // extern "C" functions can hold entities that must be mangled.
383 // As it stands, these functions still need to get expressed in the full
384 // external name. They have their class and type omitted, replaced with '9'.
385 if (Context.shouldMangleDeclName(FD)) {
386 // First, the function class.
387 mangleFunctionClass(FD);
388
389 mangleFunctionType(FT, FD);
390 } else
391 Out << '9';
392 }
393
mangleVariableEncoding(const VarDecl * VD)394 void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
395 // <type-encoding> ::= <storage-class> <variable-type>
396 // <storage-class> ::= 0 # private static member
397 // ::= 1 # protected static member
398 // ::= 2 # public static member
399 // ::= 3 # global
400 // ::= 4 # static local
401
402 // The first character in the encoding (after the name) is the storage class.
403 if (VD->isStaticDataMember()) {
404 // If it's a static member, it also encodes the access level.
405 switch (VD->getAccess()) {
406 default:
407 case AS_private: Out << '0'; break;
408 case AS_protected: Out << '1'; break;
409 case AS_public: Out << '2'; break;
410 }
411 }
412 else if (!VD->isStaticLocal())
413 Out << '3';
414 else
415 Out << '4';
416 // Now mangle the type.
417 // <variable-type> ::= <type> <cvr-qualifiers>
418 // ::= <type> <pointee-cvr-qualifiers> # pointers, references
419 // Pointers and references are odd. The type of 'int * const foo;' gets
420 // mangled as 'QAHA' instead of 'PAHB', for example.
421 SourceRange SR = VD->getSourceRange();
422 QualType Ty = VD->getType();
423 if (Ty->isPointerType() || Ty->isReferenceType() ||
424 Ty->isMemberPointerType()) {
425 mangleType(Ty, SR, QMM_Drop);
426 manglePointerExtQualifiers(
427 Ty.getDesugaredType(getASTContext()).getLocalQualifiers(), nullptr);
428 if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) {
429 mangleQualifiers(MPT->getPointeeType().getQualifiers(), true);
430 // Member pointers are suffixed with a back reference to the member
431 // pointer's class name.
432 mangleName(MPT->getClass()->getAsCXXRecordDecl());
433 } else
434 mangleQualifiers(Ty->getPointeeType().getQualifiers(), false);
435 } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) {
436 // Global arrays are funny, too.
437 mangleDecayedArrayType(AT);
438 if (AT->getElementType()->isArrayType())
439 Out << 'A';
440 else
441 mangleQualifiers(Ty.getQualifiers(), false);
442 } else {
443 mangleType(Ty, SR, QMM_Drop);
444 mangleQualifiers(Ty.getLocalQualifiers(), false);
445 }
446 }
447
mangleMemberDataPointer(const CXXRecordDecl * RD,const ValueDecl * VD)448 void MicrosoftCXXNameMangler::mangleMemberDataPointer(const CXXRecordDecl *RD,
449 const ValueDecl *VD) {
450 // <member-data-pointer> ::= <integer-literal>
451 // ::= $F <number> <number>
452 // ::= $G <number> <number> <number>
453
454 int64_t FieldOffset;
455 int64_t VBTableOffset;
456 MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel();
457 if (VD) {
458 FieldOffset = getASTContext().getFieldOffset(VD);
459 assert(FieldOffset % getASTContext().getCharWidth() == 0 &&
460 "cannot take address of bitfield");
461 FieldOffset /= getASTContext().getCharWidth();
462
463 VBTableOffset = 0;
464 } else {
465 FieldOffset = RD->nullFieldOffsetIsZero() ? 0 : -1;
466
467 VBTableOffset = -1;
468 }
469
470 char Code = '\0';
471 switch (IM) {
472 case MSInheritanceAttr::Keyword_single_inheritance: Code = '0'; break;
473 case MSInheritanceAttr::Keyword_multiple_inheritance: Code = '0'; break;
474 case MSInheritanceAttr::Keyword_virtual_inheritance: Code = 'F'; break;
475 case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'G'; break;
476 }
477
478 Out << '$' << Code;
479
480 mangleNumber(FieldOffset);
481
482 // The C++ standard doesn't allow base-to-derived member pointer conversions
483 // in template parameter contexts, so the vbptr offset of data member pointers
484 // is always zero.
485 if (MSInheritanceAttr::hasVBPtrOffsetField(IM))
486 mangleNumber(0);
487 if (MSInheritanceAttr::hasVBTableOffsetField(IM))
488 mangleNumber(VBTableOffset);
489 }
490
491 void
mangleMemberFunctionPointer(const CXXRecordDecl * RD,const CXXMethodDecl * MD)492 MicrosoftCXXNameMangler::mangleMemberFunctionPointer(const CXXRecordDecl *RD,
493 const CXXMethodDecl *MD) {
494 // <member-function-pointer> ::= $1? <name>
495 // ::= $H? <name> <number>
496 // ::= $I? <name> <number> <number>
497 // ::= $J? <name> <number> <number> <number>
498
499 MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel();
500
501 char Code = '\0';
502 switch (IM) {
503 case MSInheritanceAttr::Keyword_single_inheritance: Code = '1'; break;
504 case MSInheritanceAttr::Keyword_multiple_inheritance: Code = 'H'; break;
505 case MSInheritanceAttr::Keyword_virtual_inheritance: Code = 'I'; break;
506 case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'J'; break;
507 }
508
509 // If non-virtual, mangle the name. If virtual, mangle as a virtual memptr
510 // thunk.
511 uint64_t NVOffset = 0;
512 uint64_t VBTableOffset = 0;
513 uint64_t VBPtrOffset = 0;
514 if (MD) {
515 Out << '$' << Code << '?';
516 if (MD->isVirtual()) {
517 MicrosoftVTableContext *VTContext =
518 cast<MicrosoftVTableContext>(getASTContext().getVTableContext());
519 const MicrosoftVTableContext::MethodVFTableLocation &ML =
520 VTContext->getMethodVFTableLocation(GlobalDecl(MD));
521 mangleVirtualMemPtrThunk(MD, ML);
522 NVOffset = ML.VFPtrOffset.getQuantity();
523 VBTableOffset = ML.VBTableIndex * 4;
524 if (ML.VBase) {
525 const ASTRecordLayout &Layout = getASTContext().getASTRecordLayout(RD);
526 VBPtrOffset = Layout.getVBPtrOffset().getQuantity();
527 }
528 } else {
529 mangleName(MD);
530 mangleFunctionEncoding(MD);
531 }
532 } else {
533 // Null single inheritance member functions are encoded as a simple nullptr.
534 if (IM == MSInheritanceAttr::Keyword_single_inheritance) {
535 Out << "$0A@";
536 return;
537 }
538 if (IM == MSInheritanceAttr::Keyword_unspecified_inheritance)
539 VBTableOffset = -1;
540 Out << '$' << Code;
541 }
542
543 if (MSInheritanceAttr::hasNVOffsetField(/*IsMemberFunction=*/true, IM))
544 mangleNumber(NVOffset);
545 if (MSInheritanceAttr::hasVBPtrOffsetField(IM))
546 mangleNumber(VBPtrOffset);
547 if (MSInheritanceAttr::hasVBTableOffsetField(IM))
548 mangleNumber(VBTableOffset);
549 }
550
mangleVirtualMemPtrThunk(const CXXMethodDecl * MD,const MicrosoftVTableContext::MethodVFTableLocation & ML)551 void MicrosoftCXXNameMangler::mangleVirtualMemPtrThunk(
552 const CXXMethodDecl *MD,
553 const MicrosoftVTableContext::MethodVFTableLocation &ML) {
554 // Get the vftable offset.
555 CharUnits PointerWidth = getASTContext().toCharUnitsFromBits(
556 getASTContext().getTargetInfo().getPointerWidth(0));
557 uint64_t OffsetInVFTable = ML.Index * PointerWidth.getQuantity();
558
559 Out << "?_9";
560 mangleName(MD->getParent());
561 Out << "$B";
562 mangleNumber(OffsetInVFTable);
563 Out << 'A';
564 Out << (PointersAre64Bit ? 'A' : 'E');
565 }
566
mangleName(const NamedDecl * ND)567 void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) {
568 // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
569
570 // Always start with the unqualified name.
571 mangleUnqualifiedName(ND);
572
573 mangleNestedName(ND);
574
575 // Terminate the whole name with an '@'.
576 Out << '@';
577 }
578
mangleNumber(int64_t Number)579 void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) {
580 // <non-negative integer> ::= A@ # when Number == 0
581 // ::= <decimal digit> # when 1 <= Number <= 10
582 // ::= <hex digit>+ @ # when Number >= 10
583 //
584 // <number> ::= [?] <non-negative integer>
585
586 uint64_t Value = static_cast<uint64_t>(Number);
587 if (Number < 0) {
588 Value = -Value;
589 Out << '?';
590 }
591
592 if (Value == 0)
593 Out << "A@";
594 else if (Value >= 1 && Value <= 10)
595 Out << (Value - 1);
596 else {
597 // Numbers that are not encoded as decimal digits are represented as nibbles
598 // in the range of ASCII characters 'A' to 'P'.
599 // The number 0x123450 would be encoded as 'BCDEFA'
600 char EncodedNumberBuffer[sizeof(uint64_t) * 2];
601 MutableArrayRef<char> BufferRef(EncodedNumberBuffer);
602 MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
603 for (; Value != 0; Value >>= 4)
604 *I++ = 'A' + (Value & 0xf);
605 Out.write(I.base(), I - BufferRef.rbegin());
606 Out << '@';
607 }
608 }
609
610 static const TemplateDecl *
isTemplate(const NamedDecl * ND,const TemplateArgumentList * & TemplateArgs)611 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
612 // Check if we have a function template.
613 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
614 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
615 TemplateArgs = FD->getTemplateSpecializationArgs();
616 return TD;
617 }
618 }
619
620 // Check if we have a class template.
621 if (const ClassTemplateSpecializationDecl *Spec =
622 dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
623 TemplateArgs = &Spec->getTemplateArgs();
624 return Spec->getSpecializedTemplate();
625 }
626
627 // Check if we have a variable template.
628 if (const VarTemplateSpecializationDecl *Spec =
629 dyn_cast<VarTemplateSpecializationDecl>(ND)) {
630 TemplateArgs = &Spec->getTemplateArgs();
631 return Spec->getSpecializedTemplate();
632 }
633
634 return nullptr;
635 }
636
mangleUnqualifiedName(const NamedDecl * ND,DeclarationName Name)637 void MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
638 DeclarationName Name) {
639 // <unqualified-name> ::= <operator-name>
640 // ::= <ctor-dtor-name>
641 // ::= <source-name>
642 // ::= <template-name>
643
644 // Check if we have a template.
645 const TemplateArgumentList *TemplateArgs = nullptr;
646 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
647 // Function templates aren't considered for name back referencing. This
648 // makes sense since function templates aren't likely to occur multiple
649 // times in a symbol.
650 // FIXME: Test alias template mangling with MSVC 2013.
651 if (!isa<ClassTemplateDecl>(TD)) {
652 mangleTemplateInstantiationName(TD, *TemplateArgs);
653 Out << '@';
654 return;
655 }
656
657 // Here comes the tricky thing: if we need to mangle something like
658 // void foo(A::X<Y>, B::X<Y>),
659 // the X<Y> part is aliased. However, if you need to mangle
660 // void foo(A::X<A::Y>, A::X<B::Y>),
661 // the A::X<> part is not aliased.
