1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CodeGenFunction.h"
19 #include "clang/AST/RecordLayout.h"
20 #include "clang/CodeGen/CGFunctionInfo.h"
21 #include "clang/Frontend/CodeGenOptions.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Type.h"
25 #include "llvm/Support/raw_ostream.h"
26
27 #include <algorithm> // std::sort
28
29 using namespace clang;
30 using namespace CodeGen;
31
AssignToArrayRange(CodeGen::CGBuilderTy & Builder,llvm::Value * Array,llvm::Value * Value,unsigned FirstIndex,unsigned LastIndex)32 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
33 llvm::Value *Array,
34 llvm::Value *Value,
35 unsigned FirstIndex,
36 unsigned LastIndex) {
37 // Alternatively, we could emit this as a loop in the source.
38 for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
39 llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
40 Builder.CreateStore(Value, Cell);
41 }
42 }
43
isAggregateTypeForABI(QualType T)44 static bool isAggregateTypeForABI(QualType T) {
45 return !CodeGenFunction::hasScalarEvaluationKind(T) ||
46 T->isMemberFunctionPointerType();
47 }
48
~ABIInfo()49 ABIInfo::~ABIInfo() {}
50
getRecordArgABI(const RecordType * RT,CGCXXABI & CXXABI)51 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
52 CGCXXABI &CXXABI) {
53 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
54 if (!RD)
55 return CGCXXABI::RAA_Default;
56 return CXXABI.getRecordArgABI(RD);
57 }
58
getRecordArgABI(QualType T,CGCXXABI & CXXABI)59 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
60 CGCXXABI &CXXABI) {
61 const RecordType *RT = T->getAs<RecordType>();
62 if (!RT)
63 return CGCXXABI::RAA_Default;
64 return getRecordArgABI(RT, CXXABI);
65 }
66
getCXXABI() const67 CGCXXABI &ABIInfo::getCXXABI() const {
68 return CGT.getCXXABI();
69 }
70
getContext() const71 ASTContext &ABIInfo::getContext() const {
72 return CGT.getContext();
73 }
74
getVMContext() const75 llvm::LLVMContext &ABIInfo::getVMContext() const {
76 return CGT.getLLVMContext();
77 }
78
getDataLayout() const79 const llvm::DataLayout &ABIInfo::getDataLayout() const {
80 return CGT.getDataLayout();
81 }
82
getTarget() const83 const TargetInfo &ABIInfo::getTarget() const {
84 return CGT.getTarget();
85 }
86
dump() const87 void ABIArgInfo::dump() const {
88 raw_ostream &OS = llvm::errs();
89 OS << "(ABIArgInfo Kind=";
90 switch (TheKind) {
91 case Direct:
92 OS << "Direct Type=";
93 if (llvm::Type *Ty = getCoerceToType())
94 Ty->print(OS);
95 else
96 OS << "null";
97 break;
98 case Extend:
99 OS << "Extend";
100 break;
101 case Ignore:
102 OS << "Ignore";
103 break;
104 case InAlloca:
105 OS << "InAlloca Offset=" << getInAllocaFieldIndex();
106 break;
107 case Indirect:
108 OS << "Indirect Align=" << getIndirectAlign()
109 << " ByVal=" << getIndirectByVal()
110 << " Realign=" << getIndirectRealign();
111 break;
112 case Expand:
113 OS << "Expand";
114 break;
115 }
116 OS << ")\n";
117 }
118
~TargetCodeGenInfo()119 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
120
121 // If someone can figure out a general rule for this, that would be great.
122 // It's probably just doomed to be platform-dependent, though.
getSizeOfUnwindException() const123 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
124 // Verified for:
125 // x86-64 FreeBSD, Linux, Darwin
126 // x86-32 FreeBSD, Linux, Darwin
127 // PowerPC Linux, Darwin
128 // ARM Darwin (*not* EABI)
129 // AArch64 Linux
130 return 32;
131 }
132
isNoProtoCallVariadic(const CallArgList & args,const FunctionNoProtoType * fnType) const133 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
134 const FunctionNoProtoType *fnType) const {
135 // The following conventions are known to require this to be false:
136 // x86_stdcall
137 // MIPS
138 // For everything else, we just prefer false unless we opt out.
139 return false;
140 }
141
142 void
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const143 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
144 llvm::SmallString<24> &Opt) const {
145 // This assumes the user is passing a library name like "rt" instead of a
146 // filename like "librt.a/so", and that they don't care whether it's static or
147 // dynamic.
148 Opt = "-l";
149 Opt += Lib;
150 }
151
152 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
153
154 /// isEmptyField - Return true iff a the field is "empty", that is it
155 /// is an unnamed bit-field or an (array of) empty record(s).
isEmptyField(ASTContext & Context,const FieldDecl * FD,bool AllowArrays)156 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
157 bool AllowArrays) {
158 if (FD->isUnnamedBitfield())
159 return true;
160
161 QualType FT = FD->getType();
162
163 // Constant arrays of empty records count as empty, strip them off.
164 // Constant arrays of zero length always count as empty.
165 if (AllowArrays)
166 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
167 if (AT->getSize() == 0)
168 return true;
169 FT = AT->getElementType();
170 }
171
172 const RecordType *RT = FT->getAs<RecordType>();
173 if (!RT)
174 return false;
175
176 // C++ record fields are never empty, at least in the Itanium ABI.
177 //
178 // FIXME: We should use a predicate for whether this behavior is true in the
179 // current ABI.
180 if (isa<CXXRecordDecl>(RT->getDecl()))
181 return false;
182
183 return isEmptyRecord(Context, FT, AllowArrays);
184 }
185
186 /// isEmptyRecord - Return true iff a structure contains only empty
187 /// fields. Note that a structure with a flexible array member is not
188 /// considered empty.
isEmptyRecord(ASTContext & Context,QualType T,bool AllowArrays)189 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
190 const RecordType *RT = T->getAs<RecordType>();
191 if (!RT)
192 return 0;
193 const RecordDecl *RD = RT->getDecl();
194 if (RD->hasFlexibleArrayMember())
195 return false;
196
197 // If this is a C++ record, check the bases first.
198 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
199 for (const auto &I : CXXRD->bases())
200 if (!isEmptyRecord(Context, I.getType(), true))
201 return false;
202
203 for (const auto *I : RD->fields())
204 if (!isEmptyField(Context, I, AllowArrays))
205 return false;
206 return true;
207 }
208
209 /// isSingleElementStruct - Determine if a structure is a "single
210 /// element struct", i.e. it has exactly one non-empty field or
211 /// exactly one field which is itself a single element
212 /// struct. Structures with flexible array members are never
213 /// considered single element structs.
214 ///
215 /// \return The field declaration for the single non-empty field, if
216 /// it exists.
isSingleElementStruct(QualType T,ASTContext & Context)217 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
218 const RecordType *RT = T->getAsStructureType();
219 if (!RT)
220 return nullptr;
221
222 const RecordDecl *RD = RT->getDecl();
223 if (RD->hasFlexibleArrayMember())
224 return nullptr;
225
226 const Type *Found = nullptr;
227
228 // If this is a C++ record, check the bases first.
229 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
230 for (const auto &I : CXXRD->bases()) {
231 // Ignore empty records.
232 if (isEmptyRecord(Context, I.getType(), true))
233 continue;
234
235 // If we already found an element then this isn't a single-element struct.
236 if (Found)
237 return nullptr;
238
239 // If this is non-empty and not a single element struct, the composite
240 // cannot be a single element struct.
241 Found = isSingleElementStruct(I.getType(), Context);
242 if (!Found)
243 return nullptr;
244 }
245 }
246
247 // Check for single element.
248 for (const auto *FD : RD->fields()) {
249 QualType FT = FD->getType();
250
251 // Ignore empty fields.
252 if (isEmptyField(Context, FD, true))
253 continue;
254
255 // If we already found an element then this isn't a single-element
256 // struct.
257 if (Found)
258 return nullptr;
259
260 // Treat single element arrays as the element.
261 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
262 if (AT->getSize().getZExtValue() != 1)
263 break;
264 FT = AT->getElementType();
265 }
266
267 if (!isAggregateTypeForABI(FT)) {
268 Found = FT.getTypePtr();
269 } else {
270 Found = isSingleElementStruct(FT, Context);
271 if (!Found)
272 return nullptr;
273 }
274 }
275
276 // We don't consider a struct a single-element struct if it has
277 // padding beyond the element type.
278 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
279 return nullptr;
280
281 return Found;
282 }
283
is32Or64BitBasicType(QualType Ty,ASTContext & Context)284 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
285 // Treat complex types as the element type.
286 if (const ComplexType *CTy = Ty->getAs<ComplexType>())
287 Ty = CTy->getElementType();
288
289 // Check for a type which we know has a simple scalar argument-passing
290 // convention without any padding. (We're specifically looking for 32
291 // and 64-bit integer and integer-equivalents, float, and double.)
292 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
293 !Ty->isEnumeralType() && !Ty->isBlockPointerType())
294 return false;
295
296 uint64_t Size = Context.getTypeSize(Ty);
297 return Size == 32 || Size == 64;
298 }
299
300 /// canExpandIndirectArgument - Test whether an argument type which is to be
301 /// passed indirectly (on the stack) would have the equivalent layout if it was
302 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
303 /// inhibiting optimizations.
304 ///
305 // FIXME: This predicate is missing many cases, currently it just follows
306 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
307 // should probably make this smarter, or better yet make the LLVM backend
308 // capable of handling it.
canExpandIndirectArgument(QualType Ty,ASTContext & Context)309 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
310 // We can only expand structure types.
311 const RecordType *RT = Ty->getAs<RecordType>();
312 if (!RT)
313 return false;
314
315 // We can only expand (C) structures.
316 //
317 // FIXME: This needs to be generalized to handle classes as well.
318 const RecordDecl *RD = RT->getDecl();
319 if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
320 return false;
321
322 uint64_t Size = 0;
323
324 for (const auto *FD : RD->fields()) {
325 if (!is32Or64BitBasicType(FD->getType(), Context))
326 return false;
327
328 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
329 // how to expand them yet, and the predicate for telling if a bitfield still
330 // counts as "basic" is more complicated than what we were doing previously.
331 if (FD->isBitField())
332 return false;
333
334 Size += Context.getTypeSize(FD->getType());
335 }
336
337 // Make sure there are not any holes in the struct.
338 if (Size != Context.getTypeSize(Ty))
339 return false;
340
341 return true;
342 }
343
344 namespace {
345 /// DefaultABIInfo - The default implementation for ABI specific
346 /// details. This implementation provides information which results in
347 /// self-consistent and sensible LLVM IR generation, but does not
348 /// conform to any particular ABI.
349 class DefaultABIInfo : public ABIInfo {
350 public:
DefaultABIInfo(CodeGen::CodeGenTypes & CGT)351 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
352
353 ABIArgInfo classifyReturnType(QualType RetTy) const;
354 ABIArgInfo classifyArgumentType(QualType RetTy) const;
355
computeInfo(CGFunctionInfo & FI) const356 void computeInfo(CGFunctionInfo &FI) const override {
357 if (!getCXXABI().classifyReturnType(FI))
358 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
359 for (auto &I : FI.arguments())
360 I.info = classifyArgumentType(I.type);
361 }
362
363 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
364 CodeGenFunction &CGF) const override;
365 };
366
367 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
368 public:
DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)369 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
370 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
371 };
372
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const373 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
374 CodeGenFunction &CGF) const {
375 return nullptr;
376 }
377
classifyArgumentType(QualType Ty) const378 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
379 if (isAggregateTypeForABI(Ty))
380 return ABIArgInfo::getIndirect(0);
381
382 // Treat an enum type as its underlying type.
383 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
384 Ty = EnumTy->getDecl()->getIntegerType();
385
386 return (Ty->isPromotableIntegerType() ?
387 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
388 }
389
classifyReturnType(QualType RetTy) const390 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
391 if (RetTy->isVoidType())
392 return ABIArgInfo::getIgnore();
393
394 if (isAggregateTypeForABI(RetTy))
395 return ABIArgInfo::getIndirect(0);
396
397 // Treat an enum type as its underlying type.
398 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
399 RetTy = EnumTy->getDecl()->getIntegerType();
400
401 return (RetTy->isPromotableIntegerType() ?
402 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
403 }
404
405 //===----------------------------------------------------------------------===//
406 // le32/PNaCl bitcode ABI Implementation
407 //
408 // This is a simplified version of the x86_32 ABI. Arguments and return values
409 // are always passed on the stack.
410 //===----------------------------------------------------------------------===//
411
412 class PNaClABIInfo : public ABIInfo {
413 public:
PNaClABIInfo(CodeGen::CodeGenTypes & CGT)414 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
415
416 ABIArgInfo classifyReturnType(QualType RetTy) const;
417 ABIArgInfo classifyArgumentType(QualType RetTy) const;
418
419 void computeInfo(CGFunctionInfo &FI) const override;
420 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
421 CodeGenFunction &CGF) const override;
422 };
423
424 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
425 public:
PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)426 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
427 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
428 };
429
computeInfo(CGFunctionInfo & FI) const430 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
431 if (!getCXXABI().classifyReturnType(FI))
432 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
433
434 for (auto &I : FI.arguments())
435 I.info = classifyArgumentType(I.type);
436 }
437
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const438 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
439 CodeGenFunction &CGF) const {
440 return nullptr;
441 }
442
443 /// \brief Classify argument of given type \p Ty.
classifyArgumentType(QualType Ty) const444 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
445 if (isAggregateTypeForABI(Ty)) {
446 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
447 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
448 return ABIArgInfo::getIndirect(0);
449 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
450 // Treat an enum type as its underlying type.
451 Ty = EnumTy->getDecl()->getIntegerType();
452 } else if (Ty->isFloatingType()) {
453 // Floating-point types don't go inreg.
454 return ABIArgInfo::getDirect();
455 }
456
457 return (Ty->isPromotableIntegerType() ?
458 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
459 }
460
classifyReturnType(QualType RetTy) const461 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
462 if (RetTy->isVoidType())
463 return ABIArgInfo::getIgnore();
464
465 // In the PNaCl ABI we always return records/structures on the stack.
466 if (isAggregateTypeForABI(RetTy))
467 return ABIArgInfo::getIndirect(0);
468
469 // Treat an enum type as its underlying type.
470 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
471 RetTy = EnumTy->getDecl()->getIntegerType();
472
473 return (RetTy->isPromotableIntegerType() ?
474 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
475 }
476
477 /// IsX86_MMXType - Return true if this is an MMX type.
IsX86_MMXType(llvm::Type * IRType)478 bool IsX86_MMXType(llvm::Type *IRType) {
479 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
480 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
481 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
482 IRType->getScalarSizeInBits() != 64;
483 }
484
X86AdjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty)485 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
486 StringRef Constraint,
487 llvm::Type* Ty) {
488 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
489 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
490 // Invalid MMX constraint
491 return nullptr;
492 }
493
494 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
495 }
496
497 // No operation needed
498 return Ty;
499 }
500
501 //===----------------------------------------------------------------------===//
502 // X86-32 ABI Implementation
503 //===----------------------------------------------------------------------===//
504
505 /// \brief Similar to llvm::CCState, but for Clang.
506 struct CCState {
CCState__anonc5f222370111::CCState507 CCState(unsigned CC) : CC(CC), FreeRegs(0) {}
508
509 unsigned CC;
510 unsigned FreeRegs;
511 unsigned StackOffset;
512 bool UseInAlloca;
513 };
514
515 /// X86_32ABIInfo - The X86-32 ABI information.
516 class X86_32ABIInfo : public ABIInfo {
517 enum Class {
518 Integer,
519 Float
520 };
521
522 static const unsigned MinABIStackAlignInBytes = 4;
523
524 bool IsDarwinVectorABI;
525 bool IsSmallStructInRegABI;
526 bool IsWin32StructABI;
527 unsigned DefaultNumRegisterParameters;
528
isRegisterSize(unsigned Size)529 static bool isRegisterSize(unsigned Size) {
530 return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
531 }
532
533 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
534
535 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
536 /// such that the argument will be passed in memory.
537 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
538
539 ABIArgInfo getIndirectReturnResult(CCState &State) const;
540
541 /// \brief Return the alignment to use for the given type on the stack.
542 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
543
544 Class classify(QualType Ty) const;
545 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
546 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
547 bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const;
548
549 /// \brief Rewrite the function info so that all memory arguments use
550 /// inalloca.
551 void rewriteWithInAlloca(CGFunctionInfo &FI) const;
552
553 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
554 unsigned &StackOffset, ABIArgInfo &Info,
555 QualType Type) const;
556
557 public:
558
559 void computeInfo(CGFunctionInfo &FI) const override;
560 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
561 CodeGenFunction &CGF) const override;
562
X86_32ABIInfo(CodeGen::CodeGenTypes & CGT,bool d,bool p,bool w,unsigned r)563 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w,
564 unsigned r)
565 : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
566 IsWin32StructABI(w), DefaultNumRegisterParameters(r) {}
567 };
568
569 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
570 public:
X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool d,bool p,bool w,unsigned r)571 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
572 bool d, bool p, bool w, unsigned r)
573 :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {}
574
575 static bool isStructReturnInRegABI(
576 const llvm::Triple &Triple, const CodeGenOptions &Opts);
577
578 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
579 CodeGen::CodeGenModule &CGM) const override;
580
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const581 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
582 // Darwin uses different dwarf register numbers for EH.
583 if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
584 return 4;
585 }
586
587 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
588 llvm::Value *Address) const override;
589
adjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty) const590 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
591 StringRef Constraint,
592 llvm::Type* Ty) const override {
593 return X86AdjustInlineAsmType(CGF, Constraint, Ty);
594 }
595
596 llvm::Constant *
getUBSanFunctionSignature(CodeGen::CodeGenModule & CGM) const597 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
598 unsigned Sig = (0xeb << 0) | // jmp rel8
599 (0x06 << 8) | // .+0x08
600 ('F' << 16) |
601 ('T' << 24);
602 return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
603 }
604
605 };
606
607 }
608
609 /// shouldReturnTypeInRegister - Determine if the given type should be
610 /// passed in a register (for the Darwin ABI).
shouldReturnTypeInRegister(QualType Ty,ASTContext & Context) const611 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
612 ASTContext &Context) const {
613 uint64_t Size = Context.getTypeSize(Ty);
614
615 // Type must be register sized.
616 if (!isRegisterSize(Size))
617 return false;
618
619 if (Ty->isVectorType()) {
620 // 64- and 128- bit vectors inside structures are not returned in
621 // registers.
622 if (Size == 64 || Size == 128)
623 return false;
624
625 return true;
626 }
627
628 // If this is a builtin, pointer, enum, complex type, member pointer, or
629 // member function pointer it is ok.
630 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
631 Ty->isAnyComplexType() || Ty->isEnumeralType() ||
632 Ty->isBlockPointerType() || Ty->isMemberPointerType())
633 return true;
634
635 // Arrays are treated like records.
636 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
637 return shouldReturnTypeInRegister(AT->getElementType(), Context);
638
639 // Otherwise, it must be a record type.
640 const RecordType *RT = Ty->getAs<RecordType>();
641 if (!RT) return false;
642
643 // FIXME: Traverse bases here too.
644
645 // Structure types are passed in register if all fields would be
646 // passed in a register.
647 for (const auto *FD : RT->getDecl()->fields()) {
648 // Empty fields are ignored.
649 if (isEmptyField(Context, FD, true))
650 continue;
651
652 // Check fields recursively.
653 if (!shouldReturnTypeInRegister(FD->getType(), Context))
654 return false;
655 }
656 return true;
657 }
658
getIndirectReturnResult(CCState & State) const659 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const {
660 // If the return value is indirect, then the hidden argument is consuming one
661 // integer register.
662 if (State.FreeRegs) {
663 --State.FreeRegs;
664 return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false);
665 }
666 return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false);
667 }
668
classifyReturnType(QualType RetTy,CCState & State) const669 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, CCState &State) const {
670 if (RetTy->isVoidType())
671 return ABIArgInfo::getIgnore();
672
673 if (const VectorType *VT = RetTy->getAs<VectorType>()) {
674 // On Darwin, some vectors are returned in registers.
675 if (IsDarwinVectorABI) {
676 uint64_t Size = getContext().getTypeSize(RetTy);
677
678 // 128-bit vectors are a special case; they are returned in
679 // registers and we need to make sure to pick a type the LLVM
680 // backend will like.
681 if (Size == 128)
682 return ABIArgInfo::getDirect(llvm::VectorType::get(
683 llvm::Type::getInt64Ty(getVMContext()), 2));
684
685 // Always return in register if it fits in a general purpose
686 // register, or if it is 64 bits and has a single element.
687 if ((Size == 8 || Size == 16 || Size == 32) ||
688 (Size == 64 && VT->getNumElements() == 1))
689 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
690 Size));
691
692 return getIndirectReturnResult(State);
693 }
694
695 return ABIArgInfo::getDirect();
696 }
697
698 if (isAggregateTypeForABI(RetTy)) {
699 if (const RecordType *RT = RetTy->getAs<RecordType>()) {
700 // Structures with flexible arrays are always indirect.
701 if (RT->getDecl()->hasFlexibleArrayMember())
702 return getIndirectReturnResult(State);
703 }
704
705 // If specified, structs and unions are always indirect.
706 if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
707 return getIndirectReturnResult(State);
708
709 // Small structures which are register sized are generally returned
710 // in a register.
711 if (shouldReturnTypeInRegister(RetTy, getContext())) {
712 uint64_t Size = getContext().getTypeSize(RetTy);
713
714 // As a special-case, if the struct is a "single-element" struct, and
715 // the field is of type "float" or "double", return it in a
716 // floating-point register. (MSVC does not apply this special case.)
717 // We apply a similar transformation for pointer types to improve the
718 // quality of the generated IR.
719 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
720 if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
721 || SeltTy->hasPointerRepresentation())
722 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
723
724 // FIXME: We should be able to narrow this integer in cases with dead
725 // padding.
726 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
727 }
728
729 return getIndirectReturnResult(State);
730 }
731
732 // Treat an enum type as its underlying type.
733 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
734 RetTy = EnumTy->getDecl()->getIntegerType();
735
736 return (RetTy->isPromotableIntegerType() ?
737 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
738 }
739
isSSEVectorType(ASTContext & Context,QualType Ty)740 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
741 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
742 }
743
isRecordWithSSEVectorType(ASTContext & Context,QualType Ty)744 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
745 const RecordType *RT = Ty->getAs<RecordType>();
746 if (!RT)
747 return 0;
748 const RecordDecl *RD = RT->getDecl();
749
750 // If this is a C++ record, check the bases first.
751 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
752 for (const auto &I : CXXRD->bases())
753 if (!isRecordWithSSEVectorType(Context, I.getType()))
754 return false;
755
756 for (const auto *i : RD->fields()) {
757 QualType FT = i->getType();
758
759 if (isSSEVectorType(Context, FT))
760 return true;
761
762 if (isRecordWithSSEVectorType(Context, FT))
763 return true;
764 }
765
766 return false;
767 }
768
getTypeStackAlignInBytes(QualType Ty,unsigned Align) const769 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
770 unsigned Align) const {
771 // Otherwise, if the alignment is less than or equal to the minimum ABI
772 // alignment, just use the default; the backend will handle this.
773 if (Align <= MinABIStackAlignInBytes)
774 return 0; // Use default alignment.
775
776 // On non-Darwin, the stack type alignment is always 4.
777 if (!IsDarwinVectorABI) {
778 // Set explicit alignment, since we may need to realign the top.
779 return MinABIStackAlignInBytes;
780 }
781
782 // Otherwise, if the type contains an SSE vector type, the alignment is 16.
783 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
784 isRecordWithSSEVectorType(getContext(), Ty)))
785 return 16;
786
787 return MinABIStackAlignInBytes;
788 }
789
getIndirectResult(QualType Ty,bool ByVal,CCState & State) const790 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
791 CCState &State) const {
792 if (!ByVal) {
793 if (State.FreeRegs) {
794 --State.FreeRegs; // Non-byval indirects just use one pointer.
795 return ABIArgInfo::getIndirectInReg(0, false);
796 }
797 return ABIArgInfo::getIndirect(0, false);
798 }
799
800 // Compute the byval alignment.
801 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
802 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
803 if (StackAlign == 0)
804 return ABIArgInfo::getIndirect(4, /*ByVal=*/true);
805
806 // If the stack alignment is less than the type alignment, realign the
807 // argument.
808 bool Realign = TypeAlign > StackAlign;
809 return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign);
810 }
811
classify(QualType Ty) const812 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
813 const Type *T = isSingleElementStruct(Ty, getContext());
814 if (!T)
815 T = Ty.getTypePtr();
816
817 if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
818 BuiltinType::Kind K = BT->getKind();
819 if (K == BuiltinType::Float || K == BuiltinType::Double)
820 return Float;
821 }
822 return Integer;
823 }
824
shouldUseInReg(QualType Ty,CCState & State,bool & NeedsPadding) const825 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State,
826 bool &NeedsPadding) const {
827 NeedsPadding = false;
828 Class C = classify(Ty);
829 if (C == Float)
830 return false;
831
832 unsigned Size = getContext().getTypeSize(Ty);
833 unsigned SizeInRegs = (Size + 31) / 32;
834
835 if (SizeInRegs == 0)
836 return false;
837
838 if (SizeInRegs > State.FreeRegs) {
839 State.FreeRegs = 0;
840 return false;
841 }
842
843 State.FreeRegs -= SizeInRegs;
844
845 if (State.CC == llvm::CallingConv::X86_FastCall) {
846 if (Size > 32)
847 return false;
848
849 if (Ty->isIntegralOrEnumerationType())
850 return true;
851
852 if (Ty->isPointerType())
853 return true;
854
855 if (Ty->isReferenceType())
856 return true;
857
858 if (State.FreeRegs)
859 NeedsPadding = true;
860
861 return false;
862 }
863
864 return true;
865 }
866
classifyArgumentType(QualType Ty,CCState & State) const867 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
868 CCState &State) const {
869 // FIXME: Set alignment on indirect arguments.
