1 //===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This provides Objective-C code generation targeting the GNU runtime. The
11 // class in this file generates structures used by the GNU Objective-C runtime
12 // library. These structures are defined in objc/objc.h and objc/objc-api.h in
13 // the GNU runtime distribution.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "CGObjCRuntime.h"
18 #include "CGCleanup.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtObjC.h"
26 #include "clang/Basic/FileManager.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringMap.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/Compiler.h"
36 #include <cstdarg>
37
38
39 using namespace clang;
40 using namespace CodeGen;
41
42
43 namespace {
44 /// Class that lazily initialises the runtime function. Avoids inserting the
45 /// types and the function declaration into a module if they're not used, and
46 /// avoids constructing the type more than once if it's used more than once.
47 class LazyRuntimeFunction {
48 CodeGenModule *CGM;
49 std::vector<llvm::Type*> ArgTys;
50 const char *FunctionName;
51 llvm::Constant *Function;
52 public:
53 /// Constructor leaves this class uninitialized, because it is intended to
54 /// be used as a field in another class and not all of the types that are
55 /// used as arguments will necessarily be available at construction time.
LazyRuntimeFunction()56 LazyRuntimeFunction()
57 : CGM(nullptr), FunctionName(nullptr), Function(nullptr) {}
58
59 /// Initialises the lazy function with the name, return type, and the types
60 /// of the arguments.
61 END_WITH_NULL
init(CodeGenModule * Mod,const char * name,llvm::Type * RetTy,...)62 void init(CodeGenModule *Mod, const char *name,
63 llvm::Type *RetTy, ...) {
64 CGM =Mod;
65 FunctionName = name;
66 Function = nullptr;
67 ArgTys.clear();
68 va_list Args;
69 va_start(Args, RetTy);
70 while (llvm::Type *ArgTy = va_arg(Args, llvm::Type*))
71 ArgTys.push_back(ArgTy);
72 va_end(Args);
73 // Push the return type on at the end so we can pop it off easily
74 ArgTys.push_back(RetTy);
75 }
76 /// Overloaded cast operator, allows the class to be implicitly cast to an
77 /// LLVM constant.
operator llvm::Constant*()78 operator llvm::Constant*() {
79 if (!Function) {
80 if (!FunctionName) return nullptr;
81 // We put the return type on the end of the vector, so pop it back off
82 llvm::Type *RetTy = ArgTys.back();
83 ArgTys.pop_back();
84 llvm::FunctionType *FTy = llvm::FunctionType::get(RetTy, ArgTys, false);
85 Function =
86 cast<llvm::Constant>(CGM->CreateRuntimeFunction(FTy, FunctionName));
87 // We won't need to use the types again, so we may as well clean up the
88 // vector now
89 ArgTys.resize(0);
90 }
91 return Function;
92 }
operator llvm::Function*()93 operator llvm::Function*() {
94 return cast<llvm::Function>((llvm::Constant*)*this);
95 }
96
97 };
98
99
100 /// GNU Objective-C runtime code generation. This class implements the parts of
101 /// Objective-C support that are specific to the GNU family of runtimes (GCC,
102 /// GNUstep and ObjFW).
103 class CGObjCGNU : public CGObjCRuntime {
104 protected:
105 /// The LLVM module into which output is inserted
106 llvm::Module &TheModule;
107 /// strut objc_super. Used for sending messages to super. This structure
108 /// contains the receiver (object) and the expected class.
109 llvm::StructType *ObjCSuperTy;
110 /// struct objc_super*. The type of the argument to the superclass message
111 /// lookup functions.
112 llvm::PointerType *PtrToObjCSuperTy;
113 /// LLVM type for selectors. Opaque pointer (i8*) unless a header declaring
114 /// SEL is included in a header somewhere, in which case it will be whatever
115 /// type is declared in that header, most likely {i8*, i8*}.
116 llvm::PointerType *SelectorTy;
117 /// LLVM i8 type. Cached here to avoid repeatedly getting it in all of the
118 /// places where it's used
119 llvm::IntegerType *Int8Ty;
120 /// Pointer to i8 - LLVM type of char*, for all of the places where the
121 /// runtime needs to deal with C strings.
122 llvm::PointerType *PtrToInt8Ty;
123 /// Instance Method Pointer type. This is a pointer to a function that takes,
124 /// at a minimum, an object and a selector, and is the generic type for
125 /// Objective-C methods. Due to differences between variadic / non-variadic
126 /// calling conventions, it must always be cast to the correct type before
127 /// actually being used.
128 llvm::PointerType *IMPTy;
129 /// Type of an untyped Objective-C object. Clang treats id as a built-in type
130 /// when compiling Objective-C code, so this may be an opaque pointer (i8*),
131 /// but if the runtime header declaring it is included then it may be a
132 /// pointer to a structure.
133 llvm::PointerType *IdTy;
134 /// Pointer to a pointer to an Objective-C object. Used in the new ABI
135 /// message lookup function and some GC-related functions.
136 llvm::PointerType *PtrToIdTy;
137 /// The clang type of id. Used when using the clang CGCall infrastructure to
138 /// call Objective-C methods.
139 CanQualType ASTIdTy;
140 /// LLVM type for C int type.
141 llvm::IntegerType *IntTy;
142 /// LLVM type for an opaque pointer. This is identical to PtrToInt8Ty, but is
143 /// used in the code to document the difference between i8* meaning a pointer
144 /// to a C string and i8* meaning a pointer to some opaque type.
145 llvm::PointerType *PtrTy;
146 /// LLVM type for C long type. The runtime uses this in a lot of places where
147 /// it should be using intptr_t, but we can't fix this without breaking
148 /// compatibility with GCC...
149 llvm::IntegerType *LongTy;
150 /// LLVM type for C size_t. Used in various runtime data structures.
151 llvm::IntegerType *SizeTy;
152 /// LLVM type for C intptr_t.
153 llvm::IntegerType *IntPtrTy;
154 /// LLVM type for C ptrdiff_t. Mainly used in property accessor functions.
155 llvm::IntegerType *PtrDiffTy;
156 /// LLVM type for C int*. Used for GCC-ABI-compatible non-fragile instance
157 /// variables.
158 llvm::PointerType *PtrToIntTy;
159 /// LLVM type for Objective-C BOOL type.
160 llvm::Type *BoolTy;
161 /// 32-bit integer type, to save us needing to look it up every time it's used.
162 llvm::IntegerType *Int32Ty;
163 /// 64-bit integer type, to save us needing to look it up every time it's used.
164 llvm::IntegerType *Int64Ty;
165 /// Metadata kind used to tie method lookups to message sends. The GNUstep
166 /// runtime provides some LLVM passes that can use this to do things like
167 /// automatic IMP caching and speculative inlining.
168 unsigned msgSendMDKind;
169 /// Helper function that generates a constant string and returns a pointer to
170 /// the start of the string. The result of this function can be used anywhere
171 /// where the C code specifies const char*.
MakeConstantString(const std::string & Str,const std::string & Name="")172 llvm::Constant *MakeConstantString(const std::string &Str,
173 const std::string &Name="") {
174 llvm::Constant *ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str());
175 return llvm::ConstantExpr::getGetElementPtr(ConstStr, Zeros);
176 }
177 /// Emits a linkonce_odr string, whose name is the prefix followed by the
178 /// string value. This allows the linker to combine the strings between
179 /// different modules. Used for EH typeinfo names, selector strings, and a
180 /// few other things.
ExportUniqueString(const std::string & Str,const std::string prefix)181 llvm::Constant *ExportUniqueString(const std::string &Str,
182 const std::string prefix) {
183 std::string name = prefix + Str;
184 llvm::Constant *ConstStr = TheModule.getGlobalVariable(name);
185 if (!ConstStr) {
186 llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str);
187 ConstStr = new llvm::GlobalVariable(TheModule, value->getType(), true,
188 llvm::GlobalValue::LinkOnceODRLinkage, value, prefix + Str);
189 }
190 return llvm::ConstantExpr::getGetElementPtr(ConstStr, Zeros);
191 }
192 /// Generates a global structure, initialized by the elements in the vector.
193 /// The element types must match the types of the structure elements in the
194 /// first argument.
MakeGlobal(llvm::StructType * Ty,ArrayRef<llvm::Constant * > V,StringRef Name="",llvm::GlobalValue::LinkageTypes linkage=llvm::GlobalValue::InternalLinkage)195 llvm::GlobalVariable *MakeGlobal(llvm::StructType *Ty,
196 ArrayRef<llvm::Constant *> V,
197 StringRef Name="",
198 llvm::GlobalValue::LinkageTypes linkage
199 =llvm::GlobalValue::InternalLinkage) {
200 llvm::Constant *C = llvm::ConstantStruct::get(Ty, V);
201 return new llvm::GlobalVariable(TheModule, Ty, false,
202 linkage, C, Name);
203 }
204 /// Generates a global array. The vector must contain the same number of
205 /// elements that the array type declares, of the type specified as the array
206 /// element type.
MakeGlobal(llvm::ArrayType * Ty,ArrayRef<llvm::Constant * > V,StringRef Name="",llvm::GlobalValue::LinkageTypes linkage=llvm::GlobalValue::InternalLinkage)207 llvm::GlobalVariable *MakeGlobal(llvm::ArrayType *Ty,
208 ArrayRef<llvm::Constant *> V,
209 StringRef Name="",
210 llvm::GlobalValue::LinkageTypes linkage
211 =llvm::GlobalValue::InternalLinkage) {
212 llvm::Constant *C = llvm::ConstantArray::get(Ty, V);
213 return new llvm::GlobalVariable(TheModule, Ty, false,
214 linkage, C, Name);
215 }
216 /// Generates a global array, inferring the array type from the specified
217 /// element type and the size of the initialiser.
MakeGlobalArray(llvm::Type * Ty,ArrayRef<llvm::Constant * > V,StringRef Name="",llvm::GlobalValue::LinkageTypes linkage=llvm::GlobalValue::InternalLinkage)218 llvm::GlobalVariable *MakeGlobalArray(llvm::Type *Ty,
219 ArrayRef<llvm::Constant *> V,
220 StringRef Name="",
221 llvm::GlobalValue::LinkageTypes linkage
222 =llvm::GlobalValue::InternalLinkage) {
223 llvm::ArrayType *ArrayTy = llvm::ArrayType::get(Ty, V.size());
224 return MakeGlobal(ArrayTy, V, Name, linkage);
225 }
226 /// Returns a property name and encoding string.
MakePropertyEncodingString(const ObjCPropertyDecl * PD,const Decl * Container)227 llvm::Constant *MakePropertyEncodingString(const ObjCPropertyDecl *PD,
228 const Decl *Container) {
229 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
230 if ((R.getKind() == ObjCRuntime::GNUstep) &&
231 (R.getVersion() >= VersionTuple(1, 6))) {
232 std::string NameAndAttributes;
233 std::string TypeStr;
234 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container, TypeStr);
235 NameAndAttributes += '\0';
236 NameAndAttributes += TypeStr.length() + 3;
237 NameAndAttributes += TypeStr;
238 NameAndAttributes += '\0';
239 NameAndAttributes += PD->getNameAsString();
240 return llvm::ConstantExpr::getGetElementPtr(
241 CGM.GetAddrOfConstantCString(NameAndAttributes), Zeros);
242 }
243 return MakeConstantString(PD->getNameAsString());
244 }
245 /// Push the property attributes into two structure fields.
PushPropertyAttributes(std::vector<llvm::Constant * > & Fields,ObjCPropertyDecl * property,bool isSynthesized=true,bool isDynamic=true)246 void PushPropertyAttributes(std::vector<llvm::Constant*> &Fields,
247 ObjCPropertyDecl *property, bool isSynthesized=true, bool
248 isDynamic=true) {
249 int attrs = property->getPropertyAttributes();
250 // For read-only properties, clear the copy and retain flags
251 if (attrs & ObjCPropertyDecl::OBJC_PR_readonly) {
252 attrs &= ~ObjCPropertyDecl::OBJC_PR_copy;
253 attrs &= ~ObjCPropertyDecl::OBJC_PR_retain;
254 attrs &= ~ObjCPropertyDecl::OBJC_PR_weak;
255 attrs &= ~ObjCPropertyDecl::OBJC_PR_strong;
256 }
257 // The first flags field has the same attribute values as clang uses internally
258 Fields.push_back(llvm::ConstantInt::get(Int8Ty, attrs & 0xff));
259 attrs >>= 8;
260 attrs <<= 2;
261 // For protocol properties, synthesized and dynamic have no meaning, so we
262 // reuse these flags to indicate that this is a protocol property (both set
263 // has no meaning, as a property can't be both synthesized and dynamic)
264 attrs |= isSynthesized ? (1<<0) : 0;
265 attrs |= isDynamic ? (1<<1) : 0;
266 // The second field is the next four fields left shifted by two, with the
267 // low bit set to indicate whether the field is synthesized or dynamic.
268 Fields.push_back(llvm::ConstantInt::get(Int8Ty, attrs & 0xff));
269 // Two padding fields
270 Fields.push_back(llvm::ConstantInt::get(Int8Ty, 0));
271 Fields.push_back(llvm::ConstantInt::get(Int8Ty, 0));
272 }
273 /// Ensures that the value has the required type, by inserting a bitcast if
274 /// required. This function lets us avoid inserting bitcasts that are
275 /// redundant.
EnforceType(CGBuilderTy & B,llvm::Value * V,llvm::Type * Ty)276 llvm::Value* EnforceType(CGBuilderTy &B, llvm::Value *V, llvm::Type *Ty) {
277 if (V->getType() == Ty) return V;
278 return B.CreateBitCast(V, Ty);
279 }
280 // Some zeros used for GEPs in lots of places.
281 llvm::Constant *Zeros[2];
282 /// Null pointer value. Mainly used as a terminator in various arrays.
283 llvm::Constant *NULLPtr;
284 /// LLVM context.
285 llvm::LLVMContext &VMContext;
286 private:
287 /// Placeholder for the class. Lots of things refer to the class before we've
288 /// actually emitted it. We use this alias as a placeholder, and then replace
289 /// it with a pointer to the class structure before finally emitting the
290 /// module.
291 llvm::GlobalAlias *ClassPtrAlias;
292 /// Placeholder for the metaclass. Lots of things refer to the class before
293 /// we've / actually emitted it. We use this alias as a placeholder, and then
294 /// replace / it with a pointer to the metaclass structure before finally
295 /// emitting the / module.
296 llvm::GlobalAlias *MetaClassPtrAlias;
297 /// All of the classes that have been generated for this compilation units.
298 std::vector<llvm::Constant*> Classes;
299 /// All of the categories that have been generated for this compilation units.
300 std::vector<llvm::Constant*> Categories;
301 /// All of the Objective-C constant strings that have been generated for this
302 /// compilation units.
303 std::vector<llvm::Constant*> ConstantStrings;
304 /// Map from string values to Objective-C constant strings in the output.
305 /// Used to prevent emitting Objective-C strings more than once. This should
306 /// not be required at all - CodeGenModule should manage this list.
307 llvm::StringMap<llvm::Constant*> ObjCStrings;
308 /// All of the protocols that have been declared.
309 llvm::StringMap<llvm::Constant*> ExistingProtocols;
310 /// For each variant of a selector, we store the type encoding and a
311 /// placeholder value. For an untyped selector, the type will be the empty
312 /// string. Selector references are all done via the module's selector table,
313 /// so we create an alias as a placeholder and then replace it with the real
314 /// value later.
315 typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector;
316 /// Type of the selector map. This is roughly equivalent to the structure
317 /// used in the GNUstep runtime, which maintains a list of all of the valid
318 /// types for a selector in a table.
319 typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> >
320 SelectorMap;
321 /// A map from selectors to selector types. This allows us to emit all
322 /// selectors of the same name and type together.
323 SelectorMap SelectorTable;
324
325 /// Selectors related to memory management. When compiling in GC mode, we
326 /// omit these.
327 Selector RetainSel, ReleaseSel, AutoreleaseSel;
328 /// Runtime functions used for memory management in GC mode. Note that clang
329 /// supports code generation for calling these functions, but neither GNU
330 /// runtime actually supports this API properly yet.
331 LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn,
332 WeakAssignFn, GlobalAssignFn;
333
334 typedef std::pair<std::string, std::string> ClassAliasPair;
335 /// All classes that have aliases set for them.
336 std::vector<ClassAliasPair> ClassAliases;
337
338 protected:
339 /// Function used for throwing Objective-C exceptions.
340 LazyRuntimeFunction ExceptionThrowFn;
341 /// Function used for rethrowing exceptions, used at the end of \@finally or
342 /// \@synchronize blocks.
343 LazyRuntimeFunction ExceptionReThrowFn;
344 /// Function called when entering a catch function. This is required for
345 /// differentiating Objective-C exceptions and foreign exceptions.
346 LazyRuntimeFunction EnterCatchFn;
347 /// Function called when exiting from a catch block. Used to do exception
348 /// cleanup.