662 // That said, from the mangler's perspective we have a structure like this:
663 // namespace[s] -> type[ -> template-parameters]
664 // but from the Clang perspective we have
665 // type [ -> template-parameters]
666 // \-> namespace[s]
667 // What we do is we create a new mangler, mangle the same type (without
668 // a namespace suffix) to a string using the extra mangler and then use
669 // the mangled type name as a key to check the mangling of different types
670 // for aliasing.
671
672 llvm::SmallString<64> TemplateMangling;
673 llvm::raw_svector_ostream Stream(TemplateMangling);
674 MicrosoftCXXNameMangler Extra(Context, Stream);
675 Extra.mangleTemplateInstantiationName(TD, *TemplateArgs);
676 Stream.flush();
677
678 mangleSourceName(TemplateMangling);
679 return;
680 }
681
682 switch (Name.getNameKind()) {
683 case DeclarationName::Identifier: {
684 if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
685 mangleSourceName(II->getName());
686 break;
687 }
688
689 // Otherwise, an anonymous entity. We must have a declaration.
690 assert(ND && "mangling empty name without declaration");
691
692 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
693 if (NS->isAnonymousNamespace()) {
694 Out << "?A@";
695 break;
696 }
697 }
698
699 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
700 // We must have an anonymous union or struct declaration.
701 const CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl();
702 assert(RD && "expected variable decl to have a record type");
703 // Anonymous types with no tag or typedef get the name of their
704 // declarator mangled in. If they have no declarator, number them with
705 // a $S prefix.
706 llvm::SmallString<64> Name("$S");
707 // Get a unique id for the anonymous struct.
708 Name += llvm::utostr(Context.getAnonymousStructId(RD) + 1);
709 mangleSourceName(Name.str());
710 break;
711 }
712
713 // We must have an anonymous struct.
714 const TagDecl *TD = cast<TagDecl>(ND);
715 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
716 assert(TD->getDeclContext() == D->getDeclContext() &&
717 "Typedef should not be in another decl context!");
718 assert(D->getDeclName().getAsIdentifierInfo() &&
719 "Typedef was not named!");
720 mangleSourceName(D->getDeclName().getAsIdentifierInfo()->getName());
721 break;
722 }
723
724 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
725 if (Record->isLambda()) {
726 llvm::SmallString<10> Name("<lambda_");
727 unsigned LambdaId;
728 if (Record->getLambdaManglingNumber())
729 LambdaId = Record->getLambdaManglingNumber();
730 else
731 LambdaId = Context.getLambdaId(Record);
732
733 Name += llvm::utostr(LambdaId);
734 Name += ">";
735
736 mangleSourceName(Name);
737 break;
738 }
739 }
740
741 llvm::SmallString<64> Name("<unnamed-type-");
742 if (TD->hasDeclaratorForAnonDecl()) {
743 // Anonymous types with no tag or typedef get the name of their
744 // declarator mangled in if they have one.
745 Name += TD->getDeclaratorForAnonDecl()->getName();
746 } else {
747 // Otherwise, number the types using a $S prefix.
748 Name += "$S";
749 Name += llvm::utostr(Context.getAnonymousStructId(TD));
750 }
751 Name += ">";
752 mangleSourceName(Name.str());
753 break;
754 }
755
756 case DeclarationName::ObjCZeroArgSelector:
757 case DeclarationName::ObjCOneArgSelector:
758 case DeclarationName::ObjCMultiArgSelector:
759 llvm_unreachable("Can't mangle Objective-C selector names here!");
760
761 case DeclarationName::CXXConstructorName:
762 if (ND == Structor) {
763 assert(StructorType == Ctor_Complete &&
764 "Should never be asked to mangle a ctor other than complete");
765 }
766 Out << "?0";
767 break;
768
769 case DeclarationName::CXXDestructorName:
770 if (ND == Structor)
771 // If the named decl is the C++ destructor we're mangling,
772 // use the type we were given.
773 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
774 else
775 // Otherwise, use the base destructor name. This is relevant if a
776 // class with a destructor is declared within a destructor.
777 mangleCXXDtorType(Dtor_Base);
778 break;
779
780 case DeclarationName::CXXConversionFunctionName:
781 // <operator-name> ::= ?B # (cast)
782 // The target type is encoded as the return type.
783 Out << "?B";
784 break;
785
786 case DeclarationName::CXXOperatorName:
787 mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation());
788 break;
789
790 case DeclarationName::CXXLiteralOperatorName: {
791 Out << "?__K";
792 mangleSourceName(Name.getCXXLiteralIdentifier()->getName());
793 break;
794 }
795
796 case DeclarationName::CXXUsingDirective:
797 llvm_unreachable("Can't mangle a using directive name!");
798 }
799 }
800
mangleNestedName(const NamedDecl * ND)801 void MicrosoftCXXNameMangler::mangleNestedName(const NamedDecl *ND) {
802 // <postfix> ::= <unqualified-name> [<postfix>]
803 // ::= <substitution> [<postfix>]
804 if (isLambda(ND))
805 return;
806
807 const DeclContext *DC = ND->getDeclContext();
808
809 while (!DC->isTranslationUnit()) {
810 if (isa<TagDecl>(ND) || isa<VarDecl>(ND)) {
811 unsigned Disc;
812 if (Context.getNextDiscriminator(ND, Disc)) {
813 Out << '?';
814 mangleNumber(Disc);
815 Out << '?';
816 }
817 }
818
819 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
820 DiagnosticsEngine &Diags = Context.getDiags();
821 unsigned DiagID =
822 Diags.getCustomDiagID(DiagnosticsEngine::Error,
823 "cannot mangle a local inside this block yet");
824 Diags.Report(BD->getLocation(), DiagID);
825
826 // FIXME: This is completely, utterly, wrong; see ItaniumMangle
827 // for how this should be done.
828 Out << "__block_invoke" << Context.getBlockId(BD, false);
829 Out << '@';
830 continue;
831 } else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) {
832 mangleObjCMethodName(Method);
833 } else if (isa<NamedDecl>(DC)) {
834 ND = cast<NamedDecl>(DC);
835 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
836 mangle(FD, "?");
837 break;
838 } else
839 mangleUnqualifiedName(ND);
840 }
841 DC = DC->getParent();
842 }
843 }
844
mangleCXXDtorType(CXXDtorType T)845 void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
846 // Microsoft uses the names on the case labels for these dtor variants. Clang
847 // uses the Itanium terminology internally. Everything in this ABI delegates
848 // towards the base dtor.
849 switch (T) {
850 // <operator-name> ::= ?1 # destructor
851 case Dtor_Base: Out << "?1"; return;
852 // <operator-name> ::= ?_D # vbase destructor
853 case Dtor_Complete: Out << "?_D"; return;
854 // <operator-name> ::= ?_G # scalar deleting destructor
855 case Dtor_Deleting: Out << "?_G"; return;
856 // <operator-name> ::= ?_E # vector deleting destructor
857 // FIXME: Add a vector deleting dtor type. It goes in the vtable, so we need
858 // it.
859 }
860 llvm_unreachable("Unsupported dtor type?");
861 }
862
mangleOperatorName(OverloadedOperatorKind OO,SourceLocation Loc)863 void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO,
864 SourceLocation Loc) {
865 switch (OO) {
866 // ?0 # constructor
867 // ?1 # destructor
868 // <operator-name> ::= ?2 # new
869 case OO_New: Out << "?2"; break;
870 // <operator-name> ::= ?3 # delete
871 case OO_Delete: Out << "?3"; break;
872 // <operator-name> ::= ?4 # =
873 case OO_Equal: Out << "?4"; break;
874 // <operator-name> ::= ?5 # >>
875 case OO_GreaterGreater: Out << "?5"; break;
876 // <operator-name> ::= ?6 # <<
877 case OO_LessLess: Out << "?6"; break;
878 // <operator-name> ::= ?7 # !
879 case OO_Exclaim: Out << "?7"; break;
880 // <operator-name> ::= ?8 # ==
881 case OO_EqualEqual: Out << "?8"; break;
882 // <operator-name> ::= ?9 # !=
883 case OO_ExclaimEqual: Out << "?9"; break;
884 // <operator-name> ::= ?A # []
885 case OO_Subscript: Out << "?A"; break;
886 // ?B # conversion
887 // <operator-name> ::= ?C # ->
888 case OO_Arrow: Out << "?C"; break;
889 // <operator-name> ::= ?D # *
890 case OO_Star: Out << "?D"; break;
891 // <operator-name> ::= ?E # ++
892 case OO_PlusPlus: Out << "?E"; break;
893 // <operator-name> ::= ?F # --
894 case OO_MinusMinus: Out << "?F"; break;
895 // <operator-name> ::= ?G # -
896 case OO_Minus: Out << "?G"; break;
897 // <operator-name> ::= ?H # +
898 case OO_Plus: Out << "?H"; break;
899 // <operator-name> ::= ?I # &
900 case OO_Amp: Out << "?I"; break;
901 // <operator-name> ::= ?J # ->*
902 case OO_ArrowStar: Out << "?J"; break;
903 // <operator-name> ::= ?K # /
904 case OO_Slash: Out << "?K"; break;
905 // <operator-name> ::= ?L # %
906 case OO_Percent: Out << "?L"; break;
907 // <operator-name> ::= ?M # <
908 case OO_Less: Out << "?M"; break;
909 // <operator-name> ::= ?N # <=
910 case OO_LessEqual: Out << "?N"; break;
911 // <operator-name> ::= ?O # >
912 case OO_Greater: Out << "?O"; break;
913 // <operator-name> ::= ?P # >=
914 case OO_GreaterEqual: Out << "?P"; break;
915 // <operator-name> ::= ?Q # ,
916 case OO_Comma: Out << "?Q"; break;
917 // <operator-name> ::= ?R # ()
918 case OO_Call: Out << "?R"; break;
919 // <operator-name> ::= ?S # ~
920 case OO_Tilde: Out << "?S"; break;
921 // <operator-name> ::= ?T # ^
922 case OO_Caret: Out << "?T"; break;
923 // <operator-name> ::= ?U # |
924 case OO_Pipe: Out << "?U"; break;
925 // <operator-name> ::= ?V # &&
926 case OO_AmpAmp: Out << "?V"; break;
927 // <operator-name> ::= ?W # ||
928 case OO_PipePipe: Out << "?W"; break;
929 // <operator-name> ::= ?X # *=
930 case OO_StarEqual: Out << "?X"; break;
931 // <operator-name> ::= ?Y # +=
932 case OO_PlusEqual: Out << "?Y"; break;
933 // <operator-name> ::= ?Z # -=
934 case OO_MinusEqual: Out << "?Z"; break;
935 // <operator-name> ::= ?_0 # /=
936 case OO_SlashEqual: Out << "?_0"; break;
937 // <operator-name> ::= ?_1 # %=
938 case OO_PercentEqual: Out << "?_1"; break;
939 // <operator-name> ::= ?_2 # >>=
940 case OO_GreaterGreaterEqual: Out << "?_2"; break;
941 // <operator-name> ::= ?_3 # <<=
942 case OO_LessLessEqual: Out << "?_3"; break;
943 // <operator-name> ::= ?_4 # &=
944 case OO_AmpEqual: Out << "?_4"; break;
945 // <operator-name> ::= ?_5 # |=
946 case OO_PipeEqual: Out << "?_5"; break;
947 // <operator-name> ::= ?_6 # ^=
948 case OO_CaretEqual: Out << "?_6"; break;
949 // ?_7 # vftable
950 // ?_8 # vbtable
951 // ?_9 # vcall
952 // ?_A # typeof
953 // ?_B # local static guard
954 // ?_C # string
955 // ?_D # vbase destructor
956 // ?_E # vector deleting destructor
957 // ?_F # default constructor closure
958 // ?_G # scalar deleting destructor
959 // ?_H # vector constructor iterator
960 // ?_I # vector destructor iterator
961 // ?_J # vector vbase constructor iterator
962 // ?_K # virtual displacement map
963 // ?_L # eh vector constructor iterator
964 // ?_M # eh vector destructor iterator
965 // ?_N # eh vector vbase constructor iterator
966 // ?_O # copy constructor closure
967 // ?_P<name> # udt returning <name>
968 // ?_Q # <unknown>
969 // ?_R0 # RTTI Type Descriptor
970 // ?_R1 # RTTI Base Class Descriptor at (a,b,c,d)
971 // ?_R2 # RTTI Base Class Array
972 // ?_R3 # RTTI Class Hierarchy Descriptor
973 // ?_R4 # RTTI Complete Object Locator
974 // ?_S # local vftable
975 // ?_T # local vftable constructor closure
976 // <operator-name> ::= ?_U # new[]
977 case OO_Array_New: Out << "?_U"; break;
978 // <operator-name> ::= ?_V # delete[]
979 case OO_Array_Delete: Out << "?_V"; break;
980
981 case OO_Conditional: {
982 DiagnosticsEngine &Diags = Context.getDiags();
983 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
984 "cannot mangle this conditional operator yet");
985 Diags.Report(Loc, DiagID);
986 break;
987 }
988
989 case OO_None:
990 case NUM_OVERLOADED_OPERATORS:
991 llvm_unreachable("Not an overloaded operator");
992 }
993 }
994
mangleSourceName(StringRef Name)995 void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) {
996 // <source name> ::= <identifier> @
997 BackRefMap::iterator Found;
998 if (NameBackReferences.size() < 10) {
999 size_t Size = NameBackReferences.size();
1000 bool Inserted;
1001 std::tie(Found, Inserted) =
1002 NameBackReferences.insert(std::make_pair(Name, Size));
1003 if (Inserted)
1004 Found = NameBackReferences.end();
1005 } else {
1006 Found = NameBackReferences.find(Name);
1007 }
1008
1009 if (Found == NameBackReferences.end()) {
1010 Out << Name << '@';
1011 } else {
1012 Out << Found->second;
1013 }
1014 }
1015
mangleObjCMethodName(const ObjCMethodDecl * MD)1016 void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1017 Context.mangleObjCMethodName(MD, Out);
1018 }
1019
mangleTemplateInstantiationName(const TemplateDecl * TD,const TemplateArgumentList & TemplateArgs)1020 void MicrosoftCXXNameMangler::mangleTemplateInstantiationName(
1021 const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
1022 // <template-name> ::= <unscoped-template-name> <template-args>
1023 // ::= <substitution>
1024 // Always start with the unqualified name.