870 if (isAggregateTypeForABI(Ty)) {
871 if (const RecordType *RT = Ty->getAs<RecordType>()) {
872 // Check with the C++ ABI first.
873 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
874 if (RAA == CGCXXABI::RAA_Indirect) {
875 return getIndirectResult(Ty, false, State);
876 } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
877 // The field index doesn't matter, we'll fix it up later.
878 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
879 }
880
881 // Structs are always byval on win32, regardless of what they contain.
882 if (IsWin32StructABI)
883 return getIndirectResult(Ty, true, State);
884
885 // Structures with flexible arrays are always indirect.
886 if (RT->getDecl()->hasFlexibleArrayMember())
887 return getIndirectResult(Ty, true, State);
888 }
889
890 // Ignore empty structs/unions.
891 if (isEmptyRecord(getContext(), Ty, true))
892 return ABIArgInfo::getIgnore();
893
894 llvm::LLVMContext &LLVMContext = getVMContext();
895 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
896 bool NeedsPadding;
897 if (shouldUseInReg(Ty, State, NeedsPadding)) {
898 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
899 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
900 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
901 return ABIArgInfo::getDirectInReg(Result);
902 }
903 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
904
905 // Expand small (<= 128-bit) record types when we know that the stack layout
906 // of those arguments will match the struct. This is important because the
907 // LLVM backend isn't smart enough to remove byval, which inhibits many
908 // optimizations.
909 if (getContext().getTypeSize(Ty) <= 4*32 &&
910 canExpandIndirectArgument(Ty, getContext()))
911 return ABIArgInfo::getExpandWithPadding(
912 State.CC == llvm::CallingConv::X86_FastCall, PaddingType);
913
914 return getIndirectResult(Ty, true, State);
915 }
916
917 if (const VectorType *VT = Ty->getAs<VectorType>()) {
918 // On Darwin, some vectors are passed in memory, we handle this by passing
919 // it as an i8/i16/i32/i64.
920 if (IsDarwinVectorABI) {
921 uint64_t Size = getContext().getTypeSize(Ty);
922 if ((Size == 8 || Size == 16 || Size == 32) ||
923 (Size == 64 && VT->getNumElements() == 1))
924 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
925 Size));
926 }
927
928 if (IsX86_MMXType(CGT.ConvertType(Ty)))
929 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
930
931 return ABIArgInfo::getDirect();
932 }
933
934
935 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
936 Ty = EnumTy->getDecl()->getIntegerType();
937
938 bool NeedsPadding;
939 bool InReg = shouldUseInReg(Ty, State, NeedsPadding);
940
941 if (Ty->isPromotableIntegerType()) {
942 if (InReg)
943 return ABIArgInfo::getExtendInReg();
944 return ABIArgInfo::getExtend();
945 }
946 if (InReg)
947 return ABIArgInfo::getDirectInReg();
948 return ABIArgInfo::getDirect();
949 }
950
computeInfo(CGFunctionInfo & FI) const951 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
952 CCState State(FI.getCallingConvention());
953 if (State.CC == llvm::CallingConv::X86_FastCall)
954 State.FreeRegs = 2;
955 else if (FI.getHasRegParm())
956 State.FreeRegs = FI.getRegParm();
957 else
958 State.FreeRegs = DefaultNumRegisterParameters;
959
960 if (!getCXXABI().classifyReturnType(FI)) {
961 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
962 } else if (FI.getReturnInfo().isIndirect()) {
963 // The C++ ABI is not aware of register usage, so we have to check if the
964 // return value was sret and put it in a register ourselves if appropriate.
965 if (State.FreeRegs) {
966 --State.FreeRegs; // The sret parameter consumes a register.
967 FI.getReturnInfo().setInReg(true);
968 }
969 }
970
971 bool UsedInAlloca = false;
972 for (auto &I : FI.arguments()) {
973 I.info = classifyArgumentType(I.type, State);
974 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
975 }
976
977 // If we needed to use inalloca for any argument, do a second pass and rewrite
978 // all the memory arguments to use inalloca.
979 if (UsedInAlloca)
980 rewriteWithInAlloca(FI);
981 }
982
983 void
addFieldToArgStruct(SmallVector<llvm::Type *,6> & FrameFields,unsigned & StackOffset,ABIArgInfo & Info,QualType Type) const984 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
985 unsigned &StackOffset,
986 ABIArgInfo &Info, QualType Type) const {
987 assert(StackOffset % 4U == 0 && "unaligned inalloca struct");
988 Info = ABIArgInfo::getInAlloca(FrameFields.size());
989 FrameFields.push_back(CGT.ConvertTypeForMem(Type));
990 StackOffset += getContext().getTypeSizeInChars(Type).getQuantity();
991
992 // Insert padding bytes to respect alignment. For x86_32, each argument is 4
993 // byte aligned.
994 if (StackOffset % 4U) {
995 unsigned OldOffset = StackOffset;
996 StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U);
997 unsigned NumBytes = StackOffset - OldOffset;
998 assert(NumBytes);
999 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1000 Ty = llvm::ArrayType::get(Ty, NumBytes);
1001 FrameFields.push_back(Ty);
1002 }
1003 }
1004
rewriteWithInAlloca(CGFunctionInfo & FI) const1005 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1006 assert(IsWin32StructABI && "inalloca only supported on win32");
1007
1008 // Build a packed struct type for all of the arguments in memory.
1009 SmallVector<llvm::Type *, 6> FrameFields;
1010
1011 unsigned StackOffset = 0;
1012
1013 // Put the sret parameter into the inalloca struct if it's in memory.
1014 ABIArgInfo &Ret = FI.getReturnInfo();
1015 if (Ret.isIndirect() && !Ret.getInReg()) {
1016 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1017 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1018 // On Windows, the hidden sret parameter is always returned in eax.
1019 Ret.setInAllocaSRet(IsWin32StructABI);
1020 }
1021
1022 // Skip the 'this' parameter in ecx.
1023 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1024 if (FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall)
1025 ++I;
1026
1027 // Put arguments passed in memory into the struct.
1028 for (; I != E; ++I) {
1029
1030 // Leave ignored and inreg arguments alone.
1031 switch (I->info.getKind()) {
1032 case ABIArgInfo::Indirect:
1033 assert(I->info.getIndirectByVal());
1034 break;
1035 case ABIArgInfo::Ignore:
1036 continue;
1037 case ABIArgInfo::Direct:
1038 case ABIArgInfo::Extend:
1039 if (I->info.getInReg())
1040 continue;
1041 break;
1042 default:
1043 break;
1044 }
1045
1046 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1047 }
1048
1049 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1050 /*isPacked=*/true));
1051 }
1052
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const1053 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1054 CodeGenFunction &CGF) const {
1055 llvm::Type *BPP = CGF.Int8PtrPtrTy;
1056
1057 CGBuilderTy &Builder = CGF.Builder;
1058 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1059 "ap");
1060 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1061
1062 // Compute if the address needs to be aligned
1063 unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
1064 Align = getTypeStackAlignInBytes(Ty, Align);
1065 Align = std::max(Align, 4U);
1066 if (Align > 4) {
1067 // addr = (addr + align - 1) & -align;
1068 llvm::Value *Offset =
1069 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
1070 Addr = CGF.Builder.CreateGEP(Addr, Offset);
1071 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
1072 CGF.Int32Ty);
1073 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
1074 Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1075 Addr->getType(),
1076 "ap.cur.aligned");
1077 }
1078
1079 llvm::Type *PTy =
1080 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1081 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1082
1083 uint64_t Offset =
1084 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
1085 llvm::Value *NextAddr =
1086 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
1087 "ap.next");
1088 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1089
1090 return AddrTyped;
1091 }
1092
isStructReturnInRegABI(const llvm::Triple & Triple,const CodeGenOptions & Opts)1093 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1094 const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1095 assert(Triple.getArch() == llvm::Triple::x86);
1096
1097 switch (Opts.getStructReturnConvention()) {
1098 case CodeGenOptions::SRCK_Default:
1099 break;
1100 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return
1101 return false;
1102 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return
1103 return true;
1104 }
1105
1106 if (Triple.isOSDarwin())
1107 return true;
1108
1109 switch (Triple.getOS()) {
1110 case llvm::Triple::AuroraUX:
1111 case llvm::Triple::DragonFly:
1112 case llvm::Triple::FreeBSD:
1113 case llvm::Triple::OpenBSD:
1114 case llvm::Triple::Bitrig:
1115 return true;
1116 case llvm::Triple::Win32:
1117 switch (Triple.getEnvironment()) {
1118 case llvm::Triple::UnknownEnvironment:
1119 case llvm::Triple::Cygnus:
1120 case llvm::Triple::GNU:
1121 case llvm::Triple::MSVC:
1122 return true;
1123 default:
1124 return false;
1125 }
1126 default:
1127 return false;
1128 }
1129 }
1130
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const1131 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1132 llvm::GlobalValue *GV,
1133 CodeGen::CodeGenModule &CGM) const {
1134 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1135 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1136 // Get the LLVM function.
1137 llvm::Function *Fn = cast<llvm::Function>(GV);
1138
1139 // Now add the 'alignstack' attribute with a value of 16.
1140 llvm::AttrBuilder B;
1141 B.addStackAlignmentAttr(16);
1142 Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1143 llvm::AttributeSet::get(CGM.getLLVMContext(),
1144 llvm::AttributeSet::FunctionIndex,
1145 B));
1146 }
1147 }
1148 }
1149
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const1150 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1151 CodeGen::CodeGenFunction &CGF,
1152 llvm::Value *Address) const {
1153 CodeGen::CGBuilderTy &Builder = CGF.Builder;
1154
1155 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1156
1157 // 0-7 are the eight integer registers; the order is different
1158 // on Darwin (for EH), but the range is the same.
1159 // 8 is %eip.
1160 AssignToArrayRange(Builder, Address, Four8, 0, 8);
1161
1162 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1163 // 12-16 are st(0..4). Not sure why we stop at 4.
1164 // These have size 16, which is sizeof(long double) on
1165 // platforms with 8-byte alignment for that type.
1166 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1167 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1168
1169 } else {
1170 // 9 is %eflags, which doesn't get a size on Darwin for some
1171 // reason.
1172 Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
1173
1174 // 11-16 are st(0..5). Not sure why we stop at 5.
1175 // These have size 12, which is sizeof(long double) on
1176 // platforms with 4-byte alignment for that type.
1177 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1178 AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1179 }
1180
1181 return false;
1182 }
1183
1184 //===----------------------------------------------------------------------===//
1185 // X86-64 ABI Implementation
1186 //===----------------------------------------------------------------------===//
1187
1188
1189 namespace {
1190 /// X86_64ABIInfo - The X86_64 ABI information.
1191 class X86_64ABIInfo : public ABIInfo {
1192 enum Class {
1193 Integer = 0,
1194 SSE,
1195 SSEUp,
1196 X87,
1197 X87Up,
1198 ComplexX87,
1199 NoClass,
1200 Memory
1201 };
1202
1203 /// merge - Implement the X86_64 ABI merging algorithm.
1204 ///
1205 /// Merge an accumulating classification \arg Accum with a field
1206 /// classification \arg Field.
1207 ///
1208 /// \param Accum - The accumulating classification. This should
1209 /// always be either NoClass or the result of a previous merge
1210 /// call. In addition, this should never be Memory (the caller
1211 /// should just return Memory for the aggregate).
1212 static Class merge(Class Accum, Class Field);
1213
1214 /// postMerge - Implement the X86_64 ABI post merging algorithm.
1215 ///
1216 /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1217 /// final MEMORY or SSE classes when necessary.
1218 ///
1219 /// \param AggregateSize - The size of the current aggregate in
1220 /// the classification process.
1221 ///
1222 /// \param Lo - The classification for the parts of the type
1223 /// residing in the low word of the containing object.
1224 ///
1225 /// \param Hi - The classification for the parts of the type
1226 /// residing in the higher words of the containing object.
1227 ///
1228 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1229
1230 /// classify - Determine the x86_64 register classes in which the
1231 /// given type T should be passed.
1232 ///
1233 /// \param Lo - The classification for the parts of the type
1234 /// residing in the low word of the containing object.
1235 ///
1236 /// \param Hi - The classification for the parts of the type
1237 /// residing in the high word of the containing object.
1238 ///
1239 /// \param OffsetBase - The bit offset of this type in the
1240 /// containing object. Some parameters are classified different
1241 /// depending on whether they straddle an eightbyte boundary.
1242 ///
1243 /// \param isNamedArg - Whether the argument in question is a "named"
1244 /// argument, as used in AMD64-ABI 3.5.7.
1245 ///
1246 /// If a word is unused its result will be NoClass; if a type should
1247 /// be passed in Memory then at least the classification of \arg Lo
1248 /// will be Memory.
1249 ///
1250 /// The \arg Lo class will be NoClass iff the argument is ignored.
1251 ///
1252 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1253 /// also be ComplexX87.
1254 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1255 bool isNamedArg) const;
1256
1257 llvm::Type *GetByteVectorType(QualType Ty) const;
1258 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1259 unsigned IROffset, QualType SourceTy,
1260 unsigned SourceOffset) const;
1261 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1262 unsigned IROffset, QualType SourceTy,
1263 unsigned SourceOffset) const;
1264
1265 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1266 /// such that the argument will be returned in memory.
1267 ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1268
1269 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1270 /// such that the argument will be passed in memory.
1271 ///
1272 /// \param freeIntRegs - The number of free integer registers remaining
1273 /// available.
1274 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1275
1276 ABIArgInfo classifyReturnType(QualType RetTy) const;
1277
1278 ABIArgInfo classifyArgumentType(QualType Ty,
1279 unsigned freeIntRegs,
1280 unsigned &neededInt,
1281 unsigned &neededSSE,
1282 bool isNamedArg) const;
1283
1284 bool IsIllegalVectorType(QualType Ty) const;
1285
1286 /// The 0.98 ABI revision clarified a lot of ambiguities,
1287 /// unfortunately in ways that were not always consistent with
1288 /// certain previous compilers. In particular, platforms which
1289 /// required strict binary compatibility with older versions of GCC
1290 /// may need to exempt themselves.
honorsRevision0_98() const1291 bool honorsRevision0_98() const {
1292 return !getTarget().getTriple().isOSDarwin();
1293 }
1294
1295 bool HasAVX;
1296 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1297 // 64-bit hardware.
1298 bool Has64BitPointers;
1299
1300 public:
X86_64ABIInfo(CodeGen::CodeGenTypes & CGT,bool hasavx)1301 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
1302 ABIInfo(CGT), HasAVX(hasavx),
1303 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1304 }
1305
isPassedUsingAVXType(QualType type) const1306 bool isPassedUsingAVXType(QualType type) const {
1307 unsigned neededInt, neededSSE;
1308 // The freeIntRegs argument doesn't matter here.
1309 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1310 /*isNamedArg*/true);
1311 if (info.isDirect()) {
1312 llvm::Type *ty = info.getCoerceToType();
1313 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1314 return (vectorTy->getBitWidth() > 128);
1315 }
1316 return false;
1317 }
1318
1319 void computeInfo(CGFunctionInfo &FI) const override;
1320
1321 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1322 CodeGenFunction &CGF) const override;
1323 };
1324
1325 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1326 class WinX86_64ABIInfo : public ABIInfo {
1327
1328 ABIArgInfo classify(QualType Ty, bool IsReturnType) const;
1329
1330 public:
WinX86_64ABIInfo(CodeGen::CodeGenTypes & CGT)1331 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1332
1333 void computeInfo(CGFunctionInfo &FI) const override;
1334
1335 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1336 CodeGenFunction &CGF) const override;
1337 };
1338
1339 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1340 public:
X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool HasAVX)1341 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1342 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
1343
getABIInfo() const1344 const X86_64ABIInfo &getABIInfo() const {
1345 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1346 }
1347
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const1348 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1349 return 7;
1350 }
1351
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const1352 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1353 llvm::Value *Address) const override {
1354 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1355
1356 // 0-15 are the 16 integer registers.
1357 // 16 is %rip.
1358 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1359 return false;
1360 }
1361
adjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty) const1362 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1363 StringRef Constraint,
1364 llvm::Type* Ty) const override {
1365 return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1366 }
1367
isNoProtoCallVariadic(const CallArgList & args,const FunctionNoProtoType * fnType) const1368 bool isNoProtoCallVariadic(const CallArgList &args,
1369 const FunctionNoProtoType *fnType) const override {
1370 // The default CC on x86-64 sets %al to the number of SSA
1371 // registers used, and GCC sets this when calling an unprototyped
1372 // function, so we override the default behavior. However, don't do
1373 // that when AVX types are involved: the ABI explicitly states it is
1374 // undefined, and it doesn't work in practice because of how the ABI
1375 // defines varargs anyway.
1376 if (fnType->getCallConv() == CC_C) {
1377 bool HasAVXType = false;
1378 for (CallArgList::const_iterator
1379 it = args.begin(), ie = args.end(); it != ie; ++it) {
1380 if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1381 HasAVXType = true;
1382 break;
1383 }
1384 }
1385
1386 if (!HasAVXType)
1387 return true;
1388 }
1389
1390 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1391 }
1392
1393 llvm::Constant *
getUBSanFunctionSignature(CodeGen::CodeGenModule & CGM) const1394 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1395 unsigned Sig = (0xeb << 0) | // jmp rel8
1396 (0x0a << 8) | // .+0x0c
1397 ('F' << 16) |
1398 ('T' << 24);
1399 return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1400 }
1401
1402 };
1403
qualifyWindowsLibrary(llvm::StringRef Lib)1404 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
1405 // If the argument does not end in .lib, automatically add the suffix. This
1406 // matches the behavior of MSVC.
1407 std::string ArgStr = Lib;
1408 if (!Lib.endswith_lower(".lib"))
1409 ArgStr += ".lib";
1410 return ArgStr;
1411 }
1412
1413 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1414 public:
WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool d,bool p,bool w,unsigned RegParms)1415 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1416 bool d, bool p, bool w, unsigned RegParms)
1417 : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {}
1418
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const1419 void getDependentLibraryOption(llvm::StringRef Lib,
1420 llvm::SmallString<24> &Opt) const override {
1421 Opt = "/DEFAULTLIB:";
1422 Opt += qualifyWindowsLibrary(Lib);
1423 }
1424
getDetectMismatchOption(llvm::StringRef Name,llvm::StringRef Value,llvm::SmallString<32> & Opt) const1425 void getDetectMismatchOption(llvm::StringRef Name,
1426 llvm::StringRef Value,
1427 llvm::SmallString<32> &Opt) const override {
1428 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1429 }
1430 };
1431
1432 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1433 public:
WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)1434 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
1435 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1436
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const1437 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1438 return 7;
1439 }
1440
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const1441 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1442 llvm::Value *Address) const override {
1443 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1444
1445 // 0-15 are the 16 integer registers.
1446 // 16 is %rip.
1447 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1448 return false;
1449 }
1450
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const1451 void getDependentLibraryOption(llvm::StringRef Lib,
1452 llvm::SmallString<24> &Opt) const override {
1453 Opt = "/DEFAULTLIB:";
1454 Opt += qualifyWindowsLibrary(Lib);
1455 }
1456
getDetectMismatchOption(llvm::StringRef Name,llvm::StringRef Value,llvm::SmallString<32> & Opt) const1457 void getDetectMismatchOption(llvm::StringRef Name,
1458 llvm::StringRef Value,
1459 llvm::SmallString<32> &Opt) const override {
1460 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1461 }
1462 };
1463
1464 }
1465
postMerge(unsigned AggregateSize,Class & Lo,Class & Hi) const1466 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1467 Class &Hi) const {
1468 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1469 //
1470 // (a) If one of the classes is Memory, the whole argument is passed in
1471 // memory.
1472 //
1473 // (b) If X87UP is not preceded by X87, the whole argument is passed in
1474 // memory.
1475 //
1476 // (c) If the size of the aggregate exceeds two eightbytes and the first
1477 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1478 // argument is passed in memory. NOTE: This is necessary to keep the
1479 // ABI working for processors that don't support the __m256 type.
1480 //
1481 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1482 //
1483 // Some of these are enforced by the merging logic. Others can arise
1484 // only with unions; for example:
1485 // union { _Complex double; unsigned; }
1486 //
1487 // Note that clauses (b) and (c) were added in 0.98.
1488 //
1489 if (Hi == Memory)
1490 Lo = Memory;
1491 if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1492 Lo = Memory;
1493 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1494 Lo = Memory;
1495 if (Hi == SSEUp && Lo != SSE)
1496 Hi = SSE;
1497 }
1498
merge(Class Accum,Class Field)1499 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1500 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1501 // classified recursively so that always two fields are
1502 // considered. The resulting class is calculated according to
1503 // the classes of the fields in the eightbyte:
1504 //
1505 // (a) If both classes are equal, this is the resulting class.
1506 //
1507 // (b) If one of the classes is NO_CLASS, the resulting class is
1508 // the other class.
1509 //
1510 // (c) If one of the classes is MEMORY, the result is the MEMORY
1511 // class.
1512 //
1513 // (d) If one of the classes is INTEGER, the result is the
1514 // INTEGER.
1515 //
1516 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1517 // MEMORY is used as class.
1518 //
1519 // (f) Otherwise class SSE is used.
1520
1521 // Accum should never be memory (we should have returned) or
1522 // ComplexX87 (because this cannot be passed in a structure).
1523 assert((Accum != Memory && Accum != ComplexX87) &&
1524 "Invalid accumulated classification during merge.");
1525 if (Accum == Field || Field == NoClass)
1526 return Accum;
1527 if (Field == Memory)
1528 return Memory;
1529 if (Accum == NoClass)
1530 return Field;
1531 if (Accum == Integer || Field == Integer)
1532 return Integer;
1533 if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1534 Accum == X87 || Accum == X87Up)
1535 return Memory;
1536 return SSE;
1537 }
1538
classify(QualType Ty,uint64_t OffsetBase,Class & Lo,Class & Hi,bool isNamedArg) const1539 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1540 Class &Lo, Class &Hi, bool isNamedArg) const {
1541 // FIXME: This code can be simplified by introducing a simple value class for
1542 // Class pairs with appropriate constructor methods for the various
1543 // situations.
1544
1545 // FIXME: Some of the split computations are wrong; unaligned vectors
1546 // shouldn't be passed in registers for example, so there is no chance they
1547 // can straddle an eightbyte. Verify & simplify.
1548
1549 Lo = Hi = NoClass;
1550
1551 Class &Current = OffsetBase < 64 ? Lo : Hi;
1552 Current = Memory;
1553
1554 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1555 BuiltinType::Kind k = BT->getKind();
1556
1557 if (k == BuiltinType::Void) {
1558 Current = NoClass;
1559 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1560 Lo = Integer;
1561 Hi = Integer;
1562 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1563 Current = Integer;
1564 } else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
1565 (k == BuiltinType::LongDouble &&
1566 getTarget().getTriple().isOSNaCl())) {
1567 Current = SSE;
1568 } else if (k == BuiltinType::LongDouble) {
1569 Lo = X87;
1570 Hi = X87Up;
1571 }
1572 // FIXME: _Decimal32 and _Decimal64 are SSE.
1573 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1574 return;
1575 }
1576
1577 if (const EnumType *ET = Ty->getAs<EnumType>()) {
1578 // Classify the underlying integer type.
1579 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
1580 return;
1581 }
1582
1583 if (Ty->hasPointerRepresentation()) {
1584 Current = Integer;
1585 return;
1586 }
1587
1588 if (Ty->isMemberPointerType()) {
1589 if (Ty->isMemberFunctionPointerType() && Has64BitPointers)
1590 Lo = Hi = Integer;
1591 else
1592 Current = Integer;
1593 return;
1594 }
1595
1596 if (const VectorType *VT = Ty->getAs<VectorType>()) {
1597 uint64_t Size = getContext().getTypeSize(VT);
1598 if (Size == 32) {
1599 // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1600 // float> as integer.
1601 Current = Integer;
1602
1603 // If this type crosses an eightbyte boundary, it should be
1604 // split.
1605 uint64_t EB_Real = (OffsetBase) / 64;
1606 uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1607 if (EB_Real != EB_Imag)
1608 Hi = Lo;
1609 } else if (Size == 64) {
1610 // gcc passes <1 x double> in memory. :(
1611 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1612 return;
1613
1614 // gcc passes <1 x long long> as INTEGER.
1615 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1616 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1617 VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1618 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1619 Current = Integer;
1620 else
1621 Current = SSE;
1622
1623 // If this type crosses an eightbyte boundary, it should be
1624 // split.
1625 if (OffsetBase && OffsetBase != 64)
1626 Hi = Lo;
1627 } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) {
1628 // Arguments of 256-bits are split into four eightbyte chunks. The
1629 // least significant one belongs to class SSE and all the others to class
1630 // SSEUP. The original Lo and Hi design considers that types can't be
1631 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1632 // This design isn't correct for 256-bits, but since there're no cases
1633 // where the upper parts would need to be inspected, avoid adding
1634 // complexity and just consider Hi to match the 64-256 part.
1635 //
1636 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
1637 // registers if they are "named", i.e. not part of the "..." of a
1638 // variadic function.