349 LazyRuntimeFunction ExitCatchFn;
350 /// Function called when entering an \@synchronize block. Acquires the lock.
351 LazyRuntimeFunction SyncEnterFn;
352 /// Function called when exiting an \@synchronize block. Releases the lock.
353 LazyRuntimeFunction SyncExitFn;
354
355 private:
356
357 /// Function called if fast enumeration detects that the collection is
358 /// modified during the update.
359 LazyRuntimeFunction EnumerationMutationFn;
360 /// Function for implementing synthesized property getters that return an
361 /// object.
362 LazyRuntimeFunction GetPropertyFn;
363 /// Function for implementing synthesized property setters that return an
364 /// object.
365 LazyRuntimeFunction SetPropertyFn;
366 /// Function used for non-object declared property getters.
367 LazyRuntimeFunction GetStructPropertyFn;
368 /// Function used for non-object declared property setters.
369 LazyRuntimeFunction SetStructPropertyFn;
370
371 /// The version of the runtime that this class targets. Must match the
372 /// version in the runtime.
373 int RuntimeVersion;
374 /// The version of the protocol class. Used to differentiate between ObjC1
375 /// and ObjC2 protocols. Objective-C 1 protocols can not contain optional
376 /// components and can not contain declared properties. We always emit
377 /// Objective-C 2 property structures, but we have to pretend that they're
378 /// Objective-C 1 property structures when targeting the GCC runtime or it
379 /// will abort.
380 const int ProtocolVersion;
381 private:
382 /// Generates an instance variable list structure. This is a structure
383 /// containing a size and an array of structures containing instance variable
384 /// metadata. This is used purely for introspection in the fragile ABI. In
385 /// the non-fragile ABI, it's used for instance variable fixup.
386 llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
387 ArrayRef<llvm::Constant *> IvarTypes,
388 ArrayRef<llvm::Constant *> IvarOffsets);
389 /// Generates a method list structure. This is a structure containing a size
390 /// and an array of structures containing method metadata.
391 ///
392 /// This structure is used by both classes and categories, and contains a next
393 /// pointer allowing them to be chained together in a linked list.
394 llvm::Constant *GenerateMethodList(const StringRef &ClassName,
395 const StringRef &CategoryName,
396 ArrayRef<Selector> MethodSels,
397 ArrayRef<llvm::Constant *> MethodTypes,
398 bool isClassMethodList);
399 /// Emits an empty protocol. This is used for \@protocol() where no protocol
400 /// is found. The runtime will (hopefully) fix up the pointer to refer to the
401 /// real protocol.
402 llvm::Constant *GenerateEmptyProtocol(const std::string &ProtocolName);
403 /// Generates a list of property metadata structures. This follows the same
404 /// pattern as method and instance variable metadata lists.
405 llvm::Constant *GeneratePropertyList(const ObjCImplementationDecl *OID,
406 SmallVectorImpl<Selector> &InstanceMethodSels,
407 SmallVectorImpl<llvm::Constant*> &InstanceMethodTypes);
408 /// Generates a list of referenced protocols. Classes, categories, and
409 /// protocols all use this structure.
410 llvm::Constant *GenerateProtocolList(ArrayRef<std::string> Protocols);
411 /// To ensure that all protocols are seen by the runtime, we add a category on
412 /// a class defined in the runtime, declaring no methods, but adopting the
413 /// protocols. This is a horribly ugly hack, but it allows us to collect all
414 /// of the protocols without changing the ABI.
415 void GenerateProtocolHolderCategory();
416 /// Generates a class structure.
417 llvm::Constant *GenerateClassStructure(
418 llvm::Constant *MetaClass,
419 llvm::Constant *SuperClass,
420 unsigned info,
421 const char *Name,
422 llvm::Constant *Version,
423 llvm::Constant *InstanceSize,
424 llvm::Constant *IVars,
425 llvm::Constant *Methods,
426 llvm::Constant *Protocols,
427 llvm::Constant *IvarOffsets,
428 llvm::Constant *Properties,
429 llvm::Constant *StrongIvarBitmap,
430 llvm::Constant *WeakIvarBitmap,
431 bool isMeta=false);
432 /// Generates a method list. This is used by protocols to define the required
433 /// and optional methods.
434 llvm::Constant *GenerateProtocolMethodList(
435 ArrayRef<llvm::Constant *> MethodNames,
436 ArrayRef<llvm::Constant *> MethodTypes);
437 /// Returns a selector with the specified type encoding. An empty string is
438 /// used to return an untyped selector (with the types field set to NULL).
439 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel,
440 const std::string &TypeEncoding, bool lval);
441 /// Returns the variable used to store the offset of an instance variable.
442 llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID,
443 const ObjCIvarDecl *Ivar);
444 /// Emits a reference to a class. This allows the linker to object if there
445 /// is no class of the matching name.
446 protected:
447 void EmitClassRef(const std::string &className);
448 /// Emits a pointer to the named class
449 virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF,
450 const std::string &Name, bool isWeak);
451 /// Looks up the method for sending a message to the specified object. This
452 /// mechanism differs between the GCC and GNU runtimes, so this method must be
453 /// overridden in subclasses.
454 virtual llvm::Value *LookupIMP(CodeGenFunction &CGF,
455 llvm::Value *&Receiver,
456 llvm::Value *cmd,
457 llvm::MDNode *node,
458 MessageSendInfo &MSI) = 0;
459 /// Looks up the method for sending a message to a superclass. This
460 /// mechanism differs between the GCC and GNU runtimes, so this method must
461 /// be overridden in subclasses.
462 virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF,
463 llvm::Value *ObjCSuper,
464 llvm::Value *cmd,
465 MessageSendInfo &MSI) = 0;
466 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are
467 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63
468 /// bits set to their values, LSB first, while larger ones are stored in a
469 /// structure of this / form:
470 ///
471 /// struct { int32_t length; int32_t values[length]; };
472 ///
473 /// The values in the array are stored in host-endian format, with the least
474 /// significant bit being assumed to come first in the bitfield. Therefore,
475 /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] },
476 /// while a bitfield / with the 63rd bit set will be 1<<64.
477 llvm::Constant *MakeBitField(ArrayRef<bool> bits);
478 public:
479 CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
480 unsigned protocolClassVersion);
481
482 llvm::Constant *GenerateConstantString(const StringLiteral *) override;
483
484 RValue
485 GenerateMessageSend(CodeGenFunction &CGF, ReturnValueSlot Return,
486 QualType ResultType, Selector Sel,
487 llvm::Value *Receiver, const CallArgList &CallArgs,
488 const ObjCInterfaceDecl *Class,
489 const ObjCMethodDecl *Method) override;
490 RValue
491 GenerateMessageSendSuper(CodeGenFunction &CGF, ReturnValueSlot Return,
492 QualType ResultType, Selector Sel,
493 const ObjCInterfaceDecl *Class,
494 bool isCategoryImpl, llvm::Value *Receiver,
495 bool IsClassMessage, const CallArgList &CallArgs,
496 const ObjCMethodDecl *Method) override;
497 llvm::Value *GetClass(CodeGenFunction &CGF,
498 const ObjCInterfaceDecl *OID) override;
499 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel,
500 bool lval = false) override;
501 llvm::Value *GetSelector(CodeGenFunction &CGF,
502 const ObjCMethodDecl *Method) override;
503 llvm::Constant *GetEHType(QualType T) override;
504
505 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
506 const ObjCContainerDecl *CD) override;
507 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
508 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
509 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override;
510 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
511 const ObjCProtocolDecl *PD) override;
512 void GenerateProtocol(const ObjCProtocolDecl *PD) override;
513 llvm::Function *ModuleInitFunction() override;
514 llvm::Constant *GetPropertyGetFunction() override;
515 llvm::Constant *GetPropertySetFunction() override;
516 llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
517 bool copy) override;
518 llvm::Constant *GetSetStructFunction() override;
519 llvm::Constant *GetGetStructFunction() override;
520 llvm::Constant *GetCppAtomicObjectGetFunction() override;
521 llvm::Constant *GetCppAtomicObjectSetFunction() override;
522 llvm::Constant *EnumerationMutationFunction() override;
523
524 void EmitTryStmt(CodeGenFunction &CGF,
525 const ObjCAtTryStmt &S) override;
526 void EmitSynchronizedStmt(CodeGenFunction &CGF,
527 const ObjCAtSynchronizedStmt &S) override;
528 void EmitThrowStmt(CodeGenFunction &CGF,
529 const ObjCAtThrowStmt &S,
530 bool ClearInsertionPoint=true) override;
531 llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF,
532 llvm::Value *AddrWeakObj) override;
533 void EmitObjCWeakAssign(CodeGenFunction &CGF,
534 llvm::Value *src, llvm::Value *dst) override;
535 void EmitObjCGlobalAssign(CodeGenFunction &CGF,
536 llvm::Value *src, llvm::Value *dest,
537 bool threadlocal=false) override;
538 void EmitObjCIvarAssign(CodeGenFunction &CGF, llvm::Value *src,
539 llvm::Value *dest, llvm::Value *ivarOffset) override;
540 void EmitObjCStrongCastAssign(CodeGenFunction &CGF,
541 llvm::Value *src, llvm::Value *dest) override;
542 void EmitGCMemmoveCollectable(CodeGenFunction &CGF, llvm::Value *DestPtr,
543 llvm::Value *SrcPtr,
544 llvm::Value *Size) override;
545 LValue EmitObjCValueForIvar(CodeGenFunction &CGF, QualType ObjectTy,
546 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
547 unsigned CVRQualifiers) override;
548 llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
549 const ObjCInterfaceDecl *Interface,
550 const ObjCIvarDecl *Ivar) override;
551 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
BuildGCBlockLayout(CodeGenModule & CGM,const CGBlockInfo & blockInfo)552 llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM,
553 const CGBlockInfo &blockInfo) override {
554 return NULLPtr;
555 }
BuildRCBlockLayout(CodeGenModule & CGM,const CGBlockInfo & blockInfo)556 llvm::Constant *BuildRCBlockLayout(CodeGenModule &CGM,
557 const CGBlockInfo &blockInfo) override {
558 return NULLPtr;
559 }
560
BuildByrefLayout(CodeGenModule & CGM,QualType T)561 llvm::Constant *BuildByrefLayout(CodeGenModule &CGM, QualType T) override {
562 return NULLPtr;
563 }
564
GetClassGlobal(const std::string & Name,bool Weak=false)565 llvm::GlobalVariable *GetClassGlobal(const std::string &Name,
566 bool Weak = false) override {
567 return nullptr;
568 }
569 };
570 /// Class representing the legacy GCC Objective-C ABI. This is the default when
571 /// -fobjc-nonfragile-abi is not specified.
572 ///
573 /// The GCC ABI target actually generates code that is approximately compatible
574 /// with the new GNUstep runtime ABI, but refrains from using any features that
575 /// would not work with the GCC runtime. For example, clang always generates
576 /// the extended form of the class structure, and the extra fields are simply
577 /// ignored by GCC libobjc.
578 class CGObjCGCC : public CGObjCGNU {
579 /// The GCC ABI message lookup function. Returns an IMP pointing to the
580 /// method implementation for this message.
581 LazyRuntimeFunction MsgLookupFn;
582 /// The GCC ABI superclass message lookup function. Takes a pointer to a
583 /// structure describing the receiver and the class, and a selector as
584 /// arguments. Returns the IMP for the corresponding method.
585 LazyRuntimeFunction MsgLookupSuperFn;
586 protected:
LookupIMP(CodeGenFunction & CGF,llvm::Value * & Receiver,llvm::Value * cmd,llvm::MDNode * node,MessageSendInfo & MSI)587 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
588 llvm::Value *cmd, llvm::MDNode *node,
589 MessageSendInfo &MSI) override {
590 CGBuilderTy &Builder = CGF.Builder;
591 llvm::Value *args[] = {
592 EnforceType(Builder, Receiver, IdTy),
593 EnforceType(Builder, cmd, SelectorTy) };
594 llvm::CallSite imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
595 imp->setMetadata(msgSendMDKind, node);
596 return imp.getInstruction();
597 }
LookupIMPSuper(CodeGenFunction & CGF,llvm::Value * ObjCSuper,llvm::Value * cmd,MessageSendInfo & MSI)598 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, llvm::Value *ObjCSuper,
599 llvm::Value *cmd, MessageSendInfo &MSI) override {
600 CGBuilderTy &Builder = CGF.Builder;
601 llvm::Value *lookupArgs[] = {EnforceType(Builder, ObjCSuper,
602 PtrToObjCSuperTy), cmd};
603 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
604 }
605 public:
CGObjCGCC(CodeGenModule & Mod)606 CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) {
607 // IMP objc_msg_lookup(id, SEL);
608 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy,
609 nullptr);
610 // IMP objc_msg_lookup_super(struct objc_super*, SEL);
611 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
612 PtrToObjCSuperTy, SelectorTy, nullptr);
613 }
614 };
615 /// Class used when targeting the new GNUstep runtime ABI.
616 class CGObjCGNUstep : public CGObjCGNU {
617 /// The slot lookup function. Returns a pointer to a cacheable structure
618 /// that contains (among other things) the IMP.
619 LazyRuntimeFunction SlotLookupFn;
620 /// The GNUstep ABI superclass message lookup function. Takes a pointer to
621 /// a structure describing the receiver and the class, and a selector as
622 /// arguments. Returns the slot for the corresponding method. Superclass
623 /// message lookup rarely changes, so this is a good caching opportunity.
624 LazyRuntimeFunction SlotLookupSuperFn;
625 /// Specialised function for setting atomic retain properties
626 LazyRuntimeFunction SetPropertyAtomic;
627 /// Specialised function for setting atomic copy properties
628 LazyRuntimeFunction SetPropertyAtomicCopy;
629 /// Specialised function for setting nonatomic retain properties
630 LazyRuntimeFunction SetPropertyNonAtomic;
631 /// Specialised function for setting nonatomic copy properties
632 LazyRuntimeFunction SetPropertyNonAtomicCopy;
633 /// Function to perform atomic copies of C++ objects with nontrivial copy
634 /// constructors from Objective-C ivars.
635 LazyRuntimeFunction CxxAtomicObjectGetFn;
636 /// Function to perform atomic copies of C++ objects with nontrivial copy
637 /// constructors to Objective-C ivars.
638 LazyRuntimeFunction CxxAtomicObjectSetFn;
639 /// Type of an slot structure pointer. This is returned by the various
640 /// lookup functions.
641 llvm::Type *SlotTy;
642 public:
643 llvm::Constant *GetEHType(QualType T) override;
644 protected:
LookupIMP(CodeGenFunction & CGF,llvm::Value * & Receiver,llvm::Value * cmd,llvm::MDNode * node,MessageSendInfo & MSI)645 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
646 llvm::Value *cmd, llvm::MDNode *node,
647 MessageSendInfo &MSI) override {
648 CGBuilderTy &Builder = CGF.Builder;
649 llvm::Function *LookupFn = SlotLookupFn;
650
651 // Store the receiver on the stack so that we can reload it later
652 llvm::Value *ReceiverPtr = CGF.CreateTempAlloca(Receiver->getType());
653 Builder.CreateStore(Receiver, ReceiverPtr);
654
655 llvm::Value *self;
656
657 if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) {
658 self = CGF.LoadObjCSelf();
659 } else {
660 self = llvm::ConstantPointerNull::get(IdTy);
661 }
662
663 // The lookup function is guaranteed not to capture the receiver pointer.
664 LookupFn->setDoesNotCapture(1);
665
666 llvm::Value *args[] = {
667 EnforceType(Builder, ReceiverPtr, PtrToIdTy),
668 EnforceType(Builder, cmd, SelectorTy),
669 EnforceType(Builder, self, IdTy) };
670 llvm::CallSite slot = CGF.EmitRuntimeCallOrInvoke(LookupFn, args);
671 slot.setOnlyReadsMemory();
672 slot->setMetadata(msgSendMDKind, node);
673
674 // Load the imp from the slot
675 llvm::Value *imp =
676 Builder.CreateLoad(Builder.CreateStructGEP(slot.getInstruction(), 4));
677
678 // The lookup function may have changed the receiver, so make sure we use
679 // the new one.