1025
1026 // Templates have their own context for back references.
1027 ArgBackRefMap OuterArgsContext;
1028 BackRefMap OuterTemplateContext;
1029 NameBackReferences.swap(OuterTemplateContext);
1030 TypeBackReferences.swap(OuterArgsContext);
1031
1032 mangleUnscopedTemplateName(TD);
1033 mangleTemplateArgs(TD, TemplateArgs);
1034
1035 // Restore the previous back reference contexts.
1036 NameBackReferences.swap(OuterTemplateContext);
1037 TypeBackReferences.swap(OuterArgsContext);
1038 }
1039
1040 void
mangleUnscopedTemplateName(const TemplateDecl * TD)1041 MicrosoftCXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *TD) {
1042 // <unscoped-template-name> ::= ?$ <unqualified-name>
1043 Out << "?$";
1044 mangleUnqualifiedName(TD);
1045 }
1046
mangleIntegerLiteral(const llvm::APSInt & Value,bool IsBoolean)1047 void MicrosoftCXXNameMangler::mangleIntegerLiteral(const llvm::APSInt &Value,
1048 bool IsBoolean) {
1049 // <integer-literal> ::= $0 <number>
1050 Out << "$0";
1051 // Make sure booleans are encoded as 0/1.
1052 if (IsBoolean && Value.getBoolValue())
1053 mangleNumber(1);
1054 else
1055 mangleNumber(Value.getSExtValue());
1056 }
1057
mangleExpression(const Expr * E)1058 void MicrosoftCXXNameMangler::mangleExpression(const Expr *E) {
1059 // See if this is a constant expression.
1060 llvm::APSInt Value;
1061 if (E->isIntegerConstantExpr(Value, Context.getASTContext())) {
1062 mangleIntegerLiteral(Value, E->getType()->isBooleanType());
1063 return;
1064 }
1065
1066 // Look through no-op casts like template parameter substitutions.
1067 E = E->IgnoreParenNoopCasts(Context.getASTContext());
1068
1069 const CXXUuidofExpr *UE = nullptr;
1070 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1071 if (UO->getOpcode() == UO_AddrOf)
1072 UE = dyn_cast<CXXUuidofExpr>(UO->getSubExpr());
1073 } else
1074 UE = dyn_cast<CXXUuidofExpr>(E);
1075
1076 if (UE) {
1077 // This CXXUuidofExpr is mangled as-if it were actually a VarDecl from
1078 // const __s_GUID _GUID_{lower case UUID with underscores}
1079 StringRef Uuid = UE->getUuidAsStringRef(Context.getASTContext());
1080 std::string Name = "_GUID_" + Uuid.lower();
1081 std::replace(Name.begin(), Name.end(), '-', '_');
1082
1083 // If we had to peek through an address-of operator, treat this like we are
1084 // dealing with a pointer type. Otherwise, treat it like a const reference.
1085 //
1086 // N.B. This matches up with the handling of TemplateArgument::Declaration
1087 // in mangleTemplateArg
1088 if (UE == E)
1089 Out << "$E?";
1090 else
1091 Out << "$1?";
1092 Out << Name << "@@3U__s_GUID@@B";
1093 return;
1094 }
1095
1096 // As bad as this diagnostic is, it's better than crashing.
1097 DiagnosticsEngine &Diags = Context.getDiags();
1098 unsigned DiagID = Diags.getCustomDiagID(
1099 DiagnosticsEngine::Error, "cannot yet mangle expression type %0");
1100 Diags.Report(E->getExprLoc(), DiagID) << E->getStmtClassName()
1101 << E->getSourceRange();
1102 }
1103
mangleTemplateArgs(const TemplateDecl * TD,const TemplateArgumentList & TemplateArgs)1104 void MicrosoftCXXNameMangler::mangleTemplateArgs(
1105 const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
1106 // <template-args> ::= <template-arg>+
1107 for (const TemplateArgument &TA : TemplateArgs.asArray())
1108 mangleTemplateArg(TD, TA);
1109 }
1110
mangleTemplateArg(const TemplateDecl * TD,const TemplateArgument & TA)1111 void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD,
1112 const TemplateArgument &TA) {
1113 // <template-arg> ::= <type>
1114 // ::= <integer-literal>
1115 // ::= <member-data-pointer>
1116 // ::= <member-function-pointer>
1117 // ::= $E? <name> <type-encoding>
1118 // ::= $1? <name> <type-encoding>
1119 // ::= $0A@
1120 // ::= <template-args>
1121
1122 switch (TA.getKind()) {
1123 case TemplateArgument::Null:
1124 llvm_unreachable("Can't mangle null template arguments!");
1125 case TemplateArgument::TemplateExpansion:
1126 llvm_unreachable("Can't mangle template expansion arguments!");
1127 case TemplateArgument::Type: {
1128 QualType T = TA.getAsType();
1129 mangleType(T, SourceRange(), QMM_Escape);
1130 break;
1131 }
1132 case TemplateArgument::Declaration: {
1133 const NamedDecl *ND = cast<NamedDecl>(TA.getAsDecl());
1134 if (isa<FieldDecl>(ND) || isa<IndirectFieldDecl>(ND)) {
1135 mangleMemberDataPointer(
1136 cast<CXXRecordDecl>(ND->getDeclContext())->getMostRecentDecl(),
1137 cast<ValueDecl>(ND));
1138 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1139 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1140 if (MD && MD->isInstance())
1141 mangleMemberFunctionPointer(MD->getParent()->getMostRecentDecl(), MD);
1142 else
1143 mangle(FD, "$1?");
1144 } else {
1145 mangle(ND, TA.isDeclForReferenceParam() ? "$E?" : "$1?");
1146 }
1147 break;
1148 }
1149 case TemplateArgument::Integral:
1150 mangleIntegerLiteral(TA.getAsIntegral(),
1151 TA.getIntegralType()->isBooleanType());
1152 break;
1153 case TemplateArgument::NullPtr: {
1154 QualType T = TA.getNullPtrType();
1155 if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) {
1156 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
1157 if (MPT->isMemberFunctionPointerType() && isa<ClassTemplateDecl>(TD)) {
1158 mangleMemberFunctionPointer(RD, nullptr);
1159 return;
1160 }
1161 if (MPT->isMemberDataPointer()) {
1162 mangleMemberDataPointer(RD, nullptr);
1163 return;
1164 }
1165 }
1166 Out << "$0A@";
1167 break;
1168 }
1169 case TemplateArgument::Expression:
1170 mangleExpression(TA.getAsExpr());
1171 break;
1172 case TemplateArgument::Pack: {
1173 ArrayRef<TemplateArgument> TemplateArgs = TA.getPackAsArray();
1174 if (TemplateArgs.empty()) {
1175 Out << "$S";
1176 } else {
1177 for (const TemplateArgument &PA : TemplateArgs)
1178 mangleTemplateArg(TD, PA);
1179 }
1180 break;
1181 }
1182 case TemplateArgument::Template:
1183 mangleType(cast<TagDecl>(
1184 TA.getAsTemplate().getAsTemplateDecl()->getTemplatedDecl()));
1185 break;
1186 }
1187 }
1188
mangleQualifiers(Qualifiers Quals,bool IsMember)1189 void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals,
1190 bool IsMember) {
1191 // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers>
1192 // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only);
1193 // 'I' means __restrict (32/64-bit).
1194 // Note that the MSVC __restrict keyword isn't the same as the C99 restrict
1195 // keyword!
1196 // <base-cvr-qualifiers> ::= A # near
1197 // ::= B # near const
1198 // ::= C # near volatile
1199 // ::= D # near const volatile
1200 // ::= E # far (16-bit)
1201 // ::= F # far const (16-bit)
1202 // ::= G # far volatile (16-bit)
1203 // ::= H # far const volatile (16-bit)
1204 // ::= I # huge (16-bit)
1205 // ::= J # huge const (16-bit)
1206 // ::= K # huge volatile (16-bit)
1207 // ::= L # huge const volatile (16-bit)
1208 // ::= M <basis> # based
1209 // ::= N <basis> # based const
1210 // ::= O <basis> # based volatile
1211 // ::= P <basis> # based const volatile
1212 // ::= Q # near member
1213 // ::= R # near const member
1214 // ::= S # near volatile member
1215 // ::= T # near const volatile member
1216 // ::= U # far member (16-bit)
1217 // ::= V # far const member (16-bit)
1218 // ::= W # far volatile member (16-bit)
1219 // ::= X # far const volatile member (16-bit)
1220 // ::= Y # huge member (16-bit)
1221 // ::= Z # huge const member (16-bit)
1222 // ::= 0 # huge volatile member (16-bit)
1223 // ::= 1 # huge const volatile member (16-bit)
1224 // ::= 2 <basis> # based member
1225 // ::= 3 <basis> # based const member
1226 // ::= 4 <basis> # based volatile member
1227 // ::= 5 <basis> # based const volatile member
1228 // ::= 6 # near function (pointers only)
1229 // ::= 7 # far function (pointers only)
1230 // ::= 8 # near method (pointers only)
1231 // ::= 9 # far method (pointers only)
1232 // ::= _A <basis> # based function (pointers only)
1233 // ::= _B <basis> # based function (far?) (pointers only)
1234 // ::= _C <basis> # based method (pointers only)
1235 // ::= _D <basis> # based method (far?) (pointers only)
1236 // ::= _E # block (Clang)
1237 // <basis> ::= 0 # __based(void)
1238 // ::= 1 # __based(segment)?