1639 Lo = SSE;
1640 Hi = SSEUp;
1641 }
1642 return;
1643 }
1644
1645 if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1646 QualType ET = getContext().getCanonicalType(CT->getElementType());
1647
1648 uint64_t Size = getContext().getTypeSize(Ty);
1649 if (ET->isIntegralOrEnumerationType()) {
1650 if (Size <= 64)
1651 Current = Integer;
1652 else if (Size <= 128)
1653 Lo = Hi = Integer;
1654 } else if (ET == getContext().FloatTy)
1655 Current = SSE;
1656 else if (ET == getContext().DoubleTy ||
1657 (ET == getContext().LongDoubleTy &&
1658 getTarget().getTriple().isOSNaCl()))
1659 Lo = Hi = SSE;
1660 else if (ET == getContext().LongDoubleTy)
1661 Current = ComplexX87;
1662
1663 // If this complex type crosses an eightbyte boundary then it
1664 // should be split.
1665 uint64_t EB_Real = (OffsetBase) / 64;
1666 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1667 if (Hi == NoClass && EB_Real != EB_Imag)
1668 Hi = Lo;
1669
1670 return;
1671 }
1672
1673 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1674 // Arrays are treated like structures.
1675
1676 uint64_t Size = getContext().getTypeSize(Ty);
1677
1678 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1679 // than four eightbytes, ..., it has class MEMORY.
1680 if (Size > 256)
1681 return;
1682
1683 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1684 // fields, it has class MEMORY.
1685 //
1686 // Only need to check alignment of array base.
1687 if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1688 return;
1689
1690 // Otherwise implement simplified merge. We could be smarter about
1691 // this, but it isn't worth it and would be harder to verify.
1692 Current = NoClass;
1693 uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1694 uint64_t ArraySize = AT->getSize().getZExtValue();
1695
1696 // The only case a 256-bit wide vector could be used is when the array
1697 // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1698 // to work for sizes wider than 128, early check and fallback to memory.
1699 if (Size > 128 && EltSize != 256)
1700 return;
1701
1702 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1703 Class FieldLo, FieldHi;
1704 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
1705 Lo = merge(Lo, FieldLo);
1706 Hi = merge(Hi, FieldHi);
1707 if (Lo == Memory || Hi == Memory)
1708 break;
1709 }
1710
1711 postMerge(Size, Lo, Hi);
1712 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1713 return;
1714 }
1715
1716 if (const RecordType *RT = Ty->getAs<RecordType>()) {
1717 uint64_t Size = getContext().getTypeSize(Ty);
1718
1719 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1720 // than four eightbytes, ..., it has class MEMORY.
1721 if (Size > 256)
1722 return;
1723
1724 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1725 // copy constructor or a non-trivial destructor, it is passed by invisible
1726 // reference.
1727 if (getRecordArgABI(RT, getCXXABI()))
1728 return;
1729
1730 const RecordDecl *RD = RT->getDecl();
1731
1732 // Assume variable sized types are passed in memory.
1733 if (RD->hasFlexibleArrayMember())
1734 return;
1735
1736 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1737
1738 // Reset Lo class, this will be recomputed.
1739 Current = NoClass;
1740
1741 // If this is a C++ record, classify the bases first.
1742 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1743 for (const auto &I : CXXRD->bases()) {
1744 assert(!I.isVirtual() && !I.getType()->isDependentType() &&
1745 "Unexpected base class!");
1746 const CXXRecordDecl *Base =
1747 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
1748
1749 // Classify this field.
1750 //
1751 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1752 // single eightbyte, each is classified separately. Each eightbyte gets
1753 // initialized to class NO_CLASS.
1754 Class FieldLo, FieldHi;
1755 uint64_t Offset =
1756 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
1757 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
1758 Lo = merge(Lo, FieldLo);
1759 Hi = merge(Hi, FieldHi);
1760 if (Lo == Memory || Hi == Memory)
1761 break;
1762 }
1763 }
1764
1765 // Classify the fields one at a time, merging the results.
1766 unsigned idx = 0;
1767 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1768 i != e; ++i, ++idx) {
1769 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1770 bool BitField = i->isBitField();
1771
1772 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1773 // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1774 //
1775 // The only case a 256-bit wide vector could be used is when the struct
1776 // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1777 // to work for sizes wider than 128, early check and fallback to memory.
1778 //
1779 if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1780 Lo = Memory;
1781 return;
1782 }
1783 // Note, skip this test for bit-fields, see below.
1784 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1785 Lo = Memory;
1786 return;
1787 }
1788
1789 // Classify this field.
1790 //
1791 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1792 // exceeds a single eightbyte, each is classified
1793 // separately. Each eightbyte gets initialized to class
1794 // NO_CLASS.
1795 Class FieldLo, FieldHi;
1796
1797 // Bit-fields require special handling, they do not force the
1798 // structure to be passed in memory even if unaligned, and
1799 // therefore they can straddle an eightbyte.
1800 if (BitField) {
1801 // Ignore padding bit-fields.
1802 if (i->isUnnamedBitfield())
1803 continue;
1804
1805 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1806 uint64_t Size = i->getBitWidthValue(getContext());
1807
1808 uint64_t EB_Lo = Offset / 64;
1809 uint64_t EB_Hi = (Offset + Size - 1) / 64;
1810
1811 if (EB_Lo) {
1812 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1813 FieldLo = NoClass;
1814 FieldHi = Integer;
1815 } else {
1816 FieldLo = Integer;
1817 FieldHi = EB_Hi ? Integer : NoClass;
1818 }
1819 } else
1820 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
1821 Lo = merge(Lo, FieldLo);
1822 Hi = merge(Hi, FieldHi);
1823 if (Lo == Memory || Hi == Memory)
1824 break;
1825 }
1826
1827 postMerge(Size, Lo, Hi);
1828 }
1829 }
1830
getIndirectReturnResult(QualType Ty) const1831 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1832 // If this is a scalar LLVM value then assume LLVM will pass it in the right
1833 // place naturally.
1834 if (!isAggregateTypeForABI(Ty)) {
1835 // Treat an enum type as its underlying type.
1836 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1837 Ty = EnumTy->getDecl()->getIntegerType();
1838
1839 return (Ty->isPromotableIntegerType() ?
1840 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1841 }
1842
1843 return ABIArgInfo::getIndirect(0);
1844 }
1845
IsIllegalVectorType(QualType Ty) const1846 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
1847 if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
1848 uint64_t Size = getContext().getTypeSize(VecTy);
1849 unsigned LargestVector = HasAVX ? 256 : 128;
1850 if (Size <= 64 || Size > LargestVector)
1851 return true;
1852 }
1853
1854 return false;
1855 }
1856
getIndirectResult(QualType Ty,unsigned freeIntRegs) const1857 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
1858 unsigned freeIntRegs) const {
1859 // If this is a scalar LLVM value then assume LLVM will pass it in the right
1860 // place naturally.
1861 //
1862 // This assumption is optimistic, as there could be free registers available
1863 // when we need to pass this argument in memory, and LLVM could try to pass
1864 // the argument in the free register. This does not seem to happen currently,
1865 // but this code would be much safer if we could mark the argument with
1866 // 'onstack'. See PR12193.
1867 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
1868 // Treat an enum type as its underlying type.
1869 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1870 Ty = EnumTy->getDecl()->getIntegerType();
1871
1872 return (Ty->isPromotableIntegerType() ?
1873 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1874 }
1875
1876 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
1877 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
1878
1879 // Compute the byval alignment. We specify the alignment of the byval in all
1880 // cases so that the mid-level optimizer knows the alignment of the byval.
1881 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
1882
1883 // Attempt to avoid passing indirect results using byval when possible. This
1884 // is important for good codegen.
1885 //
1886 // We do this by coercing the value into a scalar type which the backend can
1887 // handle naturally (i.e., without using byval).
1888 //
1889 // For simplicity, we currently only do this when we have exhausted all of the
1890 // free integer registers. Doing this when there are free integer registers
1891 // would require more care, as we would have to ensure that the coerced value
1892 // did not claim the unused register. That would require either reording the
1893 // arguments to the function (so that any subsequent inreg values came first),
1894 // or only doing this optimization when there were no following arguments that
1895 // might be inreg.
1896 //
1897 // We currently expect it to be rare (particularly in well written code) for
1898 // arguments to be passed on the stack when there are still free integer
1899 // registers available (this would typically imply large structs being passed
1900 // by value), so this seems like a fair tradeoff for now.
1901 //
1902 // We can revisit this if the backend grows support for 'onstack' parameter
1903 // attributes. See PR12193.
1904 if (freeIntRegs == 0) {
1905 uint64_t Size = getContext().getTypeSize(Ty);
1906
1907 // If this type fits in an eightbyte, coerce it into the matching integral
1908 // type, which will end up on the stack (with alignment 8).
1909 if (Align == 8 && Size <= 64)
1910 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1911 Size));
1912 }
1913
1914 return ABIArgInfo::getIndirect(Align);
1915 }
1916
1917 /// GetByteVectorType - The ABI specifies that a value should be passed in an
1918 /// full vector XMM/YMM register. Pick an LLVM IR type that will be passed as a
1919 /// vector register.
GetByteVectorType(QualType Ty) const1920 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
1921 llvm::Type *IRType = CGT.ConvertType(Ty);
1922
1923 // Wrapper structs that just contain vectors are passed just like vectors,
1924 // strip them off if present.
1925 llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1926 while (STy && STy->getNumElements() == 1) {
1927 IRType = STy->getElementType(0);
1928 STy = dyn_cast<llvm::StructType>(IRType);
1929 }
1930
1931 // If the preferred type is a 16-byte vector, prefer to pass it.
1932 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1933 llvm::Type *EltTy = VT->getElementType();
1934 unsigned BitWidth = VT->getBitWidth();
1935 if ((BitWidth >= 128 && BitWidth <= 256) &&
1936 (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1937 EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1938 EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1939 EltTy->isIntegerTy(128)))
1940 return VT;
1941 }
1942
1943 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1944 }
1945
1946 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
1947 /// is known to either be off the end of the specified type or being in
1948 /// alignment padding. The user type specified is known to be at most 128 bits
1949 /// in size, and have passed through X86_64ABIInfo::classify with a successful
1950 /// classification that put one of the two halves in the INTEGER class.
1951 ///
1952 /// It is conservatively correct to return false.
BitsContainNoUserData(QualType Ty,unsigned StartBit,unsigned EndBit,ASTContext & Context)1953 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1954 unsigned EndBit, ASTContext &Context) {
1955 // If the bytes being queried are off the end of the type, there is no user
1956 // data hiding here. This handles analysis of builtins, vectors and other
1957 // types that don't contain interesting padding.
1958 unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1959 if (TySize <= StartBit)
1960 return true;
1961
1962 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1963 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1964 unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1965
1966 // Check each element to see if the element overlaps with the queried range.
1967 for (unsigned i = 0; i != NumElts; ++i) {
1968 // If the element is after the span we care about, then we're done..
1969 unsigned EltOffset = i*EltSize;
1970 if (EltOffset >= EndBit) break;
1971
1972 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1973 if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1974 EndBit-EltOffset, Context))
1975 return false;
1976 }
1977 // If it overlaps no elements, then it is safe to process as padding.
1978 return true;
1979 }
1980
1981 if (const RecordType *RT = Ty->getAs<RecordType>()) {
1982 const RecordDecl *RD = RT->getDecl();
1983 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1984
1985 // If this is a C++ record, check the bases first.
1986 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1987 for (const auto &I : CXXRD->bases()) {
1988 assert(!I.isVirtual() && !I.getType()->isDependentType() &&
1989 "Unexpected base class!");
1990 const CXXRecordDecl *Base =
1991 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
1992
1993 // If the base is after the span we care about, ignore it.
1994 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
1995 if (BaseOffset >= EndBit) continue;
1996
1997 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1998 if (!BitsContainNoUserData(I.getType(), BaseStart,
1999 EndBit-BaseOffset, Context))
2000 return false;
2001 }
2002 }
2003
2004 // Verify that no field has data that overlaps the region of interest. Yes
2005 // this could be sped up a lot by being smarter about queried fields,
2006 // however we're only looking at structs up to 16 bytes, so we don't care
2007 // much.
2008 unsigned idx = 0;
2009 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2010 i != e; ++i, ++idx) {
2011 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
2012
2013 // If we found a field after the region we care about, then we're done.
2014 if (FieldOffset >= EndBit) break;
2015
2016 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2017 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2018 Context))
2019 return false;
2020 }
2021
2022 // If nothing in this record overlapped the area of interest, then we're
2023 // clean.
2024 return true;
2025 }
2026
2027 return false;
2028 }
2029
2030 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
2031 /// float member at the specified offset. For example, {int,{float}} has a
2032 /// float at offset 4. It is conservatively correct for this routine to return
2033 /// false.
ContainsFloatAtOffset(llvm::Type * IRType,unsigned IROffset,const llvm::DataLayout & TD)2034 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
2035 const llvm::DataLayout &TD) {
2036 // Base case if we find a float.
2037 if (IROffset == 0 && IRType->isFloatTy())
2038 return true;
2039
2040 // If this is a struct, recurse into the field at the specified offset.
2041 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2042 const llvm::StructLayout *SL = TD.getStructLayout(STy);
2043 unsigned Elt = SL->getElementContainingOffset(IROffset);
2044 IROffset -= SL->getElementOffset(Elt);
2045 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
2046 }
2047
2048 // If this is an array, recurse into the field at the specified offset.
2049 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2050 llvm::Type *EltTy = ATy->getElementType();
2051 unsigned EltSize = TD.getTypeAllocSize(EltTy);
2052 IROffset -= IROffset/EltSize*EltSize;
2053 return ContainsFloatAtOffset(EltTy, IROffset, TD);
2054 }
2055
2056 return false;
2057 }
2058
2059
2060 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2061 /// low 8 bytes of an XMM register, corresponding to the SSE class.
2062 llvm::Type *X86_64ABIInfo::
GetSSETypeAtOffset(llvm::Type * IRType,unsigned IROffset,QualType SourceTy,unsigned SourceOffset) const2063 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2064 QualType SourceTy, unsigned SourceOffset) const {
2065 // The only three choices we have are either double, <2 x float>, or float. We
2066 // pass as float if the last 4 bytes is just padding. This happens for
2067 // structs that contain 3 floats.
2068 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
2069 SourceOffset*8+64, getContext()))
2070 return llvm::Type::getFloatTy(getVMContext());
2071
2072 // We want to pass as <2 x float> if the LLVM IR type contains a float at
2073 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the
2074 // case.
2075 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
2076 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
2077 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
2078
2079 return llvm::Type::getDoubleTy(getVMContext());
2080 }
2081
2082
2083 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2084 /// an 8-byte GPR. This means that we either have a scalar or we are talking
2085 /// about the high or low part of an up-to-16-byte struct. This routine picks
2086 /// the best LLVM IR type to represent this, which may be i64 or may be anything
2087 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2088 /// etc).
2089 ///
2090 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2091 /// the source type. IROffset is an offset in bytes into the LLVM IR type that
2092 /// the 8-byte value references. PrefType may be null.
2093 ///
2094 /// SourceTy is the source-level type for the entire argument. SourceOffset is
2095 /// an offset into this that we're processing (which is always either 0 or 8).
2096 ///
2097 llvm::Type *X86_64ABIInfo::
GetINTEGERTypeAtOffset(llvm::Type * IRType,unsigned IROffset,QualType SourceTy,unsigned SourceOffset) const2098 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2099 QualType SourceTy, unsigned SourceOffset) const {
2100 // If we're dealing with an un-offset LLVM IR type, then it means that we're
2101 // returning an 8-byte unit starting with it. See if we can safely use it.
2102 if (IROffset == 0) {
2103 // Pointers and int64's always fill the 8-byte unit.
2104 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2105 IRType->isIntegerTy(64))
2106 return IRType;
2107
2108 // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2109 // goodness in the source type is just tail padding. This is allowed to
2110 // kick in for struct {double,int} on the int, but not on
2111 // struct{double,int,int} because we wouldn't return the second int. We
2112 // have to do this analysis on the source type because we can't depend on
2113 // unions being lowered a specific way etc.
2114 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2115 IRType->isIntegerTy(32) ||
2116 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2117 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2118 cast<llvm::IntegerType>(IRType)->getBitWidth();
2119
2120 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2121 SourceOffset*8+64, getContext()))
2122 return IRType;
2123 }
2124 }
2125
2126 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2127 // If this is a struct, recurse into the field at the specified offset.
2128 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2129 if (IROffset < SL->getSizeInBytes()) {
2130 unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2131 IROffset -= SL->getElementOffset(FieldIdx);
2132
2133 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2134 SourceTy, SourceOffset);
2135 }
2136 }
2137
2138 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2139 llvm::Type *EltTy = ATy->getElementType();
2140 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2141 unsigned EltOffset = IROffset/EltSize*EltSize;
2142 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2143 SourceOffset);
2144 }
2145
2146 // Okay, we don't have any better idea of what to pass, so we pass this in an
2147 // integer register that isn't too big to fit the rest of the struct.
2148 unsigned TySizeInBytes =
2149 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2150
2151 assert(TySizeInBytes != SourceOffset && "Empty field?");
2152
2153 // It is always safe to classify this as an integer type up to i64 that
2154 // isn't larger than the structure.
2155 return llvm::IntegerType::get(getVMContext(),
2156 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2157 }
2158
2159
2160 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2161 /// be used as elements of a two register pair to pass or return, return a
2162 /// first class aggregate to represent them. For example, if the low part of
2163 /// a by-value argument should be passed as i32* and the high part as float,
2164 /// return {i32*, float}.
2165 static llvm::Type *
GetX86_64ByValArgumentPair(llvm::Type * Lo,llvm::Type * Hi,const llvm::DataLayout & TD)2166 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2167 const llvm::DataLayout &TD) {
2168 // In order to correctly satisfy the ABI, we need to the high part to start
2169 // at offset 8. If the high and low parts we inferred are both 4-byte types
2170 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2171 // the second element at offset 8. Check for this:
2172 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2173 unsigned HiAlign = TD.getABITypeAlignment(Hi);
2174 unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign);
2175 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2176
2177 // To handle this, we have to increase the size of the low part so that the
2178 // second element will start at an 8 byte offset. We can't increase the size
2179 // of the second element because it might make us access off the end of the
2180 // struct.
2181 if (HiStart != 8) {
2182 // There are only two sorts of types the ABI generation code can produce for
2183 // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
2184 // Promote these to a larger type.
2185 if (Lo->isFloatTy())
2186 Lo = llvm::Type::getDoubleTy(Lo->getContext());
2187 else {
2188 assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
2189 Lo = llvm::Type::getInt64Ty(Lo->getContext());
2190 }
2191 }
2192
2193 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
2194
2195
2196 // Verify that the second element is at an 8-byte offset.
2197 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2198 "Invalid x86-64 argument pair!");
2199 return Result;
2200 }
2201
2202 ABIArgInfo X86_64ABIInfo::
classifyReturnType(QualType RetTy) const2203 classifyReturnType(QualType RetTy) const {
2204 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2205 // classification algorithm.
2206 X86_64ABIInfo::Class Lo, Hi;
2207 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2208
2209 // Check some invariants.
2210 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2211 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2212
2213 llvm::Type *ResType = nullptr;
2214 switch (Lo) {
2215 case NoClass:
2216 if (Hi == NoClass)
2217 return ABIArgInfo::getIgnore();
2218 // If the low part is just padding, it takes no register, leave ResType
2219 // null.
2220 assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2221 "Unknown missing lo part");
2222 break;
2223
2224 case SSEUp:
2225 case X87Up:
2226 llvm_unreachable("Invalid classification for lo word.");
2227
2228 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2229 // hidden argument.
2230 case Memory:
2231 return getIndirectReturnResult(RetTy);
2232
2233 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2234 // available register of the sequence %rax, %rdx is used.
2235 case Integer:
2236 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2237
2238 // If we have a sign or zero extended integer, make sure to return Extend
2239 // so that the parameter gets the right LLVM IR attributes.
2240 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2241 // Treat an enum type as its underlying type.
2242 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2243 RetTy = EnumTy->getDecl()->getIntegerType();
2244
2245 if (RetTy->isIntegralOrEnumerationType() &&
2246 RetTy->isPromotableIntegerType())
2247 return ABIArgInfo::getExtend();
2248 }
2249 break;
2250
2251 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2252 // available SSE register of the sequence %xmm0, %xmm1 is used.
2253 case SSE:
2254 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2255 break;
2256
2257 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2258 // returned on the X87 stack in %st0 as 80-bit x87 number.
2259 case X87:
2260 ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2261 break;
2262
2263 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2264 // part of the value is returned in %st0 and the imaginary part in
2265 // %st1.
2266 case ComplexX87:
2267 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2268 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2269 llvm::Type::getX86_FP80Ty(getVMContext()),
2270 NULL);
2271 break;
2272 }
2273
2274 llvm::Type *HighPart = nullptr;
2275 switch (Hi) {
2276 // Memory was handled previously and X87 should
2277 // never occur as a hi class.
2278 case Memory:
2279 case X87:
2280 llvm_unreachable("Invalid classification for hi word.");
2281
2282 case ComplexX87: // Previously handled.
2283 case NoClass:
2284 break;
2285
2286 case Integer:
2287 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2288 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
2289 return ABIArgInfo::getDirect(HighPart, 8);
2290 break;
2291 case SSE:
2292 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2293 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
2294 return ABIArgInfo::getDirect(HighPart, 8);
2295 break;
2296
2297 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2298 // is passed in the next available eightbyte chunk if the last used
2299 // vector register.
2300 //
2301 // SSEUP should always be preceded by SSE, just widen.
2302 case SSEUp:
2303 assert(Lo == SSE && "Unexpected SSEUp classification.");
2304 ResType = GetByteVectorType(RetTy);
2305 break;
2306
2307 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2308 // returned together with the previous X87 value in %st0.
2309 case X87Up:
2310 // If X87Up is preceded by X87, we don't need to do
2311 // anything. However, in some cases with unions it may not be
2312 // preceded by X87. In such situations we follow gcc and pass the
2313 // extra bits in an SSE reg.
2314 if (Lo != X87) {
2315 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2316 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
2317 return ABIArgInfo::getDirect(HighPart, 8);
2318 }
2319 break;
2320 }
2321
2322 // If a high part was specified, merge it together with the low part. It is
2323 // known to pass in the high eightbyte of the result. We do this by forming a
2324 // first class struct aggregate with the high and low part: {low, high}
2325 if (HighPart)
2326 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2327
2328 return ABIArgInfo::getDirect(ResType);
2329 }
2330
classifyArgumentType(QualType Ty,unsigned freeIntRegs,unsigned & neededInt,unsigned & neededSSE,bool isNamedArg) const2331 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2332 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
2333 bool isNamedArg)
2334 const
2335 {
2336 X86_64ABIInfo::Class Lo, Hi;
2337 classify(Ty, 0, Lo, Hi, isNamedArg);
2338
2339 // Check some invariants.
2340 // FIXME: Enforce these by construction.
2341 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2342 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2343
2344 neededInt = 0;
2345 neededSSE = 0;
2346 llvm::Type *ResType = nullptr;
2347 switch (Lo) {
2348 case NoClass:
2349 if (Hi == NoClass)
2350 return ABIArgInfo::getIgnore();
2351 // If the low part is just padding, it takes no register, leave ResType
2352 // null.
2353 assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2354 "Unknown missing lo part");
2355 break;
2356
2357 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2358 // on the stack.
2359 case Memory:
2360
2361 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2362 // COMPLEX_X87, it is passed in memory.
2363 case X87:
2364 case ComplexX87:
2365 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2366 ++neededInt;
2367 return getIndirectResult(Ty, freeIntRegs);
2368
2369 case SSEUp:
2370 case X87Up:
2371 llvm_unreachable("Invalid classification for lo word.");
2372
2373 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2374 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2375 // and %r9 is used.
2376 case Integer:
2377 ++neededInt;
2378
2379 // Pick an 8-byte type based on the preferred type.
2380 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2381
2382 // If we have a sign or zero extended integer, make sure to return Extend
2383 // so that the parameter gets the right LLVM IR attributes.
2384 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2385 // Treat an enum type as its underlying type.
2386 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2387 Ty = EnumTy->getDecl()->getIntegerType();
2388
2389 if (Ty->isIntegralOrEnumerationType() &&
2390 Ty->isPromotableIntegerType())
2391 return ABIArgInfo::getExtend();
2392 }
2393
2394 break;
2395
2396 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2397 // available SSE register is used, the registers are taken in the
2398 // order from %xmm0 to %xmm7.
2399 case SSE: {
2400 llvm::Type *IRType = CGT.ConvertType(Ty);
2401 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2402 ++neededSSE;
2403 break;
2404 }
2405 }
2406
2407 llvm::Type *HighPart = nullptr;
2408 switch (Hi) {
2409 // Memory was handled previously, ComplexX87 and X87 should
2410 // never occur as hi classes, and X87Up must be preceded by X87,
2411 // which is passed in memory.
2412 case Memory:
2413 case X87:
2414 case ComplexX87:
2415 llvm_unreachable("Invalid classification for hi word.");
2416
2417 case NoClass: break;
2418
2419 case Integer:
2420 ++neededInt;
2421 // Pick an 8-byte type based on the preferred type.
2422 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2423
2424 if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
2425 return ABIArgInfo::getDirect(HighPart, 8);
2426 break;
2427
2428 // X87Up generally doesn't occur here (long double is passed in
2429 // memory), except in situations involving unions.