680 Receiver = Builder.CreateLoad(ReceiverPtr, true);
681 return imp;
682 }
LookupIMPSuper(CodeGenFunction & CGF,llvm::Value * ObjCSuper,llvm::Value * cmd,MessageSendInfo & MSI)683 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, llvm::Value *ObjCSuper,
684 llvm::Value *cmd,
685 MessageSendInfo &MSI) override {
686 CGBuilderTy &Builder = CGF.Builder;
687 llvm::Value *lookupArgs[] = {ObjCSuper, cmd};
688
689 llvm::CallInst *slot =
690 CGF.EmitNounwindRuntimeCall(SlotLookupSuperFn, lookupArgs);
691 slot->setOnlyReadsMemory();
692
693 return Builder.CreateLoad(Builder.CreateStructGEP(slot, 4));
694 }
695 public:
CGObjCGNUstep(CodeGenModule & Mod)696 CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNU(Mod, 9, 3) {
697 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
698
699 llvm::StructType *SlotStructTy = llvm::StructType::get(PtrTy,
700 PtrTy, PtrTy, IntTy, IMPTy, nullptr);
701 SlotTy = llvm::PointerType::getUnqual(SlotStructTy);
702 // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender);
703 SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy,
704 SelectorTy, IdTy, nullptr);
705 // Slot_t objc_msg_lookup_super(struct objc_super*, SEL);
706 SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy,
707 PtrToObjCSuperTy, SelectorTy, nullptr);
708 // If we're in ObjC++ mode, then we want to make
709 if (CGM.getLangOpts().CPlusPlus) {
710 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
711 // void *__cxa_begin_catch(void *e)
712 EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy, nullptr);
713 // void __cxa_end_catch(void)
714 ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy, nullptr);
715 // void _Unwind_Resume_or_Rethrow(void*)
716 ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy,
717 PtrTy, nullptr);
718 } else if (R.getVersion() >= VersionTuple(1, 7)) {
719 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
720 // id objc_begin_catch(void *e)
721 EnterCatchFn.init(&CGM, "objc_begin_catch", IdTy, PtrTy, nullptr);
722 // void objc_end_catch(void)
723 ExitCatchFn.init(&CGM, "objc_end_catch", VoidTy, nullptr);
724 // void _Unwind_Resume_or_Rethrow(void*)
725 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy,
726 PtrTy, nullptr);
727 }
728 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
729 SetPropertyAtomic.init(&CGM, "objc_setProperty_atomic", VoidTy, IdTy,
730 SelectorTy, IdTy, PtrDiffTy, nullptr);
731 SetPropertyAtomicCopy.init(&CGM, "objc_setProperty_atomic_copy", VoidTy,
732 IdTy, SelectorTy, IdTy, PtrDiffTy, nullptr);
733 SetPropertyNonAtomic.init(&CGM, "objc_setProperty_nonatomic", VoidTy,
734 IdTy, SelectorTy, IdTy, PtrDiffTy, nullptr);
735 SetPropertyNonAtomicCopy.init(&CGM, "objc_setProperty_nonatomic_copy",
736 VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy, nullptr);
737 // void objc_setCppObjectAtomic(void *dest, const void *src, void
738 // *helper);
739 CxxAtomicObjectSetFn.init(&CGM, "objc_setCppObjectAtomic", VoidTy, PtrTy,
740 PtrTy, PtrTy, nullptr);
741 // void objc_getCppObjectAtomic(void *dest, const void *src, void
742 // *helper);
743 CxxAtomicObjectGetFn.init(&CGM, "objc_getCppObjectAtomic", VoidTy, PtrTy,
744 PtrTy, PtrTy, nullptr);
745 }
GetCppAtomicObjectGetFunction()746 llvm::Constant *GetCppAtomicObjectGetFunction() override {
747 // The optimised functions were added in version 1.7 of the GNUstep
748 // runtime.
749 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
750 VersionTuple(1, 7));
751 return CxxAtomicObjectGetFn;
752 }
GetCppAtomicObjectSetFunction()753 llvm::Constant *GetCppAtomicObjectSetFunction() override {
754 // The optimised functions were added in version 1.7 of the GNUstep
755 // runtime.
756 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
757 VersionTuple(1, 7));
758 return CxxAtomicObjectSetFn;
759 }
GetOptimizedPropertySetFunction(bool atomic,bool copy)760 llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
761 bool copy) override {
762 // The optimised property functions omit the GC check, and so are not
763 // safe to use in GC mode. The standard functions are fast in GC mode,
764 // so there is less advantage in using them.
765 assert ((CGM.getLangOpts().getGC() == LangOptions::NonGC));
766 // The optimised functions were added in version 1.7 of the GNUstep
767 // runtime.
768 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
769 VersionTuple(1, 7));
770
771 if (atomic) {
772 if (copy) return SetPropertyAtomicCopy;
773 return SetPropertyAtomic;
774 }
775
776 return copy ? SetPropertyNonAtomicCopy : SetPropertyNonAtomic;
777 }
778 };
779
780 /// Support for the ObjFW runtime.
781 class CGObjCObjFW: public CGObjCGNU {
782 protected:
783 /// The GCC ABI message lookup function. Returns an IMP pointing to the
784 /// method implementation for this message.
785 LazyRuntimeFunction MsgLookupFn;
786 /// stret lookup function. While this does not seem to make sense at the
787 /// first look, this is required to call the correct forwarding function.
788 LazyRuntimeFunction MsgLookupFnSRet;
789 /// The GCC ABI superclass message lookup function. Takes a pointer to a
790 /// structure describing the receiver and the class, and a selector as
791 /// arguments. Returns the IMP for the corresponding method.
792 LazyRuntimeFunction MsgLookupSuperFn, MsgLookupSuperFnSRet;
793
LookupIMP(CodeGenFunction & CGF,llvm::Value * & Receiver,llvm::Value * cmd,llvm::MDNode * node,MessageSendInfo & MSI)794 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
795 llvm::Value *cmd, llvm::MDNode *node,
796 MessageSendInfo &MSI) override {
797 CGBuilderTy &Builder = CGF.Builder;
798 llvm::Value *args[] = {
799 EnforceType(Builder, Receiver, IdTy),
800 EnforceType(Builder, cmd, SelectorTy) };
801
802 llvm::CallSite imp;
803 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
804 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFnSRet, args);
805 else
806 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
807
808 imp->setMetadata(msgSendMDKind, node);
809 return imp.getInstruction();
810 }
811
LookupIMPSuper(CodeGenFunction & CGF,llvm::Value * ObjCSuper,llvm::Value * cmd,MessageSendInfo & MSI)812 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, llvm::Value *ObjCSuper,
813 llvm::Value *cmd, MessageSendInfo &MSI) override {
814 CGBuilderTy &Builder = CGF.Builder;
815 llvm::Value *lookupArgs[] = {EnforceType(Builder, ObjCSuper,
816 PtrToObjCSuperTy), cmd};
817
818 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
819 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFnSRet, lookupArgs);
820 else
821 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
822 }
823
GetClassNamed(CodeGenFunction & CGF,const std::string & Name,bool isWeak)824 llvm::Value *GetClassNamed(CodeGenFunction &CGF,
825 const std::string &Name, bool isWeak) override {
826 if (isWeak)
827 return CGObjCGNU::GetClassNamed(CGF, Name, isWeak);
828
829 EmitClassRef(Name);
830
831 std::string SymbolName = "_OBJC_CLASS_" + Name;
832
833 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(SymbolName);
834
835 if (!ClassSymbol)
836 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
837 llvm::GlobalValue::ExternalLinkage,
838 nullptr, SymbolName);
839
840 return ClassSymbol;
841 }
842
843 public:
CGObjCObjFW(CodeGenModule & Mod)844 CGObjCObjFW(CodeGenModule &Mod): CGObjCGNU(Mod, 9, 3) {
845 // IMP objc_msg_lookup(id, SEL);
846 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy, nullptr);
847 MsgLookupFnSRet.init(&CGM, "objc_msg_lookup_stret", IMPTy, IdTy,
848 SelectorTy, nullptr);
849 // IMP objc_msg_lookup_super(struct objc_super*, SEL);
850 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
851 PtrToObjCSuperTy, SelectorTy, nullptr);
852 MsgLookupSuperFnSRet.init(&CGM, "objc_msg_lookup_super_stret", IMPTy,
853 PtrToObjCSuperTy, SelectorTy, nullptr);
854 }
855 };
856 } // end anonymous namespace
857
858
859 /// Emits a reference to a dummy variable which is emitted with each class.
860 /// This ensures that a linker error will be generated when trying to link
861 /// together modules where a referenced class is not defined.
EmitClassRef(const std::string & className)862 void CGObjCGNU::EmitClassRef(const std::string &className) {
863 std::string symbolRef = "__objc_class_ref_" + className;
864 // Don't emit two copies of the same symbol
865 if (TheModule.getGlobalVariable(symbolRef))
866 return;
867 std::string symbolName = "__objc_class_name_" + className;
868 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName);
869 if (!ClassSymbol) {
870 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
871 llvm::GlobalValue::ExternalLinkage,
872 nullptr, symbolName);
873 }
874 new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true,
875 llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef);
876 }
877
SymbolNameForMethod(const StringRef & ClassName,const StringRef & CategoryName,const Selector MethodName,bool isClassMethod)878 static std::string SymbolNameForMethod(const StringRef &ClassName,
879 const StringRef &CategoryName, const Selector MethodName,
880 bool isClassMethod) {
881 std::string MethodNameColonStripped = MethodName.getAsString();
882 std::replace(MethodNameColonStripped.begin(), MethodNameColonStripped.end(),
883 ':', '_');
884 return (Twine(isClassMethod ? "_c_" : "_i_") + ClassName + "_" +
885 CategoryName + "_" + MethodNameColonStripped).str();
886 }
887
CGObjCGNU(CodeGenModule & cgm,unsigned runtimeABIVersion,unsigned protocolClassVersion)888 CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
889 unsigned protocolClassVersion)
890 : CGObjCRuntime(cgm), TheModule(CGM.getModule()),
891 VMContext(cgm.getLLVMContext()), ClassPtrAlias(nullptr),
892 MetaClassPtrAlias(nullptr), RuntimeVersion(runtimeABIVersion),
893 ProtocolVersion(protocolClassVersion) {
894
895 msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend");
896
897 CodeGenTypes &Types = CGM.getTypes();
898 IntTy = cast<llvm::IntegerType>(
899 Types.ConvertType(CGM.getContext().IntTy));
900 LongTy = cast<llvm::IntegerType>(
901 Types.ConvertType(CGM.getContext().LongTy));
902 SizeTy = cast<llvm::IntegerType>(
903 Types.ConvertType(CGM.getContext().getSizeType()));
904 PtrDiffTy = cast<llvm::IntegerType>(
905 Types.ConvertType(CGM.getContext().getPointerDiffType()));
906 BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy);
907
908 Int8Ty = llvm::Type::getInt8Ty(VMContext);
909 // C string type. Used in lots of places.
910 PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty);
911
912 Zeros[0] = llvm::ConstantInt::get(LongTy, 0);
913 Zeros[1] = Zeros[0];
914 NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty);
915 // Get the selector Type.
916 QualType selTy = CGM.getContext().getObjCSelType();
917 if (QualType() == selTy) {
918 SelectorTy = PtrToInt8Ty;
919 } else {
920 SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy));
921 }
922
923 PtrToIntTy = llvm::PointerType::getUnqual(IntTy);
924 PtrTy = PtrToInt8Ty;
925
926 Int32Ty = llvm::Type::getInt32Ty(VMContext);
927 Int64Ty = llvm::Type::getInt64Ty(VMContext);
928
929 IntPtrTy =
930 CGM.getDataLayout().getPointerSizeInBits() == 32 ? Int32Ty : Int64Ty;
931
932 // Object type
933 QualType UnqualIdTy = CGM.getContext().getObjCIdType();
934 ASTIdTy = CanQualType();
935 if (UnqualIdTy != QualType()) {
936 ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy);
937 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
938 } else {
939 IdTy = PtrToInt8Ty;
940 }
941 PtrToIdTy = llvm::PointerType::getUnqual(IdTy);
942
943 ObjCSuperTy = llvm::StructType::get(IdTy, IdTy, nullptr);
944 PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy);
945
946 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
947
948 // void objc_exception_throw(id);
949 ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy, nullptr);
950 ExceptionReThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy, nullptr);
951 // int objc_sync_enter(id);
952 SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy, nullptr);
953 // int objc_sync_exit(id);
954 SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy, nullptr);
955
956 // void objc_enumerationMutation (id)
957 EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy,
958 IdTy, nullptr);
959
960 // id objc_getProperty(id, SEL, ptrdiff_t, BOOL)
961 GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy,
962 PtrDiffTy, BoolTy, nullptr);
963 // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL)
964 SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy,
965 PtrDiffTy, IdTy, BoolTy, BoolTy, nullptr);
966 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
967 GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy,
968 PtrDiffTy, BoolTy, BoolTy, nullptr);
969 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
970 SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy,
971 PtrDiffTy, BoolTy, BoolTy, nullptr);
972
973 // IMP type
974 llvm::Type *IMPArgs[] = { IdTy, SelectorTy };
975 IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs,
976 true));
977
978 const LangOptions &Opts = CGM.getLangOpts();
979 if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount)
980 RuntimeVersion = 10;
981
982 // Don't bother initialising the GC stuff unless we're compiling in GC mode
983 if (Opts.getGC() != LangOptions::NonGC) {
984 // This is a bit of an hack. We should sort this out by having a proper
985 // CGObjCGNUstep subclass for GC, but we may want to really support the old
986 // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now
987 // Get selectors needed in GC mode
988 RetainSel = GetNullarySelector("retain", CGM.getContext());
989 ReleaseSel = GetNullarySelector("release", CGM.getContext());
990 AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext());
991
992 // Get functions needed in GC mode
993
994 // id objc_assign_ivar(id, id, ptrdiff_t);
995 IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy,
996 nullptr);
997 // id objc_assign_strongCast (id, id*)
998 StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy,
999 PtrToIdTy, nullptr);
1000 // id objc_assign_global(id, id*);
1001 GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy,
1002 nullptr);
1003 // id objc_assign_weak(id, id*);
1004 WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy, nullptr);
1005 // id objc_read_weak(id*);
1006 WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy, nullptr);
1007 // void *objc_memmove_collectable(void*, void *, size_t);
1008 MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy,
1009 SizeTy, nullptr);
1010 }
1011 }
1012
GetClassNamed(CodeGenFunction & CGF,const std::string & Name,bool isWeak)1013 llvm::Value *CGObjCGNU::GetClassNamed(CodeGenFunction &CGF,
1014 const std::string &Name,
1015 bool isWeak) {
1016 llvm::Value *ClassName = CGM.GetAddrOfConstantCString(Name);
1017 // With the incompatible ABI, this will need to be replaced with a direct
1018 // reference to the class symbol. For the compatible nonfragile ABI we are
1019 // still performing this lookup at run time but emitting the symbol for the
1020 // class externally so that we can make the switch later.
1021 //
1022 // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class
1023 // with memoized versions or with static references if it's safe to do so.
1024 if (!isWeak)
1025 EmitClassRef(Name);
1026 ClassName = CGF.Builder.CreateStructGEP(ClassName, 0);
1027
1028 llvm::Constant *ClassLookupFn =
1029 CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, PtrToInt8Ty, true),
1030 "objc_lookup_class");
1031 return CGF.EmitNounwindRuntimeCall(ClassLookupFn, ClassName);
1032 }
1033
1034 // This has to perform the lookup every time, since posing and related
1035 // techniques can modify the name -> class mapping.
GetClass(CodeGenFunction & CGF,const ObjCInterfaceDecl * OID)1036 llvm::Value *CGObjCGNU::GetClass(CodeGenFunction &CGF,
1037 const ObjCInterfaceDecl *OID) {
1038 return GetClassNamed(CGF, OID->getNameAsString(), OID->isWeakImported());
1039 }
EmitNSAutoreleasePoolClassRef(CodeGenFunction & CGF)1040 llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) {
1041 return GetClassNamed(CGF, "NSAutoreleasePool", false);
1042 }
1043
GetSelector(CodeGenFunction & CGF,Selector Sel,const std::string & TypeEncoding,bool lval)1044 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel,
1045 const std::string &TypeEncoding, bool lval) {
1046
1047 SmallVectorImpl<TypedSelector> &Types = SelectorTable[Sel];
1048 llvm::GlobalAlias *SelValue = nullptr;
1049
1050 for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
1051 e = Types.end() ; i!=e ; i++) {
1052 if (i->first == TypeEncoding) {
1053 SelValue = i->second;
1054 break;
1055 }
1056 }
1057 if (!SelValue) {
1058 SelValue = llvm::GlobalAlias::create(
1059 SelectorTy->getElementType(), 0, llvm::GlobalValue::PrivateLinkage,
1060 ".objc_selector_" + Sel.getAsString(), &TheModule);
1061 Types.push_back(TypedSelector(TypeEncoding, SelValue));
1062 }
1063
1064 if (lval) {
1065 llvm::Value *tmp = CGF.CreateTempAlloca(SelValue->getType());
1066 CGF.Builder.CreateStore(SelValue, tmp);
1067 return tmp;
1068 }
1069 return SelValue;
1070 }
1071
GetSelector(CodeGenFunction & CGF,Selector Sel,bool lval)1072 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel,
1073 bool lval) {
1074 return GetSelector(CGF, Sel, std::string(), lval);
1075 }
1076
GetSelector(CodeGenFunction & CGF,const ObjCMethodDecl * Method)1077 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF,
1078 const ObjCMethodDecl *Method) {
1079 std::string SelTypes;
1080 CGM.getContext().getObjCEncodingForMethodDecl(Method, SelTypes);
1081 return GetSelector(CGF, Method->getSelector(), SelTypes, false);
1082 }
1083
GetEHType(QualType T)1084 llvm::Constant *CGObjCGNU::GetEHType(QualType T) {
1085 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) {
1086 // With the old ABI, there was only one kind of catchall, which broke
1087 // foreign exceptions. With the new ABI, we use __objc_id_typeinfo as
1088 // a pointer indicating object catchalls, and NULL to indicate real
1089 // catchalls
1090 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
1091 return MakeConstantString("@id");
1092 } else {
1093 return nullptr;
1094 }
1095 }
1096
1097 // All other types should be Objective-C interface pointer types.