1239 // ::= 2 <name> # __based(name)
1240 // ::= 3 # ?
1241 // ::= 4 # ?
1242 // ::= 5 # not really based
1243 bool HasConst = Quals.hasConst(),
1244 HasVolatile = Quals.hasVolatile();
1245
1246 if (!IsMember) {
1247 if (HasConst && HasVolatile) {
1248 Out << 'D';
1249 } else if (HasVolatile) {
1250 Out << 'C';
1251 } else if (HasConst) {
1252 Out << 'B';
1253 } else {
1254 Out << 'A';
1255 }
1256 } else {
1257 if (HasConst && HasVolatile) {
1258 Out << 'T';
1259 } else if (HasVolatile) {
1260 Out << 'S';
1261 } else if (HasConst) {
1262 Out << 'R';
1263 } else {
1264 Out << 'Q';
1265 }
1266 }
1267
1268 // FIXME: For now, just drop all extension qualifiers on the floor.
1269 }
1270
1271 void
mangleRefQualifier(RefQualifierKind RefQualifier)1272 MicrosoftCXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1273 // <ref-qualifier> ::= G # lvalue reference
1274 // ::= H # rvalue-reference
1275 switch (RefQualifier) {
1276 case RQ_None:
1277 break;
1278
1279 case RQ_LValue:
1280 Out << 'G';
1281 break;
1282
1283 case RQ_RValue:
1284 Out << 'H';
1285 break;
1286 }
1287 }
1288
1289 void
manglePointerExtQualifiers(Qualifiers Quals,const Type * PointeeType)1290 MicrosoftCXXNameMangler::manglePointerExtQualifiers(Qualifiers Quals,
1291 const Type *PointeeType) {
1292 bool HasRestrict = Quals.hasRestrict();
1293 if (PointersAre64Bit && (!PointeeType || !PointeeType->isFunctionType()))
1294 Out << 'E';
1295
1296 if (HasRestrict)
1297 Out << 'I';
1298 }
1299
manglePointerCVQualifiers(Qualifiers Quals)1300 void MicrosoftCXXNameMangler::manglePointerCVQualifiers(Qualifiers Quals) {
1301 // <pointer-cv-qualifiers> ::= P # no qualifiers
1302 // ::= Q # const
1303 // ::= R # volatile
1304 // ::= S # const volatile
1305 bool HasConst = Quals.hasConst(),
1306 HasVolatile = Quals.hasVolatile();
1307
1308 if (HasConst && HasVolatile) {
1309 Out << 'S';
1310 } else if (HasVolatile) {
1311 Out << 'R';
1312 } else if (HasConst) {
1313 Out << 'Q';
1314 } else {
1315 Out << 'P';
1316 }
1317 }
1318
mangleArgumentType(QualType T,SourceRange Range)1319 void MicrosoftCXXNameMangler::mangleArgumentType(QualType T,
1320 SourceRange Range) {
1321 // MSVC will backreference two canonically equivalent types that have slightly
1322 // different manglings when mangled alone.
1323
1324 // Decayed types do not match up with non-decayed versions of the same type.
1325 //
1326 // e.g.
1327 // void (*x)(void) will not form a backreference with void x(void)
1328 void *TypePtr;
1329 if (const DecayedType *DT = T->getAs<DecayedType>()) {
1330 TypePtr = DT->getOriginalType().getCanonicalType().getAsOpaquePtr();
1331 // If the original parameter was textually written as an array,
1332 // instead treat the decayed parameter like it's const.
1333 //
1334 // e.g.
1335 // int [] -> int * const
1336 if (DT->getOriginalType()->isArrayType())
1337 T = T.withConst();
1338 } else
1339 TypePtr = T.getCanonicalType().getAsOpaquePtr();
1340
1341 ArgBackRefMap::iterator Found = TypeBackReferences.find(TypePtr);
1342
1343 if (Found == TypeBackReferences.end()) {
1344 size_t OutSizeBefore = Out.GetNumBytesInBuffer();
1345
1346 mangleType(T, Range, QMM_Drop);
1347
1348 // See if it's worth creating a back reference.
1349 // Only types longer than 1 character are considered
1350 // and only 10 back references slots are available:
1351 bool LongerThanOneChar = (Out.GetNumBytesInBuffer() - OutSizeBefore > 1);
1352 if (LongerThanOneChar && TypeBackReferences.size() < 10) {
1353 size_t Size = TypeBackReferences.size();
1354 TypeBackReferences[TypePtr] = Size;
1355 }
1356 } else {
1357 Out << Found->second;
1358 }
1359 }
1360
mangleType(QualType T,SourceRange Range,QualifierMangleMode QMM)1361 void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range,
1362 QualifierMangleMode QMM) {
1363 // Don't use the canonical types. MSVC includes things like 'const' on
1364 // pointer arguments to function pointers that canonicalization strips away.
1365 T = T.getDesugaredType(getASTContext());
1366 Qualifiers Quals = T.getLocalQualifiers();
1367 if (const ArrayType *AT = getASTContext().getAsArrayType(T)) {
1368 // If there were any Quals, getAsArrayType() pushed them onto the array
1369 // element type.
1370 if (QMM == QMM_Mangle)
1371 Out << 'A';
1372 else if (QMM == QMM_Escape || QMM == QMM_Result)
1373 Out << "$$B";
1374 mangleArrayType(AT);
1375 return;
1376 }
1377
1378 bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() ||
1379 T->isBlockPointerType();
1380
1381 switch (QMM) {
1382 case QMM_Drop:
1383 break;
1384 case QMM_Mangle:
1385 if (const FunctionType *FT = dyn_cast<FunctionType>(T)) {
1386 Out << '6';
1387 mangleFunctionType(FT);
1388 return;
1389 }
1390 mangleQualifiers(Quals, false);
1391 break;
1392 case QMM_Escape:
1393 if (!IsPointer && Quals) {
1394 Out << "$$C";
1395 mangleQualifiers(Quals, false);
1396 }
1397 break;
1398 case QMM_Result:
1399 if ((!IsPointer && Quals) || isa<TagType>(T)) {
1400 Out << '?';
1401 mangleQualifiers(Quals, false);
1402 }
1403 break;
1404 }
1405
1406 // We have to mangle these now, while we still have enough information.
1407 if (IsPointer) {
1408 manglePointerCVQualifiers(Quals);
1409 manglePointerExtQualifiers(Quals, T->getPointeeType().getTypePtr());
1410 }
1411 const Type *ty = T.getTypePtr();
1412
1413 switch (ty->getTypeClass()) {
1414 #define ABSTRACT_TYPE(CLASS, PARENT)
1415 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
1416 case Type::CLASS: \
1417 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1418 return;
1419 #define TYPE(CLASS, PARENT) \
1420 case Type::CLASS: \
1421 mangleType(cast<CLASS##Type>(ty), Range); \
1422 break;
1423 #include "clang/AST/TypeNodes.def"
1424 #undef ABSTRACT_TYPE
1425 #undef NON_CANONICAL_TYPE
1426 #undef TYPE
1427 }
1428 }
1429
mangleType(const BuiltinType * T,SourceRange Range)1430 void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T,
1431 SourceRange Range) {
1432 // <type> ::= <builtin-type>
1433 // <builtin-type> ::= X # void
1434 // ::= C # signed char
1435 // ::= D # char
1436 // ::= E # unsigned char
1437 // ::= F # short
1438 // ::= G # unsigned short (or wchar_t if it's not a builtin)
1439 // ::= H # int
1440 // ::= I # unsigned int
1441 // ::= J # long
1442 // ::= K # unsigned long
1443 // L # <none>
1444 // ::= M # float
1445 // ::= N # double
1446 // ::= O # long double (__float80 is mangled differently)
1447 // ::= _J # long long, __int64
1448 // ::= _K # unsigned long long, __int64
1449 // ::= _L # __int128
1450 // ::= _M # unsigned __int128
1451 // ::= _N # bool
1452 // _O # <array in parameter>
1453 // ::= _T # __float80 (Intel)
1454 // ::= _W # wchar_t
1455 // ::= _Z # __float80 (Digital Mars)
1456 switch (T->getKind()) {
1457 case BuiltinType::Void: Out << 'X'; break;
1458 case BuiltinType::SChar: Out << 'C'; break;
1459 case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'D'; break;
1460 case BuiltinType::UChar: Out << 'E'; break;
1461 case BuiltinType::Short: Out << 'F'; break;
1462 case BuiltinType::UShort: Out << 'G'; break;
1463 case BuiltinType::Int: Out << 'H'; break;
1464 case BuiltinType::UInt: Out << 'I'; break;
1465 case BuiltinType::Long: Out << 'J'; break;
1466 case BuiltinType::ULong: Out << 'K'; break;
1467 case BuiltinType::Float: Out << 'M'; break;
1468 case BuiltinType::Double: Out << 'N'; break;
1469 // TODO: Determine size and mangle accordingly
1470 case BuiltinType::LongDouble: Out << 'O'; break;
1471 case BuiltinType::LongLong: Out << "_J"; break;
1472 case BuiltinType::ULongLong: Out << "_K"; break;
1473 case BuiltinType::Int128: Out << "_L"; break;
1474 case BuiltinType::UInt128: Out << "_M"; break;
1475 case BuiltinType::Bool: Out << "_N"; break;
1476 case BuiltinType::WChar_S:
1477 case BuiltinType::WChar_U: Out << "_W"; break;
1478
1479 #define BUILTIN_TYPE(Id, SingletonId)
1480 #define PLACEHOLDER_TYPE(Id, SingletonId) \
1481 case BuiltinType::Id:
1482 #include "clang/AST/BuiltinTypes.def"
1483 case BuiltinType::Dependent:
1484 llvm_unreachable("placeholder types shouldn't get to name mangling");
1485
1486 case BuiltinType::ObjCId: Out << "PAUobjc_object@@"; break;
1487 case BuiltinType::ObjCClass: Out << "PAUobjc_class@@"; break;
1488 case BuiltinType::ObjCSel: Out << "PAUobjc_selector@@"; break;
1489
1490 case BuiltinType::OCLImage1d: Out << "PAUocl_image1d@@"; break;
1491 case BuiltinType::OCLImage1dArray: Out << "PAUocl_image1darray@@"; break;
1492 case BuiltinType::OCLImage1dBuffer: Out << "PAUocl_image1dbuffer@@"; break;
1493 case BuiltinType::OCLImage2d: Out << "PAUocl_image2d@@"; break;
1494 case BuiltinType::OCLImage2dArray: Out << "PAUocl_image2darray@@"; break;
1495 case BuiltinType::OCLImage3d: Out << "PAUocl_image3d@@"; break;
1496 case BuiltinType::OCLSampler: Out << "PAUocl_sampler@@"; break;
1497 case BuiltinType::OCLEvent: Out << "PAUocl_event@@"; break;
1498
1499 case BuiltinType::NullPtr: Out << "$$T"; break;
1500
1501 case BuiltinType::Char16:
1502 case BuiltinType::Char32:
1503 case BuiltinType::Half: {
1504 DiagnosticsEngine &Diags = Context.getDiags();
1505 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1506 "cannot mangle this built-in %0 type yet");
1507 Diags.Report(Range.getBegin(), DiagID)
1508 << T->getName(Context.getASTContext().getPrintingPolicy())
1509 << Range;
1510 break;
1511 }
1512 }
1513 }
1514
1515 // <type> ::= <function-type>
mangleType(const FunctionProtoType * T,SourceRange)1516 void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T,
1517 SourceRange) {
1518 // Structors only appear in decls, so at this point we know it's not a
1519 // structor type.