2430 case X87Up:
2431 case SSE:
2432 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2433
2434 if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
2435 return ABIArgInfo::getDirect(HighPart, 8);
2436
2437 ++neededSSE;
2438 break;
2439
2440 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2441 // eightbyte is passed in the upper half of the last used SSE
2442 // register. This only happens when 128-bit vectors are passed.
2443 case SSEUp:
2444 assert(Lo == SSE && "Unexpected SSEUp classification");
2445 ResType = GetByteVectorType(Ty);
2446 break;
2447 }
2448
2449 // If a high part was specified, merge it together with the low part. It is
2450 // known to pass in the high eightbyte of the result. We do this by forming a
2451 // first class struct aggregate with the high and low part: {low, high}
2452 if (HighPart)
2453 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2454
2455 return ABIArgInfo::getDirect(ResType);
2456 }
2457
computeInfo(CGFunctionInfo & FI) const2458 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2459
2460 if (!getCXXABI().classifyReturnType(FI))
2461 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2462
2463 // Keep track of the number of assigned registers.
2464 unsigned freeIntRegs = 6, freeSSERegs = 8;
2465
2466 // If the return value is indirect, then the hidden argument is consuming one
2467 // integer register.
2468 if (FI.getReturnInfo().isIndirect())
2469 --freeIntRegs;
2470
2471 bool isVariadic = FI.isVariadic();
2472 unsigned numRequiredArgs = 0;
2473 if (isVariadic)
2474 numRequiredArgs = FI.getRequiredArgs().getNumRequiredArgs();
2475
2476 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2477 // get assigned (in left-to-right order) for passing as follows...
2478 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2479 it != ie; ++it) {
2480 bool isNamedArg = true;
2481 if (isVariadic)
2482 isNamedArg = (it - FI.arg_begin()) <
2483 static_cast<signed>(numRequiredArgs);
2484
2485 unsigned neededInt, neededSSE;
2486 it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2487 neededSSE, isNamedArg);
2488
2489 // AMD64-ABI 3.2.3p3: If there are no registers available for any
2490 // eightbyte of an argument, the whole argument is passed on the
2491 // stack. If registers have already been assigned for some
2492 // eightbytes of such an argument, the assignments get reverted.
2493 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2494 freeIntRegs -= neededInt;
2495 freeSSERegs -= neededSSE;
2496 } else {
2497 it->info = getIndirectResult(it->type, freeIntRegs);
2498 }
2499 }
2500 }
2501
EmitVAArgFromMemory(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF)2502 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2503 QualType Ty,
2504 CodeGenFunction &CGF) {
2505 llvm::Value *overflow_arg_area_p =
2506 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2507 llvm::Value *overflow_arg_area =
2508 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2509
2510 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2511 // byte boundary if alignment needed by type exceeds 8 byte boundary.
2512 // It isn't stated explicitly in the standard, but in practice we use
2513 // alignment greater than 16 where necessary.
2514 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2515 if (Align > 8) {
2516 // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2517 llvm::Value *Offset =
2518 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2519 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2520 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2521 CGF.Int64Ty);
2522 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2523 overflow_arg_area =
2524 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2525 overflow_arg_area->getType(),
2526 "overflow_arg_area.align");
2527 }
2528
2529 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2530 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2531 llvm::Value *Res =
2532 CGF.Builder.CreateBitCast(overflow_arg_area,
2533 llvm::PointerType::getUnqual(LTy));
2534
2535 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2536 // l->overflow_arg_area + sizeof(type).
2537 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2538 // an 8 byte boundary.
2539
2540 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2541 llvm::Value *Offset =
2542 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7);
2543 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2544 "overflow_arg_area.next");
2545 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2546
2547 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2548 return Res;
2549 }
2550
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const2551 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2552 CodeGenFunction &CGF) const {
2553 // Assume that va_list type is correct; should be pointer to LLVM type:
2554 // struct {
2555 // i32 gp_offset;
2556 // i32 fp_offset;
2557 // i8* overflow_arg_area;
2558 // i8* reg_save_area;
2559 // };
2560 unsigned neededInt, neededSSE;
2561
2562 Ty = CGF.getContext().getCanonicalType(Ty);
2563 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
2564 /*isNamedArg*/false);
2565
2566 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2567 // in the registers. If not go to step 7.
2568 if (!neededInt && !neededSSE)
2569 return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2570
2571 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2572 // general purpose registers needed to pass type and num_fp to hold
2573 // the number of floating point registers needed.
2574
2575 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2576 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2577 // l->fp_offset > 304 - num_fp * 16 go to step 7.
2578 //
2579 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2580 // register save space).
2581
2582 llvm::Value *InRegs = nullptr;
2583 llvm::Value *gp_offset_p = nullptr, *gp_offset = nullptr;
2584 llvm::Value *fp_offset_p = nullptr, *fp_offset = nullptr;
2585 if (neededInt) {
2586 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2587 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2588 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2589 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2590 }
2591
2592 if (neededSSE) {
2593 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2594 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2595 llvm::Value *FitsInFP =
2596 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2597 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2598 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2599 }
2600
2601 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2602 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2603 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2604 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2605
2606 // Emit code to load the value if it was passed in registers.
2607
2608 CGF.EmitBlock(InRegBlock);
2609
2610 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2611 // an offset of l->gp_offset and/or l->fp_offset. This may require
2612 // copying to a temporary location in case the parameter is passed
2613 // in different register classes or requires an alignment greater
2614 // than 8 for general purpose registers and 16 for XMM registers.
2615 //
2616 // FIXME: This really results in shameful code when we end up needing to
2617 // collect arguments from different places; often what should result in a
2618 // simple assembling of a structure from scattered addresses has many more
2619 // loads than necessary. Can we clean this up?
2620 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2621 llvm::Value *RegAddr =
2622 CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2623 "reg_save_area");
2624 if (neededInt && neededSSE) {
2625 // FIXME: Cleanup.
2626 assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2627 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2628 llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2629 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2630 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2631 llvm::Type *TyLo = ST->getElementType(0);
2632 llvm::Type *TyHi = ST->getElementType(1);
2633 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2634 "Unexpected ABI info for mixed regs");
2635 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2636 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2637 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2638 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2639 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
2640 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
2641 llvm::Value *V =
2642 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2643 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2644 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2645 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2646
2647 RegAddr = CGF.Builder.CreateBitCast(Tmp,
2648 llvm::PointerType::getUnqual(LTy));
2649 } else if (neededInt) {
2650 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2651 RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2652 llvm::PointerType::getUnqual(LTy));
2653
2654 // Copy to a temporary if necessary to ensure the appropriate alignment.
2655 std::pair<CharUnits, CharUnits> SizeAlign =
2656 CGF.getContext().getTypeInfoInChars(Ty);
2657 uint64_t TySize = SizeAlign.first.getQuantity();
2658 unsigned TyAlign = SizeAlign.second.getQuantity();
2659 if (TyAlign > 8) {
2660 llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2661 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false);
2662 RegAddr = Tmp;
2663 }
2664 } else if (neededSSE == 1) {
2665 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2666 RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2667 llvm::PointerType::getUnqual(LTy));
2668 } else {
2669 assert(neededSSE == 2 && "Invalid number of needed registers!");
2670 // SSE registers are spaced 16 bytes apart in the register save
2671 // area, we need to collect the two eightbytes together.
2672 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2673 llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2674 llvm::Type *DoubleTy = CGF.DoubleTy;
2675 llvm::Type *DblPtrTy =
2676 llvm::PointerType::getUnqual(DoubleTy);
2677 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, NULL);
2678 llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty);
2679 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2680 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2681 DblPtrTy));
2682 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2683 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2684 DblPtrTy));
2685 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2686 RegAddr = CGF.Builder.CreateBitCast(Tmp,
2687 llvm::PointerType::getUnqual(LTy));
2688 }
2689
2690 // AMD64-ABI 3.5.7p5: Step 5. Set:
2691 // l->gp_offset = l->gp_offset + num_gp * 8
2692 // l->fp_offset = l->fp_offset + num_fp * 16.
2693 if (neededInt) {
2694 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2695 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2696 gp_offset_p);
2697 }
2698 if (neededSSE) {
2699 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2700 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2701 fp_offset_p);
2702 }
2703 CGF.EmitBranch(ContBlock);
2704
2705 // Emit code to load the value if it was passed in memory.
2706
2707 CGF.EmitBlock(InMemBlock);
2708 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2709
2710 // Return the appropriate result.
2711
2712 CGF.EmitBlock(ContBlock);
2713 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2714 "vaarg.addr");
2715 ResAddr->addIncoming(RegAddr, InRegBlock);
2716 ResAddr->addIncoming(MemAddr, InMemBlock);
2717 return ResAddr;
2718 }
2719
classify(QualType Ty,bool IsReturnType) const2720 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, bool IsReturnType) const {
2721
2722 if (Ty->isVoidType())
2723 return ABIArgInfo::getIgnore();
2724
2725 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2726 Ty = EnumTy->getDecl()->getIntegerType();
2727
2728 uint64_t Size = getContext().getTypeSize(Ty);
2729
2730 const RecordType *RT = Ty->getAs<RecordType>();
2731 if (RT) {
2732 if (!IsReturnType) {
2733 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
2734 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2735 }
2736
2737 if (RT->getDecl()->hasFlexibleArrayMember())
2738 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2739
2740 // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2741 if (Size == 128 && getTarget().getTriple().isWindowsGNUEnvironment())
2742 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2743 Size));
2744 }
2745
2746 if (Ty->isMemberPointerType()) {
2747 // If the member pointer is represented by an LLVM int or ptr, pass it
2748 // directly.
2749 llvm::Type *LLTy = CGT.ConvertType(Ty);
2750 if (LLTy->isPointerTy() || LLTy->isIntegerTy())
2751 return ABIArgInfo::getDirect();
2752 }
2753
2754 if (RT || Ty->isMemberPointerType()) {
2755 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2756 // not 1, 2, 4, or 8 bytes, must be passed by reference."
2757 if (Size > 64 || !llvm::isPowerOf2_64(Size))
2758 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2759
2760 // Otherwise, coerce it to a small integer.
2761 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
2762 }
2763
2764 if (Ty->isPromotableIntegerType())
2765 return ABIArgInfo::getExtend();
2766
2767 return ABIArgInfo::getDirect();
2768 }
2769
computeInfo(CGFunctionInfo & FI) const2770 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2771 if (!getCXXABI().classifyReturnType(FI))
2772 FI.getReturnInfo() = classify(FI.getReturnType(), true);
2773
2774 for (auto &I : FI.arguments())
2775 I.info = classify(I.type, false);
2776 }
2777
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const2778 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2779 CodeGenFunction &CGF) const {
2780 llvm::Type *BPP = CGF.Int8PtrPtrTy;
2781
2782 CGBuilderTy &Builder = CGF.Builder;
2783 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2784 "ap");
2785 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2786 llvm::Type *PTy =
2787 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2788 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2789
2790 uint64_t Offset =
2791 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2792 llvm::Value *NextAddr =
2793 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2794 "ap.next");
2795 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2796
2797 return AddrTyped;
2798 }
2799
2800 namespace {
2801
2802 class NaClX86_64ABIInfo : public ABIInfo {
2803 public:
NaClX86_64ABIInfo(CodeGen::CodeGenTypes & CGT,bool HasAVX)2804 NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2805 : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {}
2806 void computeInfo(CGFunctionInfo &FI) const override;
2807 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2808 CodeGenFunction &CGF) const override;
2809 private:
2810 PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv.
2811 X86_64ABIInfo NInfo; // Used for everything else.
2812 };
2813
2814 class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2815 public:
NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool HasAVX)2816 NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2817 : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {}
2818 };
2819
2820 }
2821
computeInfo(CGFunctionInfo & FI) const2822 void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2823 if (FI.getASTCallingConvention() == CC_PnaclCall)
2824 PInfo.computeInfo(FI);
2825 else
2826 NInfo.computeInfo(FI);
2827 }
2828
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const2829 llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2830 CodeGenFunction &CGF) const {
2831 // Always use the native convention; calling pnacl-style varargs functions
2832 // is unuspported.
2833 return NInfo.EmitVAArg(VAListAddr, Ty, CGF);
2834 }
2835
2836
2837 // PowerPC-32
2838
2839 namespace {
2840 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2841 public:
PPC32TargetCodeGenInfo(CodeGenTypes & CGT)2842 PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2843
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const2844 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
2845 // This is recovered from gcc output.
2846 return 1; // r1 is the dedicated stack pointer
2847 }
2848
2849 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2850 llvm::Value *Address) const override;
2851 };
2852
2853 }
2854
2855 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const2856 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2857 llvm::Value *Address) const {
2858 // This is calculated from the LLVM and GCC tables and verified
2859 // against gcc output. AFAIK all ABIs use the same encoding.
2860
2861 CodeGen::CGBuilderTy &Builder = CGF.Builder;
2862
2863 llvm::IntegerType *i8 = CGF.Int8Ty;
2864 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2865 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2866 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2867
2868 // 0-31: r0-31, the 4-byte general-purpose registers
2869 AssignToArrayRange(Builder, Address, Four8, 0, 31);
2870
2871 // 32-63: fp0-31, the 8-byte floating-point registers
2872 AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2873
2874 // 64-76 are various 4-byte special-purpose registers:
2875 // 64: mq
2876 // 65: lr
2877 // 66: ctr
2878 // 67: ap
2879 // 68-75 cr0-7
2880 // 76: xer
2881 AssignToArrayRange(Builder, Address, Four8, 64, 76);
2882
2883 // 77-108: v0-31, the 16-byte vector registers
2884 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2885
2886 // 109: vrsave
2887 // 110: vscr
2888 // 111: spe_acc
2889 // 112: spefscr
2890 // 113: sfp
2891 AssignToArrayRange(Builder, Address, Four8, 109, 113);
2892
2893 return false;
2894 }
2895
2896 // PowerPC-64
2897
2898 namespace {
2899 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
2900 class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
2901
2902 public:
PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes & CGT)2903 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
2904
2905 bool isPromotableTypeForABI(QualType Ty) const;
2906 bool isAlignedParamType(QualType Ty) const;
2907
2908 ABIArgInfo classifyReturnType(QualType RetTy) const;
2909 ABIArgInfo classifyArgumentType(QualType Ty) const;
2910
2911 // TODO: We can add more logic to computeInfo to improve performance.
2912 // Example: For aggregate arguments that fit in a register, we could
2913 // use getDirectInReg (as is done below for structs containing a single
2914 // floating-point value) to avoid pushing them to memory on function
2915 // entry. This would require changing the logic in PPCISelLowering
2916 // when lowering the parameters in the caller and args in the callee.
computeInfo(CGFunctionInfo & FI) const2917 void computeInfo(CGFunctionInfo &FI) const override {
2918 if (!getCXXABI().classifyReturnType(FI))
2919 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2920 for (auto &I : FI.arguments()) {
2921 // We rely on the default argument classification for the most part.
2922 // One exception: An aggregate containing a single floating-point
2923 // or vector item must be passed in a register if one is available.
2924 const Type *T = isSingleElementStruct(I.type, getContext());
2925 if (T) {
2926 const BuiltinType *BT = T->getAs<BuiltinType>();
2927 if ((T->isVectorType() && getContext().getTypeSize(T) == 128) ||
2928 (BT && BT->isFloatingPoint())) {
2929 QualType QT(T, 0);
2930 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
2931 continue;
2932 }
2933 }
2934 I.info = classifyArgumentType(I.type);
2935 }
2936 }
2937
2938 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2939 CodeGenFunction &CGF) const override;
2940 };
2941
2942 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
2943 public:
PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes & CGT)2944 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT)
2945 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT)) {}
2946
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const2947 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
2948 // This is recovered from gcc output.
2949 return 1; // r1 is the dedicated stack pointer
2950 }
2951
2952 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2953 llvm::Value *Address) const override;
2954 };
2955
2956 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2957 public:
PPC64TargetCodeGenInfo(CodeGenTypes & CGT)2958 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2959
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const2960 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
2961 // This is recovered from gcc output.
2962 return 1; // r1 is the dedicated stack pointer
2963 }
2964
2965 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2966 llvm::Value *Address) const override;
2967 };
2968
2969 }
2970
2971 // Return true if the ABI requires Ty to be passed sign- or zero-
2972 // extended to 64 bits.
2973 bool
isPromotableTypeForABI(QualType Ty) const2974 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
2975 // Treat an enum type as its underlying type.
2976 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2977 Ty = EnumTy->getDecl()->getIntegerType();
2978
2979 // Promotable integer types are required to be promoted by the ABI.
2980 if (Ty->isPromotableIntegerType())
2981 return true;
2982
2983 // In addition to the usual promotable integer types, we also need to
2984 // extend all 32-bit types, since the ABI requires promotion to 64 bits.
2985 if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2986 switch (BT->getKind()) {
2987 case BuiltinType::Int:
2988 case BuiltinType::UInt:
2989 return true;
2990 default:
2991 break;
2992 }
2993
2994 return false;
2995 }
2996
2997 /// isAlignedParamType - Determine whether a type requires 16-byte
2998 /// alignment in the parameter area.
2999 bool
isAlignedParamType(QualType Ty) const3000 PPC64_SVR4_ABIInfo::isAlignedParamType(QualType Ty) const {
3001 // Complex types are passed just like their elements.
3002 if (const ComplexType *CTy = Ty->getAs<ComplexType>())
3003 Ty = CTy->getElementType();
3004
3005 // Only vector types of size 16 bytes need alignment (larger types are
3006 // passed via reference, smaller types are not aligned).
3007 if (Ty->isVectorType())
3008 return getContext().getTypeSize(Ty) == 128;
3009
3010 // For single-element float/vector structs, we consider the whole type
3011 // to have the same alignment requirements as its single element.
3012 const Type *AlignAsType = nullptr;
3013 const Type *EltType = isSingleElementStruct(Ty, getContext());
3014 if (EltType) {
3015 const BuiltinType *BT = EltType->getAs<BuiltinType>();
3016 if ((EltType->isVectorType() &&
3017 getContext().getTypeSize(EltType) == 128) ||
3018 (BT && BT->isFloatingPoint()))
3019 AlignAsType = EltType;
3020 }
3021
3022 // With special case aggregates, only vector base types need alignment.
3023 if (AlignAsType)
3024 return AlignAsType->isVectorType();
3025
3026 // Otherwise, we only need alignment for any aggregate type that
3027 // has an alignment requirement of >= 16 bytes.
3028 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128)
3029 return true;
3030
3031 return false;
3032 }
3033
3034 ABIArgInfo
classifyArgumentType(QualType Ty) const3035 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
3036 if (Ty->isAnyComplexType())
3037 return ABIArgInfo::getDirect();
3038
3039 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
3040 // or via reference (larger than 16 bytes).
3041 if (Ty->isVectorType()) {
3042 uint64_t Size = getContext().getTypeSize(Ty);
3043 if (Size > 128)
3044 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3045 else if (Size < 128) {
3046 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3047 return ABIArgInfo::getDirect(CoerceTy);
3048 }
3049 }
3050
3051 if (isAggregateTypeForABI(Ty)) {
3052 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3053 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3054
3055 uint64_t ABIAlign = isAlignedParamType(Ty)? 16 : 8;
3056 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
3057 return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true,
3058 /*Realign=*/TyAlign > ABIAlign);
3059 }
3060
3061 return (isPromotableTypeForABI(Ty) ?
3062 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3063 }
3064
3065 ABIArgInfo
classifyReturnType(QualType RetTy) const3066 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
3067 if (RetTy->isVoidType())
3068 return ABIArgInfo::getIgnore();
3069
3070 if (RetTy->isAnyComplexType())
3071 return ABIArgInfo::getDirect();
3072
3073 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
3074 // or via reference (larger than 16 bytes).
3075 if (RetTy->isVectorType()) {
3076 uint64_t Size = getContext().getTypeSize(RetTy);
3077 if (Size > 128)
3078 return ABIArgInfo::getIndirect(0);
3079 else if (Size < 128) {
3080 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3081 return ABIArgInfo::getDirect(CoerceTy);
3082 }
3083 }
3084
3085 if (isAggregateTypeForABI(RetTy))
3086 return ABIArgInfo::getIndirect(0);
3087
3088 return (isPromotableTypeForABI(RetTy) ?
3089 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3090 }
3091
3092 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const3093 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
3094 QualType Ty,
3095 CodeGenFunction &CGF) const {
3096 llvm::Type *BP = CGF.Int8PtrTy;
3097 llvm::Type *BPP = CGF.Int8PtrPtrTy;
3098
3099 CGBuilderTy &Builder = CGF.Builder;
3100 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3101 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3102
3103 // Handle types that require 16-byte alignment in the parameter save area.
3104 if (isAlignedParamType(Ty)) {
3105 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3106 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(15));
3107 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt64(-16));
3108 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
3109 }
3110
3111 // Update the va_list pointer. The pointer should be bumped by the
3112 // size of the object. We can trust getTypeSize() except for a complex
3113 // type whose base type is smaller than a doubleword. For these, the
3114 // size of the object is 16 bytes; see below for further explanation.
3115 unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
3116 QualType BaseTy;
3117 unsigned CplxBaseSize = 0;
3118
3119 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3120 BaseTy = CTy->getElementType();
3121 CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8;
3122 if (CplxBaseSize < 8)
3123 SizeInBytes = 16;
3124 }
3125
3126 unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
3127 llvm::Value *NextAddr =
3128 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
3129 "ap.next");
3130 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3131
3132 // If we have a complex type and the base type is smaller than 8 bytes,
3133 // the ABI calls for the real and imaginary parts to be right-adjusted
3134 // in separate doublewords. However, Clang expects us to produce a
3135 // pointer to a structure with the two parts packed tightly. So generate
3136 // loads of the real and imaginary parts relative to the va_list pointer,
3137 // and store them to a temporary structure.
3138 if (CplxBaseSize && CplxBaseSize < 8) {
3139 llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3140 llvm::Value *ImagAddr = RealAddr;
3141 if (CGF.CGM.getDataLayout().isBigEndian()) {
3142 RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize));
3143 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize));
3144 } else {
3145 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(8));
3146 }
3147 llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy));
3148 RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy);
3149 ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy);
3150 llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal");
3151 llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag");
3152 llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty),
3153 "vacplx");
3154 llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real");
3155 llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag");
3156 Builder.CreateStore(Real, RealPtr, false);
3157 Builder.CreateStore(Imag, ImagPtr, false);
3158 return Ptr;
3159 }
3160
3161 // If the argument is smaller than 8 bytes, it is right-adjusted in
3162 // its doubleword slot. Adjust the pointer to pick it up from the
3163 // correct offset.
3164 if (SizeInBytes < 8 && CGF.CGM.getDataLayout().isBigEndian()) {
3165 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3166 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
3167 Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
3168 }
3169
3170 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3171 return Builder.CreateBitCast(Addr, PTy);
3172 }
3173
3174 static bool
PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address)3175 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3176 llvm::Value *Address) {
3177 // This is calculated from the LLVM and GCC tables and verified
3178 // against gcc output. AFAIK all ABIs use the same encoding.
3179
3180 CodeGen::CGBuilderTy &Builder = CGF.Builder;
3181
3182 llvm::IntegerType *i8 = CGF.Int8Ty;
3183 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3184 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3185 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3186
3187 // 0-31: r0-31, the 8-byte general-purpose registers
3188 AssignToArrayRange(Builder, Address, Eight8, 0, 31);
3189
3190 // 32-63: fp0-31, the 8-byte floating-point registers
3191 AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3192
3193 // 64-76 are various 4-byte special-purpose registers:
3194 // 64: mq
3195 // 65: lr
3196 // 66: ctr
3197 // 67: ap
3198 // 68-75 cr0-7
3199 // 76: xer
3200 AssignToArrayRange(Builder, Address, Four8, 64, 76);
3201
3202 // 77-108: v0-31, the 16-byte vector registers
3203 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3204
3205 // 109: vrsave
3206 // 110: vscr
3207 // 111: spe_acc
3208 // 112: spefscr
3209 // 113: sfp
3210 AssignToArrayRange(Builder, Address, Four8, 109, 113);
3211
3212 return false;
3213 }
3214
3215 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const3216 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
3217 CodeGen::CodeGenFunction &CGF,
3218 llvm::Value *Address) const {
3219
3220 return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3221 }
3222
3223 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const3224 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3225 llvm::Value *Address) const {
3226
3227 return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3228 }
3229
3230 //===----------------------------------------------------------------------===//
3231 // AArch64 ABI Implementation
3232 //===----------------------------------------------------------------------===//
3233
3234 namespace {
3235
3236 class AArch64ABIInfo : public ABIInfo {
3237 public:
3238 enum ABIKind {
3239 AAPCS = 0,
3240 DarwinPCS
3241 };
3242
3243 private:
3244 ABIKind Kind;
3245
3246 public:
AArch64ABIInfo(CodeGenTypes & CGT,ABIKind Kind)3247 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {}
3248
3249 private:
getABIKind() const3250 ABIKind getABIKind() const { return Kind; }
isDarwinPCS() const3251 bool isDarwinPCS() const { return Kind == DarwinPCS; }
3252
3253 ABIArgInfo classifyReturnType(QualType RetTy) const;
3254 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &AllocatedVFP,
3255 bool &IsHA, unsigned &AllocatedGPR,
3256 bool &IsSmallAggr, bool IsNamedArg) const;
3257 bool isIllegalVectorType(QualType Ty) const;
3258
computeInfo(CGFunctionInfo & FI) const3259 virtual void computeInfo(CGFunctionInfo &FI) const {
3260 // To correctly handle Homogeneous Aggregate, we need to keep track of the
3261 // number of SIMD and Floating-point registers allocated so far.