1098 const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>();
1099 assert(OPT && "Invalid @catch type.");
1100 const ObjCInterfaceDecl *IDecl = OPT->getObjectType()->getInterface();
1101 assert(IDecl && "Invalid @catch type.");
1102 return MakeConstantString(IDecl->getIdentifier()->getName());
1103 }
1104
GetEHType(QualType T)1105 llvm::Constant *CGObjCGNUstep::GetEHType(QualType T) {
1106 if (!CGM.getLangOpts().CPlusPlus)
1107 return CGObjCGNU::GetEHType(T);
1108
1109 // For Objective-C++, we want to provide the ability to catch both C++ and
1110 // Objective-C objects in the same function.
1111
1112 // There's a particular fixed type info for 'id'.
1113 if (T->isObjCIdType() ||
1114 T->isObjCQualifiedIdType()) {
1115 llvm::Constant *IDEHType =
1116 CGM.getModule().getGlobalVariable("__objc_id_type_info");
1117 if (!IDEHType)
1118 IDEHType =
1119 new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty,
1120 false,
1121 llvm::GlobalValue::ExternalLinkage,
1122 nullptr, "__objc_id_type_info");
1123 return llvm::ConstantExpr::getBitCast(IDEHType, PtrToInt8Ty);
1124 }
1125
1126 const ObjCObjectPointerType *PT =
1127 T->getAs<ObjCObjectPointerType>();
1128 assert(PT && "Invalid @catch type.");
1129 const ObjCInterfaceType *IT = PT->getInterfaceType();
1130 assert(IT && "Invalid @catch type.");
1131 std::string className = IT->getDecl()->getIdentifier()->getName();
1132
1133 std::string typeinfoName = "__objc_eh_typeinfo_" + className;
1134
1135 // Return the existing typeinfo if it exists
1136 llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName);
1137 if (typeinfo)
1138 return llvm::ConstantExpr::getBitCast(typeinfo, PtrToInt8Ty);
1139
1140 // Otherwise create it.
1141
1142 // vtable for gnustep::libobjc::__objc_class_type_info
1143 // It's quite ugly hard-coding this. Ideally we'd generate it using the host
1144 // platform's name mangling.
1145 const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE";
1146 llvm::Constant *Vtable = TheModule.getGlobalVariable(vtableName);
1147 if (!Vtable) {
1148 Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true,
1149 llvm::GlobalValue::ExternalLinkage,
1150 nullptr, vtableName);
1151 }
1152 llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2);
1153 Vtable = llvm::ConstantExpr::getGetElementPtr(Vtable, Two);
1154 Vtable = llvm::ConstantExpr::getBitCast(Vtable, PtrToInt8Ty);
1155
1156 llvm::Constant *typeName =
1157 ExportUniqueString(className, "__objc_eh_typename_");
1158
1159 std::vector<llvm::Constant*> fields;
1160 fields.push_back(Vtable);
1161 fields.push_back(typeName);
1162 llvm::Constant *TI =
1163 MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty,
1164 nullptr), fields, "__objc_eh_typeinfo_" + className,
1165 llvm::GlobalValue::LinkOnceODRLinkage);
1166 return llvm::ConstantExpr::getBitCast(TI, PtrToInt8Ty);
1167 }
1168
1169 /// Generate an NSConstantString object.
GenerateConstantString(const StringLiteral * SL)1170 llvm::Constant *CGObjCGNU::GenerateConstantString(const StringLiteral *SL) {
1171
1172 std::string Str = SL->getString().str();
1173
1174 // Look for an existing one
1175 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
1176 if (old != ObjCStrings.end())
1177 return old->getValue();
1178
1179 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
1180
1181 if (StringClass.empty()) StringClass = "NXConstantString";
1182
1183 std::string Sym = "_OBJC_CLASS_";
1184 Sym += StringClass;
1185
1186 llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
1187
1188 if (!isa)
1189 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false,
1190 llvm::GlobalValue::ExternalWeakLinkage, nullptr, Sym);
1191 else if (isa->getType() != PtrToIdTy)
1192 isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy);
1193
1194 std::vector<llvm::Constant*> Ivars;
1195 Ivars.push_back(isa);
1196 Ivars.push_back(MakeConstantString(Str));
1197 Ivars.push_back(llvm::ConstantInt::get(IntTy, Str.size()));
1198 llvm::Constant *ObjCStr = MakeGlobal(
1199 llvm::StructType::get(PtrToIdTy, PtrToInt8Ty, IntTy, nullptr),
1200 Ivars, ".objc_str");
1201 ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStr, PtrToInt8Ty);
1202 ObjCStrings[Str] = ObjCStr;
1203 ConstantStrings.push_back(ObjCStr);
1204 return ObjCStr;
1205 }
1206
1207 ///Generates a message send where the super is the receiver. This is a message
1208 ///send to self with special delivery semantics indicating which class's method
1209 ///should be called.
1210 RValue
GenerateMessageSendSuper(CodeGenFunction & CGF,ReturnValueSlot Return,QualType ResultType,Selector Sel,const ObjCInterfaceDecl * Class,bool isCategoryImpl,llvm::Value * Receiver,bool IsClassMessage,const CallArgList & CallArgs,const ObjCMethodDecl * Method)1211 CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF,
1212 ReturnValueSlot Return,
1213 QualType ResultType,
1214 Selector Sel,
1215 const ObjCInterfaceDecl *Class,
1216 bool isCategoryImpl,
1217 llvm::Value *Receiver,
1218 bool IsClassMessage,
1219 const CallArgList &CallArgs,
1220 const ObjCMethodDecl *Method) {
1221 CGBuilderTy &Builder = CGF.Builder;
1222 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
1223 if (Sel == RetainSel || Sel == AutoreleaseSel) {
1224 return RValue::get(EnforceType(Builder, Receiver,
1225 CGM.getTypes().ConvertType(ResultType)));
1226 }
1227 if (Sel == ReleaseSel) {
1228 return RValue::get(nullptr);
1229 }
1230 }
1231
1232 llvm::Value *cmd = GetSelector(CGF, Sel);
1233
1234
1235 CallArgList ActualArgs;
1236
1237 ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy);
1238 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
1239 ActualArgs.addFrom(CallArgs);
1240
1241 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
1242
1243 llvm::Value *ReceiverClass = nullptr;
1244 if (isCategoryImpl) {
1245 llvm::Constant *classLookupFunction = nullptr;
1246 if (IsClassMessage) {
1247 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
1248 IdTy, PtrTy, true), "objc_get_meta_class");
1249 } else {
1250 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
1251 IdTy, PtrTy, true), "objc_get_class");
1252 }
1253 ReceiverClass = Builder.CreateCall(classLookupFunction,
1254 MakeConstantString(Class->getNameAsString()));
1255 } else {
1256 // Set up global aliases for the metaclass or class pointer if they do not
1257 // already exist. These will are forward-references which will be set to
1258 // pointers to the class and metaclass structure created for the runtime
1259 // load function. To send a message to super, we look up the value of the
1260 // super_class pointer from either the class or metaclass structure.
1261 if (IsClassMessage) {
1262 if (!MetaClassPtrAlias) {
1263 MetaClassPtrAlias = llvm::GlobalAlias::create(
1264 IdTy->getElementType(), 0, llvm::GlobalValue::InternalLinkage,
1265 ".objc_metaclass_ref" + Class->getNameAsString(), &TheModule);
1266 }
1267 ReceiverClass = MetaClassPtrAlias;
1268 } else {
1269 if (!ClassPtrAlias) {
1270 ClassPtrAlias = llvm::GlobalAlias::create(
1271 IdTy->getElementType(), 0, llvm::GlobalValue::InternalLinkage,
1272 ".objc_class_ref" + Class->getNameAsString(), &TheModule);
1273 }
1274 ReceiverClass = ClassPtrAlias;
1275 }
1276 }
1277 // Cast the pointer to a simplified version of the class structure
1278 ReceiverClass = Builder.CreateBitCast(ReceiverClass,
1279 llvm::PointerType::getUnqual(
1280 llvm::StructType::get(IdTy, IdTy, nullptr)));
1281 // Get the superclass pointer
1282 ReceiverClass = Builder.CreateStructGEP(ReceiverClass, 1);
1283 // Load the superclass pointer
1284 ReceiverClass = Builder.CreateLoad(ReceiverClass);
1285 // Construct the structure used to look up the IMP
1286 llvm::StructType *ObjCSuperTy = llvm::StructType::get(
1287 Receiver->getType(), IdTy, nullptr);
1288 llvm::Value *ObjCSuper = Builder.CreateAlloca(ObjCSuperTy);
1289
1290 Builder.CreateStore(Receiver, Builder.CreateStructGEP(ObjCSuper, 0));
1291 Builder.CreateStore(ReceiverClass, Builder.CreateStructGEP(ObjCSuper, 1));
1292
1293 ObjCSuper = EnforceType(Builder, ObjCSuper, PtrToObjCSuperTy);
1294
1295 // Get the IMP
1296 llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd, MSI);
1297 imp = EnforceType(Builder, imp, MSI.MessengerType);
1298
1299 llvm::Value *impMD[] = {
1300 llvm::MDString::get(VMContext, Sel.getAsString()),
1301 llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()),
1302 llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), IsClassMessage)
1303 };
1304 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
1305
1306 llvm::Instruction *call;
1307 RValue msgRet = CGF.EmitCall(MSI.CallInfo, imp, Return, ActualArgs, nullptr,
1308 &call);
1309 call->setMetadata(msgSendMDKind, node);
1310 return msgRet;
1311 }
1312
1313 /// Generate code for a message send expression.
1314 RValue
GenerateMessageSend(CodeGenFunction & CGF,ReturnValueSlot Return,QualType ResultType,Selector Sel,llvm::Value * Receiver,const CallArgList & CallArgs,const ObjCInterfaceDecl * Class,const ObjCMethodDecl * Method)1315 CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF,
1316 ReturnValueSlot Return,
1317 QualType ResultType,
1318 Selector Sel,
1319 llvm::Value *Receiver,
1320 const CallArgList &CallArgs,
1321 const ObjCInterfaceDecl *Class,
1322 const ObjCMethodDecl *Method) {
1323 CGBuilderTy &Builder = CGF.Builder;
1324
1325 // Strip out message sends to retain / release in GC mode
1326 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
1327 if (Sel == RetainSel || Sel == AutoreleaseSel) {
1328 return RValue::get(EnforceType(Builder, Receiver,
1329 CGM.getTypes().ConvertType(ResultType)));
1330 }
1331 if (Sel == ReleaseSel) {
1332 return RValue::get(nullptr);
1333 }
1334 }
1335
1336 // If the return type is something that goes in an integer register, the
1337 // runtime will handle 0 returns. For other cases, we fill in the 0 value
1338 // ourselves.
1339 //
1340 // The language spec says the result of this kind of message send is
1341 // undefined, but lots of people seem to have forgotten to read that
1342 // paragraph and insist on sending messages to nil that have structure
1343 // returns. With GCC, this generates a random return value (whatever happens
1344 // to be on the stack / in those registers at the time) on most platforms,
1345 // and generates an illegal instruction trap on SPARC. With LLVM it corrupts
1346 // the stack.
1347 bool isPointerSizedReturn = (ResultType->isAnyPointerType() ||
1348 ResultType->isIntegralOrEnumerationType() || ResultType->isVoidType());
1349
1350 llvm::BasicBlock *startBB = nullptr;
1351 llvm::BasicBlock *messageBB = nullptr;
1352 llvm::BasicBlock *continueBB = nullptr;
1353
1354 if (!isPointerSizedReturn) {
1355 startBB = Builder.GetInsertBlock();
1356 messageBB = CGF.createBasicBlock("msgSend");
1357 continueBB = CGF.createBasicBlock("continue");
1358
1359 llvm::Value *isNil = Builder.CreateICmpEQ(Receiver,
1360 llvm::Constant::getNullValue(Receiver->getType()));
1361 Builder.CreateCondBr(isNil, continueBB, messageBB);
1362 CGF.EmitBlock(messageBB);
1363 }
1364
1365 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
1366 llvm::Value *cmd;
1367 if (Method)
1368 cmd = GetSelector(CGF, Method);
1369 else
1370 cmd = GetSelector(CGF, Sel);
1371 cmd = EnforceType(Builder, cmd, SelectorTy);
1372 Receiver = EnforceType(Builder, Receiver, IdTy);
1373
1374 llvm::Value *impMD[] = {
1375 llvm::MDString::get(VMContext, Sel.getAsString()),
1376 llvm::MDString::get(VMContext, Class ? Class->getNameAsString() :""),
1377 llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext),
1378 Class!=nullptr)
1379 };
1380 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
1381
1382 CallArgList ActualArgs;
1383 ActualArgs.add(RValue::get(Receiver), ASTIdTy);
1384 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
1385 ActualArgs.addFrom(CallArgs);
1386
1387 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
1388
1389 // Get the IMP to call
1390 llvm::Value *imp;
1391
1392 // If we have non-legacy dispatch specified, we try using the objc_msgSend()
1393 // functions. These are not supported on all platforms (or all runtimes on a
1394 // given platform), so we
1395 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) {
1396 case CodeGenOptions::Legacy:
1397 imp = LookupIMP(CGF, Receiver, cmd, node, MSI);
1398 break;
1399 case CodeGenOptions::Mixed:
1400 case CodeGenOptions::NonLegacy:
1401 if (CGM.ReturnTypeUsesFPRet(ResultType)) {
1402 imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
1403 "objc_msgSend_fpret");
1404 } else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) {
1405 // The actual types here don't matter - we're going to bitcast the
1406 // function anyway
1407 imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
1408 "objc_msgSend_stret");
1409 } else {
1410 imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
1411 "objc_msgSend");
1412 }
1413 }
1414
1415 // Reset the receiver in case the lookup modified it
1416 ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy, false);
1417
1418 imp = EnforceType(Builder, imp, MSI.MessengerType);
1419
1420 llvm::Instruction *call;
1421 RValue msgRet = CGF.EmitCall(MSI.CallInfo, imp, Return, ActualArgs, nullptr,
1422 &call);
1423 call->setMetadata(msgSendMDKind, node);
1424
1425
1426 if (!isPointerSizedReturn) {
1427 messageBB = CGF.Builder.GetInsertBlock();
1428 CGF.Builder.CreateBr(continueBB);
1429 CGF.EmitBlock(continueBB);
1430 if (msgRet.isScalar()) {
1431 llvm::Value *v = msgRet.getScalarVal();
1432 llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2);
1433 phi->addIncoming(v, messageBB);
1434 phi->addIncoming(llvm::Constant::getNullValue(v->getType()), startBB);
1435 msgRet = RValue::get(phi);
1436 } else if (msgRet.isAggregate()) {
1437 llvm::Value *v = msgRet.getAggregateAddr();
1438 llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2);
1439 llvm::PointerType *RetTy = cast<llvm::PointerType>(v->getType());
1440 llvm::AllocaInst *NullVal =
1441 CGF.CreateTempAlloca(RetTy->getElementType(), "null");
1442 CGF.InitTempAlloca(NullVal,
1443 llvm::Constant::getNullValue(RetTy->getElementType()));
1444 phi->addIncoming(v, messageBB);
1445 phi->addIncoming(NullVal, startBB);
1446 msgRet = RValue::getAggregate(phi);
1447 } else /* isComplex() */ {
1448 std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal();
1449 llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2);
1450 phi->addIncoming(v.first, messageBB);
1451 phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()),
1452 startBB);
1453 llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2);
1454 phi2->addIncoming(v.second, messageBB);
1455 phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()),
1456 startBB);
1457 msgRet = RValue::getComplex(phi, phi2);
1458 }
1459 }
1460 return msgRet;
1461 }
1462
1463 /// Generates a MethodList. Used in construction of a objc_class and
1464 /// objc_category structures.
1465 llvm::Constant *CGObjCGNU::
GenerateMethodList(const StringRef & ClassName,const StringRef & CategoryName,ArrayRef<Selector> MethodSels,ArrayRef<llvm::Constant * > MethodTypes,bool isClassMethodList)1466 GenerateMethodList(const StringRef &ClassName,
1467 const StringRef &CategoryName,
1468 ArrayRef<Selector> MethodSels,
1469 ArrayRef<llvm::Constant *> MethodTypes,
1470 bool isClassMethodList) {
1471 if (MethodSels.empty())
1472 return NULLPtr;
1473 // Get the method structure type.