1520 // FIXME: This may not be lambda-friendly.
1521 Out << "$$A6";
1522 mangleFunctionType(T);
1523 }
mangleType(const FunctionNoProtoType * T,SourceRange)1524 void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T,
1525 SourceRange) {
1526 llvm_unreachable("Can't mangle K&R function prototypes");
1527 }
1528
mangleFunctionType(const FunctionType * T,const FunctionDecl * D,bool ForceInstMethod)1529 void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T,
1530 const FunctionDecl *D,
1531 bool ForceInstMethod) {
1532 // <function-type> ::= <this-cvr-qualifiers> <calling-convention>
1533 // <return-type> <argument-list> <throw-spec>
1534 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1535
1536 SourceRange Range;
1537 if (D) Range = D->getSourceRange();
1538
1539 bool IsStructor = false, IsInstMethod = ForceInstMethod;
1540 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(D)) {
1541 if (MD->isInstance())
1542 IsInstMethod = true;
1543 if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))
1544 IsStructor = true;
1545 }
1546
1547 // If this is a C++ instance method, mangle the CVR qualifiers for the
1548 // this pointer.
1549 if (IsInstMethod) {
1550 Qualifiers Quals = Qualifiers::fromCVRMask(Proto->getTypeQuals());
1551 manglePointerExtQualifiers(Quals, nullptr);
1552 mangleRefQualifier(Proto->getRefQualifier());
1553 mangleQualifiers(Quals, false);
1554 }
1555
1556 mangleCallingConvention(T);
1557
1558 // <return-type> ::= <type>
1559 // ::= @ # structors (they have no declared return type)
1560 if (IsStructor) {
1561 if (isa<CXXDestructorDecl>(D) && D == Structor &&
1562 StructorType == Dtor_Deleting) {
1563 // The scalar deleting destructor takes an extra int argument.
1564 // However, the FunctionType generated has 0 arguments.
1565 // FIXME: This is a temporary hack.
1566 // Maybe should fix the FunctionType creation instead?
1567 Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z");
1568 return;
1569 }
1570 Out << '@';
1571 } else {
1572 QualType ResultType = Proto->getReturnType();
1573 if (const auto *AT =
1574 dyn_cast_or_null<AutoType>(ResultType->getContainedAutoType())) {
1575 Out << '?';
1576 mangleQualifiers(ResultType.getLocalQualifiers(), /*IsMember=*/false);
1577 Out << '?';
1578 mangleSourceName(AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>");
1579 Out << '@';
1580 } else {
1581 if (ResultType->isVoidType())
1582 ResultType = ResultType.getUnqualifiedType();
1583 mangleType(ResultType, Range, QMM_Result);
1584 }
1585 }
1586
1587 // <argument-list> ::= X # void
1588 // ::= <type>+ @
1589 // ::= <type>* Z # varargs
1590 if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
1591 Out << 'X';
1592 } else {
1593 // Happens for function pointer type arguments for example.
1594 for (const QualType Arg : Proto->param_types())
1595 mangleArgumentType(Arg, Range);
1596 // <builtin-type> ::= Z # ellipsis
1597 if (Proto->isVariadic())
1598 Out << 'Z';
1599 else
1600 Out << '@';
1601 }
1602
1603 mangleThrowSpecification(Proto);
1604 }
1605
mangleFunctionClass(const FunctionDecl * FD)1606 void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) {
1607 // <function-class> ::= <member-function> E? # E designates a 64-bit 'this'
1608 // # pointer. in 64-bit mode *all*
1609 // # 'this' pointers are 64-bit.
1610 // ::= <global-function>
1611 // <member-function> ::= A # private: near
1612 // ::= B # private: far
1613 // ::= C # private: static near
1614 // ::= D # private: static far
1615 // ::= E # private: virtual near
1616 // ::= F # private: virtual far
1617 // ::= I # protected: near
1618 // ::= J # protected: far
1619 // ::= K # protected: static near
1620 // ::= L # protected: static far
1621 // ::= M # protected: virtual near
1622 // ::= N # protected: virtual far
1623 // ::= Q # public: near
1624 // ::= R # public: far
1625 // ::= S # public: static near
1626 // ::= T # public: static far
1627 // ::= U # public: virtual near
1628 // ::= V # public: virtual far
1629 // <global-function> ::= Y # global near
1630 // ::= Z # global far
1631 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1632 switch (MD->getAccess()) {
1633 case AS_none:
1634 llvm_unreachable("Unsupported access specifier");
1635 case AS_private:
1636 if (MD->isStatic())
1637 Out << 'C';
1638 else if (MD->isVirtual())
1639 Out << 'E';
1640 else
1641 Out << 'A';
1642 break;
1643 case AS_protected:
1644 if (MD->isStatic())
1645 Out << 'K';
1646 else if (MD->isVirtual())
1647 Out << 'M';
1648 else
1649 Out << 'I';
1650 break;
1651 case AS_public:
1652 if (MD->isStatic())
1653 Out << 'S';
1654 else if (MD->isVirtual())
1655 Out << 'U';
1656 else
1657 Out << 'Q';
1658 }
1659 } else
1660 Out << 'Y';
1661 }
mangleCallingConvention(const FunctionType * T)1662 void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) {
1663 // <calling-convention> ::= A # __cdecl
1664 // ::= B # __export __cdecl
1665 // ::= C # __pascal
1666 // ::= D # __export __pascal
1667 // ::= E # __thiscall
1668 // ::= F # __export __thiscall
1669 // ::= G # __stdcall
1670 // ::= H # __export __stdcall
1671 // ::= I # __fastcall
1672 // ::= J # __export __fastcall
1673 // The 'export' calling conventions are from a bygone era
1674 // (*cough*Win16*cough*) when functions were declared for export with
1675 // that keyword. (It didn't actually export them, it just made them so
1676 // that they could be in a DLL and somebody from another module could call
1677 // them.)
1678 CallingConv CC = T->getCallConv();
1679 switch (CC) {
1680 default:
1681 llvm_unreachable("Unsupported CC for mangling");
1682 case CC_X86_64Win64:
1683 case CC_X86_64SysV:
1684 case CC_C: Out << 'A'; break;
1685 case CC_X86Pascal: Out << 'C'; break;
1686 case CC_X86ThisCall: Out << 'E'; break;
1687 case CC_X86StdCall: Out << 'G'; break;
1688 case CC_X86FastCall: Out << 'I'; break;
1689 }
1690 }
mangleThrowSpecification(const FunctionProtoType * FT)1691 void MicrosoftCXXNameMangler::mangleThrowSpecification(
1692 const FunctionProtoType *FT) {
1693 // <throw-spec> ::= Z # throw(...) (default)
1694 // ::= @ # throw() or __declspec/__attribute__((nothrow))
1695 // ::= <type>+
1696 // NOTE: Since the Microsoft compiler ignores throw specifications, they are
1697 // all actually mangled as 'Z'. (They're ignored because their associated
1698 // functionality isn't implemented, and probably never will be.)
1699 Out << 'Z';
1700 }
1701
mangleType(const UnresolvedUsingType * T,SourceRange Range)1702 void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T,
1703 SourceRange Range) {
1704 // Probably should be mangled as a template instantiation; need to see what
1705 // VC does first.
1706 DiagnosticsEngine &Diags = Context.getDiags();
1707 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1708 "cannot mangle this unresolved dependent type yet");
1709 Diags.Report(Range.getBegin(), DiagID)
1710 << Range;
1711 }
1712
1713 // <type> ::= <union-type> | <struct-type> | <class-type> | <enum-type>
1714 // <union-type> ::= T <name>
1715 // <struct-type> ::= U <name>
1716 // <class-type> ::= V <name>
1717 // <enum-type> ::= W4 <name>
mangleType(const EnumType * T,SourceRange)1718 void MicrosoftCXXNameMangler::mangleType(const EnumType *T, SourceRange) {
1719 mangleType(cast<TagType>(T)->getDecl());
1720 }
mangleType(const RecordType * T,SourceRange)1721 void MicrosoftCXXNameMangler::mangleType(const RecordType *T, SourceRange) {
1722 mangleType(cast<TagType>(T)->getDecl());
1723 }
mangleType(const TagDecl * TD)1724 void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) {
1725 switch (TD->getTagKind()) {
1726 case TTK_Union:
1727 Out << 'T';
1728 break;
1729 case TTK_Struct:
1730 case TTK_Interface:
1731 Out << 'U';
1732 break;
1733 case TTK_Class:
1734 Out << 'V';
1735 break;
1736 case TTK_Enum:
1737 Out << "W4";
1738 break;
1739 }
1740 mangleName(TD);
1741 }
1742
1743 // <type> ::= <array-type>
1744 // <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
1745 // [Y <dimension-count> <dimension>+]
1746 // <element-type> # as global, E is never required
1747 // It's supposed to be the other way around, but for some strange reason, it
1748 // isn't. Today this behavior is retained for the sole purpose of backwards
1749 // compatibility.
mangleDecayedArrayType(const ArrayType * T)1750 void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) {
1751 // This isn't a recursive mangling, so now we have to do it all in this
1752 // one call.
1753 manglePointerCVQualifiers(T->getElementType().getQualifiers());
1754 mangleType(T->getElementType(), SourceRange());
1755 }
mangleType(const ConstantArrayType * T,SourceRange)1756 void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T,
1757 SourceRange) {
1758 llvm_unreachable("Should have been special cased");
1759 }
mangleType(const VariableArrayType * T,SourceRange)1760 void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T,
1761 SourceRange) {
1762 llvm_unreachable("Should have been special cased");
1763 }
mangleType(const DependentSizedArrayType * T,SourceRange)1764 void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T,
1765 SourceRange) {
1766 llvm_unreachable("Should have been special cased");
1767 }
mangleType(const IncompleteArrayType * T,SourceRange)1768 void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T,
1769 SourceRange) {
1770 llvm_unreachable("Should have been special cased");
1771 }
mangleArrayType(const ArrayType * T)1772 void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) {
1773 QualType ElementTy(T, 0);
1774 SmallVector<llvm::APInt, 3> Dimensions;
1775 for (;;) {
1776 if (const ConstantArrayType *CAT =
1777 getASTContext().getAsConstantArrayType(ElementTy)) {
1778 Dimensions.push_back(CAT->getSize());
1779 ElementTy = CAT->getElementType();
1780 } else if (ElementTy->isVariableArrayType()) {
1781 const VariableArrayType *VAT =
1782 getASTContext().getAsVariableArrayType(ElementTy);
1783 DiagnosticsEngine &Diags = Context.getDiags();
1784 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1785 "cannot mangle this variable-length array yet");
1786 Diags.Report(VAT->getSizeExpr()->getExprLoc(), DiagID)
1787 << VAT->getBracketsRange();
1788 return;
1789 } else if (ElementTy->isDependentSizedArrayType()) {
1790 // The dependent expression has to be folded into a constant (TODO).