3262 // If the argument is an HFA or an HVA and there are sufficient unallocated
3263 // SIMD and Floating-point registers, then the argument is allocated to SIMD
3264 // and Floating-point Registers (with one register per member of the HFA or
3265 // HVA). Otherwise, the NSRN is set to 8.
3266 unsigned AllocatedVFP = 0;
3267
3268 // To correctly handle small aggregates, we need to keep track of the number
3269 // of GPRs allocated so far. If the small aggregate can't all fit into
3270 // registers, it will be on stack. We don't allow the aggregate to be
3271 // partially in registers.
3272 unsigned AllocatedGPR = 0;
3273
3274 // Find the number of named arguments. Variadic arguments get special
3275 // treatment with the Darwin ABI.
3276 unsigned NumRequiredArgs = (FI.isVariadic() ?
3277 FI.getRequiredArgs().getNumRequiredArgs() :
3278 FI.arg_size());
3279
3280 if (!getCXXABI().classifyReturnType(FI))
3281 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3282 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3283 it != ie; ++it) {
3284 unsigned PreAllocation = AllocatedVFP, PreGPR = AllocatedGPR;
3285 bool IsHA = false, IsSmallAggr = false;
3286 const unsigned NumVFPs = 8;
3287 const unsigned NumGPRs = 8;
3288 bool IsNamedArg = ((it - FI.arg_begin()) <
3289 static_cast<signed>(NumRequiredArgs));
3290 it->info = classifyArgumentType(it->type, AllocatedVFP, IsHA,
3291 AllocatedGPR, IsSmallAggr, IsNamedArg);
3292
3293 // Under AAPCS the 64-bit stack slot alignment means we can't pass HAs
3294 // as sequences of floats since they'll get "holes" inserted as
3295 // padding by the back end.
3296 if (IsHA && AllocatedVFP > NumVFPs && !isDarwinPCS() &&
3297 getContext().getTypeAlign(it->type) < 64) {
3298 uint32_t NumStackSlots = getContext().getTypeSize(it->type);
3299 NumStackSlots = llvm::RoundUpToAlignment(NumStackSlots, 64) / 64;
3300
3301 llvm::Type *CoerceTy = llvm::ArrayType::get(
3302 llvm::Type::getDoubleTy(getVMContext()), NumStackSlots);
3303 it->info = ABIArgInfo::getDirect(CoerceTy);
3304 }
3305
3306 // If we do not have enough VFP registers for the HA, any VFP registers
3307 // that are unallocated are marked as unavailable. To achieve this, we add
3308 // padding of (NumVFPs - PreAllocation) floats.
3309 if (IsHA && AllocatedVFP > NumVFPs && PreAllocation < NumVFPs) {
3310 llvm::Type *PaddingTy = llvm::ArrayType::get(
3311 llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocation);
3312 it->info.setPaddingType(PaddingTy);
3313 }
3314
3315 // If we do not have enough GPRs for the small aggregate, any GPR regs
3316 // that are unallocated are marked as unavailable.
3317 if (IsSmallAggr && AllocatedGPR > NumGPRs && PreGPR < NumGPRs) {
3318 llvm::Type *PaddingTy = llvm::ArrayType::get(
3319 llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreGPR);
3320 it->info =
3321 ABIArgInfo::getDirect(it->info.getCoerceToType(), 0, PaddingTy);
3322 }
3323 }
3324 }
3325
3326 llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
3327 CodeGenFunction &CGF) const;
3328
3329 llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty,
3330 CodeGenFunction &CGF) const;
3331
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const3332 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3333 CodeGenFunction &CGF) const {
3334 return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
3335 : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
3336 }
3337 };
3338
3339 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
3340 public:
AArch64TargetCodeGenInfo(CodeGenTypes & CGT,AArch64ABIInfo::ABIKind Kind)3341 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
3342 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
3343
getARCRetainAutoreleasedReturnValueMarker() const3344 StringRef getARCRetainAutoreleasedReturnValueMarker() const {
3345 return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
3346 }
3347
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const3348 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { return 31; }
3349
doesReturnSlotInterfereWithArgs() const3350 virtual bool doesReturnSlotInterfereWithArgs() const { return false; }
3351 };
3352 }
3353
3354 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
3355 ASTContext &Context,
3356 uint64_t *HAMembers = nullptr);
3357
classifyArgumentType(QualType Ty,unsigned & AllocatedVFP,bool & IsHA,unsigned & AllocatedGPR,bool & IsSmallAggr,bool IsNamedArg) const3358 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty,
3359 unsigned &AllocatedVFP,
3360 bool &IsHA,
3361 unsigned &AllocatedGPR,
3362 bool &IsSmallAggr,
3363 bool IsNamedArg) const {
3364 // Handle illegal vector types here.
3365 if (isIllegalVectorType(Ty)) {
3366 uint64_t Size = getContext().getTypeSize(Ty);
3367 // Android promotes <2 x i8> to i16, not i32
3368 if (Size <= 16) {
3369 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
3370 AllocatedGPR++;
3371 return ABIArgInfo::getDirect(ResType);
3372 }
3373 if (Size == 32) {
3374 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
3375 AllocatedGPR++;
3376 return ABIArgInfo::getDirect(ResType);
3377 }
3378 if (Size == 64) {
3379 llvm::Type *ResType =
3380 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
3381 AllocatedVFP++;
3382 return ABIArgInfo::getDirect(ResType);
3383 }
3384 if (Size == 128) {
3385 llvm::Type *ResType =
3386 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
3387 AllocatedVFP++;
3388 return ABIArgInfo::getDirect(ResType);
3389 }
3390 AllocatedGPR++;
3391 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3392 }
3393 if (Ty->isVectorType())
3394 // Size of a legal vector should be either 64 or 128.
3395 AllocatedVFP++;
3396 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3397 if (BT->getKind() == BuiltinType::Half ||
3398 BT->getKind() == BuiltinType::Float ||
3399 BT->getKind() == BuiltinType::Double ||
3400 BT->getKind() == BuiltinType::LongDouble)
3401 AllocatedVFP++;
3402 }
3403
3404 if (!isAggregateTypeForABI(Ty)) {
3405 // Treat an enum type as its underlying type.
3406 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3407 Ty = EnumTy->getDecl()->getIntegerType();
3408
3409 if (!Ty->isFloatingType() && !Ty->isVectorType()) {
3410 unsigned Alignment = getContext().getTypeAlign(Ty);
3411 if (!isDarwinPCS() && Alignment > 64)
3412 AllocatedGPR = llvm::RoundUpToAlignment(AllocatedGPR, Alignment / 64);
3413
3414 int RegsNeeded = getContext().getTypeSize(Ty) > 64 ? 2 : 1;
3415 AllocatedGPR += RegsNeeded;
3416 }
3417 return (Ty->isPromotableIntegerType() && isDarwinPCS()
3418 ? ABIArgInfo::getExtend()
3419 : ABIArgInfo::getDirect());
3420 }
3421
3422 // Structures with either a non-trivial destructor or a non-trivial
3423 // copy constructor are always indirect.
3424 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
3425 AllocatedGPR++;
3426 return ABIArgInfo::getIndirect(0, /*ByVal=*/RAA ==
3427 CGCXXABI::RAA_DirectInMemory);
3428 }
3429
3430 // Empty records are always ignored on Darwin, but actually passed in C++ mode
3431 // elsewhere for GNU compatibility.
3432 if (isEmptyRecord(getContext(), Ty, true)) {
3433 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
3434 return ABIArgInfo::getIgnore();
3435
3436 ++AllocatedGPR;
3437 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3438 }
3439
3440 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
3441 const Type *Base = nullptr;
3442 uint64_t Members = 0;
3443 if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) {
3444 IsHA = true;
3445 if (!IsNamedArg && isDarwinPCS()) {
3446 // With the Darwin ABI, variadic arguments are always passed on the stack
3447 // and should not be expanded. Treat variadic HFAs as arrays of doubles.
3448 uint64_t Size = getContext().getTypeSize(Ty);
3449 llvm::Type *BaseTy = llvm::Type::getDoubleTy(getVMContext());
3450 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
3451 }
3452 AllocatedVFP += Members;
3453 return ABIArgInfo::getExpand();
3454 }
3455
3456 // Aggregates <= 16 bytes are passed directly in registers or on the stack.
3457 uint64_t Size = getContext().getTypeSize(Ty);
3458 if (Size <= 128) {
3459 unsigned Alignment = getContext().getTypeAlign(Ty);
3460 if (!isDarwinPCS() && Alignment > 64)
3461 AllocatedGPR = llvm::RoundUpToAlignment(AllocatedGPR, Alignment / 64);
3462
3463 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
3464 AllocatedGPR += Size / 64;
3465 IsSmallAggr = true;
3466 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
3467 // For aggregates with 16-byte alignment, we use i128.
3468 if (Alignment < 128 && Size == 128) {
3469 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
3470 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
3471 }
3472 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
3473 }
3474
3475 AllocatedGPR++;
3476 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3477 }
3478
classifyReturnType(QualType RetTy) const3479 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
3480 if (RetTy->isVoidType())
3481 return ABIArgInfo::getIgnore();
3482
3483 // Large vector types should be returned via memory.
3484 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
3485 return ABIArgInfo::getIndirect(0);
3486
3487 if (!isAggregateTypeForABI(RetTy)) {
3488 // Treat an enum type as its underlying type.
3489 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3490 RetTy = EnumTy->getDecl()->getIntegerType();
3491
3492 return (RetTy->isPromotableIntegerType() && isDarwinPCS()
3493 ? ABIArgInfo::getExtend()
3494 : ABIArgInfo::getDirect());
3495 }
3496
3497 if (isEmptyRecord(getContext(), RetTy, true))
3498 return ABIArgInfo::getIgnore();
3499
3500 const Type *Base = nullptr;
3501 if (isHomogeneousAggregate(RetTy, Base, getContext()))
3502 // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
3503 return ABIArgInfo::getDirect();
3504
3505 // Aggregates <= 16 bytes are returned directly in registers or on the stack.
3506 uint64_t Size = getContext().getTypeSize(RetTy);
3507 if (Size <= 128) {
3508 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
3509 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
3510 }
3511
3512 return ABIArgInfo::getIndirect(0);
3513 }
3514
3515 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
isIllegalVectorType(QualType Ty) const3516 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
3517 if (const VectorType *VT = Ty->getAs<VectorType>()) {
3518 // Check whether VT is legal.
3519 unsigned NumElements = VT->getNumElements();
3520 uint64_t Size = getContext().getTypeSize(VT);
3521 // NumElements should be power of 2 between 1 and 16.
3522 if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16)
3523 return true;
3524 return Size != 64 && (Size != 128 || NumElements == 1);
3525 }
3526 return false;
3527 }
3528
EmitAArch64VAArg(llvm::Value * VAListAddr,QualType Ty,int AllocatedGPR,int AllocatedVFP,bool IsIndirect,CodeGenFunction & CGF)3529 static llvm::Value *EmitAArch64VAArg(llvm::Value *VAListAddr, QualType Ty,
3530 int AllocatedGPR, int AllocatedVFP,
3531 bool IsIndirect, CodeGenFunction &CGF) {
3532 // The AArch64 va_list type and handling is specified in the Procedure Call
3533 // Standard, section B.4:
3534 //
3535 // struct {
3536 // void *__stack;
3537 // void *__gr_top;
3538 // void *__vr_top;
3539 // int __gr_offs;
3540 // int __vr_offs;
3541 // };
3542
3543 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
3544 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3545 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
3546 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3547 auto &Ctx = CGF.getContext();
3548
3549 llvm::Value *reg_offs_p = nullptr, *reg_offs = nullptr;
3550 int reg_top_index;
3551 int RegSize;
3552 if (AllocatedGPR) {
3553 assert(!AllocatedVFP && "Arguments never split between int & VFP regs");
3554 // 3 is the field number of __gr_offs
3555 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
3556 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
3557 reg_top_index = 1; // field number for __gr_top
3558 RegSize = 8 * AllocatedGPR;
3559 } else {
3560 assert(!AllocatedGPR && "Argument must go in VFP or int regs");
3561 // 4 is the field number of __vr_offs.
3562 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
3563 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
3564 reg_top_index = 2; // field number for __vr_top
3565 RegSize = 16 * AllocatedVFP;
3566 }
3567
3568 //=======================================
3569 // Find out where argument was passed
3570 //=======================================
3571
3572 // If reg_offs >= 0 we're already using the stack for this type of
3573 // argument. We don't want to keep updating reg_offs (in case it overflows,
3574 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
3575 // whatever they get).
3576 llvm::Value *UsingStack = nullptr;
3577 UsingStack = CGF.Builder.CreateICmpSGE(
3578 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
3579
3580 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
3581
3582 // Otherwise, at least some kind of argument could go in these registers, the
3583 // question is whether this particular type is too big.
3584 CGF.EmitBlock(MaybeRegBlock);
3585
3586 // Integer arguments may need to correct register alignment (for example a
3587 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
3588 // align __gr_offs to calculate the potential address.
3589 if (AllocatedGPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
3590 int Align = Ctx.getTypeAlign(Ty) / 8;
3591
3592 reg_offs = CGF.Builder.CreateAdd(
3593 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
3594 "align_regoffs");
3595 reg_offs = CGF.Builder.CreateAnd(
3596 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
3597 "aligned_regoffs");
3598 }
3599
3600 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
3601 llvm::Value *NewOffset = nullptr;
3602 NewOffset = CGF.Builder.CreateAdd(
3603 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
3604 CGF.Builder.CreateStore(NewOffset, reg_offs_p);
3605
3606 // Now we're in a position to decide whether this argument really was in
3607 // registers or not.
3608 llvm::Value *InRegs = nullptr;
3609 InRegs = CGF.Builder.CreateICmpSLE(
3610 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
3611
3612 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
3613
3614 //=======================================
3615 // Argument was in registers
3616 //=======================================
3617
3618 // Now we emit the code for if the argument was originally passed in
3619 // registers. First start the appropriate block:
3620 CGF.EmitBlock(InRegBlock);
3621
3622 llvm::Value *reg_top_p = nullptr, *reg_top = nullptr;
3623 reg_top_p =
3624 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
3625 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
3626 llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs);
3627 llvm::Value *RegAddr = nullptr;
3628 llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
3629
3630 if (IsIndirect) {
3631 // If it's been passed indirectly (actually a struct), whatever we find from
3632 // stored registers or on the stack will actually be a struct **.
3633 MemTy = llvm::PointerType::getUnqual(MemTy);
3634 }
3635
3636 const Type *Base = nullptr;
3637 uint64_t NumMembers;
3638 bool IsHFA = isHomogeneousAggregate(Ty, Base, Ctx, &NumMembers);
3639 if (IsHFA && NumMembers > 1) {
3640 // Homogeneous aggregates passed in registers will have their elements split
3641 // and stored 16-bytes apart regardless of size (they're notionally in qN,
3642 // qN+1, ...). We reload and store into a temporary local variable
3643 // contiguously.
3644 assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
3645 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
3646 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
3647 llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy);
3648 int Offset = 0;
3649
3650 if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128)
3651 Offset = 16 - Ctx.getTypeSize(Base) / 8;
3652 for (unsigned i = 0; i < NumMembers; ++i) {
3653 llvm::Value *BaseOffset =
3654 llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset);
3655 llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset);
3656 LoadAddr = CGF.Builder.CreateBitCast(
3657 LoadAddr, llvm::PointerType::getUnqual(BaseTy));
3658 llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i);
3659
3660 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
3661 CGF.Builder.CreateStore(Elem, StoreAddr);
3662 }
3663
3664 RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy);
3665 } else {
3666 // Otherwise the object is contiguous in memory
3667 unsigned BeAlign = reg_top_index == 2 ? 16 : 8;
3668 if (CGF.CGM.getDataLayout().isBigEndian() &&
3669 (IsHFA || !isAggregateTypeForABI(Ty)) &&
3670 Ctx.getTypeSize(Ty) < (BeAlign * 8)) {
3671 int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8;
3672 BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty);
3673
3674 BaseAddr = CGF.Builder.CreateAdd(
3675 BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
3676
3677 BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy);
3678 }
3679
3680 RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy);
3681 }
3682
3683 CGF.EmitBranch(ContBlock);
3684
3685 //=======================================
3686 // Argument was on the stack
3687 //=======================================
3688 CGF.EmitBlock(OnStackBlock);
3689
3690 llvm::Value *stack_p = nullptr, *OnStackAddr = nullptr;
3691 stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
3692 OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack");
3693
3694 // Again, stack arguments may need realigmnent. In this case both integer and
3695 // floating-point ones might be affected.
3696 if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
3697 int Align = Ctx.getTypeAlign(Ty) / 8;
3698
3699 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
3700
3701 OnStackAddr = CGF.Builder.CreateAdd(
3702 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
3703 "align_stack");
3704 OnStackAddr = CGF.Builder.CreateAnd(
3705 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
3706 "align_stack");
3707
3708 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
3709 }
3710
3711 uint64_t StackSize;
3712 if (IsIndirect)
3713 StackSize = 8;
3714 else
3715 StackSize = Ctx.getTypeSize(Ty) / 8;
3716
3717 // All stack slots are 8 bytes
3718 StackSize = llvm::RoundUpToAlignment(StackSize, 8);
3719
3720 llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize);
3721 llvm::Value *NewStack =
3722 CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack");
3723
3724 // Write the new value of __stack for the next call to va_arg
3725 CGF.Builder.CreateStore(NewStack, stack_p);
3726
3727 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
3728 Ctx.getTypeSize(Ty) < 64) {
3729 int Offset = 8 - Ctx.getTypeSize(Ty) / 8;
3730 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
3731
3732 OnStackAddr = CGF.Builder.CreateAdd(
3733 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
3734
3735 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
3736 }
3737
3738 OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy);
3739
3740 CGF.EmitBranch(ContBlock);
3741
3742 //=======================================
3743 // Tidy up
3744 //=======================================
3745 CGF.EmitBlock(ContBlock);
3746
3747 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr");
3748 ResAddr->addIncoming(RegAddr, InRegBlock);
3749 ResAddr->addIncoming(OnStackAddr, OnStackBlock);
3750
3751 if (IsIndirect)
3752 return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr");
3753
3754 return ResAddr;
3755 }
3756
EmitAAPCSVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const3757 llvm::Value *AArch64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty,
3758 CodeGenFunction &CGF) const {
3759
3760 unsigned AllocatedGPR = 0, AllocatedVFP = 0;
3761 bool IsHA = false, IsSmallAggr = false;
3762 ABIArgInfo AI = classifyArgumentType(Ty, AllocatedVFP, IsHA, AllocatedGPR,
3763 IsSmallAggr, false /*IsNamedArg*/);
3764
3765 return EmitAArch64VAArg(VAListAddr, Ty, AllocatedGPR, AllocatedVFP,
3766 AI.isIndirect(), CGF);
3767 }
3768
EmitDarwinVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const3769 llvm::Value *AArch64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
3770 CodeGenFunction &CGF) const {
3771 // We do not support va_arg for aggregates or illegal vector types.
3772 // Lower VAArg here for these cases and use the LLVM va_arg instruction for
3773 // other cases.
3774 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
3775 return nullptr;
3776
3777 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
3778 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
3779
3780 const Type *Base = nullptr;
3781 bool isHA = isHomogeneousAggregate(Ty, Base, getContext());
3782
3783 bool isIndirect = false;
3784 // Arguments bigger than 16 bytes which aren't homogeneous aggregates should
3785 // be passed indirectly.
3786 if (Size > 16 && !isHA) {
3787 isIndirect = true;
3788 Size = 8;
3789 Align = 8;
3790 }
3791
3792 llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
3793 llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
3794
3795 CGBuilderTy &Builder = CGF.Builder;
3796 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3797 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3798
3799 if (isEmptyRecord(getContext(), Ty, true)) {
3800 // These are ignored for parameter passing purposes.
3801 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3802 return Builder.CreateBitCast(Addr, PTy);
3803 }
3804
3805 const uint64_t MinABIAlign = 8;
3806 if (Align > MinABIAlign) {
3807 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
3808 Addr = Builder.CreateGEP(Addr, Offset);
3809 llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3810 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1));
3811 llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask);
3812 Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align");
3813 }
3814
3815 uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign);
3816 llvm::Value *NextAddr = Builder.CreateGEP(
3817 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
3818 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3819
3820 if (isIndirect)
3821 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
3822 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3823 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3824
3825 return AddrTyped;
3826 }
3827
3828 //===----------------------------------------------------------------------===//
3829 // ARM ABI Implementation
3830 //===----------------------------------------------------------------------===//
3831
3832 namespace {
3833
3834 class ARMABIInfo : public ABIInfo {
3835 public:
3836 enum ABIKind {
3837 APCS = 0,
3838 AAPCS = 1,
3839 AAPCS_VFP
3840 };
3841
3842 private:
3843 ABIKind Kind;
3844 mutable int VFPRegs[16];
3845 const unsigned NumVFPs;
3846 const unsigned NumGPRs;
3847 mutable unsigned AllocatedGPRs;
3848 mutable unsigned AllocatedVFPs;
3849
3850 public:
ARMABIInfo(CodeGenTypes & CGT,ABIKind _Kind)3851 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind),
3852 NumVFPs(16), NumGPRs(4) {
3853 setRuntimeCC();
3854 resetAllocatedRegs();
3855 }
3856
isEABI() const3857 bool isEABI() const {
3858 switch (getTarget().getTriple().getEnvironment()) {
3859 case llvm::Triple::Android:
3860 case llvm::Triple::EABI:
3861 case llvm::Triple::EABIHF:
3862 case llvm::Triple::GNUEABI:
3863 case llvm::Triple::GNUEABIHF:
3864 return true;
3865 default:
3866 return false;
3867 }
3868 }
3869
isEABIHF() const3870 bool isEABIHF() const {
3871 switch (getTarget().getTriple().getEnvironment()) {
3872 case llvm::Triple::EABIHF:
3873 case llvm::Triple::GNUEABIHF:
3874 return true;
3875 default:
3876 return false;
3877 }
3878 }
3879
getABIKind() const3880 ABIKind getABIKind() const { return Kind; }
3881
3882 private:
3883 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
3884 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
3885 bool &IsCPRC) const;
3886 bool isIllegalVectorType(QualType Ty) const;
3887
3888 void computeInfo(CGFunctionInfo &FI) const override;
3889
3890 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3891 CodeGenFunction &CGF) const override;
3892
3893 llvm::CallingConv::ID getLLVMDefaultCC() const;
3894 llvm::CallingConv::ID getABIDefaultCC() const;
3895 void setRuntimeCC();
3896
3897 void markAllocatedGPRs(unsigned Alignment, unsigned NumRequired) const;
3898 void markAllocatedVFPs(unsigned Alignment, unsigned NumRequired) const;
3899 void resetAllocatedRegs(void) const;
3900 };
3901
3902 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
3903 public:
ARMTargetCodeGenInfo(CodeGenTypes & CGT,ARMABIInfo::ABIKind K)3904 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
3905 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
3906
getABIInfo() const3907 const ARMABIInfo &getABIInfo() const {
3908 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
3909 }
3910
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const3911 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3912 return 13;
3913 }
3914
getARCRetainAutoreleasedReturnValueMarker() const3915 StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
3916 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
3917 }
3918
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const3919 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3920 llvm::Value *Address) const override {
3921 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
3922
3923 // 0-15 are the 16 integer registers.
3924 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
3925 return false;
3926 }
3927
getSizeOfUnwindException() const3928 unsigned getSizeOfUnwindException() const override {
3929 if (getABIInfo().isEABI()) return 88;
3930 return TargetCodeGenInfo::getSizeOfUnwindException();
3931 }
3932
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const3933 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3934 CodeGen::CodeGenModule &CGM) const override {
3935 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3936 if (!FD)
3937 return;
3938
3939 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
3940 if (!Attr)
3941 return;
3942
3943 const char *Kind;
3944 switch (Attr->getInterrupt()) {
3945 case ARMInterruptAttr::Generic: Kind = ""; break;
3946 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break;
3947 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break;
3948 case ARMInterruptAttr::SWI: Kind = "SWI"; break;
3949 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break;
3950 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break;
3951 }
3952
3953 llvm::Function *Fn = cast<llvm::Function>(GV);
3954
3955 Fn->addFnAttr("interrupt", Kind);
3956
3957 if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS)
3958 return;
3959
3960 // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
3961 // however this is not necessarily true on taking any interrupt. Instruct
3962 // the backend to perform a realignment as part of the function prologue.
3963 llvm::AttrBuilder B;
3964 B.addStackAlignmentAttr(8);
3965 Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
3966 llvm::AttributeSet::get(CGM.getLLVMContext(),
3967 llvm::AttributeSet::FunctionIndex,
3968 B));
3969 }
3970
3971 };
3972
3973 }
3974
computeInfo(CGFunctionInfo & FI) const3975 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
3976 // To correctly handle Homogeneous Aggregate, we need to keep track of the
3977 // VFP registers allocated so far.
3978 // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
3979 // VFP registers of the appropriate type unallocated then the argument is
3980 // allocated to the lowest-numbered sequence of such registers.
3981 // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
3982 // unallocated are marked as unavailable.
3983 resetAllocatedRegs();
3984
3985 if (getCXXABI().classifyReturnType(FI)) {
3986 if (FI.getReturnInfo().isIndirect())
3987 markAllocatedGPRs(1, 1);
3988 } else {
3989 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic());
3990 }
3991 for (auto &I : FI.arguments()) {
3992 unsigned PreAllocationVFPs = AllocatedVFPs;
3993 unsigned PreAllocationGPRs = AllocatedGPRs;
3994 bool IsCPRC = false;
3995 // 6.1.2.3 There is one VFP co-processor register class using registers
3996 // s0-s15 (d0-d7) for passing arguments.