1474 llvm::StructType *ObjCMethodTy = llvm::StructType::get(
1475 PtrToInt8Ty, // Really a selector, but the runtime creates it us.
1476 PtrToInt8Ty, // Method types
1477 IMPTy, //Method pointer
1478 nullptr);
1479 std::vector<llvm::Constant*> Methods;
1480 std::vector<llvm::Constant*> Elements;
1481 for (unsigned int i = 0, e = MethodTypes.size(); i < e; ++i) {
1482 Elements.clear();
1483 llvm::Constant *Method =
1484 TheModule.getFunction(SymbolNameForMethod(ClassName, CategoryName,
1485 MethodSels[i],
1486 isClassMethodList));
1487 assert(Method && "Can't generate metadata for method that doesn't exist");
1488 llvm::Constant *C = MakeConstantString(MethodSels[i].getAsString());
1489 Elements.push_back(C);
1490 Elements.push_back(MethodTypes[i]);
1491 Method = llvm::ConstantExpr::getBitCast(Method,
1492 IMPTy);
1493 Elements.push_back(Method);
1494 Methods.push_back(llvm::ConstantStruct::get(ObjCMethodTy, Elements));
1495 }
1496
1497 // Array of method structures
1498 llvm::ArrayType *ObjCMethodArrayTy = llvm::ArrayType::get(ObjCMethodTy,
1499 Methods.size());
1500 llvm::Constant *MethodArray = llvm::ConstantArray::get(ObjCMethodArrayTy,
1501 Methods);
1502
1503 // Structure containing list pointer, array and array count
1504 llvm::StructType *ObjCMethodListTy = llvm::StructType::create(VMContext);
1505 llvm::Type *NextPtrTy = llvm::PointerType::getUnqual(ObjCMethodListTy);
1506 ObjCMethodListTy->setBody(
1507 NextPtrTy,
1508 IntTy,
1509 ObjCMethodArrayTy,
1510 nullptr);
1511
1512 Methods.clear();
1513 Methods.push_back(llvm::ConstantPointerNull::get(
1514 llvm::PointerType::getUnqual(ObjCMethodListTy)));
1515 Methods.push_back(llvm::ConstantInt::get(Int32Ty, MethodTypes.size()));
1516 Methods.push_back(MethodArray);
1517
1518 // Create an instance of the structure
1519 return MakeGlobal(ObjCMethodListTy, Methods, ".objc_method_list");
1520 }
1521
1522 /// Generates an IvarList. Used in construction of a objc_class.
1523 llvm::Constant *CGObjCGNU::
GenerateIvarList(ArrayRef<llvm::Constant * > IvarNames,ArrayRef<llvm::Constant * > IvarTypes,ArrayRef<llvm::Constant * > IvarOffsets)1524 GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
1525 ArrayRef<llvm::Constant *> IvarTypes,
1526 ArrayRef<llvm::Constant *> IvarOffsets) {
1527 if (IvarNames.size() == 0)
1528 return NULLPtr;
1529 // Get the method structure type.
1530 llvm::StructType *ObjCIvarTy = llvm::StructType::get(
1531 PtrToInt8Ty,
1532 PtrToInt8Ty,
1533 IntTy,
1534 nullptr);
1535 std::vector<llvm::Constant*> Ivars;
1536 std::vector<llvm::Constant*> Elements;
1537 for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) {
1538 Elements.clear();
1539 Elements.push_back(IvarNames[i]);
1540 Elements.push_back(IvarTypes[i]);
1541 Elements.push_back(IvarOffsets[i]);
1542 Ivars.push_back(llvm::ConstantStruct::get(ObjCIvarTy, Elements));
1543 }
1544
1545 // Array of method structures
1546 llvm::ArrayType *ObjCIvarArrayTy = llvm::ArrayType::get(ObjCIvarTy,
1547 IvarNames.size());
1548
1549
1550 Elements.clear();
1551 Elements.push_back(llvm::ConstantInt::get(IntTy, (int)IvarNames.size()));
1552 Elements.push_back(llvm::ConstantArray::get(ObjCIvarArrayTy, Ivars));
1553 // Structure containing array and array count
1554 llvm::StructType *ObjCIvarListTy = llvm::StructType::get(IntTy,
1555 ObjCIvarArrayTy,
1556 nullptr);
1557
1558 // Create an instance of the structure
1559 return MakeGlobal(ObjCIvarListTy, Elements, ".objc_ivar_list");
1560 }
1561
1562 /// Generate a class structure
GenerateClassStructure(llvm::Constant * MetaClass,llvm::Constant * SuperClass,unsigned info,const char * Name,llvm::Constant * Version,llvm::Constant * InstanceSize,llvm::Constant * IVars,llvm::Constant * Methods,llvm::Constant * Protocols,llvm::Constant * IvarOffsets,llvm::Constant * Properties,llvm::Constant * StrongIvarBitmap,llvm::Constant * WeakIvarBitmap,bool isMeta)1563 llvm::Constant *CGObjCGNU::GenerateClassStructure(
1564 llvm::Constant *MetaClass,
1565 llvm::Constant *SuperClass,
1566 unsigned info,
1567 const char *Name,
1568 llvm::Constant *Version,
1569 llvm::Constant *InstanceSize,
1570 llvm::Constant *IVars,
1571 llvm::Constant *Methods,
1572 llvm::Constant *Protocols,
1573 llvm::Constant *IvarOffsets,
1574 llvm::Constant *Properties,
1575 llvm::Constant *StrongIvarBitmap,
1576 llvm::Constant *WeakIvarBitmap,
1577 bool isMeta) {
1578 // Set up the class structure
1579 // Note: Several of these are char*s when they should be ids. This is
1580 // because the runtime performs this translation on load.
1581 //
1582 // Fields marked New ABI are part of the GNUstep runtime. We emit them
1583 // anyway; the classes will still work with the GNU runtime, they will just
1584 // be ignored.
1585 llvm::StructType *ClassTy = llvm::StructType::get(
1586 PtrToInt8Ty, // isa
1587 PtrToInt8Ty, // super_class
1588 PtrToInt8Ty, // name
1589 LongTy, // version
1590 LongTy, // info
1591 LongTy, // instance_size
1592 IVars->getType(), // ivars
1593 Methods->getType(), // methods
1594 // These are all filled in by the runtime, so we pretend
1595 PtrTy, // dtable
1596 PtrTy, // subclass_list
1597 PtrTy, // sibling_class
1598 PtrTy, // protocols
1599 PtrTy, // gc_object_type
1600 // New ABI:
1601 LongTy, // abi_version
1602 IvarOffsets->getType(), // ivar_offsets
1603 Properties->getType(), // properties
1604 IntPtrTy, // strong_pointers
1605 IntPtrTy, // weak_pointers
1606 nullptr);
1607 llvm::Constant *Zero = llvm::ConstantInt::get(LongTy, 0);
1608 // Fill in the structure
1609 std::vector<llvm::Constant*> Elements;
1610 Elements.push_back(llvm::ConstantExpr::getBitCast(MetaClass, PtrToInt8Ty));
1611 Elements.push_back(SuperClass);
1612 Elements.push_back(MakeConstantString(Name, ".class_name"));
1613 Elements.push_back(Zero);
1614 Elements.push_back(llvm::ConstantInt::get(LongTy, info));
1615 if (isMeta) {
1616 llvm::DataLayout td(&TheModule);
1617 Elements.push_back(
1618 llvm::ConstantInt::get(LongTy,
1619 td.getTypeSizeInBits(ClassTy) /
1620 CGM.getContext().getCharWidth()));
1621 } else
1622 Elements.push_back(InstanceSize);
1623 Elements.push_back(IVars);
1624 Elements.push_back(Methods);
1625 Elements.push_back(NULLPtr);
1626 Elements.push_back(NULLPtr);
1627 Elements.push_back(NULLPtr);
1628 Elements.push_back(llvm::ConstantExpr::getBitCast(Protocols, PtrTy));
1629 Elements.push_back(NULLPtr);
1630 Elements.push_back(llvm::ConstantInt::get(LongTy, 1));
1631 Elements.push_back(IvarOffsets);
1632 Elements.push_back(Properties);
1633 Elements.push_back(StrongIvarBitmap);
1634 Elements.push_back(WeakIvarBitmap);
1635 // Create an instance of the structure
1636 // This is now an externally visible symbol, so that we can speed up class
1637 // messages in the next ABI. We may already have some weak references to
1638 // this, so check and fix them properly.
1639 std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") +
1640 std::string(Name));
1641 llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym);
1642 llvm::Constant *Class = MakeGlobal(ClassTy, Elements, ClassSym,
1643 llvm::GlobalValue::ExternalLinkage);
1644 if (ClassRef) {
1645 ClassRef->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(Class,
1646 ClassRef->getType()));
1647 ClassRef->removeFromParent();
1648 Class->setName(ClassSym);
1649 }
1650 return Class;
1651 }
1652
1653 llvm::Constant *CGObjCGNU::
GenerateProtocolMethodList(ArrayRef<llvm::Constant * > MethodNames,ArrayRef<llvm::Constant * > MethodTypes)1654 GenerateProtocolMethodList(ArrayRef<llvm::Constant *> MethodNames,
1655 ArrayRef<llvm::Constant *> MethodTypes) {
1656 // Get the method structure type.
1657 llvm::StructType *ObjCMethodDescTy = llvm::StructType::get(
1658 PtrToInt8Ty, // Really a selector, but the runtime does the casting for us.
1659 PtrToInt8Ty,
1660 nullptr);
1661 std::vector<llvm::Constant*> Methods;
1662 std::vector<llvm::Constant*> Elements;
1663 for (unsigned int i = 0, e = MethodTypes.size() ; i < e ; i++) {
1664 Elements.clear();
1665 Elements.push_back(MethodNames[i]);
1666 Elements.push_back(MethodTypes[i]);
1667 Methods.push_back(llvm::ConstantStruct::get(ObjCMethodDescTy, Elements));
1668 }
1669 llvm::ArrayType *ObjCMethodArrayTy = llvm::ArrayType::get(ObjCMethodDescTy,
1670 MethodNames.size());
1671 llvm::Constant *Array = llvm::ConstantArray::get(ObjCMethodArrayTy,
1672 Methods);
1673 llvm::StructType *ObjCMethodDescListTy = llvm::StructType::get(
1674 IntTy, ObjCMethodArrayTy, nullptr);
1675 Methods.clear();
1676 Methods.push_back(llvm::ConstantInt::get(IntTy, MethodNames.size()));
1677 Methods.push_back(Array);
1678 return MakeGlobal(ObjCMethodDescListTy, Methods, ".objc_method_list");
1679 }
1680
1681 // Create the protocol list structure used in classes, categories and so on
GenerateProtocolList(ArrayRef<std::string> Protocols)1682 llvm::Constant *CGObjCGNU::GenerateProtocolList(ArrayRef<std::string>Protocols){
1683 llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(PtrToInt8Ty,
1684 Protocols.size());
1685 llvm::StructType *ProtocolListTy = llvm::StructType::get(
1686 PtrTy, //Should be a recurisve pointer, but it's always NULL here.
1687 SizeTy,
1688 ProtocolArrayTy,
1689 nullptr);
1690 std::vector<llvm::Constant*> Elements;
1691 for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end();
1692 iter != endIter ; iter++) {
1693 llvm::Constant *protocol = nullptr;
1694 llvm::StringMap<llvm::Constant*>::iterator value =
1695 ExistingProtocols.find(*iter);
1696 if (value == ExistingProtocols.end()) {
1697 protocol = GenerateEmptyProtocol(*iter);
1698 } else {
1699 protocol = value->getValue();
1700 }
1701 llvm::Constant *Ptr = llvm::ConstantExpr::getBitCast(protocol,
1702 PtrToInt8Ty);
1703 Elements.push_back(Ptr);
1704 }
1705 llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1706 Elements);
1707 Elements.clear();
1708 Elements.push_back(NULLPtr);
1709 Elements.push_back(llvm::ConstantInt::get(LongTy, Protocols.size()));
1710 Elements.push_back(ProtocolArray);
1711 return MakeGlobal(ProtocolListTy, Elements, ".objc_protocol_list");
1712 }
1713
GenerateProtocolRef(CodeGenFunction & CGF,const ObjCProtocolDecl * PD)1714 llvm::Value *CGObjCGNU::GenerateProtocolRef(CodeGenFunction &CGF,
1715 const ObjCProtocolDecl *PD) {
1716 llvm::Value *protocol = ExistingProtocols[PD->getNameAsString()];
1717 llvm::Type *T =
1718 CGM.getTypes().ConvertType(CGM.getContext().getObjCProtoType());
1719 return CGF.Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T));
1720 }
1721
GenerateEmptyProtocol(const std::string & ProtocolName)1722 llvm::Constant *CGObjCGNU::GenerateEmptyProtocol(
1723 const std::string &ProtocolName) {
1724 SmallVector<std::string, 0> EmptyStringVector;
1725 SmallVector<llvm::Constant*, 0> EmptyConstantVector;
1726
1727 llvm::Constant *ProtocolList = GenerateProtocolList(EmptyStringVector);
1728 llvm::Constant *MethodList =
1729 GenerateProtocolMethodList(EmptyConstantVector, EmptyConstantVector);
1730 // Protocols are objects containing lists of the methods implemented and
1731 // protocols adopted.
1732 llvm::StructType *ProtocolTy = llvm::StructType::get(IdTy,
1733 PtrToInt8Ty,
1734 ProtocolList->getType(),
1735 MethodList->getType(),
1736 MethodList->getType(),
1737 MethodList->getType(),
1738 MethodList->getType(),
1739 nullptr);
1740 std::vector<llvm::Constant*> Elements;
1741 // The isa pointer must be set to a magic number so the runtime knows it's
1742 // the correct layout.
1743 Elements.push_back(llvm::ConstantExpr::getIntToPtr(
1744 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
1745 Elements.push_back(MakeConstantString(ProtocolName, ".objc_protocol_name"));
1746 Elements.push_back(ProtocolList);
1747 Elements.push_back(MethodList);
1748 Elements.push_back(MethodList);
1749 Elements.push_back(MethodList);
1750 Elements.push_back(MethodList);
1751 return MakeGlobal(ProtocolTy, Elements, ".objc_protocol");
1752 }
1753
GenerateProtocol(const ObjCProtocolDecl * PD)1754 void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) {
1755 ASTContext &Context = CGM.getContext();
1756 std::string ProtocolName = PD->getNameAsString();
1757
1758 // Use the protocol definition, if there is one.
1759 if (const ObjCProtocolDecl *Def = PD->getDefinition())
1760 PD = Def;
1761
1762 SmallVector<std::string, 16> Protocols;
1763 for (const auto *PI : PD->protocols())
1764 Protocols.push_back(PI->getNameAsString());
1765 SmallVector<llvm::Constant*, 16> InstanceMethodNames;
1766 SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
1767 SmallVector<llvm::Constant*, 16> OptionalInstanceMethodNames;
1768 SmallVector<llvm::Constant*, 16> OptionalInstanceMethodTypes;
1769 for (const auto *I : PD->instance_methods()) {
1770 std::string TypeStr;
1771 Context.getObjCEncodingForMethodDecl(I, TypeStr);
1772 if (I->getImplementationControl() == ObjCMethodDecl::Optional) {
1773 OptionalInstanceMethodNames.push_back(
1774 MakeConstantString(I->getSelector().getAsString()));
1775 OptionalInstanceMethodTypes.push_back(MakeConstantString(TypeStr));
1776 } else {
1777 InstanceMethodNames.push_back(
1778 MakeConstantString(I->getSelector().getAsString()));
1779 InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
1780 }
1781 }
1782 // Collect information about class methods:
1783 SmallVector<llvm::Constant*, 16> ClassMethodNames;
1784 SmallVector<llvm::Constant*, 16> ClassMethodTypes;
1785 SmallVector<llvm::Constant*, 16> OptionalClassMethodNames;
1786 SmallVector<llvm::Constant*, 16> OptionalClassMethodTypes;
1787 for (const auto *I : PD->class_methods()) {
1788 std::string TypeStr;
1789 Context.getObjCEncodingForMethodDecl(I,TypeStr);
1790 if (I->getImplementationControl() == ObjCMethodDecl::Optional) {
1791 OptionalClassMethodNames.push_back(
1792 MakeConstantString(I->getSelector().getAsString()));
1793 OptionalClassMethodTypes.push_back(MakeConstantString(TypeStr));
1794 } else {
1795 ClassMethodNames.push_back(
1796 MakeConstantString(I->getSelector().getAsString()));
1797 ClassMethodTypes.push_back(MakeConstantString(TypeStr));
1798 }
1799 }
1800
1801 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
1802 llvm::Constant *InstanceMethodList =
1803 GenerateProtocolMethodList(InstanceMethodNames, InstanceMethodTypes);
1804 llvm::Constant *ClassMethodList =
1805 GenerateProtocolMethodList(ClassMethodNames, ClassMethodTypes);
1806 llvm::Constant *OptionalInstanceMethodList =
1807 GenerateProtocolMethodList(OptionalInstanceMethodNames,
1808 OptionalInstanceMethodTypes);
1809 llvm::Constant *OptionalClassMethodList =
1810 GenerateProtocolMethodList(OptionalClassMethodNames,
1811 OptionalClassMethodTypes);
1812
1813 // Property metadata: name, attributes, isSynthesized, setter name, setter
1814 // types, getter name, getter types.