1791 const DependentSizedArrayType *DSAT =
1792 getASTContext().getAsDependentSizedArrayType(ElementTy);
1793 DiagnosticsEngine &Diags = Context.getDiags();
1794 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1795 "cannot mangle this dependent-length array yet");
1796 Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID)
1797 << DSAT->getBracketsRange();
1798 return;
1799 } else if (const IncompleteArrayType *IAT =
1800 getASTContext().getAsIncompleteArrayType(ElementTy)) {
1801 Dimensions.push_back(llvm::APInt(32, 0));
1802 ElementTy = IAT->getElementType();
1803 }
1804 else break;
1805 }
1806 Out << 'Y';
1807 // <dimension-count> ::= <number> # number of extra dimensions
1808 mangleNumber(Dimensions.size());
1809 for (const llvm::APInt &Dimension : Dimensions)
1810 mangleNumber(Dimension.getLimitedValue());
1811 mangleType(ElementTy, SourceRange(), QMM_Escape);
1812 }
1813
1814 // <type> ::= <pointer-to-member-type>
1815 // <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
1816 // <class name> <type>
mangleType(const MemberPointerType * T,SourceRange Range)1817 void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T,
1818 SourceRange Range) {
1819 QualType PointeeType = T->getPointeeType();
1820 if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) {
1821 Out << '8';
1822 mangleName(T->getClass()->castAs<RecordType>()->getDecl());
1823 mangleFunctionType(FPT, nullptr, true);
1824 } else {
1825 mangleQualifiers(PointeeType.getQualifiers(), true);
1826 mangleName(T->getClass()->castAs<RecordType>()->getDecl());
1827 mangleType(PointeeType, Range, QMM_Drop);
1828 }
1829 }
1830
mangleType(const TemplateTypeParmType * T,SourceRange Range)1831 void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T,
1832 SourceRange Range) {
1833 DiagnosticsEngine &Diags = Context.getDiags();
1834 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1835 "cannot mangle this template type parameter type yet");
1836 Diags.Report(Range.getBegin(), DiagID)
1837 << Range;
1838 }
1839
mangleType(const SubstTemplateTypeParmPackType * T,SourceRange Range)1840 void MicrosoftCXXNameMangler::mangleType(
1841 const SubstTemplateTypeParmPackType *T,
1842 SourceRange Range) {
1843 DiagnosticsEngine &Diags = Context.getDiags();
1844 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1845 "cannot mangle this substituted parameter pack yet");
1846 Diags.Report(Range.getBegin(), DiagID)
1847 << Range;
1848 }
1849
1850 // <type> ::= <pointer-type>
1851 // <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type>
1852 // # the E is required for 64-bit non-static pointers
mangleType(const PointerType * T,SourceRange Range)1853 void MicrosoftCXXNameMangler::mangleType(const PointerType *T,
1854 SourceRange Range) {
1855 QualType PointeeTy = T->getPointeeType();
1856 mangleType(PointeeTy, Range);
1857 }
mangleType(const ObjCObjectPointerType * T,SourceRange Range)1858 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T,
1859 SourceRange Range) {
1860 // Object pointers never have qualifiers.
1861 Out << 'A';
1862 manglePointerExtQualifiers(Qualifiers(), T->getPointeeType().getTypePtr());
1863 mangleType(T->getPointeeType(), Range);
1864 }
1865
1866 // <type> ::= <reference-type>
1867 // <reference-type> ::= A E? <cvr-qualifiers> <type>
1868 // # the E is required for 64-bit non-static lvalue references
mangleType(const LValueReferenceType * T,SourceRange Range)1869 void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T,
1870 SourceRange Range) {
1871 Out << 'A';
1872 manglePointerExtQualifiers(Qualifiers(), T->getPointeeType().getTypePtr());
1873 mangleType(T->getPointeeType(), Range);
1874 }
1875
1876 // <type> ::= <r-value-reference-type>
1877 // <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type>
1878 // # the E is required for 64-bit non-static rvalue references
mangleType(const RValueReferenceType * T,SourceRange Range)1879 void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T,
1880 SourceRange Range) {
1881 Out << "$$Q";
1882 manglePointerExtQualifiers(Qualifiers(), T->getPointeeType().getTypePtr());
1883 mangleType(T->getPointeeType(), Range);
1884 }
1885
mangleType(const ComplexType * T,SourceRange Range)1886 void MicrosoftCXXNameMangler::mangleType(const ComplexType *T,
1887 SourceRange Range) {
1888 DiagnosticsEngine &Diags = Context.getDiags();
1889 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1890 "cannot mangle this complex number type yet");
1891 Diags.Report(Range.getBegin(), DiagID)
1892 << Range;
1893 }
1894
mangleType(const VectorType * T,SourceRange Range)1895 void MicrosoftCXXNameMangler::mangleType(const VectorType *T,
1896 SourceRange Range) {
1897 const BuiltinType *ET = T->getElementType()->getAs<BuiltinType>();
1898 assert(ET && "vectors with non-builtin elements are unsupported");
1899 uint64_t Width = getASTContext().getTypeSize(T);
1900 // Pattern match exactly the typedefs in our intrinsic headers. Anything that
1901 // doesn't match the Intel types uses a custom mangling below.
1902 bool IntelVector = true;
1903 if (Width == 64 && ET->getKind() == BuiltinType::LongLong) {
1904 Out << "T__m64";
1905 } else if (Width == 128 || Width == 256) {
1906 if (ET->getKind() == BuiltinType::Float)
1907 Out << "T__m" << Width;
1908 else if (ET->getKind() == BuiltinType::LongLong)
1909 Out << "T__m" << Width << 'i';
1910 else if (ET->getKind() == BuiltinType::Double)
1911 Out << "U__m" << Width << 'd';
1912 else
1913 IntelVector = false;
1914 } else {
1915 IntelVector = false;
1916 }
1917
1918 if (!IntelVector) {
1919 // The MS ABI doesn't have a special mangling for vector types, so we define
1920 // our own mangling to handle uses of __vector_size__ on user-specified
1921 // types, and for extensions like __v4sf.
1922 Out << "T__clang_vec" << T->getNumElements() << '_';
1923 mangleType(ET, Range);
1924 }
1925
1926 Out << "@@";
1927 }
1928
mangleType(const ExtVectorType * T,SourceRange Range)1929 void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T,
1930 SourceRange Range) {
1931 DiagnosticsEngine &Diags = Context.getDiags();
1932 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1933 "cannot mangle this extended vector type yet");
1934 Diags.Report(Range.getBegin(), DiagID)
1935 << Range;
1936 }
mangleType(const DependentSizedExtVectorType * T,SourceRange Range)1937 void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T,
1938 SourceRange Range) {
1939 DiagnosticsEngine &Diags = Context.getDiags();
1940 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1941 "cannot mangle this dependent-sized extended vector type yet");
1942 Diags.Report(Range.getBegin(), DiagID)
1943 << Range;
1944 }
1945
mangleType(const ObjCInterfaceType * T,SourceRange)1946 void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T,
1947 SourceRange) {
1948 // ObjC interfaces have structs underlying them.
1949 Out << 'U';
1950 mangleName(T->getDecl());
1951 }
1952
mangleType(const ObjCObjectType * T,SourceRange Range)1953 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T,
1954 SourceRange Range) {
1955 // We don't allow overloading by different protocol qualification,
1956 // so mangling them isn't necessary.
1957 mangleType(T->getBaseType(), Range);
1958 }
1959
mangleType(const BlockPointerType * T,SourceRange Range)1960 void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T,
1961 SourceRange Range) {
1962 Out << "_E";
1963
1964 QualType pointee = T->getPointeeType();
1965 mangleFunctionType(pointee->castAs<FunctionProtoType>());
1966 }
1967
mangleType(const InjectedClassNameType *,SourceRange)1968 void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *,
1969 SourceRange) {
1970 llvm_unreachable("Cannot mangle injected class name type.");
1971 }
1972
mangleType(const TemplateSpecializationType * T,SourceRange Range)1973 void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T,
1974 SourceRange Range) {
1975 DiagnosticsEngine &Diags = Context.getDiags();
1976 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1977 "cannot mangle this template specialization type yet");
1978 Diags.Report(Range.getBegin(), DiagID)
1979 << Range;
1980 }
1981
mangleType(const DependentNameType * T,SourceRange Range)1982 void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T,
1983 SourceRange Range) {
1984 DiagnosticsEngine &Diags = Context.getDiags();
1985 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1986 "cannot mangle this dependent name type yet");
1987 Diags.Report(Range.getBegin(), DiagID)
1988 << Range;
1989 }
1990
mangleType(const DependentTemplateSpecializationType * T,SourceRange Range)1991 void MicrosoftCXXNameMangler::mangleType(
1992 const DependentTemplateSpecializationType *T,
1993 SourceRange Range) {
1994 DiagnosticsEngine &Diags = Context.getDiags();
1995 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1996 "cannot mangle this dependent template specialization type yet");
1997 Diags.Report(Range.getBegin(), DiagID)
1998 << Range;
1999 }
2000
mangleType(const PackExpansionType * T,SourceRange Range)2001 void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T,
2002 SourceRange Range) {
2003 DiagnosticsEngine &Diags = Context.getDiags();
2004 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2005 "cannot mangle this pack expansion yet");
2006 Diags.Report(Range.getBegin(), DiagID)
2007 << Range;
2008 }
2009
mangleType(const TypeOfType * T,SourceRange Range)2010 void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T,
2011 SourceRange Range) {
2012 DiagnosticsEngine &Diags = Context.getDiags();
2013 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2014 "cannot mangle this typeof(type) yet");
2015 Diags.Report(Range.getBegin(), DiagID)
2016 << Range;
2017 }
2018
mangleType(const TypeOfExprType * T,SourceRange Range)2019 void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T,
2020 SourceRange Range) {
2021 DiagnosticsEngine &Diags = Context.getDiags();
2022 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2023 "cannot mangle this typeof(expression) yet");
2024 Diags.Report(Range.getBegin(), DiagID)
2025 << Range;
2026 }
2027
mangleType(const DecltypeType * T,SourceRange Range)2028 void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T,
2029 SourceRange Range) {
2030 DiagnosticsEngine &Diags = Context.getDiags();
2031 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2032 "cannot mangle this decltype() yet");
2033 Diags.Report(Range.getBegin(), DiagID)
2034 << Range;
2035 }
2036
mangleType(const UnaryTransformType * T,SourceRange Range)2037 void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T,
2038 SourceRange Range) {
2039 DiagnosticsEngine &Diags = Context.getDiags();
2040 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2041 "cannot mangle this unary transform type yet");
2042 Diags.Report(Range.getBegin(), DiagID)
2043 << Range;
2044 }
2045
mangleType(const AutoType * T,SourceRange Range)2046 void MicrosoftCXXNameMangler::mangleType(const AutoType *T, SourceRange Range) {