3997 I.info = classifyArgumentType(I.type, FI.isVariadic(), IsCPRC);
3998
3999 // If we have allocated some arguments onto the stack (due to running
4000 // out of VFP registers), we cannot split an argument between GPRs and
4001 // the stack. If this situation occurs, we add padding to prevent the
4002 // GPRs from being used. In this situation, the current argument could
4003 // only be allocated by rule C.8, so rule C.6 would mark these GPRs as
4004 // unusable anyway.
4005 const bool StackUsed = PreAllocationGPRs > NumGPRs || PreAllocationVFPs > NumVFPs;
4006 if (!IsCPRC && PreAllocationGPRs < NumGPRs && AllocatedGPRs > NumGPRs && StackUsed) {
4007 llvm::Type *PaddingTy = llvm::ArrayType::get(
4008 llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreAllocationGPRs);
4009 if (I.info.canHaveCoerceToType()) {
4010 I.info = ABIArgInfo::getDirect(I.info.getCoerceToType() /* type */, 0 /* offset */,
4011 PaddingTy);
4012 } else {
4013 I.info = ABIArgInfo::getDirect(nullptr /* type */, 0 /* offset */,
4014 PaddingTy);
4015 }
4016 }
4017 }
4018
4019 // Always honor user-specified calling convention.
4020 if (FI.getCallingConvention() != llvm::CallingConv::C)
4021 return;
4022
4023 llvm::CallingConv::ID cc = getRuntimeCC();
4024 if (cc != llvm::CallingConv::C)
4025 FI.setEffectiveCallingConvention(cc);
4026 }
4027
4028 /// Return the default calling convention that LLVM will use.
getLLVMDefaultCC() const4029 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
4030 // The default calling convention that LLVM will infer.
4031 if (isEABIHF())
4032 return llvm::CallingConv::ARM_AAPCS_VFP;
4033 else if (isEABI())
4034 return llvm::CallingConv::ARM_AAPCS;
4035 else
4036 return llvm::CallingConv::ARM_APCS;
4037 }
4038
4039 /// Return the calling convention that our ABI would like us to use
4040 /// as the C calling convention.
getABIDefaultCC() const4041 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
4042 switch (getABIKind()) {
4043 case APCS: return llvm::CallingConv::ARM_APCS;
4044 case AAPCS: return llvm::CallingConv::ARM_AAPCS;
4045 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
4046 }
4047 llvm_unreachable("bad ABI kind");
4048 }
4049
setRuntimeCC()4050 void ARMABIInfo::setRuntimeCC() {
4051 assert(getRuntimeCC() == llvm::CallingConv::C);
4052
4053 // Don't muddy up the IR with a ton of explicit annotations if
4054 // they'd just match what LLVM will infer from the triple.
4055 llvm::CallingConv::ID abiCC = getABIDefaultCC();
4056 if (abiCC != getLLVMDefaultCC())
4057 RuntimeCC = abiCC;
4058 }
4059
4060 /// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
4061 /// aggregate. If HAMembers is non-null, the number of base elements
4062 /// contained in the type is returned through it; this is used for the
4063 /// recursive calls that check aggregate component types.
isHomogeneousAggregate(QualType Ty,const Type * & Base,ASTContext & Context,uint64_t * HAMembers)4064 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
4065 ASTContext &Context, uint64_t *HAMembers) {
4066 uint64_t Members = 0;
4067 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
4068 if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
4069 return false;
4070 Members *= AT->getSize().getZExtValue();
4071 } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
4072 const RecordDecl *RD = RT->getDecl();
4073 if (RD->hasFlexibleArrayMember())
4074 return false;
4075
4076 Members = 0;
4077 for (const auto *FD : RD->fields()) {
4078 uint64_t FldMembers;
4079 if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
4080 return false;
4081
4082 Members = (RD->isUnion() ?
4083 std::max(Members, FldMembers) : Members + FldMembers);
4084 }
4085 } else {
4086 Members = 1;
4087 if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
4088 Members = 2;
4089 Ty = CT->getElementType();
4090 }
4091
4092 // Homogeneous aggregates for AAPCS-VFP must have base types of float,
4093 // double, or 64-bit or 128-bit vectors.
4094 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4095 if (BT->getKind() != BuiltinType::Float &&
4096 BT->getKind() != BuiltinType::Double &&
4097 BT->getKind() != BuiltinType::LongDouble)
4098 return false;
4099 } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4100 unsigned VecSize = Context.getTypeSize(VT);
4101 if (VecSize != 64 && VecSize != 128)
4102 return false;
4103 } else {
4104 return false;
4105 }
4106
4107 // The base type must be the same for all members. Vector types of the
4108 // same total size are treated as being equivalent here.
4109 const Type *TyPtr = Ty.getTypePtr();
4110 if (!Base)
4111 Base = TyPtr;
4112
4113 if (Base != TyPtr) {
4114 // Homogeneous aggregates are defined as containing members with the
4115 // same machine type. There are two cases in which two members have
4116 // different TypePtrs but the same machine type:
4117
4118 // 1) Vectors of the same length, regardless of the type and number
4119 // of their members.
4120 const bool SameLengthVectors = Base->isVectorType() && TyPtr->isVectorType()
4121 && (Context.getTypeSize(Base) == Context.getTypeSize(TyPtr));
4122
4123 // 2) In the 32-bit AAPCS, `double' and `long double' have the same
4124 // machine type. This is not the case for the 64-bit AAPCS.
4125 const bool SameSizeDoubles =
4126 ( ( Base->isSpecificBuiltinType(BuiltinType::Double)
4127 && TyPtr->isSpecificBuiltinType(BuiltinType::LongDouble))
4128 || ( Base->isSpecificBuiltinType(BuiltinType::LongDouble)
4129 && TyPtr->isSpecificBuiltinType(BuiltinType::Double)))
4130 && (Context.getTypeSize(Base) == Context.getTypeSize(TyPtr));
4131
4132 if (!SameLengthVectors && !SameSizeDoubles)
4133 return false;
4134 }
4135 }
4136
4137 // Homogeneous Aggregates can have at most 4 members of the base type.
4138 if (HAMembers)
4139 *HAMembers = Members;
4140
4141 return (Members > 0 && Members <= 4);
4142 }
4143
4144 /// markAllocatedVFPs - update VFPRegs according to the alignment and
4145 /// number of VFP registers (unit is S register) requested.
markAllocatedVFPs(unsigned Alignment,unsigned NumRequired) const4146 void ARMABIInfo::markAllocatedVFPs(unsigned Alignment,
4147 unsigned NumRequired) const {
4148 // Early Exit.
4149 if (AllocatedVFPs >= 16) {
4150 // We use AllocatedVFP > 16 to signal that some CPRCs were allocated on
4151 // the stack.
4152 AllocatedVFPs = 17;
4153 return;
4154 }
4155 // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
4156 // VFP registers of the appropriate type unallocated then the argument is
4157 // allocated to the lowest-numbered sequence of such registers.
4158 for (unsigned I = 0; I < 16; I += Alignment) {
4159 bool FoundSlot = true;
4160 for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
4161 if (J >= 16 || VFPRegs[J]) {
4162 FoundSlot = false;
4163 break;
4164 }
4165 if (FoundSlot) {
4166 for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
4167 VFPRegs[J] = 1;
4168 AllocatedVFPs += NumRequired;
4169 return;
4170 }
4171 }
4172 // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
4173 // unallocated are marked as unavailable.
4174 for (unsigned I = 0; I < 16; I++)
4175 VFPRegs[I] = 1;
4176 AllocatedVFPs = 17; // We do not have enough VFP registers.
4177 }
4178
4179 /// Update AllocatedGPRs to record the number of general purpose registers
4180 /// which have been allocated. It is valid for AllocatedGPRs to go above 4,
4181 /// this represents arguments being stored on the stack.
markAllocatedGPRs(unsigned Alignment,unsigned NumRequired) const4182 void ARMABIInfo::markAllocatedGPRs(unsigned Alignment,
4183 unsigned NumRequired) const {
4184 assert((Alignment == 1 || Alignment == 2) && "Alignment must be 4 or 8 bytes");
4185
4186 if (Alignment == 2 && AllocatedGPRs & 0x1)
4187 AllocatedGPRs += 1;
4188
4189 AllocatedGPRs += NumRequired;
4190 }
4191
resetAllocatedRegs(void) const4192 void ARMABIInfo::resetAllocatedRegs(void) const {
4193 AllocatedGPRs = 0;
4194 AllocatedVFPs = 0;
4195 for (unsigned i = 0; i < NumVFPs; ++i)
4196 VFPRegs[i] = 0;
4197 }
4198
classifyArgumentType(QualType Ty,bool isVariadic,bool & IsCPRC) const4199 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
4200 bool &IsCPRC) const {
4201 // We update number of allocated VFPs according to
4202 // 6.1.2.1 The following argument types are VFP CPRCs:
4203 // A single-precision floating-point type (including promoted
4204 // half-precision types); A double-precision floating-point type;
4205 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
4206 // with a Base Type of a single- or double-precision floating-point type,
4207 // 64-bit containerized vectors or 128-bit containerized vectors with one
4208 // to four Elements.
4209
4210 // Handle illegal vector types here.
4211 if (isIllegalVectorType(Ty)) {
4212 uint64_t Size = getContext().getTypeSize(Ty);
4213 if (Size <= 32) {
4214 llvm::Type *ResType =
4215 llvm::Type::getInt32Ty(getVMContext());
4216 markAllocatedGPRs(1, 1);
4217 return ABIArgInfo::getDirect(ResType);
4218 }
4219 if (Size == 64) {
4220 llvm::Type *ResType = llvm::VectorType::get(
4221 llvm::Type::getInt32Ty(getVMContext()), 2);
4222 if (getABIKind() == ARMABIInfo::AAPCS || isVariadic){
4223 markAllocatedGPRs(2, 2);
4224 } else {
4225 markAllocatedVFPs(2, 2);
4226 IsCPRC = true;
4227 }
4228 return ABIArgInfo::getDirect(ResType);
4229 }
4230 if (Size == 128) {
4231 llvm::Type *ResType = llvm::VectorType::get(
4232 llvm::Type::getInt32Ty(getVMContext()), 4);
4233 if (getABIKind() == ARMABIInfo::AAPCS || isVariadic) {
4234 markAllocatedGPRs(2, 4);
4235 } else {
4236 markAllocatedVFPs(4, 4);
4237 IsCPRC = true;
4238 }
4239 return ABIArgInfo::getDirect(ResType);
4240 }
4241 markAllocatedGPRs(1, 1);
4242 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4243 }
4244 // Update VFPRegs for legal vector types.
4245 if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) {
4246 if (const VectorType *VT = Ty->getAs<VectorType>()) {
4247 uint64_t Size = getContext().getTypeSize(VT);
4248 // Size of a legal vector should be power of 2 and above 64.
4249 markAllocatedVFPs(Size >= 128 ? 4 : 2, Size / 32);
4250 IsCPRC = true;
4251 }
4252 }
4253 // Update VFPRegs for floating point types.
4254 if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) {
4255 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4256 if (BT->getKind() == BuiltinType::Half ||
4257 BT->getKind() == BuiltinType::Float) {
4258 markAllocatedVFPs(1, 1);
4259 IsCPRC = true;
4260 }
4261 if (BT->getKind() == BuiltinType::Double ||
4262 BT->getKind() == BuiltinType::LongDouble) {
4263 markAllocatedVFPs(2, 2);
4264 IsCPRC = true;
4265 }
4266 }
4267 }
4268
4269 if (!isAggregateTypeForABI(Ty)) {
4270 // Treat an enum type as its underlying type.
4271 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
4272 Ty = EnumTy->getDecl()->getIntegerType();
4273 }
4274
4275 unsigned Size = getContext().getTypeSize(Ty);
4276 if (!IsCPRC)
4277 markAllocatedGPRs(Size > 32 ? 2 : 1, (Size + 31) / 32);
4278 return (Ty->isPromotableIntegerType() ?
4279 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4280 }
4281
4282 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4283 markAllocatedGPRs(1, 1);
4284 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4285 }
4286
4287 // Ignore empty records.
4288 if (isEmptyRecord(getContext(), Ty, true))
4289 return ABIArgInfo::getIgnore();
4290
4291 if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) {
4292 // Homogeneous Aggregates need to be expanded when we can fit the aggregate
4293 // into VFP registers.
4294 const Type *Base = nullptr;
4295 uint64_t Members = 0;
4296 if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) {
4297 assert(Base && "Base class should be set for homogeneous aggregate");
4298 // Base can be a floating-point or a vector.
4299 if (Base->isVectorType()) {
4300 // ElementSize is in number of floats.
4301 unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4;
4302 markAllocatedVFPs(ElementSize,
4303 Members * ElementSize);
4304 } else if (Base->isSpecificBuiltinType(BuiltinType::Float))
4305 markAllocatedVFPs(1, Members);
4306 else {
4307 assert(Base->isSpecificBuiltinType(BuiltinType::Double) ||
4308 Base->isSpecificBuiltinType(BuiltinType::LongDouble));
4309 markAllocatedVFPs(2, Members * 2);
4310 }
4311 IsCPRC = true;
4312 return ABIArgInfo::getDirect();
4313 }
4314 }
4315
4316 // Support byval for ARM.
4317 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
4318 // most 8-byte. We realign the indirect argument if type alignment is bigger
4319 // than ABI alignment.
4320 uint64_t ABIAlign = 4;
4321 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
4322 if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
4323 getABIKind() == ARMABIInfo::AAPCS)
4324 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
4325 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
4326 // Update Allocated GPRs. Since this is only used when the size of the
4327 // argument is greater than 64 bytes, this will always use up any available
4328 // registers (of which there are 4). We also don't care about getting the
4329 // alignment right, because general-purpose registers cannot be back-filled.
4330 markAllocatedGPRs(1, 4);
4331 return ABIArgInfo::getIndirect(TyAlign, /*ByVal=*/true,
4332 /*Realign=*/TyAlign > ABIAlign);
4333 }
4334
4335 // Otherwise, pass by coercing to a structure of the appropriate size.
4336 llvm::Type* ElemTy;
4337 unsigned SizeRegs;
4338 // FIXME: Try to match the types of the arguments more accurately where
4339 // we can.
4340 if (getContext().getTypeAlign(Ty) <= 32) {
4341 ElemTy = llvm::Type::getInt32Ty(getVMContext());
4342 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
4343 markAllocatedGPRs(1, SizeRegs);
4344 } else {
4345 ElemTy = llvm::Type::getInt64Ty(getVMContext());
4346 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
4347 markAllocatedGPRs(2, SizeRegs * 2);
4348 }
4349
4350 llvm::Type *STy =
4351 llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
4352 return ABIArgInfo::getDirect(STy);
4353 }
4354
isIntegerLikeType(QualType Ty,ASTContext & Context,llvm::LLVMContext & VMContext)4355 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
4356 llvm::LLVMContext &VMContext) {
4357 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
4358 // is called integer-like if its size is less than or equal to one word, and
4359 // the offset of each of its addressable sub-fields is zero.
4360
4361 uint64_t Size = Context.getTypeSize(Ty);
4362
4363 // Check that the type fits in a word.
4364 if (Size > 32)
4365 return false;
4366
4367 // FIXME: Handle vector types!
4368 if (Ty->isVectorType())
4369 return false;
4370
4371 // Float types are never treated as "integer like".
4372 if (Ty->isRealFloatingType())
4373 return false;
4374
4375 // If this is a builtin or pointer type then it is ok.
4376 if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
4377 return true;
4378
4379 // Small complex integer types are "integer like".
4380 if (const ComplexType *CT = Ty->getAs<ComplexType>())
4381 return isIntegerLikeType(CT->getElementType(), Context, VMContext);
4382
4383 // Single element and zero sized arrays should be allowed, by the definition
4384 // above, but they are not.
4385
4386 // Otherwise, it must be a record type.
4387 const RecordType *RT = Ty->getAs<RecordType>();
4388 if (!RT) return false;
4389
4390 // Ignore records with flexible arrays.
4391 const RecordDecl *RD = RT->getDecl();
4392 if (RD->hasFlexibleArrayMember())
4393 return false;
4394
4395 // Check that all sub-fields are at offset 0, and are themselves "integer
4396 // like".
4397 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
4398
4399 bool HadField = false;
4400 unsigned idx = 0;
4401 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
4402 i != e; ++i, ++idx) {
4403 const FieldDecl *FD = *i;
4404
4405 // Bit-fields are not addressable, we only need to verify they are "integer
4406 // like". We still have to disallow a subsequent non-bitfield, for example:
4407 // struct { int : 0; int x }
4408 // is non-integer like according to gcc.
4409 if (FD->isBitField()) {
4410 if (!RD->isUnion())
4411 HadField = true;
4412
4413 if (!isIntegerLikeType(FD->getType(), Context, VMContext))
4414 return false;
4415
4416 continue;
4417 }
4418
4419 // Check if this field is at offset 0.
4420 if (Layout.getFieldOffset(idx) != 0)
4421 return false;
4422
4423 if (!isIntegerLikeType(FD->getType(), Context, VMContext))
4424 return false;
4425
4426 // Only allow at most one field in a structure. This doesn't match the
4427 // wording above, but follows gcc in situations with a field following an
4428 // empty structure.
4429 if (!RD->isUnion()) {
4430 if (HadField)
4431 return false;
4432
4433 HadField = true;
4434 }
4435 }
4436
4437 return true;
4438 }
4439
classifyReturnType(QualType RetTy,bool isVariadic) const4440 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
4441 bool isVariadic) const {
4442 if (RetTy->isVoidType())
4443 return ABIArgInfo::getIgnore();
4444
4445 // Large vector types should be returned via memory.
4446 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
4447 markAllocatedGPRs(1, 1);
4448 return ABIArgInfo::getIndirect(0);
4449 }
4450
4451 if (!isAggregateTypeForABI(RetTy)) {
4452 // Treat an enum type as its underlying type.
4453 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4454 RetTy = EnumTy->getDecl()->getIntegerType();
4455
4456 return (RetTy->isPromotableIntegerType() ?
4457 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4458 }
4459
4460 // Are we following APCS?
4461 if (getABIKind() == APCS) {
4462 if (isEmptyRecord(getContext(), RetTy, false))
4463 return ABIArgInfo::getIgnore();
4464
4465 // Complex types are all returned as packed integers.
4466 //
4467 // FIXME: Consider using 2 x vector types if the back end handles them
4468 // correctly.
4469 if (RetTy->isAnyComplexType())
4470 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
4471 getContext().getTypeSize(RetTy)));
4472
4473 // Integer like structures are returned in r0.
4474 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
4475 // Return in the smallest viable integer type.
4476 uint64_t Size = getContext().getTypeSize(RetTy);
4477 if (Size <= 8)
4478 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4479 if (Size <= 16)
4480 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4481 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4482 }
4483
4484 // Otherwise return in memory.
4485 markAllocatedGPRs(1, 1);
4486 return ABIArgInfo::getIndirect(0);
4487 }
4488
4489 // Otherwise this is an AAPCS variant.
4490
4491 if (isEmptyRecord(getContext(), RetTy, true))
4492 return ABIArgInfo::getIgnore();
4493
4494 // Check for homogeneous aggregates with AAPCS-VFP.
4495 if (getABIKind() == AAPCS_VFP && !isVariadic) {
4496 const Type *Base = nullptr;
4497 if (isHomogeneousAggregate(RetTy, Base, getContext())) {
4498 assert(Base && "Base class should be set for homogeneous aggregate");
4499 // Homogeneous Aggregates are returned directly.
4500 return ABIArgInfo::getDirect();
4501 }
4502 }
4503
4504 // Aggregates <= 4 bytes are returned in r0; other aggregates
4505 // are returned indirectly.
4506 uint64_t Size = getContext().getTypeSize(RetTy);
4507 if (Size <= 32) {
4508 if (getDataLayout().isBigEndian())
4509 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
4510 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4511
4512 // Return in the smallest viable integer type.
4513 if (Size <= 8)
4514 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4515 if (Size <= 16)
4516 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4517 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4518 }
4519
4520 markAllocatedGPRs(1, 1);
4521 return ABIArgInfo::getIndirect(0);
4522 }
4523
4524 /// isIllegalVector - check whether Ty is an illegal vector type.
isIllegalVectorType(QualType Ty) const4525 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
4526 if (const VectorType *VT = Ty->getAs<VectorType>()) {
4527 // Check whether VT is legal.
4528 unsigned NumElements = VT->getNumElements();
4529 // NumElements should be power of 2.
4530 if (((NumElements & (NumElements - 1)) != 0) && NumElements != 3)
4531 return true;
4532 }
4533 return false;
4534 }
4535
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const4536 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4537 CodeGenFunction &CGF) const {
4538 llvm::Type *BP = CGF.Int8PtrTy;
4539 llvm::Type *BPP = CGF.Int8PtrPtrTy;
4540
4541 CGBuilderTy &Builder = CGF.Builder;
4542 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
4543 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4544
4545 if (isEmptyRecord(getContext(), Ty, true)) {
4546 // These are ignored for parameter passing purposes.
4547 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4548 return Builder.CreateBitCast(Addr, PTy);
4549 }
4550
4551 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
4552 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
4553 bool IsIndirect = false;
4554
4555 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
4556 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
4557 if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
4558 getABIKind() == ARMABIInfo::AAPCS)
4559 TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
4560 else
4561 TyAlign = 4;
4562 // Use indirect if size of the illegal vector is bigger than 32 bytes.
4563 if (isIllegalVectorType(Ty) && Size > 32) {
4564 IsIndirect = true;
4565 Size = 4;
4566 TyAlign = 4;
4567 }
4568
4569 // Handle address alignment for ABI alignment > 4 bytes.
4570 if (TyAlign > 4) {
4571 assert((TyAlign & (TyAlign - 1)) == 0 &&
4572 "Alignment is not power of 2!");
4573 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
4574 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
4575 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
4576 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
4577 }
4578
4579 uint64_t Offset =
4580 llvm::RoundUpToAlignment(Size, 4);
4581 llvm::Value *NextAddr =
4582 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
4583 "ap.next");
4584 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4585
4586 if (IsIndirect)
4587 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
4588 else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
4589 // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
4590 // may not be correctly aligned for the vector type. We create an aligned
4591 // temporary space and copy the content over from ap.cur to the temporary
4592 // space. This is necessary if the natural alignment of the type is greater
4593 // than the ABI alignment.
4594 llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
4595 CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
4596 llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
4597 "var.align");
4598 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
4599 llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
4600 Builder.CreateMemCpy(Dst, Src,
4601 llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
4602 TyAlign, false);
4603 Addr = AlignedTemp; //The content is in aligned location.
4604 }
4605 llvm::Type *PTy =
4606 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4607 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
4608
4609 return AddrTyped;
4610 }
4611
4612 namespace {
4613
4614 class NaClARMABIInfo : public ABIInfo {
4615 public:
NaClARMABIInfo(CodeGen::CodeGenTypes & CGT,ARMABIInfo::ABIKind Kind)4616 NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
4617 : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {}
4618 void computeInfo(CGFunctionInfo &FI) const override;
4619 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4620 CodeGenFunction &CGF) const override;
4621 private:
4622 PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv.
4623 ARMABIInfo NInfo; // Used for everything else.
4624 };
4625
4626 class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo {
4627 public:
NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,ARMABIInfo::ABIKind Kind)4628 NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
4629 : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {}
4630 };
4631
4632 }
4633
computeInfo(CGFunctionInfo & FI) const4634 void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
4635 if (FI.getASTCallingConvention() == CC_PnaclCall)
4636 PInfo.computeInfo(FI);
4637 else
4638 static_cast<const ABIInfo&>(NInfo).computeInfo(FI);
4639 }
4640
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const4641 llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4642 CodeGenFunction &CGF) const {
4643 // Always use the native convention; calling pnacl-style varargs functions
4644 // is unsupported.
4645 return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF);
4646 }
4647
4648 //===----------------------------------------------------------------------===//
4649 // NVPTX ABI Implementation
4650 //===----------------------------------------------------------------------===//
4651
4652 namespace {
4653
4654 class NVPTXABIInfo : public ABIInfo {
4655 public:
NVPTXABIInfo(CodeGenTypes & CGT)4656 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4657
4658 ABIArgInfo classifyReturnType(QualType RetTy) const;
4659 ABIArgInfo classifyArgumentType(QualType Ty) const;
4660
4661 void computeInfo(CGFunctionInfo &FI) const override;
4662 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4663 CodeGenFunction &CFG) const override;
4664 };
4665
4666 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
4667 public:
NVPTXTargetCodeGenInfo(CodeGenTypes & CGT)4668 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
4669 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
4670
4671 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4672 CodeGen::CodeGenModule &M) const override;
4673 private:
4674 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
4675 // resulting MDNode to the nvvm.annotations MDNode.
4676 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
4677 };
4678
classifyReturnType(QualType RetTy) const4679 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
4680 if (RetTy->isVoidType())
4681 return ABIArgInfo::getIgnore();
4682
4683 // note: this is different from default ABI
4684 if (!RetTy->isScalarType())
4685 return ABIArgInfo::getDirect();
4686
4687 // Treat an enum type as its underlying type.
4688 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4689 RetTy = EnumTy->getDecl()->getIntegerType();
4690
4691 return (RetTy->isPromotableIntegerType() ?