1815 // The isSynthesized value is always set to 0 in a protocol. It exists to
1816 // simplify the runtime library by allowing it to use the same data
1817 // structures for protocol metadata everywhere.
1818 llvm::StructType *PropertyMetadataTy = llvm::StructType::get(
1819 PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty,
1820 PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, nullptr);
1821 std::vector<llvm::Constant*> Properties;
1822 std::vector<llvm::Constant*> OptionalProperties;
1823
1824 // Add all of the property methods need adding to the method list and to the
1825 // property metadata list.
1826 for (auto *property : PD->properties()) {
1827 std::vector<llvm::Constant*> Fields;
1828
1829 Fields.push_back(MakePropertyEncodingString(property, nullptr));
1830 PushPropertyAttributes(Fields, property);
1831
1832 if (ObjCMethodDecl *getter = property->getGetterMethodDecl()) {
1833 std::string TypeStr;
1834 Context.getObjCEncodingForMethodDecl(getter,TypeStr);
1835 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
1836 InstanceMethodTypes.push_back(TypeEncoding);
1837 Fields.push_back(MakeConstantString(getter->getSelector().getAsString()));
1838 Fields.push_back(TypeEncoding);
1839 } else {
1840 Fields.push_back(NULLPtr);
1841 Fields.push_back(NULLPtr);
1842 }
1843 if (ObjCMethodDecl *setter = property->getSetterMethodDecl()) {
1844 std::string TypeStr;
1845 Context.getObjCEncodingForMethodDecl(setter,TypeStr);
1846 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
1847 InstanceMethodTypes.push_back(TypeEncoding);
1848 Fields.push_back(MakeConstantString(setter->getSelector().getAsString()));
1849 Fields.push_back(TypeEncoding);
1850 } else {
1851 Fields.push_back(NULLPtr);
1852 Fields.push_back(NULLPtr);
1853 }
1854 if (property->getPropertyImplementation() == ObjCPropertyDecl::Optional) {
1855 OptionalProperties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
1856 } else {
1857 Properties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
1858 }
1859 }
1860 llvm::Constant *PropertyArray = llvm::ConstantArray::get(
1861 llvm::ArrayType::get(PropertyMetadataTy, Properties.size()), Properties);
1862 llvm::Constant* PropertyListInitFields[] =
1863 {llvm::ConstantInt::get(IntTy, Properties.size()), NULLPtr, PropertyArray};
1864
1865 llvm::Constant *PropertyListInit =
1866 llvm::ConstantStruct::getAnon(PropertyListInitFields);
1867 llvm::Constant *PropertyList = new llvm::GlobalVariable(TheModule,
1868 PropertyListInit->getType(), false, llvm::GlobalValue::InternalLinkage,
1869 PropertyListInit, ".objc_property_list");
1870
1871 llvm::Constant *OptionalPropertyArray =
1872 llvm::ConstantArray::get(llvm::ArrayType::get(PropertyMetadataTy,
1873 OptionalProperties.size()) , OptionalProperties);
1874 llvm::Constant* OptionalPropertyListInitFields[] = {
1875 llvm::ConstantInt::get(IntTy, OptionalProperties.size()), NULLPtr,
1876 OptionalPropertyArray };
1877
1878 llvm::Constant *OptionalPropertyListInit =
1879 llvm::ConstantStruct::getAnon(OptionalPropertyListInitFields);
1880 llvm::Constant *OptionalPropertyList = new llvm::GlobalVariable(TheModule,
1881 OptionalPropertyListInit->getType(), false,
1882 llvm::GlobalValue::InternalLinkage, OptionalPropertyListInit,
1883 ".objc_property_list");
1884
1885 // Protocols are objects containing lists of the methods implemented and
1886 // protocols adopted.
1887 llvm::StructType *ProtocolTy = llvm::StructType::get(IdTy,
1888 PtrToInt8Ty,
1889 ProtocolList->getType(),
1890 InstanceMethodList->getType(),
1891 ClassMethodList->getType(),
1892 OptionalInstanceMethodList->getType(),
1893 OptionalClassMethodList->getType(),
1894 PropertyList->getType(),
1895 OptionalPropertyList->getType(),
1896 nullptr);
1897 std::vector<llvm::Constant*> Elements;
1898 // The isa pointer must be set to a magic number so the runtime knows it's
1899 // the correct layout.
1900 Elements.push_back(llvm::ConstantExpr::getIntToPtr(
1901 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
1902 Elements.push_back(MakeConstantString(ProtocolName, ".objc_protocol_name"));
1903 Elements.push_back(ProtocolList);
1904 Elements.push_back(InstanceMethodList);
1905 Elements.push_back(ClassMethodList);
1906 Elements.push_back(OptionalInstanceMethodList);
1907 Elements.push_back(OptionalClassMethodList);
1908 Elements.push_back(PropertyList);
1909 Elements.push_back(OptionalPropertyList);
1910 ExistingProtocols[ProtocolName] =
1911 llvm::ConstantExpr::getBitCast(MakeGlobal(ProtocolTy, Elements,
1912 ".objc_protocol"), IdTy);
1913 }
GenerateProtocolHolderCategory()1914 void CGObjCGNU::GenerateProtocolHolderCategory() {
1915 // Collect information about instance methods
1916 SmallVector<Selector, 1> MethodSels;
1917 SmallVector<llvm::Constant*, 1> MethodTypes;
1918
1919 std::vector<llvm::Constant*> Elements;
1920 const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack";
1921 const std::string CategoryName = "AnotherHack";
1922 Elements.push_back(MakeConstantString(CategoryName));
1923 Elements.push_back(MakeConstantString(ClassName));
1924 // Instance method list
1925 Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
1926 ClassName, CategoryName, MethodSels, MethodTypes, false), PtrTy));
1927 // Class method list
1928 Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
1929 ClassName, CategoryName, MethodSels, MethodTypes, true), PtrTy));
1930 // Protocol list
1931 llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(PtrTy,
1932 ExistingProtocols.size());
1933 llvm::StructType *ProtocolListTy = llvm::StructType::get(
1934 PtrTy, //Should be a recurisve pointer, but it's always NULL here.
1935 SizeTy,
1936 ProtocolArrayTy,
1937 nullptr);
1938 std::vector<llvm::Constant*> ProtocolElements;
1939 for (llvm::StringMapIterator<llvm::Constant*> iter =
1940 ExistingProtocols.begin(), endIter = ExistingProtocols.end();
1941 iter != endIter ; iter++) {
1942 llvm::Constant *Ptr = llvm::ConstantExpr::getBitCast(iter->getValue(),
1943 PtrTy);
1944 ProtocolElements.push_back(Ptr);
1945 }
1946 llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1947 ProtocolElements);
1948 ProtocolElements.clear();
1949 ProtocolElements.push_back(NULLPtr);
1950 ProtocolElements.push_back(llvm::ConstantInt::get(LongTy,
1951 ExistingProtocols.size()));
1952 ProtocolElements.push_back(ProtocolArray);
1953 Elements.push_back(llvm::ConstantExpr::getBitCast(MakeGlobal(ProtocolListTy,
1954 ProtocolElements, ".objc_protocol_list"), PtrTy));
1955 Categories.push_back(llvm::ConstantExpr::getBitCast(
1956 MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty,
1957 PtrTy, PtrTy, PtrTy, nullptr), Elements), PtrTy));
1958 }
1959
1960 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are
1961 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63
1962 /// bits set to their values, LSB first, while larger ones are stored in a
1963 /// structure of this / form:
1964 ///
1965 /// struct { int32_t length; int32_t values[length]; };
1966 ///
1967 /// The values in the array are stored in host-endian format, with the least
1968 /// significant bit being assumed to come first in the bitfield. Therefore, a
1969 /// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a
1970 /// bitfield / with the 63rd bit set will be 1<<64.
MakeBitField(ArrayRef<bool> bits)1971 llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef<bool> bits) {
1972 int bitCount = bits.size();
1973 int ptrBits = CGM.getDataLayout().getPointerSizeInBits();
1974 if (bitCount < ptrBits) {
1975 uint64_t val = 1;
1976 for (int i=0 ; i<bitCount ; ++i) {
1977 if (bits[i]) val |= 1ULL<<(i+1);
1978 }
1979 return llvm::ConstantInt::get(IntPtrTy, val);
1980 }
1981 SmallVector<llvm::Constant *, 8> values;
1982 int v=0;
1983 while (v < bitCount) {
1984 int32_t word = 0;
1985 for (int i=0 ; (i<32) && (v<bitCount) ; ++i) {
1986 if (bits[v]) word |= 1<<i;
1987 v++;
1988 }
1989 values.push_back(llvm::ConstantInt::get(Int32Ty, word));
1990 }
1991 llvm::ArrayType *arrayTy = llvm::ArrayType::get(Int32Ty, values.size());
1992 llvm::Constant *array = llvm::ConstantArray::get(arrayTy, values);
1993 llvm::Constant *fields[2] = {
1994 llvm::ConstantInt::get(Int32Ty, values.size()),
1995 array };
1996 llvm::Constant *GS = MakeGlobal(llvm::StructType::get(Int32Ty, arrayTy,
1997 nullptr), fields);
1998 llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy);
1999 return ptr;
2000 }
2001
GenerateCategory(const ObjCCategoryImplDecl * OCD)2002 void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
2003 std::string ClassName = OCD->getClassInterface()->getNameAsString();
2004 std::string CategoryName = OCD->getNameAsString();
2005 // Collect information about instance methods
2006 SmallVector<Selector, 16> InstanceMethodSels;
2007 SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
2008 for (const auto *I : OCD->instance_methods()) {
2009 InstanceMethodSels.push_back(I->getSelector());
2010 std::string TypeStr;
2011 CGM.getContext().getObjCEncodingForMethodDecl(I,TypeStr);
2012 InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
2013 }
2014
2015 // Collect information about class methods
2016 SmallVector<Selector, 16> ClassMethodSels;
2017 SmallVector<llvm::Constant*, 16> ClassMethodTypes;
2018 for (const auto *I : OCD->class_methods()) {
2019 ClassMethodSels.push_back(I->getSelector());
2020 std::string TypeStr;
2021 CGM.getContext().getObjCEncodingForMethodDecl(I,TypeStr);
2022 ClassMethodTypes.push_back(MakeConstantString(TypeStr));
2023 }
2024
2025 // Collect the names of referenced protocols
2026 SmallVector<std::string, 16> Protocols;
2027 const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl();
2028 const ObjCList<ObjCProtocolDecl> &Protos = CatDecl->getReferencedProtocols();
2029 for (ObjCList<ObjCProtocolDecl>::iterator I = Protos.begin(),
2030 E = Protos.end(); I != E; ++I)
2031 Protocols.push_back((*I)->getNameAsString());
2032
2033 std::vector<llvm::Constant*> Elements;
2034 Elements.push_back(MakeConstantString(CategoryName));
2035 Elements.push_back(MakeConstantString(ClassName));
2036 // Instance method list
2037 Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
2038 ClassName, CategoryName, InstanceMethodSels, InstanceMethodTypes,
2039 false), PtrTy));
2040 // Class method list
2041 Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
2042 ClassName, CategoryName, ClassMethodSels, ClassMethodTypes, true),
2043 PtrTy));
2044 // Protocol list
2045 Elements.push_back(llvm::ConstantExpr::getBitCast(
2046 GenerateProtocolList(Protocols), PtrTy));
2047 Categories.push_back(llvm::ConstantExpr::getBitCast(
2048 MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty,
2049 PtrTy, PtrTy, PtrTy, nullptr), Elements), PtrTy));
2050 }
2051
GeneratePropertyList(const ObjCImplementationDecl * OID,SmallVectorImpl<Selector> & InstanceMethodSels,SmallVectorImpl<llvm::Constant * > & InstanceMethodTypes)2052 llvm::Constant *CGObjCGNU::GeneratePropertyList(const ObjCImplementationDecl *OID,
2053 SmallVectorImpl<Selector> &InstanceMethodSels,
2054 SmallVectorImpl<llvm::Constant*> &InstanceMethodTypes) {
2055 ASTContext &Context = CGM.getContext();
2056 // Property metadata: name, attributes, attributes2, padding1, padding2,
2057 // setter name, setter types, getter name, getter types.
2058 llvm::StructType *PropertyMetadataTy = llvm::StructType::get(
2059 PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty,
2060 PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, nullptr);
2061 std::vector<llvm::Constant*> Properties;
2062
2063 // Add all of the property methods need adding to the method list and to the
2064 // property metadata list.
2065 for (auto *propertyImpl : OID->property_impls()) {
2066 std::vector<llvm::Constant*> Fields;
2067 ObjCPropertyDecl *property = propertyImpl->getPropertyDecl();
2068 bool isSynthesized = (propertyImpl->getPropertyImplementation() ==
2069 ObjCPropertyImplDecl::Synthesize);
2070 bool isDynamic = (propertyImpl->getPropertyImplementation() ==
2071 ObjCPropertyImplDecl::Dynamic);
2072
2073 Fields.push_back(MakePropertyEncodingString(property, OID));
2074 PushPropertyAttributes(Fields, property, isSynthesized, isDynamic);
2075 if (ObjCMethodDecl *getter = property->getGetterMethodDecl()) {
2076 std::string TypeStr;
2077 Context.getObjCEncodingForMethodDecl(getter,TypeStr);
2078 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
2079 if (isSynthesized) {
2080 InstanceMethodTypes.push_back(TypeEncoding);
2081 InstanceMethodSels.push_back(getter->getSelector());
2082 }
2083 Fields.push_back(MakeConstantString(getter->getSelector().getAsString()));
2084 Fields.push_back(TypeEncoding);
2085 } else {
2086 Fields.push_back(NULLPtr);
2087 Fields.push_back(NULLPtr);
2088 }
2089 if (ObjCMethodDecl *setter = property->getSetterMethodDecl()) {
2090 std::string TypeStr;
2091 Context.getObjCEncodingForMethodDecl(setter,TypeStr);
2092 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
2093 if (isSynthesized) {
2094 InstanceMethodTypes.push_back(TypeEncoding);
2095 InstanceMethodSels.push_back(setter->getSelector());
2096 }
2097 Fields.push_back(MakeConstantString(setter->getSelector().getAsString()));
2098 Fields.push_back(TypeEncoding);
2099 } else {
2100 Fields.push_back(NULLPtr);
2101 Fields.push_back(NULLPtr);
2102 }
2103 Properties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
2104 }
2105 llvm::ArrayType *PropertyArrayTy =
2106 llvm::ArrayType::get(PropertyMetadataTy, Properties.size());
2107 llvm::Constant *PropertyArray = llvm::ConstantArray::get(PropertyArrayTy,
2108 Properties);
2109 llvm::Constant* PropertyListInitFields[] =
2110 {llvm::ConstantInt::get(IntTy, Properties.size()), NULLPtr, PropertyArray};
2111
2112 llvm::Constant *PropertyListInit =
2113 llvm::ConstantStruct::getAnon(PropertyListInitFields);
2114 return new llvm::GlobalVariable(TheModule, PropertyListInit->getType(), false,
2115 llvm::GlobalValue::InternalLinkage, PropertyListInit,
2116 ".objc_property_list");
2117 }
2118
RegisterAlias(const ObjCCompatibleAliasDecl * OAD)2119 void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) {
2120 // Get the class declaration for which the alias is specified.
2121 ObjCInterfaceDecl *ClassDecl =
2122 const_cast<ObjCInterfaceDecl *>(OAD->getClassInterface());
2123 std::string ClassName = ClassDecl->getNameAsString();
2124 std::string AliasName = OAD->getNameAsString();
2125 ClassAliases.push_back(ClassAliasPair(ClassName,AliasName));
2126 }
2127
GenerateClass(const ObjCImplementationDecl * OID)2128 void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) {
2129 ASTContext &Context = CGM.getContext();
2130
2131 // Get the superclass name.
2132 const ObjCInterfaceDecl * SuperClassDecl =
2133 OID->getClassInterface()->getSuperClass();
2134 std::string SuperClassName;
2135 if (SuperClassDecl) {
2136 SuperClassName = SuperClassDecl->getNameAsString();
2137 EmitClassRef(SuperClassName);
2138 }
2139
2140 // Get the class name
2141 ObjCInterfaceDecl *ClassDecl =
2142 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
2143 std::string ClassName = ClassDecl->getNameAsString();
2144 // Emit the symbol that is used to generate linker errors if this class is
2145 // referenced in other modules but not declared.