2047 assert(T->getDeducedType().isNull() && "expecting a dependent type!");
2048
2049 DiagnosticsEngine &Diags = Context.getDiags();
2050 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2051 "cannot mangle this 'auto' type yet");
2052 Diags.Report(Range.getBegin(), DiagID)
2053 << Range;
2054 }
2055
mangleType(const AtomicType * T,SourceRange Range)2056 void MicrosoftCXXNameMangler::mangleType(const AtomicType *T,
2057 SourceRange Range) {
2058 DiagnosticsEngine &Diags = Context.getDiags();
2059 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2060 "cannot mangle this C11 atomic type yet");
2061 Diags.Report(Range.getBegin(), DiagID)
2062 << Range;
2063 }
2064
mangleCXXName(const NamedDecl * D,raw_ostream & Out)2065 void MicrosoftMangleContextImpl::mangleCXXName(const NamedDecl *D,
2066 raw_ostream &Out) {
2067 assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
2068 "Invalid mangleName() call, argument is not a variable or function!");
2069 assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
2070 "Invalid mangleName() call on 'structor decl!");
2071
2072 PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
2073 getASTContext().getSourceManager(),
2074 "Mangling declaration");
2075
2076 MicrosoftCXXNameMangler Mangler(*this, Out);
2077 return Mangler.mangle(D);
2078 }
2079
2080 // <this-adjustment> ::= <no-adjustment> | <static-adjustment> |
2081 // <virtual-adjustment>
2082 // <no-adjustment> ::= A # private near
2083 // ::= B # private far
2084 // ::= I # protected near
2085 // ::= J # protected far
2086 // ::= Q # public near
2087 // ::= R # public far
2088 // <static-adjustment> ::= G <static-offset> # private near
2089 // ::= H <static-offset> # private far
2090 // ::= O <static-offset> # protected near
2091 // ::= P <static-offset> # protected far
2092 // ::= W <static-offset> # public near
2093 // ::= X <static-offset> # public far
2094 // <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near
2095 // ::= $1 <virtual-shift> <static-offset> # private far
2096 // ::= $2 <virtual-shift> <static-offset> # protected near
2097 // ::= $3 <virtual-shift> <static-offset> # protected far
2098 // ::= $4 <virtual-shift> <static-offset> # public near
2099 // ::= $5 <virtual-shift> <static-offset> # public far
2100 // <virtual-shift> ::= <vtordisp-shift> | <vtordispex-shift>
2101 // <vtordisp-shift> ::= <offset-to-vtordisp>
2102 // <vtordispex-shift> ::= <offset-to-vbptr> <vbase-offset-offset>
2103 // <offset-to-vtordisp>
mangleThunkThisAdjustment(const CXXMethodDecl * MD,const ThisAdjustment & Adjustment,MicrosoftCXXNameMangler & Mangler,raw_ostream & Out)2104 static void mangleThunkThisAdjustment(const CXXMethodDecl *MD,
2105 const ThisAdjustment &Adjustment,
2106 MicrosoftCXXNameMangler &Mangler,
2107 raw_ostream &Out) {
2108 if (!Adjustment.Virtual.isEmpty()) {
2109 Out << '$';
2110 char AccessSpec;
2111 switch (MD->getAccess()) {
2112 case AS_none:
2113 llvm_unreachable("Unsupported access specifier");
2114 case AS_private:
2115 AccessSpec = '0';
2116 break;
2117 case AS_protected:
2118 AccessSpec = '2';
2119 break;
2120 case AS_public:
2121 AccessSpec = '4';
2122 }
2123 if (Adjustment.Virtual.Microsoft.VBPtrOffset) {
2124 Out << 'R' << AccessSpec;
2125 Mangler.mangleNumber(
2126 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset));
2127 Mangler.mangleNumber(
2128 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset));
2129 Mangler.mangleNumber(
2130 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
2131 Mangler.mangleNumber(static_cast<uint32_t>(Adjustment.NonVirtual));
2132 } else {
2133 Out << AccessSpec;
2134 Mangler.mangleNumber(
2135 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
2136 Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
2137 }
2138 } else if (Adjustment.NonVirtual != 0) {
2139 switch (MD->getAccess()) {
2140 case AS_none:
2141 llvm_unreachable("Unsupported access specifier");
2142 case AS_private:
2143 Out << 'G';
2144 break;
2145 case AS_protected:
2146 Out << 'O';
2147 break;
2148 case AS_public:
2149 Out << 'W';
2150 }
2151 Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
2152 } else {
2153 switch (MD->getAccess()) {
2154 case AS_none:
2155 llvm_unreachable("Unsupported access specifier");
2156 case AS_private:
2157 Out << 'A';
2158 break;
2159 case AS_protected:
2160 Out << 'I';
2161 break;
2162 case AS_public:
2163 Out << 'Q';
2164 }
2165 }
2166 }
2167
2168 void
mangleVirtualMemPtrThunk(const CXXMethodDecl * MD,raw_ostream & Out)2169 MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
2170 raw_ostream &Out) {
2171 MicrosoftVTableContext *VTContext =
2172 cast<MicrosoftVTableContext>(getASTContext().getVTableContext());
2173 const MicrosoftVTableContext::MethodVFTableLocation &ML =
2174 VTContext->getMethodVFTableLocation(GlobalDecl(MD));
2175
2176 MicrosoftCXXNameMangler Mangler(*this, Out);
2177 Mangler.getStream() << "\01?";
2178 Mangler.mangleVirtualMemPtrThunk(MD, ML);
2179 }
2180
mangleThunk(const CXXMethodDecl * MD,const ThunkInfo & Thunk,raw_ostream & Out)2181 void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
2182 const ThunkInfo &Thunk,
2183 raw_ostream &Out) {
2184 MicrosoftCXXNameMangler Mangler(*this, Out);
2185 Out << "\01?";
2186 Mangler.mangleName(MD);
2187 mangleThunkThisAdjustment(MD, Thunk.This, Mangler, Out);
2188 if (!Thunk.Return.isEmpty())
2189 assert(Thunk.Method != nullptr &&
2190 "Thunk info should hold the overridee decl");
2191
2192 const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD;
2193 Mangler.mangleFunctionType(
2194 DeclForFPT->getType()->castAs<FunctionProtoType>(), MD);
2195 }
2196
mangleCXXDtorThunk(const CXXDestructorDecl * DD,CXXDtorType Type,const ThisAdjustment & Adjustment,raw_ostream & Out)2197 void MicrosoftMangleContextImpl::mangleCXXDtorThunk(
2198 const CXXDestructorDecl *DD, CXXDtorType Type,
2199 const ThisAdjustment &Adjustment, raw_ostream &Out) {
2200 // FIXME: Actually, the dtor thunk should be emitted for vector deleting
2201 // dtors rather than scalar deleting dtors. Just use the vector deleting dtor
2202 // mangling manually until we support both deleting dtor types.
2203 assert(Type == Dtor_Deleting);
2204 MicrosoftCXXNameMangler Mangler(*this, Out, DD, Type);
2205 Out << "\01??_E";
2206 Mangler.mangleName(DD->getParent());
2207 mangleThunkThisAdjustment(DD, Adjustment, Mangler, Out);
2208 Mangler.mangleFunctionType(DD->getType()->castAs<FunctionProtoType>(), DD);
2209 }
2210
mangleCXXVFTable(const CXXRecordDecl * Derived,ArrayRef<const CXXRecordDecl * > BasePath,raw_ostream & Out)2211 void MicrosoftMangleContextImpl::mangleCXXVFTable(
2212 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
2213 raw_ostream &Out) {
2214 // <mangled-name> ::= ?_7 <class-name> <storage-class>
2215 // <cvr-qualifiers> [<name>] @
2216 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
2217 // is always '6' for vftables.
2218 MicrosoftCXXNameMangler Mangler(*this, Out);
2219 Mangler.getStream() << "\01??_7";
2220 Mangler.mangleName(Derived);
2221 Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const.
2222 for (const CXXRecordDecl *RD : BasePath)
2223 Mangler.mangleName(RD);
2224 Mangler.getStream() << '@';
2225 }
2226
mangleCXXVBTable(const CXXRecordDecl * Derived,ArrayRef<const CXXRecordDecl * > BasePath,raw_ostream & Out)2227 void MicrosoftMangleContextImpl::mangleCXXVBTable(
2228 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
2229 raw_ostream &Out) {
2230 // <mangled-name> ::= ?_8 <class-name> <storage-class>
2231 // <cvr-qualifiers> [<name>] @
2232 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
2233 // is always '7' for vbtables.
2234 MicrosoftCXXNameMangler Mangler(*this, Out);
2235 Mangler.getStream() << "\01??_8";
2236 Mangler.mangleName(Derived);
2237 Mangler.getStream() << "7B"; // '7' for vbtable, 'B' for const.
2238 for (const CXXRecordDecl *RD : BasePath)
2239 Mangler.mangleName(RD);
2240 Mangler.getStream() << '@';
2241 }
2242
mangleCXXRTTI(QualType T,raw_ostream & Out)2243 void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &Out) {
2244 MicrosoftCXXNameMangler Mangler(*this, Out);
2245 Mangler.getStream() << "\01??_R0";
2246 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
2247 Mangler.getStream() << "@8";
2248 }
2249
mangleCXXRTTIName(QualType T,raw_ostream & Out)2250 void MicrosoftMangleContextImpl::mangleCXXRTTIName(QualType T,
2251 raw_ostream &Out) {
2252 MicrosoftCXXNameMangler Mangler(*this, Out);
2253 Mangler.getStream() << '.';
2254 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
2255 }
2256
mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl * Derived,uint32_t NVOffset,int32_t VBPtrOffset,uint32_t VBTableOffset,uint32_t Flags,raw_ostream & Out)2257 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassDescriptor(
2258 const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset,
2259 uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) {
2260 MicrosoftCXXNameMangler Mangler(*this, Out);
2261 Mangler.getStream() << "\01??_R1";
2262 Mangler.mangleNumber(NVOffset);
2263 Mangler.mangleNumber(VBPtrOffset);
2264 Mangler.mangleNumber(VBTableOffset);
2265 Mangler.mangleNumber(Flags);
2266 Mangler.mangleName(Derived);
2267 Mangler.getStream() << "8";
2268 }
2269
mangleCXXRTTIBaseClassArray(const CXXRecordDecl * Derived,raw_ostream & Out)2270 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassArray(
2271 const CXXRecordDecl *Derived, raw_ostream &Out) {
2272 MicrosoftCXXNameMangler Mangler(*this, Out);
2273 Mangler.getStream() << "\01??_R2";
2274 Mangler.mangleName(Derived);
2275 Mangler.getStream() << "8";
2276 }
2277
mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl * Derived,raw_ostream & Out)2278 void MicrosoftMangleContextImpl::mangleCXXRTTIClassHierarchyDescriptor(
2279 const CXXRecordDecl *Derived, raw_ostream &Out) {
2280 MicrosoftCXXNameMangler Mangler(*this, Out);
2281 Mangler.getStream() << "\01??_R3";
2282 Mangler.mangleName(Derived);
2283 Mangler.getStream() << "8";
2284 }
2285
mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl * Derived,ArrayRef<const CXXRecordDecl * > BasePath,raw_ostream & Out)2286 void MicrosoftMangleContextImpl::mangleCXXRTTICompleteObjectLocator(
2287 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
2288 raw_ostream &Out) {
2289 // <mangled-name> ::= ?_R4 <class-name> <storage-class>
2290 // <cvr-qualifiers> [<name>] @
2291 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
2292 // is always '6' for vftables.
2293 MicrosoftCXXNameMangler Mangler(*this, Out);
2294 Mangler.getStream() << "\01??_R4";
2295 Mangler.mangleName(Derived);
2296 Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const.
2297 for (const CXXRecordDecl *RD : BasePath)
2298 Mangler.mangleName(RD);
2299 Mangler.getStream() << '@';
2300 }
2301
mangleTypeName(QualType T,raw_ostream & Out)2302 void MicrosoftMangleContextImpl::mangleTypeName(QualType T, raw_ostream &Out) {
2303 // This is just a made up unique string for the purposes of tbaa. undname
2304 // does *not* know how to demangle it.