4692 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4693 }
4694
classifyArgumentType(QualType Ty) const4695 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
4696 // Treat an enum type as its underlying type.
4697 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4698 Ty = EnumTy->getDecl()->getIntegerType();
4699
4700 return (Ty->isPromotableIntegerType() ?
4701 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4702 }
4703
computeInfo(CGFunctionInfo & FI) const4704 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
4705 if (!getCXXABI().classifyReturnType(FI))
4706 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4707 for (auto &I : FI.arguments())
4708 I.info = classifyArgumentType(I.type);
4709
4710 // Always honor user-specified calling convention.
4711 if (FI.getCallingConvention() != llvm::CallingConv::C)
4712 return;
4713
4714 FI.setEffectiveCallingConvention(getRuntimeCC());
4715 }
4716
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CFG) const4717 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4718 CodeGenFunction &CFG) const {
4719 llvm_unreachable("NVPTX does not support varargs");
4720 }
4721
4722 void NVPTXTargetCodeGenInfo::
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const4723 SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4724 CodeGen::CodeGenModule &M) const{
4725 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4726 if (!FD) return;
4727
4728 llvm::Function *F = cast<llvm::Function>(GV);
4729
4730 // Perform special handling in OpenCL mode
4731 if (M.getLangOpts().OpenCL) {
4732 // Use OpenCL function attributes to check for kernel functions
4733 // By default, all functions are device functions
4734 if (FD->hasAttr<OpenCLKernelAttr>()) {
4735 // OpenCL __kernel functions get kernel metadata
4736 // Create !{<func-ref>, metadata !"kernel", i32 1} node
4737 addNVVMMetadata(F, "kernel", 1);
4738 // And kernel functions are not subject to inlining
4739 F->addFnAttr(llvm::Attribute::NoInline);
4740 }
4741 }
4742
4743 // Perform special handling in CUDA mode.
4744 if (M.getLangOpts().CUDA) {
4745 // CUDA __global__ functions get a kernel metadata entry. Since
4746 // __global__ functions cannot be called from the device, we do not
4747 // need to set the noinline attribute.
4748 if (FD->hasAttr<CUDAGlobalAttr>()) {
4749 // Create !{<func-ref>, metadata !"kernel", i32 1} node
4750 addNVVMMetadata(F, "kernel", 1);
4751 }
4752 if (FD->hasAttr<CUDALaunchBoundsAttr>()) {
4753 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
4754 addNVVMMetadata(F, "maxntidx",
4755 FD->getAttr<CUDALaunchBoundsAttr>()->getMaxThreads());
4756 // min blocks is a default argument for CUDALaunchBoundsAttr, so getting a
4757 // zero value from getMinBlocks either means it was not specified in
4758 // __launch_bounds__ or the user specified a 0 value. In both cases, we
4759 // don't have to add a PTX directive.
4760 int MinCTASM = FD->getAttr<CUDALaunchBoundsAttr>()->getMinBlocks();
4761 if (MinCTASM > 0) {
4762 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
4763 addNVVMMetadata(F, "minctasm", MinCTASM);
4764 }
4765 }
4766 }
4767 }
4768
addNVVMMetadata(llvm::Function * F,StringRef Name,int Operand)4769 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
4770 int Operand) {
4771 llvm::Module *M = F->getParent();
4772 llvm::LLVMContext &Ctx = M->getContext();
4773
4774 // Get "nvvm.annotations" metadata node
4775 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
4776
4777 llvm::Value *MDVals[] = {
4778 F, llvm::MDString::get(Ctx, Name),
4779 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand)};
4780 // Append metadata to nvvm.annotations
4781 MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
4782 }
4783 }
4784
4785 //===----------------------------------------------------------------------===//
4786 // SystemZ ABI Implementation
4787 //===----------------------------------------------------------------------===//
4788
4789 namespace {
4790
4791 class SystemZABIInfo : public ABIInfo {
4792 public:
SystemZABIInfo(CodeGenTypes & CGT)4793 SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4794
4795 bool isPromotableIntegerType(QualType Ty) const;
4796 bool isCompoundType(QualType Ty) const;
4797 bool isFPArgumentType(QualType Ty) const;
4798
4799 ABIArgInfo classifyReturnType(QualType RetTy) const;
4800 ABIArgInfo classifyArgumentType(QualType ArgTy) const;
4801
computeInfo(CGFunctionInfo & FI) const4802 void computeInfo(CGFunctionInfo &FI) const override {
4803 if (!getCXXABI().classifyReturnType(FI))
4804 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4805 for (auto &I : FI.arguments())
4806 I.info = classifyArgumentType(I.type);
4807 }
4808
4809 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4810 CodeGenFunction &CGF) const override;
4811 };
4812
4813 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
4814 public:
SystemZTargetCodeGenInfo(CodeGenTypes & CGT)4815 SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
4816 : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
4817 };
4818
4819 }
4820
isPromotableIntegerType(QualType Ty) const4821 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
4822 // Treat an enum type as its underlying type.
4823 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4824 Ty = EnumTy->getDecl()->getIntegerType();
4825
4826 // Promotable integer types are required to be promoted by the ABI.
4827 if (Ty->isPromotableIntegerType())
4828 return true;
4829
4830 // 32-bit values must also be promoted.
4831 if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4832 switch (BT->getKind()) {
4833 case BuiltinType::Int:
4834 case BuiltinType::UInt:
4835 return true;
4836 default:
4837 return false;
4838 }
4839 return false;
4840 }
4841
isCompoundType(QualType Ty) const4842 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
4843 return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty);
4844 }
4845
isFPArgumentType(QualType Ty) const4846 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
4847 if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4848 switch (BT->getKind()) {
4849 case BuiltinType::Float:
4850 case BuiltinType::Double:
4851 return true;
4852 default:
4853 return false;
4854 }
4855
4856 if (const RecordType *RT = Ty->getAsStructureType()) {
4857 const RecordDecl *RD = RT->getDecl();
4858 bool Found = false;
4859
4860 // If this is a C++ record, check the bases first.
4861 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
4862 for (const auto &I : CXXRD->bases()) {
4863 QualType Base = I.getType();
4864
4865 // Empty bases don't affect things either way.
4866 if (isEmptyRecord(getContext(), Base, true))
4867 continue;
4868
4869 if (Found)
4870 return false;
4871 Found = isFPArgumentType(Base);
4872 if (!Found)
4873 return false;
4874 }
4875
4876 // Check the fields.
4877 for (const auto *FD : RD->fields()) {
4878 // Empty bitfields don't affect things either way.
4879 // Unlike isSingleElementStruct(), empty structure and array fields
4880 // do count. So do anonymous bitfields that aren't zero-sized.
4881 if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
4882 return true;
4883
4884 // Unlike isSingleElementStruct(), arrays do not count.
4885 // Nested isFPArgumentType structures still do though.
4886 if (Found)
4887 return false;
4888 Found = isFPArgumentType(FD->getType());
4889 if (!Found)
4890 return false;
4891 }
4892
4893 // Unlike isSingleElementStruct(), trailing padding is allowed.
4894 // An 8-byte aligned struct s { float f; } is passed as a double.
4895 return Found;
4896 }
4897
4898 return false;
4899 }
4900
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const4901 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4902 CodeGenFunction &CGF) const {
4903 // Assume that va_list type is correct; should be pointer to LLVM type:
4904 // struct {
4905 // i64 __gpr;
4906 // i64 __fpr;
4907 // i8 *__overflow_arg_area;
4908 // i8 *__reg_save_area;
4909 // };
4910
4911 // Every argument occupies 8 bytes and is passed by preference in either
4912 // GPRs or FPRs.
4913 Ty = CGF.getContext().getCanonicalType(Ty);
4914 ABIArgInfo AI = classifyArgumentType(Ty);
4915 bool InFPRs = isFPArgumentType(Ty);
4916
4917 llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
4918 bool IsIndirect = AI.isIndirect();
4919 unsigned UnpaddedBitSize;
4920 if (IsIndirect) {
4921 APTy = llvm::PointerType::getUnqual(APTy);
4922 UnpaddedBitSize = 64;
4923 } else
4924 UnpaddedBitSize = getContext().getTypeSize(Ty);
4925 unsigned PaddedBitSize = 64;
4926 assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size.");
4927
4928 unsigned PaddedSize = PaddedBitSize / 8;
4929 unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8;
4930
4931 unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding;
4932 if (InFPRs) {
4933 MaxRegs = 4; // Maximum of 4 FPR arguments
4934 RegCountField = 1; // __fpr
4935 RegSaveIndex = 16; // save offset for f0
4936 RegPadding = 0; // floats are passed in the high bits of an FPR
4937 } else {
4938 MaxRegs = 5; // Maximum of 5 GPR arguments
4939 RegCountField = 0; // __gpr
4940 RegSaveIndex = 2; // save offset for r2
4941 RegPadding = Padding; // values are passed in the low bits of a GPR
4942 }
4943
4944 llvm::Value *RegCountPtr =
4945 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
4946 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
4947 llvm::Type *IndexTy = RegCount->getType();
4948 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
4949 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
4950 "fits_in_regs");
4951
4952 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4953 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
4954 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4955 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
4956
4957 // Emit code to load the value if it was passed in registers.
4958 CGF.EmitBlock(InRegBlock);
4959
4960 // Work out the address of an argument register.
4961 llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize);
4962 llvm::Value *ScaledRegCount =
4963 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
4964 llvm::Value *RegBase =
4965 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding);
4966 llvm::Value *RegOffset =
4967 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
4968 llvm::Value *RegSaveAreaPtr =
4969 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
4970 llvm::Value *RegSaveArea =
4971 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
4972 llvm::Value *RawRegAddr =
4973 CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr");
4974 llvm::Value *RegAddr =
4975 CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr");
4976
4977 // Update the register count
4978 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
4979 llvm::Value *NewRegCount =
4980 CGF.Builder.CreateAdd(RegCount, One, "reg_count");
4981 CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
4982 CGF.EmitBranch(ContBlock);
4983
4984 // Emit code to load the value if it was passed in memory.
4985 CGF.EmitBlock(InMemBlock);
4986
4987 // Work out the address of a stack argument.
4988 llvm::Value *OverflowArgAreaPtr =
4989 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
4990 llvm::Value *OverflowArgArea =
4991 CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
4992 llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding);
4993 llvm::Value *RawMemAddr =
4994 CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr");
4995 llvm::Value *MemAddr =
4996 CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr");
4997
4998 // Update overflow_arg_area_ptr pointer
4999 llvm::Value *NewOverflowArgArea =
5000 CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
5001 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5002 CGF.EmitBranch(ContBlock);
5003
5004 // Return the appropriate result.
5005 CGF.EmitBlock(ContBlock);
5006 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr");
5007 ResAddr->addIncoming(RegAddr, InRegBlock);
5008 ResAddr->addIncoming(MemAddr, InMemBlock);
5009
5010 if (IsIndirect)
5011 return CGF.Builder.CreateLoad(ResAddr, "indirect_arg");
5012
5013 return ResAddr;
5014 }
5015
classifyReturnType(QualType RetTy) const5016 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
5017 if (RetTy->isVoidType())
5018 return ABIArgInfo::getIgnore();
5019 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
5020 return ABIArgInfo::getIndirect(0);
5021 return (isPromotableIntegerType(RetTy) ?
5022 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5023 }
5024
classifyArgumentType(QualType Ty) const5025 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
5026 // Handle the generic C++ ABI.
5027 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5028 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5029
5030 // Integers and enums are extended to full register width.
5031 if (isPromotableIntegerType(Ty))
5032 return ABIArgInfo::getExtend();
5033
5034 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
5035 uint64_t Size = getContext().getTypeSize(Ty);
5036 if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
5037 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5038
5039 // Handle small structures.
5040 if (const RecordType *RT = Ty->getAs<RecordType>()) {
5041 // Structures with flexible arrays have variable length, so really
5042 // fail the size test above.
5043 const RecordDecl *RD = RT->getDecl();
5044 if (RD->hasFlexibleArrayMember())
5045 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5046
5047 // The structure is passed as an unextended integer, a float, or a double.
5048 llvm::Type *PassTy;
5049 if (isFPArgumentType(Ty)) {
5050 assert(Size == 32 || Size == 64);
5051 if (Size == 32)
5052 PassTy = llvm::Type::getFloatTy(getVMContext());
5053 else
5054 PassTy = llvm::Type::getDoubleTy(getVMContext());
5055 } else
5056 PassTy = llvm::IntegerType::get(getVMContext(), Size);
5057 return ABIArgInfo::getDirect(PassTy);
5058 }
5059
5060 // Non-structure compounds are passed indirectly.
5061 if (isCompoundType(Ty))
5062 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5063
5064 return ABIArgInfo::getDirect(nullptr);
5065 }
5066
5067 //===----------------------------------------------------------------------===//
5068 // MSP430 ABI Implementation
5069 //===----------------------------------------------------------------------===//
5070
5071 namespace {
5072
5073 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
5074 public:
MSP430TargetCodeGenInfo(CodeGenTypes & CGT)5075 MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
5076 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
5077 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5078 CodeGen::CodeGenModule &M) const override;
5079 };
5080
5081 }
5082
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const5083 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
5084 llvm::GlobalValue *GV,
5085 CodeGen::CodeGenModule &M) const {
5086 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5087 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
5088 // Handle 'interrupt' attribute:
5089 llvm::Function *F = cast<llvm::Function>(GV);
5090
5091 // Step 1: Set ISR calling convention.
5092 F->setCallingConv(llvm::CallingConv::MSP430_INTR);
5093
5094 // Step 2: Add attributes goodness.
5095 F->addFnAttr(llvm::Attribute::NoInline);
5096
5097 // Step 3: Emit ISR vector alias.
5098 unsigned Num = attr->getNumber() / 2;
5099 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
5100 "__isr_" + Twine(Num), F);
5101 }
5102 }
5103 }
5104
5105 //===----------------------------------------------------------------------===//
5106 // MIPS ABI Implementation. This works for both little-endian and
5107 // big-endian variants.
5108 //===----------------------------------------------------------------------===//
5109
5110 namespace {
5111 class MipsABIInfo : public ABIInfo {
5112 bool IsO32;
5113 unsigned MinABIStackAlignInBytes, StackAlignInBytes;
5114 void CoerceToIntArgs(uint64_t TySize,
5115 SmallVectorImpl<llvm::Type *> &ArgList) const;
5116 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
5117 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
5118 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
5119 public:
MipsABIInfo(CodeGenTypes & CGT,bool _IsO32)5120 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
5121 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
5122 StackAlignInBytes(IsO32 ? 8 : 16) {}
5123
5124 ABIArgInfo classifyReturnType(QualType RetTy) const;
5125 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
5126 void computeInfo(CGFunctionInfo &FI) const override;
5127 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5128 CodeGenFunction &CGF) const override;
5129 };
5130
5131 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
5132 unsigned SizeOfUnwindException;
5133 public:
MIPSTargetCodeGenInfo(CodeGenTypes & CGT,bool IsO32)5134 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
5135 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
5136 SizeOfUnwindException(IsO32 ? 24 : 32) {}
5137
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const5138 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
5139 return 29;
5140 }
5141
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const5142 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5143 CodeGen::CodeGenModule &CGM) const override {
5144 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5145 if (!FD) return;
5146 llvm::Function *Fn = cast<llvm::Function>(GV);
5147 if (FD->hasAttr<Mips16Attr>()) {
5148 Fn->addFnAttr("mips16");
5149 }
5150 else if (FD->hasAttr<NoMips16Attr>()) {
5151 Fn->addFnAttr("nomips16");
5152 }
5153 }
5154
5155 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5156 llvm::Value *Address) const override;
5157
getSizeOfUnwindException() const5158 unsigned getSizeOfUnwindException() const override {
5159 return SizeOfUnwindException;
5160 }
5161 };
5162 }
5163
CoerceToIntArgs(uint64_t TySize,SmallVectorImpl<llvm::Type * > & ArgList) const5164 void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
5165 SmallVectorImpl<llvm::Type *> &ArgList) const {
5166 llvm::IntegerType *IntTy =
5167 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
5168
5169 // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
5170 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
5171 ArgList.push_back(IntTy);
5172
5173 // If necessary, add one more integer type to ArgList.
5174 unsigned R = TySize % (MinABIStackAlignInBytes * 8);
5175
5176 if (R)
5177 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
5178 }
5179
5180 // In N32/64, an aligned double precision floating point field is passed in
5181 // a register.
HandleAggregates(QualType Ty,uint64_t TySize) const5182 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
5183 SmallVector<llvm::Type*, 8> ArgList, IntArgList;
5184
5185 if (IsO32) {
5186 CoerceToIntArgs(TySize, ArgList);
5187 return llvm::StructType::get(getVMContext(), ArgList);
5188 }
5189
5190 if (Ty->isComplexType())
5191 return CGT.ConvertType(Ty);
5192
5193 const RecordType *RT = Ty->getAs<RecordType>();
5194
5195 // Unions/vectors are passed in integer registers.
5196 if (!RT || !RT->isStructureOrClassType()) {
5197 CoerceToIntArgs(TySize, ArgList);
5198 return llvm::StructType::get(getVMContext(), ArgList);
5199 }
5200
5201 const RecordDecl *RD = RT->getDecl();
5202 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5203 assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
5204
5205 uint64_t LastOffset = 0;
5206 unsigned idx = 0;
5207 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
5208
5209 // Iterate over fields in the struct/class and check if there are any aligned
5210 // double fields.
5211 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5212 i != e; ++i, ++idx) {
5213 const QualType Ty = i->getType();
5214 const BuiltinType *BT = Ty->getAs<BuiltinType>();
5215
5216 if (!BT || BT->getKind() != BuiltinType::Double)
5217 continue;
5218
5219 uint64_t Offset = Layout.getFieldOffset(idx);
5220 if (Offset % 64) // Ignore doubles that are not aligned.
5221 continue;
5222
5223 // Add ((Offset - LastOffset) / 64) args of type i64.
5224 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
5225 ArgList.push_back(I64);
5226
5227 // Add double type.
5228 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
5229 LastOffset = Offset + 64;
5230 }
5231
5232 CoerceToIntArgs(TySize - LastOffset, IntArgList);
5233 ArgList.append(IntArgList.begin(), IntArgList.end());
5234
5235 return llvm::StructType::get(getVMContext(), ArgList);
5236 }
5237
getPaddingType(uint64_t OrigOffset,uint64_t Offset) const5238 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
5239 uint64_t Offset) const {
5240 if (OrigOffset + MinABIStackAlignInBytes > Offset)
5241 return nullptr;
5242
5243 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
5244 }
5245
5246 ABIArgInfo
classifyArgumentType(QualType Ty,uint64_t & Offset) const5247 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
5248 uint64_t OrigOffset = Offset;
5249 uint64_t TySize = getContext().getTypeSize(Ty);
5250 uint64_t Align = getContext().getTypeAlign(Ty) / 8;
5251
5252 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
5253 (uint64_t)StackAlignInBytes);
5254 unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align);
5255 Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
5256
5257 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
5258 // Ignore empty aggregates.
5259 if (TySize == 0)
5260 return ABIArgInfo::getIgnore();
5261
5262 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5263 Offset = OrigOffset + MinABIStackAlignInBytes;
5264 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5265 }
5266
5267 // If we have reached here, aggregates are passed directly by coercing to
5268 // another structure type. Padding is inserted if the offset of the
5269 // aggregate is unaligned.
5270 return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
5271 getPaddingType(OrigOffset, CurrOffset));
5272 }
5273
5274 // Treat an enum type as its underlying type.
5275 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5276 Ty = EnumTy->getDecl()->getIntegerType();
5277
5278 if (Ty->isPromotableIntegerType())
5279 return ABIArgInfo::getExtend();
5280
5281 return ABIArgInfo::getDirect(
5282 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
5283 }
5284
5285 llvm::Type*
returnAggregateInRegs(QualType RetTy,uint64_t Size) const5286 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
5287 const RecordType *RT = RetTy->getAs<RecordType>();
5288 SmallVector<llvm::Type*, 8> RTList;
5289
5290 if (RT && RT->isStructureOrClassType()) {
5291 const RecordDecl *RD = RT->getDecl();
5292 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5293 unsigned FieldCnt = Layout.getFieldCount();
5294
5295 // N32/64 returns struct/classes in floating point registers if the
5296 // following conditions are met:
5297 // 1. The size of the struct/class is no larger than 128-bit.
5298 // 2. The struct/class has one or two fields all of which are floating
5299 // point types.
5300 // 3. The offset of the first field is zero (this follows what gcc does).
5301 //
5302 // Any other composite results are returned in integer registers.
5303 //
5304 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
5305 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
5306 for (; b != e; ++b) {
5307 const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
5308
5309 if (!BT || !BT->isFloatingPoint())
5310 break;
5311
5312 RTList.push_back(CGT.ConvertType(b->getType()));
5313 }
5314
5315 if (b == e)
5316 return llvm::StructType::get(getVMContext(), RTList,
5317 RD->hasAttr<PackedAttr>());
5318
5319 RTList.clear();
5320 }
5321 }
5322
5323 CoerceToIntArgs(Size, RTList);
5324 return llvm::StructType::get(getVMContext(), RTList);
5325 }
5326
classifyReturnType(QualType RetTy) const5327 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
5328 uint64_t Size = getContext().getTypeSize(RetTy);
5329
5330 if (RetTy->isVoidType() || Size == 0)
5331 return ABIArgInfo::getIgnore();
5332
5333 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
5334 if (Size <= 128) {
5335 if (RetTy->isAnyComplexType())
5336 return ABIArgInfo::getDirect();
5337
5338 // O32 returns integer vectors in registers.
5339 if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())
5340 return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
5341
5342 if (!IsO32)
5343 return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
5344 }
5345
5346 return ABIArgInfo::getIndirect(0);
5347 }
5348
5349 // Treat an enum type as its underlying type.
5350 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5351 RetTy = EnumTy->getDecl()->getIntegerType();
5352
5353 return (RetTy->isPromotableIntegerType() ?
5354 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5355 }
5356
computeInfo(CGFunctionInfo & FI) const5357 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
5358 ABIArgInfo &RetInfo = FI.getReturnInfo();
5359 if (!getCXXABI().classifyReturnType(FI))
5360 RetInfo = classifyReturnType(FI.getReturnType());
5361
5362 // Check if a pointer to an aggregate is passed as a hidden argument.
5363 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
5364
5365 for (auto &I : FI.arguments())
5366 I.info = classifyArgumentType(I.type, Offset);
5367 }
5368
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const5369 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5370 CodeGenFunction &CGF) const {
5371 llvm::Type *BP = CGF.Int8PtrTy;
5372 llvm::Type *BPP = CGF.Int8PtrPtrTy;
5373
5374 CGBuilderTy &Builder = CGF.Builder;
5375 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
5376 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5377 int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8;
5378 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5379 llvm::Value *AddrTyped;
5380 unsigned PtrWidth = getTarget().getPointerWidth(0);
5381 llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
5382
5383 if (TypeAlign > MinABIStackAlignInBytes) {
5384 llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
5385 llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
5386 llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
5387 llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
5388 llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
5389 AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
5390 }
5391 else
5392 AddrTyped = Builder.CreateBitCast(Addr, PTy);
5393
5394 llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
5395 TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
5396 uint64_t Offset =
5397 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
5398 llvm::Value *NextAddr =
5399 Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
5400 "ap.next");
5401 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5402
5403 return AddrTyped;
5404 }
5405
5406 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const5407 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5408 llvm::Value *Address) const {
5409 // This information comes from gcc's implementation, which seems to
5410 // as canonical as it gets.
5411
5412 // Everything on MIPS is 4 bytes. Double-precision FP registers
5413 // are aliased to pairs of single-precision FP registers.
5414 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5415
5416 // 0-31 are the general purpose registers, $0 - $31.
5417 // 32-63 are the floating-point registers, $f0 - $f31.
5418 // 64 and 65 are the multiply/divide registers, $hi and $lo.
5419 // 66 is the (notional, I think) register for signal-handler return.
5420 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
5421
5422 // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
5423 // They are one bit wide and ignored here.
5424
5425 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
5426 // (coprocessor 1 is the FP unit)
5427 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
5428 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
5429 // 176-181 are the DSP accumulator registers.
5430 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
5431 return false;
5432 }
5433
5434 //===----------------------------------------------------------------------===//
5435 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
5436 // Currently subclassed only to implement custom OpenCL C function attribute
5437 // handling.
5438 //===----------------------------------------------------------------------===//
5439
5440 namespace {
5441
5442 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
5443 public:
TCETargetCodeGenInfo(CodeGenTypes & CGT)5444 TCETargetCodeGenInfo(CodeGenTypes &CGT)
5445 : DefaultTargetCodeGenInfo(CGT) {}
5446
5447 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5448 CodeGen::CodeGenModule &M) const override;
5449 };
5450
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const5451 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
5452 llvm::GlobalValue *GV,
5453 CodeGen::CodeGenModule &M) const {
5454 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5455 if (!FD) return;
5456
5457 llvm::Function *F = cast<llvm::Function>(GV);
5458
5459 if (M.getLangOpts().OpenCL) {
5460 if (FD->hasAttr<OpenCLKernelAttr>()) {
5461 // OpenCL C Kernel functions are not subject to inlining
5462 F->addFnAttr(llvm::Attribute::NoInline);
5463 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
5464 if (Attr) {
5465 // Convert the reqd_work_group_size() attributes to metadata.