2146 std::string classSymbolName = "__objc_class_name_" + ClassName;
2147 if (llvm::GlobalVariable *symbol =
2148 TheModule.getGlobalVariable(classSymbolName)) {
2149 symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0));
2150 } else {
2151 new llvm::GlobalVariable(TheModule, LongTy, false,
2152 llvm::GlobalValue::ExternalLinkage, llvm::ConstantInt::get(LongTy, 0),
2153 classSymbolName);
2154 }
2155
2156 // Get the size of instances.
2157 int instanceSize =
2158 Context.getASTObjCImplementationLayout(OID).getSize().getQuantity();
2159
2160 // Collect information about instance variables.
2161 SmallVector<llvm::Constant*, 16> IvarNames;
2162 SmallVector<llvm::Constant*, 16> IvarTypes;
2163 SmallVector<llvm::Constant*, 16> IvarOffsets;
2164
2165 std::vector<llvm::Constant*> IvarOffsetValues;
2166 SmallVector<bool, 16> WeakIvars;
2167 SmallVector<bool, 16> StrongIvars;
2168
2169 int superInstanceSize = !SuperClassDecl ? 0 :
2170 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
2171 // For non-fragile ivars, set the instance size to 0 - {the size of just this
2172 // class}. The runtime will then set this to the correct value on load.
2173 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2174 instanceSize = 0 - (instanceSize - superInstanceSize);
2175 }
2176
2177 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
2178 IVD = IVD->getNextIvar()) {
2179 // Store the name
2180 IvarNames.push_back(MakeConstantString(IVD->getNameAsString()));
2181 // Get the type encoding for this ivar
2182 std::string TypeStr;
2183 Context.getObjCEncodingForType(IVD->getType(), TypeStr);
2184 IvarTypes.push_back(MakeConstantString(TypeStr));
2185 // Get the offset
2186 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
2187 uint64_t Offset = BaseOffset;
2188 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2189 Offset = BaseOffset - superInstanceSize;
2190 }
2191 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
2192 // Create the direct offset value
2193 std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." +
2194 IVD->getNameAsString();
2195 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
2196 if (OffsetVar) {
2197 OffsetVar->setInitializer(OffsetValue);
2198 // If this is the real definition, change its linkage type so that
2199 // different modules will use this one, rather than their private
2200 // copy.
2201 OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage);
2202 } else
2203 OffsetVar = new llvm::GlobalVariable(TheModule, IntTy,
2204 false, llvm::GlobalValue::ExternalLinkage,
2205 OffsetValue,
2206 "__objc_ivar_offset_value_" + ClassName +"." +
2207 IVD->getNameAsString());
2208 IvarOffsets.push_back(OffsetValue);
2209 IvarOffsetValues.push_back(OffsetVar);
2210 Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime();
2211 switch (lt) {
2212 case Qualifiers::OCL_Strong:
2213 StrongIvars.push_back(true);
2214 WeakIvars.push_back(false);
2215 break;
2216 case Qualifiers::OCL_Weak:
2217 StrongIvars.push_back(false);
2218 WeakIvars.push_back(true);
2219 break;
2220 default:
2221 StrongIvars.push_back(false);
2222 WeakIvars.push_back(false);
2223 }
2224 }
2225 llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars);
2226 llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars);
2227 llvm::GlobalVariable *IvarOffsetArray =
2228 MakeGlobalArray(PtrToIntTy, IvarOffsetValues, ".ivar.offsets");
2229
2230
2231 // Collect information about instance methods
2232 SmallVector<Selector, 16> InstanceMethodSels;
2233 SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
2234 for (const auto *I : OID->instance_methods()) {
2235 InstanceMethodSels.push_back(I->getSelector());
2236 std::string TypeStr;
2237 Context.getObjCEncodingForMethodDecl(I,TypeStr);
2238 InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
2239 }
2240
2241 llvm::Constant *Properties = GeneratePropertyList(OID, InstanceMethodSels,
2242 InstanceMethodTypes);
2243
2244
2245 // Collect information about class methods
2246 SmallVector<Selector, 16> ClassMethodSels;
2247 SmallVector<llvm::Constant*, 16> ClassMethodTypes;
2248 for (const auto *I : OID->class_methods()) {
2249 ClassMethodSels.push_back(I->getSelector());
2250 std::string TypeStr;
2251 Context.getObjCEncodingForMethodDecl(I,TypeStr);
2252 ClassMethodTypes.push_back(MakeConstantString(TypeStr));
2253 }
2254 // Collect the names of referenced protocols
2255 SmallVector<std::string, 16> Protocols;
2256 for (const auto *I : ClassDecl->protocols())
2257 Protocols.push_back(I->getNameAsString());
2258
2259 // Get the superclass pointer.
2260 llvm::Constant *SuperClass;
2261 if (!SuperClassName.empty()) {
2262 SuperClass = MakeConstantString(SuperClassName, ".super_class_name");
2263 } else {
2264 SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty);
2265 }
2266 // Empty vector used to construct empty method lists
2267 SmallVector<llvm::Constant*, 1> empty;
2268 // Generate the method and instance variable lists
2269 llvm::Constant *MethodList = GenerateMethodList(ClassName, "",
2270 InstanceMethodSels, InstanceMethodTypes, false);
2271 llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "",
2272 ClassMethodSels, ClassMethodTypes, true);
2273 llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes,
2274 IvarOffsets);
2275 // Irrespective of whether we are compiling for a fragile or non-fragile ABI,
2276 // we emit a symbol containing the offset for each ivar in the class. This
2277 // allows code compiled for the non-Fragile ABI to inherit from code compiled
2278 // for the legacy ABI, without causing problems. The converse is also
2279 // possible, but causes all ivar accesses to be fragile.
2280
2281 // Offset pointer for getting at the correct field in the ivar list when
2282 // setting up the alias. These are: The base address for the global, the
2283 // ivar array (second field), the ivar in this list (set for each ivar), and
2284 // the offset (third field in ivar structure)
2285 llvm::Type *IndexTy = Int32Ty;
2286 llvm::Constant *offsetPointerIndexes[] = {Zeros[0],
2287 llvm::ConstantInt::get(IndexTy, 1), nullptr,
2288 llvm::ConstantInt::get(IndexTy, 2) };
2289
2290 unsigned ivarIndex = 0;
2291 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
2292 IVD = IVD->getNextIvar()) {
2293 const std::string Name = "__objc_ivar_offset_" + ClassName + '.'
2294 + IVD->getNameAsString();
2295 offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex);
2296 // Get the correct ivar field
2297 llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr(
2298 IvarList, offsetPointerIndexes);
2299 // Get the existing variable, if one exists.
2300 llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name);
2301 if (offset) {
2302 offset->setInitializer(offsetValue);
2303 // If this is the real definition, change its linkage type so that
2304 // different modules will use this one, rather than their private
2305 // copy.
2306 offset->setLinkage(llvm::GlobalValue::ExternalLinkage);
2307 } else {
2308 // Add a new alias if there isn't one already.
2309 offset = new llvm::GlobalVariable(TheModule, offsetValue->getType(),
2310 false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name);
2311 (void) offset; // Silence dead store warning.
2312 }
2313 ++ivarIndex;
2314 }
2315 llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0);
2316 //Generate metaclass for class methods
2317 llvm::Constant *MetaClassStruct = GenerateClassStructure(NULLPtr,
2318 NULLPtr, 0x12L, ClassName.c_str(), nullptr, Zeros[0], GenerateIvarList(
2319 empty, empty, empty), ClassMethodList, NULLPtr,
2320 NULLPtr, NULLPtr, ZeroPtr, ZeroPtr, true);
2321
2322 // Generate the class structure
2323 llvm::Constant *ClassStruct =
2324 GenerateClassStructure(MetaClassStruct, SuperClass, 0x11L,
2325 ClassName.c_str(), nullptr,
2326 llvm::ConstantInt::get(LongTy, instanceSize), IvarList,
2327 MethodList, GenerateProtocolList(Protocols), IvarOffsetArray,
2328 Properties, StrongIvarBitmap, WeakIvarBitmap);
2329
2330 // Resolve the class aliases, if they exist.
2331 if (ClassPtrAlias) {
2332 ClassPtrAlias->replaceAllUsesWith(
2333 llvm::ConstantExpr::getBitCast(ClassStruct, IdTy));
2334 ClassPtrAlias->eraseFromParent();
2335 ClassPtrAlias = nullptr;
2336 }
2337 if (MetaClassPtrAlias) {
2338 MetaClassPtrAlias->replaceAllUsesWith(
2339 llvm::ConstantExpr::getBitCast(MetaClassStruct, IdTy));
2340 MetaClassPtrAlias->eraseFromParent();
2341 MetaClassPtrAlias = nullptr;
2342 }
2343
2344 // Add class structure to list to be added to the symtab later
2345 ClassStruct = llvm::ConstantExpr::getBitCast(ClassStruct, PtrToInt8Ty);
2346 Classes.push_back(ClassStruct);
2347 }
2348
2349
ModuleInitFunction()2350 llvm::Function *CGObjCGNU::ModuleInitFunction() {
2351 // Only emit an ObjC load function if no Objective-C stuff has been called
2352 if (Classes.empty() && Categories.empty() && ConstantStrings.empty() &&
2353 ExistingProtocols.empty() && SelectorTable.empty())
2354 return nullptr;
2355
2356 // Add all referenced protocols to a category.
2357 GenerateProtocolHolderCategory();
2358
2359 llvm::StructType *SelStructTy = dyn_cast<llvm::StructType>(
2360 SelectorTy->getElementType());
2361 llvm::Type *SelStructPtrTy = SelectorTy;
2362 if (!SelStructTy) {
2363 SelStructTy = llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, nullptr);
2364 SelStructPtrTy = llvm::PointerType::getUnqual(SelStructTy);
2365 }
2366
2367 std::vector<llvm::Constant*> Elements;
2368 llvm::Constant *Statics = NULLPtr;
2369 // Generate statics list:
2370 if (ConstantStrings.size()) {
2371 llvm::ArrayType *StaticsArrayTy = llvm::ArrayType::get(PtrToInt8Ty,
2372 ConstantStrings.size() + 1);
2373 ConstantStrings.push_back(NULLPtr);
2374
2375 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
2376
2377 if (StringClass.empty()) StringClass = "NXConstantString";
2378
2379 Elements.push_back(MakeConstantString(StringClass,
2380 ".objc_static_class_name"));
2381 Elements.push_back(llvm::ConstantArray::get(StaticsArrayTy,
2382 ConstantStrings));
2383 llvm::StructType *StaticsListTy =
2384 llvm::StructType::get(PtrToInt8Ty, StaticsArrayTy, nullptr);
2385 llvm::Type *StaticsListPtrTy =
2386 llvm::PointerType::getUnqual(StaticsListTy);
2387 Statics = MakeGlobal(StaticsListTy, Elements, ".objc_statics");
2388 llvm::ArrayType *StaticsListArrayTy =
2389 llvm::ArrayType::get(StaticsListPtrTy, 2);
2390 Elements.clear();
2391 Elements.push_back(Statics);
2392 Elements.push_back(llvm::Constant::getNullValue(StaticsListPtrTy));
2393 Statics = MakeGlobal(StaticsListArrayTy, Elements, ".objc_statics_ptr");
2394 Statics = llvm::ConstantExpr::getBitCast(Statics, PtrTy);
2395 }
2396 // Array of classes, categories, and constant objects
2397 llvm::ArrayType *ClassListTy = llvm::ArrayType::get(PtrToInt8Ty,
2398 Classes.size() + Categories.size() + 2);
2399 llvm::StructType *SymTabTy = llvm::StructType::get(LongTy, SelStructPtrTy,
2400 llvm::Type::getInt16Ty(VMContext),
2401 llvm::Type::getInt16Ty(VMContext),
2402 ClassListTy, nullptr);
2403
2404 Elements.clear();
2405 // Pointer to an array of selectors used in this module.
2406 std::vector<llvm::Constant*> Selectors;
2407 std::vector<llvm::GlobalAlias*> SelectorAliases;
2408 for (SelectorMap::iterator iter = SelectorTable.begin(),
2409 iterEnd = SelectorTable.end(); iter != iterEnd ; ++iter) {
2410
2411 std::string SelNameStr = iter->first.getAsString();
2412 llvm::Constant *SelName = ExportUniqueString(SelNameStr, ".objc_sel_name");
2413
2414 SmallVectorImpl<TypedSelector> &Types = iter->second;
2415 for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
2416 e = Types.end() ; i!=e ; i++) {
2417
2418 llvm::Constant *SelectorTypeEncoding = NULLPtr;
2419 if (!i->first.empty())
2420 SelectorTypeEncoding = MakeConstantString(i->first, ".objc_sel_types");
2421
2422 Elements.push_back(SelName);
2423 Elements.push_back(SelectorTypeEncoding);
2424 Selectors.push_back(llvm::ConstantStruct::get(SelStructTy, Elements));
2425 Elements.clear();
2426
2427 // Store the selector alias for later replacement
2428 SelectorAliases.push_back(i->second);
2429 }
2430 }
2431 unsigned SelectorCount = Selectors.size();
2432 // NULL-terminate the selector list. This should not actually be required,
2433 // because the selector list has a length field. Unfortunately, the GCC
2434 // runtime decides to ignore the length field and expects a NULL terminator,
2435 // and GCC cooperates with this by always setting the length to 0.
2436 Elements.push_back(NULLPtr);
2437 Elements.push_back(NULLPtr);
2438 Selectors.push_back(llvm::ConstantStruct::get(SelStructTy, Elements));
2439 Elements.clear();
2440
2441 // Number of static selectors
2442 Elements.push_back(llvm::ConstantInt::get(LongTy, SelectorCount));
2443 llvm::Constant *SelectorList = MakeGlobalArray(SelStructTy, Selectors,
2444 ".objc_selector_list");
2445 Elements.push_back(llvm::ConstantExpr::getBitCast(SelectorList,
2446 SelStructPtrTy));
2447
2448 // Now that all of the static selectors exist, create pointers to them.
2449 for (unsigned int i=0 ; i<SelectorCount ; i++) {
2450
2451 llvm::Constant *Idxs[] = {Zeros[0],
2452 llvm::ConstantInt::get(Int32Ty, i), Zeros[0]};
2453 // FIXME: We're generating redundant loads and stores here!
2454 llvm::Constant *SelPtr = llvm::ConstantExpr::getGetElementPtr(SelectorList,
2455 makeArrayRef(Idxs, 2));
2456 // If selectors are defined as an opaque type, cast the pointer to this
2457 // type.
2458 SelPtr = llvm::ConstantExpr::getBitCast(SelPtr, SelectorTy);
2459 SelectorAliases[i]->replaceAllUsesWith(SelPtr);
2460 SelectorAliases[i]->eraseFromParent();
2461 }
2462
2463 // Number of classes defined.
2464 Elements.push_back(llvm::ConstantInt::get(llvm::Type::getInt16Ty(VMContext),
2465 Classes.size()));
2466 // Number of categories defined
2467 Elements.push_back(llvm::ConstantInt::get(llvm::Type::getInt16Ty(VMContext),
2468 Categories.size()));
2469 // Create an array of classes, then categories, then static object instances
2470 Classes.insert(Classes.end(), Categories.begin(), Categories.end());
2471 // NULL-terminated list of static object instances (mainly constant strings)
2472 Classes.push_back(Statics);
2473 Classes.push_back(NULLPtr);
2474 llvm::Constant *ClassList = llvm::ConstantArray::get(ClassListTy, Classes);
2475 Elements.push_back(ClassList);
2476 // Construct the symbol table
2477 llvm::Constant *SymTab= MakeGlobal(SymTabTy, Elements);
2478
2479 // The symbol table is contained in a module which has some version-checking
2480 // constants
2481 llvm::StructType * ModuleTy = llvm::StructType::get(LongTy, LongTy,
2482 PtrToInt8Ty, llvm::PointerType::getUnqual(SymTabTy),
2483 (RuntimeVersion >= 10) ? IntTy : nullptr, nullptr);
2484 Elements.clear();
2485 // Runtime version, used for ABI compatibility checking.