2305 MicrosoftCXXNameMangler Mangler(*this, Out);
2306 Mangler.getStream() << '?';
2307 Mangler.mangleType(T, SourceRange());
2308 }
2309
mangleCXXCtor(const CXXConstructorDecl * D,CXXCtorType Type,raw_ostream & Out)2310 void MicrosoftMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
2311 CXXCtorType Type,
2312 raw_ostream &Out) {
2313 MicrosoftCXXNameMangler mangler(*this, Out);
2314 mangler.mangle(D);
2315 }
2316
mangleCXXDtor(const CXXDestructorDecl * D,CXXDtorType Type,raw_ostream & Out)2317 void MicrosoftMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
2318 CXXDtorType Type,
2319 raw_ostream &Out) {
2320 MicrosoftCXXNameMangler mangler(*this, Out, D, Type);
2321 mangler.mangle(D);
2322 }
2323
mangleReferenceTemporary(const VarDecl * VD,unsigned,raw_ostream &)2324 void MicrosoftMangleContextImpl::mangleReferenceTemporary(const VarDecl *VD,
2325 unsigned,
2326 raw_ostream &) {
2327 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
2328 "cannot mangle this reference temporary yet");
2329 getDiags().Report(VD->getLocation(), DiagID);
2330 }
2331
mangleStaticGuardVariable(const VarDecl * VD,raw_ostream & Out)2332 void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD,
2333 raw_ostream &Out) {
2334 // TODO: This is not correct, especially with respect to MSVC2013. MSVC2013
2335 // utilizes thread local variables to implement thread safe, re-entrant
2336 // initialization for statics. They no longer differentiate between an
2337 // externally visible and non-externally visible static with respect to
2338 // mangling, they all get $TSS <number>.
2339 //
2340 // N.B. This means that they can get more than 32 static variable guards in a
2341 // scope. It also means that they broke compatibility with their own ABI.
2342
2343 // <guard-name> ::= ?_B <postfix> @5 <scope-depth>
2344 // ::= ?$S <guard-num> @ <postfix> @4IA
2345
2346 // The first mangling is what MSVC uses to guard static locals in inline
2347 // functions. It uses a different mangling in external functions to support
2348 // guarding more than 32 variables. MSVC rejects inline functions with more
2349 // than 32 static locals. We don't fully implement the second mangling
2350 // because those guards are not externally visible, and instead use LLVM's
2351 // default renaming when creating a new guard variable.
2352 MicrosoftCXXNameMangler Mangler(*this, Out);
2353
2354 bool Visible = VD->isExternallyVisible();
2355 // <operator-name> ::= ?_B # local static guard
2356 Mangler.getStream() << (Visible ? "\01??_B" : "\01?$S1@");
2357 unsigned ScopeDepth = 0;
2358 if (Visible && !getNextDiscriminator(VD, ScopeDepth))
2359 // If we do not have a discriminator and are emitting a guard variable for
2360 // use at global scope, then mangling the nested name will not be enough to
2361 // remove ambiguities.
2362 Mangler.mangle(VD, "");
2363 else
2364 Mangler.mangleNestedName(VD);
2365 Mangler.getStream() << (Visible ? "@5" : "@4IA");
2366 if (ScopeDepth)
2367 Mangler.mangleNumber(ScopeDepth);
2368 }
2369
mangleInitFiniStub(const VarDecl * D,raw_ostream & Out,char CharCode)2370 void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D,
2371 raw_ostream &Out,
2372 char CharCode) {
2373 MicrosoftCXXNameMangler Mangler(*this, Out);
2374 Mangler.getStream() << "\01??__" << CharCode;
2375 Mangler.mangleName(D);
2376 if (D->isStaticDataMember()) {
2377 Mangler.mangleVariableEncoding(D);
2378 Mangler.getStream() << '@';
2379 }
2380 // This is the function class mangling. These stubs are global, non-variadic,
2381 // cdecl functions that return void and take no args.
2382 Mangler.getStream() << "YAXXZ";
2383 }
2384
mangleDynamicInitializer(const VarDecl * D,raw_ostream & Out)2385 void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D,
2386 raw_ostream &Out) {
2387 // <initializer-name> ::= ?__E <name> YAXXZ
2388 mangleInitFiniStub(D, Out, 'E');
2389 }
2390
2391 void
mangleDynamicAtExitDestructor(const VarDecl * D,raw_ostream & Out)2392 MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
2393 raw_ostream &Out) {
2394 // <destructor-name> ::= ?__F <name> YAXXZ
2395 mangleInitFiniStub(D, Out, 'F');
2396 }
2397
mangleStringLiteral(const StringLiteral * SL,raw_ostream & Out)2398 void MicrosoftMangleContextImpl::mangleStringLiteral(const StringLiteral *SL,
2399 raw_ostream &Out) {
2400 // <char-type> ::= 0 # char
2401 // ::= 1 # wchar_t
2402 // ::= ??? # char16_t/char32_t will need a mangling too...
2403 //
2404 // <literal-length> ::= <non-negative integer> # the length of the literal
2405 //
2406 // <encoded-crc> ::= <hex digit>+ @ # crc of the literal including
2407 // # null-terminator
2408 //
2409 // <encoded-string> ::= <simple character> # uninteresting character
2410 // ::= '?$' <hex digit> <hex digit> # these two nibbles
2411 // # encode the byte for the
2412 // # character
2413 // ::= '?' [a-z] # \xe1 - \xfa
2414 // ::= '?' [A-Z] # \xc1 - \xda
2415 // ::= '?' [0-9] # [,/\:. \n\t'-]
2416 //
2417 // <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc>
2418 // <encoded-string> '@'
2419 MicrosoftCXXNameMangler Mangler(*this, Out);
2420 Mangler.getStream() << "\01??_C@_";
2421
2422 // <char-type>: The "kind" of string literal is encoded into the mangled name.
2423 // TODO: This needs to be updated when MSVC gains support for unicode
2424 // literals.
2425 if (SL->isAscii())
2426 Mangler.getStream() << '0';
2427 else if (SL->isWide())
2428 Mangler.getStream() << '1';
2429 else
2430 llvm_unreachable("unexpected string literal kind!");
2431
2432 // <literal-length>: The next part of the mangled name consists of the length
2433 // of the string.
2434 // The StringLiteral does not consider the NUL terminator byte(s) but the
2435 // mangling does.
2436 // N.B. The length is in terms of bytes, not characters.
2437 Mangler.mangleNumber(SL->getByteLength() + SL->getCharByteWidth());
2438
2439 // We will use the "Rocksoft^tm Model CRC Algorithm" to describe the
2440 // properties of our CRC:
2441 // Width : 32
2442 // Poly : 04C11DB7
2443 // Init : FFFFFFFF
2444 // RefIn : True
2445 // RefOut : True
2446 // XorOut : 00000000
2447 // Check : 340BC6D9
2448 uint32_t CRC = 0xFFFFFFFFU;
2449
2450 auto UpdateCRC = [&CRC](char Byte) {
2451 for (unsigned i = 0; i < 8; ++i) {
2452 bool Bit = CRC & 0x80000000U;
2453 if (Byte & (1U << i))
2454 Bit = !Bit;
2455 CRC <<= 1;
2456 if (Bit)
2457 CRC ^= 0x04C11DB7U;
2458 }
2459 };
2460
2461 auto GetLittleEndianByte = [&Mangler, &SL](unsigned Index) {
2462 unsigned CharByteWidth = SL->getCharByteWidth();
2463 uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
2464 unsigned OffsetInCodeUnit = Index % CharByteWidth;
2465 return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
2466 };
2467
2468 auto GetBigEndianByte = [&Mangler, &SL](unsigned Index) {
2469 unsigned CharByteWidth = SL->getCharByteWidth();
2470 uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
2471 unsigned OffsetInCodeUnit = (CharByteWidth - 1) - (Index % CharByteWidth);
2472 return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
2473 };
2474
2475 // CRC all the bytes of the StringLiteral.
2476 for (unsigned I = 0, E = SL->getByteLength(); I != E; ++I)
2477 UpdateCRC(GetLittleEndianByte(I));
2478
2479 // The NUL terminator byte(s) were not present earlier,
2480 // we need to manually process those bytes into the CRC.
2481 for (unsigned NullTerminator = 0; NullTerminator < SL->getCharByteWidth();
2482 ++NullTerminator)
2483 UpdateCRC('\x00');
2484
2485 // The literature refers to the process of reversing the bits in the final CRC
2486 // output as "reflection".
2487 CRC = llvm::reverseBits(CRC);
2488
2489 // <encoded-crc>: The CRC is encoded utilizing the standard number mangling
2490 // scheme.
2491 Mangler.mangleNumber(CRC);
2492
2493 // <encoded-string>: The mangled name also contains the first 32 _characters_
2494 // (including null-terminator bytes) of the StringLiteral.
2495 // Each character is encoded by splitting them into bytes and then encoding
2496 // the constituent bytes.
2497 auto MangleByte = [&Mangler](char Byte) {
2498 // There are five different manglings for characters:
2499 // - [a-zA-Z0-9_$]: A one-to-one mapping.
2500 // - ?[a-z]: The range from \xe1 to \xfa.
2501 // - ?[A-Z]: The range from \xc1 to \xda.
2502 // - ?[0-9]: The set of [,/\:. \n\t'-].
2503 // - ?$XX: A fallback which maps nibbles.
2504 if (isIdentifierBody(Byte, /*AllowDollar=*/true)) {
2505 Mangler.getStream() << Byte;
2506 } else if (isLetter(Byte & 0x7f)) {
2507 Mangler.getStream() << '?' << static_cast<char>(Byte & 0x7f);
2508 } else {
2509 switch (Byte) {
2510 case ',':
2511 Mangler.getStream() << "?0";
2512 break;
2513 case '/':
2514 Mangler.getStream() << "?1";
2515 break;
2516 case '\\':
2517 Mangler.getStream() << "?2";
2518 break;
2519 case ':':
2520 Mangler.getStream() << "?3";
2521 break;
2522 case '.':
2523 Mangler.getStream() << "?4";
2524 break;
2525 case ' ':
2526 Mangler.getStream() << "?5";
2527 break;
2528 case '\n':
2529 Mangler.getStream() << "?6";
2530 break;
2531 case '\t':
2532 Mangler.getStream() << "?7";
2533 break;
2534 case '\'':
2535 Mangler.getStream() << "?8";
2536 break;
2537 case '-':
2538 Mangler.getStream() << "?9";
2539 break;
2540 default:
2541 Mangler.getStream() << "?$";
2542 Mangler.getStream() << static_cast<char>('A' + ((Byte >> 4) & 0xf));
2543 Mangler.getStream() << static_cast<char>('A' + (Byte & 0xf));
2544 break;
2545 }
2546 }
2547 };
2548
2549 // Enforce our 32 character max.
2550 unsigned NumCharsToMangle = std::min(32U, SL->getLength());
2551 for (unsigned I = 0, E = NumCharsToMangle * SL->getCharByteWidth(); I != E;
2552 ++I)
2553 MangleByte(GetBigEndianByte(I));
2554
2555 // Encode the NUL terminator if there is room.
2556 if (NumCharsToMangle < 32)
2557 for (unsigned NullTerminator = 0; NullTerminator < SL->getCharByteWidth();
2558 ++NullTerminator)
2559 MangleByte(0);
2560
2561 Mangler.getStream() << '@';
2562 }
2563
2564 MicrosoftMangleContext *
create(ASTContext & Context,DiagnosticsEngine & Diags)2565 MicrosoftMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
2566 return new MicrosoftMangleContextImpl(Context, Diags);
2567 }
2568