2486 Elements.push_back(llvm::ConstantInt::get(LongTy, RuntimeVersion));
2487 // sizeof(ModuleTy)
2488 llvm::DataLayout td(&TheModule);
2489 Elements.push_back(
2490 llvm::ConstantInt::get(LongTy,
2491 td.getTypeSizeInBits(ModuleTy) /
2492 CGM.getContext().getCharWidth()));
2493
2494 // The path to the source file where this module was declared
2495 SourceManager &SM = CGM.getContext().getSourceManager();
2496 const FileEntry *mainFile = SM.getFileEntryForID(SM.getMainFileID());
2497 std::string path =
2498 std::string(mainFile->getDir()->getName()) + '/' + mainFile->getName();
2499 Elements.push_back(MakeConstantString(path, ".objc_source_file_name"));
2500 Elements.push_back(SymTab);
2501
2502 if (RuntimeVersion >= 10)
2503 switch (CGM.getLangOpts().getGC()) {
2504 case LangOptions::GCOnly:
2505 Elements.push_back(llvm::ConstantInt::get(IntTy, 2));
2506 break;
2507 case LangOptions::NonGC:
2508 if (CGM.getLangOpts().ObjCAutoRefCount)
2509 Elements.push_back(llvm::ConstantInt::get(IntTy, 1));
2510 else
2511 Elements.push_back(llvm::ConstantInt::get(IntTy, 0));
2512 break;
2513 case LangOptions::HybridGC:
2514 Elements.push_back(llvm::ConstantInt::get(IntTy, 1));
2515 break;
2516 }
2517
2518 llvm::Value *Module = MakeGlobal(ModuleTy, Elements);
2519
2520 // Create the load function calling the runtime entry point with the module
2521 // structure
2522 llvm::Function * LoadFunction = llvm::Function::Create(
2523 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
2524 llvm::GlobalValue::InternalLinkage, ".objc_load_function",
2525 &TheModule);
2526 llvm::BasicBlock *EntryBB =
2527 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
2528 CGBuilderTy Builder(VMContext);
2529 Builder.SetInsertPoint(EntryBB);
2530
2531 llvm::FunctionType *FT =
2532 llvm::FunctionType::get(Builder.getVoidTy(),
2533 llvm::PointerType::getUnqual(ModuleTy), true);
2534 llvm::Value *Register = CGM.CreateRuntimeFunction(FT, "__objc_exec_class");
2535 Builder.CreateCall(Register, Module);
2536
2537 if (!ClassAliases.empty()) {
2538 llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty};
2539 llvm::FunctionType *RegisterAliasTy =
2540 llvm::FunctionType::get(Builder.getVoidTy(),
2541 ArgTypes, false);
2542 llvm::Function *RegisterAlias = llvm::Function::Create(
2543 RegisterAliasTy,
2544 llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np",
2545 &TheModule);
2546 llvm::BasicBlock *AliasBB =
2547 llvm::BasicBlock::Create(VMContext, "alias", LoadFunction);
2548 llvm::BasicBlock *NoAliasBB =
2549 llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction);
2550
2551 // Branch based on whether the runtime provided class_registerAlias_np()
2552 llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias,
2553 llvm::Constant::getNullValue(RegisterAlias->getType()));
2554 Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB);
2555
2556 // The true branch (has alias registration function):
2557 Builder.SetInsertPoint(AliasBB);
2558 // Emit alias registration calls:
2559 for (std::vector<ClassAliasPair>::iterator iter = ClassAliases.begin();
2560 iter != ClassAliases.end(); ++iter) {
2561 llvm::Constant *TheClass =
2562 TheModule.getGlobalVariable(("_OBJC_CLASS_" + iter->first).c_str(),
2563 true);
2564 if (TheClass) {
2565 TheClass = llvm::ConstantExpr::getBitCast(TheClass, PtrTy);
2566 Builder.CreateCall2(RegisterAlias, TheClass,
2567 MakeConstantString(iter->second));
2568 }
2569 }
2570 // Jump to end:
2571 Builder.CreateBr(NoAliasBB);
2572
2573 // Missing alias registration function, just return from the function:
2574 Builder.SetInsertPoint(NoAliasBB);
2575 }
2576 Builder.CreateRetVoid();
2577
2578 return LoadFunction;
2579 }
2580
GenerateMethod(const ObjCMethodDecl * OMD,const ObjCContainerDecl * CD)2581 llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD,
2582 const ObjCContainerDecl *CD) {
2583 const ObjCCategoryImplDecl *OCD =
2584 dyn_cast<ObjCCategoryImplDecl>(OMD->getDeclContext());
2585 StringRef CategoryName = OCD ? OCD->getName() : "";
2586 StringRef ClassName = CD->getName();
2587 Selector MethodName = OMD->getSelector();
2588 bool isClassMethod = !OMD->isInstanceMethod();
2589
2590 CodeGenTypes &Types = CGM.getTypes();
2591 llvm::FunctionType *MethodTy =
2592 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD));
2593 std::string FunctionName = SymbolNameForMethod(ClassName, CategoryName,
2594 MethodName, isClassMethod);
2595
2596 llvm::Function *Method
2597 = llvm::Function::Create(MethodTy,
2598 llvm::GlobalValue::InternalLinkage,
2599 FunctionName,
2600 &TheModule);
2601 return Method;
2602 }
2603
GetPropertyGetFunction()2604 llvm::Constant *CGObjCGNU::GetPropertyGetFunction() {
2605 return GetPropertyFn;
2606 }
2607
GetPropertySetFunction()2608 llvm::Constant *CGObjCGNU::GetPropertySetFunction() {
2609 return SetPropertyFn;
2610 }
2611
GetOptimizedPropertySetFunction(bool atomic,bool copy)2612 llvm::Constant *CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic,
2613 bool copy) {
2614 return nullptr;
2615 }
2616
GetGetStructFunction()2617 llvm::Constant *CGObjCGNU::GetGetStructFunction() {
2618 return GetStructPropertyFn;
2619 }
GetSetStructFunction()2620 llvm::Constant *CGObjCGNU::GetSetStructFunction() {
2621 return SetStructPropertyFn;
2622 }
GetCppAtomicObjectGetFunction()2623 llvm::Constant *CGObjCGNU::GetCppAtomicObjectGetFunction() {
2624 return nullptr;
2625 }
GetCppAtomicObjectSetFunction()2626 llvm::Constant *CGObjCGNU::GetCppAtomicObjectSetFunction() {
2627 return nullptr;
2628 }
2629
EnumerationMutationFunction()2630 llvm::Constant *CGObjCGNU::EnumerationMutationFunction() {
2631 return EnumerationMutationFn;
2632 }
2633
EmitSynchronizedStmt(CodeGenFunction & CGF,const ObjCAtSynchronizedStmt & S)2634 void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF,
2635 const ObjCAtSynchronizedStmt &S) {
2636 EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn);
2637 }
2638
2639
EmitTryStmt(CodeGenFunction & CGF,const ObjCAtTryStmt & S)2640 void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF,
2641 const ObjCAtTryStmt &S) {
2642 // Unlike the Apple non-fragile runtimes, which also uses
2643 // unwind-based zero cost exceptions, the GNU Objective C runtime's
2644 // EH support isn't a veneer over C++ EH. Instead, exception
2645 // objects are created by objc_exception_throw and destroyed by
2646 // the personality function; this avoids the need for bracketing
2647 // catch handlers with calls to __blah_begin_catch/__blah_end_catch
2648 // (or even _Unwind_DeleteException), but probably doesn't
2649 // interoperate very well with foreign exceptions.
2650 //
2651 // In Objective-C++ mode, we actually emit something equivalent to the C++
2652 // exception handler.
2653 EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn);
2654 return ;
2655 }
2656
EmitThrowStmt(CodeGenFunction & CGF,const ObjCAtThrowStmt & S,bool ClearInsertionPoint)2657 void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF,
2658 const ObjCAtThrowStmt &S,
2659 bool ClearInsertionPoint) {
2660 llvm::Value *ExceptionAsObject;
2661
2662 if (const Expr *ThrowExpr = S.getThrowExpr()) {
2663 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
2664 ExceptionAsObject = Exception;
2665 } else {
2666 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&
2667 "Unexpected rethrow outside @catch block.");
2668 ExceptionAsObject = CGF.ObjCEHValueStack.back();
2669 }
2670 ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy);
2671 llvm::CallSite Throw =
2672 CGF.EmitRuntimeCallOrInvoke(ExceptionThrowFn, ExceptionAsObject);
2673 Throw.setDoesNotReturn();
2674 CGF.Builder.CreateUnreachable();
2675 if (ClearInsertionPoint)
2676 CGF.Builder.ClearInsertionPoint();
2677 }
2678
EmitObjCWeakRead(CodeGenFunction & CGF,llvm::Value * AddrWeakObj)2679 llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF,
2680 llvm::Value *AddrWeakObj) {
2681 CGBuilderTy &B = CGF.Builder;
2682 AddrWeakObj = EnforceType(B, AddrWeakObj, PtrToIdTy);
2683 return B.CreateCall(WeakReadFn, AddrWeakObj);
2684 }
2685
EmitObjCWeakAssign(CodeGenFunction & CGF,llvm::Value * src,llvm::Value * dst)2686 void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF,
2687 llvm::Value *src, llvm::Value *dst) {
2688 CGBuilderTy &B = CGF.Builder;
2689 src = EnforceType(B, src, IdTy);
2690 dst = EnforceType(B, dst, PtrToIdTy);
2691 B.CreateCall2(WeakAssignFn, src, dst);
2692 }
2693
EmitObjCGlobalAssign(CodeGenFunction & CGF,llvm::Value * src,llvm::Value * dst,bool threadlocal)2694 void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF,
2695 llvm::Value *src, llvm::Value *dst,
2696 bool threadlocal) {
2697 CGBuilderTy &B = CGF.Builder;
2698 src = EnforceType(B, src, IdTy);
2699 dst = EnforceType(B, dst, PtrToIdTy);
2700 if (!threadlocal)
2701 B.CreateCall2(GlobalAssignFn, src, dst);
2702 else
2703 // FIXME. Add threadloca assign API
2704 llvm_unreachable("EmitObjCGlobalAssign - Threal Local API NYI");
2705 }
2706
EmitObjCIvarAssign(CodeGenFunction & CGF,llvm::Value * src,llvm::Value * dst,llvm::Value * ivarOffset)2707 void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF,
2708 llvm::Value *src, llvm::Value *dst,
2709 llvm::Value *ivarOffset) {
2710 CGBuilderTy &B = CGF.Builder;
2711 src = EnforceType(B, src, IdTy);
2712 dst = EnforceType(B, dst, IdTy);
2713 B.CreateCall3(IvarAssignFn, src, dst, ivarOffset);
2714 }
2715
EmitObjCStrongCastAssign(CodeGenFunction & CGF,llvm::Value * src,llvm::Value * dst)2716 void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF,
2717 llvm::Value *src, llvm::Value *dst) {
2718 CGBuilderTy &B = CGF.Builder;
2719 src = EnforceType(B, src, IdTy);
2720 dst = EnforceType(B, dst, PtrToIdTy);
2721 B.CreateCall2(StrongCastAssignFn, src, dst);
2722 }
2723
EmitGCMemmoveCollectable(CodeGenFunction & CGF,llvm::Value * DestPtr,llvm::Value * SrcPtr,llvm::Value * Size)2724 void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF,
2725 llvm::Value *DestPtr,
2726 llvm::Value *SrcPtr,
2727 llvm::Value *Size) {
2728 CGBuilderTy &B = CGF.Builder;
2729 DestPtr = EnforceType(B, DestPtr, PtrTy);
2730 SrcPtr = EnforceType(B, SrcPtr, PtrTy);
2731
2732 B.CreateCall3(MemMoveFn, DestPtr, SrcPtr, Size);
2733 }
2734
ObjCIvarOffsetVariable(const ObjCInterfaceDecl * ID,const ObjCIvarDecl * Ivar)2735 llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable(
2736 const ObjCInterfaceDecl *ID,
2737 const ObjCIvarDecl *Ivar) {
2738 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
2739 + '.' + Ivar->getNameAsString();
2740 // Emit the variable and initialize it with what we think the correct value
2741 // is. This allows code compiled with non-fragile ivars to work correctly
2742 // when linked against code which isn't (most of the time).
2743 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
2744 if (!IvarOffsetPointer) {
2745 // This will cause a run-time crash if we accidentally use it. A value of
2746 // 0 would seem more sensible, but will silently overwrite the isa pointer
2747 // causing a great deal of confusion.
2748 uint64_t Offset = -1;
2749 // We can't call ComputeIvarBaseOffset() here if we have the
2750 // implementation, because it will create an invalid ASTRecordLayout object
2751 // that we are then stuck with forever, so we only initialize the ivar
2752 // offset variable with a guess if we only have the interface. The
2753 // initializer will be reset later anyway, when we are generating the class
2754 // description.
2755 if (!CGM.getContext().getObjCImplementation(
2756 const_cast<ObjCInterfaceDecl *>(ID)))
2757 Offset = ComputeIvarBaseOffset(CGM, ID, Ivar);
2758
2759 llvm::ConstantInt *OffsetGuess = llvm::ConstantInt::get(Int32Ty, Offset,
2760 /*isSigned*/true);
2761 // Don't emit the guess in non-PIC code because the linker will not be able
2762 // to replace it with the real version for a library. In non-PIC code you
2763 // must compile with the fragile ABI if you want to use ivars from a
2764 // GCC-compiled class.
2765 if (CGM.getLangOpts().PICLevel || CGM.getLangOpts().PIELevel) {
2766 llvm::GlobalVariable *IvarOffsetGV = new llvm::GlobalVariable(TheModule,
2767 Int32Ty, false,
2768 llvm::GlobalValue::PrivateLinkage, OffsetGuess, Name+".guess");
2769 IvarOffsetPointer = new llvm::GlobalVariable(TheModule,
2770 IvarOffsetGV->getType(), false, llvm::GlobalValue::LinkOnceAnyLinkage,
2771 IvarOffsetGV, Name);
2772 } else {
2773 IvarOffsetPointer = new llvm::GlobalVariable(TheModule,
2774 llvm::Type::getInt32PtrTy(VMContext), false,
2775 llvm::GlobalValue::ExternalLinkage, nullptr, Name);
2776 }
2777 }
2778 return IvarOffsetPointer;
2779 }
2780
EmitObjCValueForIvar(CodeGenFunction & CGF,QualType ObjectTy,llvm::Value * BaseValue,const ObjCIvarDecl * Ivar,unsigned CVRQualifiers)2781 LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF,
2782 QualType ObjectTy,
2783 llvm::Value *BaseValue,
2784 const ObjCIvarDecl *Ivar,
2785 unsigned CVRQualifiers) {
2786 const ObjCInterfaceDecl *ID =
2787 ObjectTy->getAs<ObjCObjectType>()->getInterface();
2788 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
2789 EmitIvarOffset(CGF, ID, Ivar));
2790 }
2791
FindIvarInterface(ASTContext & Context,const ObjCInterfaceDecl * OID,const ObjCIvarDecl * OIVD)2792 static const ObjCInterfaceDecl *FindIvarInterface(ASTContext &Context,
2793 const ObjCInterfaceDecl *OID,
2794 const ObjCIvarDecl *OIVD) {
2795 for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next;
2796 next = next->getNextIvar()) {
2797 if (OIVD == next)
2798 return OID;
2799 }
2800
2801 // Otherwise check in the super class.
2802 if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
2803 return FindIvarInterface(Context, Super, OIVD);
2804
2805 return nullptr;
2806 }
2807
EmitIvarOffset(CodeGenFunction & CGF,const ObjCInterfaceDecl * Interface,const ObjCIvarDecl * Ivar)2808 llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF,
2809 const ObjCInterfaceDecl *Interface,
2810 const ObjCIvarDecl *Ivar) {
2811 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2812 Interface = FindIvarInterface(CGM.getContext(), Interface, Ivar);
2813 if (RuntimeVersion < 10)
2814 return CGF.Builder.CreateZExtOrBitCast(
2815 CGF.Builder.CreateLoad(CGF.Builder.CreateLoad(
2816 ObjCIvarOffsetVariable(Interface, Ivar), false, "ivar")),
2817 PtrDiffTy);
2818 std::string name = "__objc_ivar_offset_value_" +
2819 Interface->getNameAsString() +"." + Ivar->getNameAsString();
2820 llvm::Value *Offset = TheModule.getGlobalVariable(name);
2821 if (!Offset)
2822 Offset = new llvm::GlobalVariable(TheModule, IntTy,
2823 false, llvm::GlobalValue::LinkOnceAnyLinkage,
2824 llvm::Constant::getNullValue(IntTy), name);
2825 Offset = CGF.Builder.CreateLoad(Offset);
2826 if (Offset->getType() != PtrDiffTy)
2827 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
2828 return Offset;
2829 }
2830 uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar);
2831 return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true);
2832 }
2833
2834 CGObjCRuntime *
CreateGNUObjCRuntime(CodeGenModule & CGM)2835 clang::CodeGen::CreateGNUObjCRuntime(CodeGenModule &CGM) {
2836 switch (CGM.getLangOpts().ObjCRuntime.getKind()) {
2837 case ObjCRuntime::GNUstep:
2838 return new CGObjCGNUstep(CGM);
2839
2840 case ObjCRuntime::GCC:
2841 return new CGObjCGCC(CGM);
2842
2843 case ObjCRuntime::ObjFW:
2844 return new CGObjCObjFW(CGM);
2845
2846 case ObjCRuntime::FragileMacOSX:
2847 case ObjCRuntime::MacOSX:
2848 case ObjCRuntime::iOS:
2849 llvm_unreachable("these runtimes are not GNU runtimes");
2850 }
2851 llvm_unreachable("bad runtime");
2852 }
2853