5466 llvm::LLVMContext &Context = F->getContext();
5467 llvm::NamedMDNode *OpenCLMetadata =
5468 M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
5469
5470 SmallVector<llvm::Value*, 5> Operands;
5471 Operands.push_back(F);
5472
5473 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5474 llvm::APInt(32, Attr->getXDim())));
5475 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5476 llvm::APInt(32, Attr->getYDim())));
5477 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5478 llvm::APInt(32, Attr->getZDim())));
5479
5480 // Add a boolean constant operand for "required" (true) or "hint" (false)
5481 // for implementing the work_group_size_hint attr later. Currently
5482 // always true as the hint is not yet implemented.
5483 Operands.push_back(llvm::ConstantInt::getTrue(Context));
5484 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
5485 }
5486 }
5487 }
5488 }
5489
5490 }
5491
5492 //===----------------------------------------------------------------------===//
5493 // Hexagon ABI Implementation
5494 //===----------------------------------------------------------------------===//
5495
5496 namespace {
5497
5498 class HexagonABIInfo : public ABIInfo {
5499
5500
5501 public:
HexagonABIInfo(CodeGenTypes & CGT)5502 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5503
5504 private:
5505
5506 ABIArgInfo classifyReturnType(QualType RetTy) const;
5507 ABIArgInfo classifyArgumentType(QualType RetTy) const;
5508
5509 void computeInfo(CGFunctionInfo &FI) const override;
5510
5511 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5512 CodeGenFunction &CGF) const override;
5513 };
5514
5515 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
5516 public:
HexagonTargetCodeGenInfo(CodeGenTypes & CGT)5517 HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
5518 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
5519
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const5520 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5521 return 29;
5522 }
5523 };
5524
5525 }
5526
computeInfo(CGFunctionInfo & FI) const5527 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
5528 if (!getCXXABI().classifyReturnType(FI))
5529 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5530 for (auto &I : FI.arguments())
5531 I.info = classifyArgumentType(I.type);
5532 }
5533
classifyArgumentType(QualType Ty) const5534 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
5535 if (!isAggregateTypeForABI(Ty)) {
5536 // Treat an enum type as its underlying type.
5537 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5538 Ty = EnumTy->getDecl()->getIntegerType();
5539
5540 return (Ty->isPromotableIntegerType() ?
5541 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5542 }
5543
5544 // Ignore empty records.
5545 if (isEmptyRecord(getContext(), Ty, true))
5546 return ABIArgInfo::getIgnore();
5547
5548 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5549 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5550
5551 uint64_t Size = getContext().getTypeSize(Ty);
5552 if (Size > 64)
5553 return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5554 // Pass in the smallest viable integer type.
5555 else if (Size > 32)
5556 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5557 else if (Size > 16)
5558 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5559 else if (Size > 8)
5560 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5561 else
5562 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5563 }
5564
classifyReturnType(QualType RetTy) const5565 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
5566 if (RetTy->isVoidType())
5567 return ABIArgInfo::getIgnore();
5568
5569 // Large vector types should be returned via memory.
5570 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
5571 return ABIArgInfo::getIndirect(0);
5572
5573 if (!isAggregateTypeForABI(RetTy)) {
5574 // Treat an enum type as its underlying type.
5575 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5576 RetTy = EnumTy->getDecl()->getIntegerType();
5577
5578 return (RetTy->isPromotableIntegerType() ?
5579 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5580 }
5581
5582 if (isEmptyRecord(getContext(), RetTy, true))
5583 return ABIArgInfo::getIgnore();
5584
5585 // Aggregates <= 8 bytes are returned in r0; other aggregates
5586 // are returned indirectly.
5587 uint64_t Size = getContext().getTypeSize(RetTy);
5588 if (Size <= 64) {
5589 // Return in the smallest viable integer type.
5590 if (Size <= 8)
5591 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5592 if (Size <= 16)
5593 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5594 if (Size <= 32)
5595 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5596 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5597 }
5598
5599 return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5600 }
5601
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const5602 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5603 CodeGenFunction &CGF) const {
5604 // FIXME: Need to handle alignment
5605 llvm::Type *BPP = CGF.Int8PtrPtrTy;
5606
5607 CGBuilderTy &Builder = CGF.Builder;
5608 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
5609 "ap");
5610 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5611 llvm::Type *PTy =
5612 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5613 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
5614
5615 uint64_t Offset =
5616 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
5617 llvm::Value *NextAddr =
5618 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
5619 "ap.next");
5620 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5621
5622 return AddrTyped;
5623 }
5624
5625
5626 //===----------------------------------------------------------------------===//
5627 // SPARC v9 ABI Implementation.
5628 // Based on the SPARC Compliance Definition version 2.4.1.
5629 //
5630 // Function arguments a mapped to a nominal "parameter array" and promoted to
5631 // registers depending on their type. Each argument occupies 8 or 16 bytes in
5632 // the array, structs larger than 16 bytes are passed indirectly.
5633 //
5634 // One case requires special care:
5635 //
5636 // struct mixed {
5637 // int i;
5638 // float f;
5639 // };
5640 //
5641 // When a struct mixed is passed by value, it only occupies 8 bytes in the
5642 // parameter array, but the int is passed in an integer register, and the float
5643 // is passed in a floating point register. This is represented as two arguments
5644 // with the LLVM IR inreg attribute:
5645 //
5646 // declare void f(i32 inreg %i, float inreg %f)
5647 //
5648 // The code generator will only allocate 4 bytes from the parameter array for
5649 // the inreg arguments. All other arguments are allocated a multiple of 8
5650 // bytes.
5651 //
5652 namespace {
5653 class SparcV9ABIInfo : public ABIInfo {
5654 public:
SparcV9ABIInfo(CodeGenTypes & CGT)5655 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5656
5657 private:
5658 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
5659 void computeInfo(CGFunctionInfo &FI) const override;
5660 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5661 CodeGenFunction &CGF) const override;
5662
5663 // Coercion type builder for structs passed in registers. The coercion type
5664 // serves two purposes:
5665 //
5666 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
5667 // in registers.
5668 // 2. Expose aligned floating point elements as first-level elements, so the
5669 // code generator knows to pass them in floating point registers.
5670 //
5671 // We also compute the InReg flag which indicates that the struct contains
5672 // aligned 32-bit floats.
5673 //
5674 struct CoerceBuilder {
5675 llvm::LLVMContext &Context;
5676 const llvm::DataLayout &DL;
5677 SmallVector<llvm::Type*, 8> Elems;
5678 uint64_t Size;
5679 bool InReg;
5680
CoerceBuilder__anonc5f222370f11::SparcV9ABIInfo::CoerceBuilder5681 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
5682 : Context(c), DL(dl), Size(0), InReg(false) {}
5683
5684 // Pad Elems with integers until Size is ToSize.
pad__anonc5f222370f11::SparcV9ABIInfo::CoerceBuilder5685 void pad(uint64_t ToSize) {
5686 assert(ToSize >= Size && "Cannot remove elements");
5687 if (ToSize == Size)
5688 return;
5689
5690 // Finish the current 64-bit word.
5691 uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
5692 if (Aligned > Size && Aligned <= ToSize) {
5693 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
5694 Size = Aligned;
5695 }
5696
5697 // Add whole 64-bit words.
5698 while (Size + 64 <= ToSize) {
5699 Elems.push_back(llvm::Type::getInt64Ty(Context));
5700 Size += 64;
5701 }
5702
5703 // Final in-word padding.
5704 if (Size < ToSize) {
5705 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
5706 Size = ToSize;
5707 }
5708 }
5709
5710 // Add a floating point element at Offset.
addFloat__anonc5f222370f11::SparcV9ABIInfo::CoerceBuilder5711 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
5712 // Unaligned floats are treated as integers.
5713 if (Offset % Bits)
5714 return;
5715 // The InReg flag is only required if there are any floats < 64 bits.
5716 if (Bits < 64)
5717 InReg = true;
5718 pad(Offset);
5719 Elems.push_back(Ty);
5720 Size = Offset + Bits;
5721 }
5722
5723 // Add a struct type to the coercion type, starting at Offset (in bits).
addStruct__anonc5f222370f11::SparcV9ABIInfo::CoerceBuilder5724 void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
5725 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
5726 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
5727 llvm::Type *ElemTy = StrTy->getElementType(i);
5728 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
5729 switch (ElemTy->getTypeID()) {
5730 case llvm::Type::StructTyID:
5731 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
5732 break;
5733 case llvm::Type::FloatTyID:
5734 addFloat(ElemOffset, ElemTy, 32);
5735 break;
5736 case llvm::Type::DoubleTyID:
5737 addFloat(ElemOffset, ElemTy, 64);
5738 break;
5739 case llvm::Type::FP128TyID:
5740 addFloat(ElemOffset, ElemTy, 128);
5741 break;
5742 case llvm::Type::PointerTyID:
5743 if (ElemOffset % 64 == 0) {
5744 pad(ElemOffset);
5745 Elems.push_back(ElemTy);
5746 Size += 64;
5747 }
5748 break;
5749 default:
5750 break;
5751 }
5752 }
5753 }
5754
5755 // Check if Ty is a usable substitute for the coercion type.
isUsableType__anonc5f222370f11::SparcV9ABIInfo::CoerceBuilder5756 bool isUsableType(llvm::StructType *Ty) const {
5757 if (Ty->getNumElements() != Elems.size())
5758 return false;
5759 for (unsigned i = 0, e = Elems.size(); i != e; ++i)
5760 if (Elems[i] != Ty->getElementType(i))
5761 return false;
5762 return true;
5763 }
5764
5765 // Get the coercion type as a literal struct type.
getType__anonc5f222370f11::SparcV9ABIInfo::CoerceBuilder5766 llvm::Type *getType() const {
5767 if (Elems.size() == 1)
5768 return Elems.front();
5769 else
5770 return llvm::StructType::get(Context, Elems);
5771 }
5772 };
5773 };
5774 } // end anonymous namespace
5775
5776 ABIArgInfo
classifyType(QualType Ty,unsigned SizeLimit) const5777 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
5778 if (Ty->isVoidType())
5779 return ABIArgInfo::getIgnore();
5780
5781 uint64_t Size = getContext().getTypeSize(Ty);
5782
5783 // Anything too big to fit in registers is passed with an explicit indirect
5784 // pointer / sret pointer.
5785 if (Size > SizeLimit)
5786 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5787
5788 // Treat an enum type as its underlying type.
5789 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5790 Ty = EnumTy->getDecl()->getIntegerType();
5791
5792 // Integer types smaller than a register are extended.
5793 if (Size < 64 && Ty->isIntegerType())
5794 return ABIArgInfo::getExtend();
5795
5796 // Other non-aggregates go in registers.
5797 if (!isAggregateTypeForABI(Ty))
5798 return ABIArgInfo::getDirect();
5799
5800 // If a C++ object has either a non-trivial copy constructor or a non-trivial
5801 // destructor, it is passed with an explicit indirect pointer / sret pointer.
5802 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5803 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5804
5805 // This is a small aggregate type that should be passed in registers.
5806 // Build a coercion type from the LLVM struct type.
5807 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
5808 if (!StrTy)
5809 return ABIArgInfo::getDirect();
5810
5811 CoerceBuilder CB(getVMContext(), getDataLayout());
5812 CB.addStruct(0, StrTy);
5813 CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
5814
5815 // Try to use the original type for coercion.
5816 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
5817
5818 if (CB.InReg)
5819 return ABIArgInfo::getDirectInReg(CoerceTy);
5820 else
5821 return ABIArgInfo::getDirect(CoerceTy);
5822 }
5823
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const5824 llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5825 CodeGenFunction &CGF) const {
5826 ABIArgInfo AI = classifyType(Ty, 16 * 8);
5827 llvm::Type *ArgTy = CGT.ConvertType(Ty);
5828 if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
5829 AI.setCoerceToType(ArgTy);
5830
5831 llvm::Type *BPP = CGF.Int8PtrPtrTy;
5832 CGBuilderTy &Builder = CGF.Builder;
5833 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
5834 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5835 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
5836 llvm::Value *ArgAddr;
5837 unsigned Stride;
5838
5839 switch (AI.getKind()) {
5840 case ABIArgInfo::Expand:
5841 case ABIArgInfo::InAlloca:
5842 llvm_unreachable("Unsupported ABI kind for va_arg");
5843
5844 case ABIArgInfo::Extend:
5845 Stride = 8;
5846 ArgAddr = Builder
5847 .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy),
5848 "extend");
5849 break;
5850
5851 case ABIArgInfo::Direct:
5852 Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
5853 ArgAddr = Addr;
5854 break;
5855
5856 case ABIArgInfo::Indirect:
5857 Stride = 8;
5858 ArgAddr = Builder.CreateBitCast(Addr,
5859 llvm::PointerType::getUnqual(ArgPtrTy),
5860 "indirect");
5861 ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg");
5862 break;
5863
5864 case ABIArgInfo::Ignore:
5865 return llvm::UndefValue::get(ArgPtrTy);
5866 }
5867
5868 // Update VAList.
5869 Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next");
5870 Builder.CreateStore(Addr, VAListAddrAsBPP);
5871
5872 return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr");
5873 }
5874
computeInfo(CGFunctionInfo & FI) const5875 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
5876 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
5877 for (auto &I : FI.arguments())
5878 I.info = classifyType(I.type, 16 * 8);
5879 }
5880
5881 namespace {
5882 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
5883 public:
SparcV9TargetCodeGenInfo(CodeGenTypes & CGT)5884 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
5885 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
5886
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const5887 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5888 return 14;
5889 }
5890
5891 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5892 llvm::Value *Address) const override;
5893 };
5894 } // end anonymous namespace
5895
5896 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const5897 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5898 llvm::Value *Address) const {
5899 // This is calculated from the LLVM and GCC tables and verified
5900 // against gcc output. AFAIK all ABIs use the same encoding.
5901
5902 CodeGen::CGBuilderTy &Builder = CGF.Builder;
5903
5904 llvm::IntegerType *i8 = CGF.Int8Ty;
5905 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
5906 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
5907
5908 // 0-31: the 8-byte general-purpose registers
5909 AssignToArrayRange(Builder, Address, Eight8, 0, 31);
5910
5911 // 32-63: f0-31, the 4-byte floating-point registers
5912 AssignToArrayRange(Builder, Address, Four8, 32, 63);
5913
5914 // Y = 64
5915 // PSR = 65
5916 // WIM = 66
5917 // TBR = 67
5918 // PC = 68
5919 // NPC = 69
5920 // FSR = 70
5921 // CSR = 71
5922 AssignToArrayRange(Builder, Address, Eight8, 64, 71);
5923
5924 // 72-87: d0-15, the 8-byte floating-point registers
5925 AssignToArrayRange(Builder, Address, Eight8, 72, 87);
5926
5927 return false;
5928 }
5929
5930
5931 //===----------------------------------------------------------------------===//
5932 // XCore ABI Implementation
5933 //===----------------------------------------------------------------------===//
5934
5935 namespace {
5936
5937 /// A SmallStringEnc instance is used to build up the TypeString by passing
5938 /// it by reference between functions that append to it.
5939 typedef llvm::SmallString<128> SmallStringEnc;
5940
5941 /// TypeStringCache caches the meta encodings of Types.
5942 ///
5943 /// The reason for caching TypeStrings is two fold:
5944 /// 1. To cache a type's encoding for later uses;
5945 /// 2. As a means to break recursive member type inclusion.
5946 ///
5947 /// A cache Entry can have a Status of:
5948 /// NonRecursive: The type encoding is not recursive;
5949 /// Recursive: The type encoding is recursive;
5950 /// Incomplete: An incomplete TypeString;
5951 /// IncompleteUsed: An incomplete TypeString that has been used in a
5952 /// Recursive type encoding.
5953 ///
5954 /// A NonRecursive entry will have all of its sub-members expanded as fully
5955 /// as possible. Whilst it may contain types which are recursive, the type
5956 /// itself is not recursive and thus its encoding may be safely used whenever
5957 /// the type is encountered.
5958 ///
5959 /// A Recursive entry will have all of its sub-members expanded as fully as
5960 /// possible. The type itself is recursive and it may contain other types which
5961 /// are recursive. The Recursive encoding must not be used during the expansion
5962 /// of a recursive type's recursive branch. For simplicity the code uses
5963 /// IncompleteCount to reject all usage of Recursive encodings for member types.
5964 ///
5965 /// An Incomplete entry is always a RecordType and only encodes its
5966 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
5967 /// are placed into the cache during type expansion as a means to identify and
5968 /// handle recursive inclusion of types as sub-members. If there is recursion
5969 /// the entry becomes IncompleteUsed.
5970 ///
5971 /// During the expansion of a RecordType's members:
5972 ///
5973 /// If the cache contains a NonRecursive encoding for the member type, the
5974 /// cached encoding is used;
5975 ///
5976 /// If the cache contains a Recursive encoding for the member type, the
5977 /// cached encoding is 'Swapped' out, as it may be incorrect, and...
5978 ///
5979 /// If the member is a RecordType, an Incomplete encoding is placed into the
5980 /// cache to break potential recursive inclusion of itself as a sub-member;
5981 ///
5982 /// Once a member RecordType has been expanded, its temporary incomplete
5983 /// entry is removed from the cache. If a Recursive encoding was swapped out
5984 /// it is swapped back in;
5985 ///
5986 /// If an incomplete entry is used to expand a sub-member, the incomplete
5987 /// entry is marked as IncompleteUsed. The cache keeps count of how many
5988 /// IncompleteUsed entries it currently contains in IncompleteUsedCount;
5989 ///
5990 /// If a member's encoding is found to be a NonRecursive or Recursive viz:
5991 /// IncompleteUsedCount==0, the member's encoding is added to the cache.
5992 /// Else the member is part of a recursive type and thus the recursion has
5993 /// been exited too soon for the encoding to be correct for the member.
5994 ///
5995 class TypeStringCache {
5996 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
5997 struct Entry {
5998 std::string Str; // The encoded TypeString for the type.
5999 enum Status State; // Information about the encoding in 'Str'.
6000 std::string Swapped; // A temporary place holder for a Recursive encoding
6001 // during the expansion of RecordType's members.
6002 };
6003 std::map<const IdentifierInfo *, struct Entry> Map;
6004 unsigned IncompleteCount; // Number of Incomplete entries in the Map.
6005 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
6006 public:
TypeStringCache()6007 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {};
6008 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
6009 bool removeIncomplete(const IdentifierInfo *ID);
6010 void addIfComplete(const IdentifierInfo *ID, StringRef Str,
6011 bool IsRecursive);
6012 StringRef lookupStr(const IdentifierInfo *ID);
6013 };
6014
6015 /// TypeString encodings for enum & union fields must be order.
6016 /// FieldEncoding is a helper for this ordering process.
6017 class FieldEncoding {
6018 bool HasName;
6019 std::string Enc;
6020 public:
FieldEncoding(bool b,SmallStringEnc & e)6021 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {};
str()6022 StringRef str() {return Enc.c_str();};
operator <(const FieldEncoding & rhs) const6023 bool operator<(const FieldEncoding &rhs) const {
6024 if (HasName != rhs.HasName) return HasName;
6025 return Enc < rhs.Enc;
6026 }
6027 };
6028
6029 class XCoreABIInfo : public DefaultABIInfo {
6030 public:
XCoreABIInfo(CodeGen::CodeGenTypes & CGT)6031 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
6032 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6033 CodeGenFunction &CGF) const override;
6034 };
6035
6036 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
6037 mutable TypeStringCache TSC;
6038 public:
XCoreTargetCodeGenInfo(CodeGenTypes & CGT)6039 XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
6040 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
6041 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6042 CodeGen::CodeGenModule &M) const override;
6043 };
6044
6045 } // End anonymous namespace.
6046
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const6047 llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6048 CodeGenFunction &CGF) const {
6049 CGBuilderTy &Builder = CGF.Builder;
6050
6051 // Get the VAList.
6052 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr,
6053 CGF.Int8PtrPtrTy);
6054 llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP);
6055
6056 // Handle the argument.
6057 ABIArgInfo AI = classifyArgumentType(Ty);
6058 llvm::Type *ArgTy = CGT.ConvertType(Ty);
6059 if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6060 AI.setCoerceToType(ArgTy);
6061 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6062 llvm::Value *Val;
6063 uint64_t ArgSize = 0;
6064 switch (AI.getKind()) {
6065 case ABIArgInfo::Expand:
6066 case ABIArgInfo::InAlloca:
6067 llvm_unreachable("Unsupported ABI kind for va_arg");
6068 case ABIArgInfo::Ignore:
6069 Val = llvm::UndefValue::get(ArgPtrTy);
6070 ArgSize = 0;
6071 break;
6072 case ABIArgInfo::Extend:
6073 case ABIArgInfo::Direct:
6074 Val = Builder.CreatePointerCast(AP, ArgPtrTy);
6075 ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
6076 if (ArgSize < 4)
6077 ArgSize = 4;
6078 break;
6079 case ABIArgInfo::Indirect:
6080 llvm::Value *ArgAddr;
6081 ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy));
6082 ArgAddr = Builder.CreateLoad(ArgAddr);
6083 Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy);
6084 ArgSize = 4;
6085 break;
6086 }
6087
6088 // Increment the VAList.
6089 if (ArgSize) {
6090 llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize);
6091 Builder.CreateStore(APN, VAListAddrAsBPP);
6092 }
6093 return Val;
6094 }
6095
6096 /// During the expansion of a RecordType, an incomplete TypeString is placed
6097 /// into the cache as a means to identify and break recursion.
6098 /// If there is a Recursive encoding in the cache, it is swapped out and will
6099 /// be reinserted by removeIncomplete().
6100 /// All other types of encoding should have been used rather than arriving here.
addIncomplete(const IdentifierInfo * ID,std::string StubEnc)6101 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
6102 std::string StubEnc) {
6103 if (!ID)
6104 return;
6105 Entry &E = Map[ID];
6106 assert( (E.Str.empty() || E.State == Recursive) &&
6107 "Incorrectly use of addIncomplete");
6108 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
6109 E.Swapped.swap(E.Str); // swap out the Recursive
6110 E.Str.swap(StubEnc);
6111 E.State = Incomplete;
6112 ++IncompleteCount;
6113 }
6114
6115 /// Once the RecordType has been expanded, the temporary incomplete TypeString
6116 /// must be removed from the cache.
6117 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
6118 /// Returns true if the RecordType was defined recursively.
removeIncomplete(const IdentifierInfo * ID)6119 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
6120 if (!ID)
6121 return false;
6122 auto I = Map.find(ID);
6123 assert(I != Map.end() && "Entry not present");
6124 Entry &E = I->second;
6125 assert( (E.State == Incomplete ||
6126 E.State == IncompleteUsed) &&
6127 "Entry must be an incomplete type");
6128 bool IsRecursive = false;
6129 if (E.State == IncompleteUsed) {
6130 // We made use of our Incomplete encoding, thus we are recursive.
6131 IsRecursive = true;
6132 --IncompleteUsedCount;
6133 }
6134 if (E.Swapped.empty())
6135 Map.erase(I);
6136 else {
6137 // Swap the Recursive back.
6138 E.Swapped.swap(E.Str);
6139 E.Swapped.clear();
6140 E.State = Recursive;
6141 }
6142 --IncompleteCount;
6143 return IsRecursive;
6144 }
6145
6146 /// Add the encoded TypeString to the cache only if it is NonRecursive or
6147 /// Recursive (viz: all sub-members were expanded as fully as possible).
addIfComplete(const IdentifierInfo * ID,StringRef Str,bool IsRecursive)6148 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
6149 bool IsRecursive) {
6150 if (!ID || IncompleteUsedCount)
6151 return; // No key or it is is an incomplete sub-type so don't add.
6152 Entry &E = Map[ID];
6153 if (IsRecursive && !E.Str.empty()) {
6154 assert(E.State==Recursive && E.Str.size() == Str.size() &&
6155 "This is not the same Recursive entry");
6156 // The parent container was not recursive after all, so we could have used
6157 // this Recursive sub-member entry after all, but we assumed the worse when
6158 // we started viz: IncompleteCount!=0.
6159 return;
6160 }
6161 assert(E.Str.empty() && "Entry already present");
6162 E.Str = Str.str();
6163 E.State = IsRecursive? Recursive : NonRecursive;
6164 }
6165
6166 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
6167 /// are recursively expanding a type (IncompleteCount != 0) and the cached
6168 /// encoding is Recursive, return an empty StringRef.
lookupStr(const IdentifierInfo * ID)6169 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
6170 if (!ID)
6171 return StringRef(); // We have no key.
6172 auto I = Map.find(ID);
6173 if (I == Map.end())
6174 return StringRef(); // We have no encoding.
6175 Entry &E = I->second;
6176 if (E.State == Recursive && IncompleteCount)
6177 return StringRef(); // We don't use Recursive encodings for member types.
6178
6179 if (E.State == Incomplete) {
6180 // The incomplete type is being used to break out of recursion.
6181 E.State = IncompleteUsed;
6182 ++IncompleteUsedCount;
6183 }
6184 return E.Str.c_str();
6185 }
6186
6187 /// The XCore ABI includes a type information section that communicates symbol
6188 /// type information to the linker. The linker uses this information to verify
6189 /// safety/correctness of things such as array bound and pointers et al.
6190 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
6191 /// This type information (TypeString) is emitted into meta data for all global
6192 /// symbols: definitions, declarations, functions & variables.
6193 ///
6194 /// The TypeString carries type, qualifier, name, size & value details.
6195 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
6196 /// <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf>
6197 /// The output is tested by test/CodeGen/xcore-stringtype.c.
6198 ///
6199 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
6200 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
6201
6202 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
emitTargetMD(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const6203 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6204 CodeGen::CodeGenModule &CGM) const {
6205 SmallStringEnc Enc;
6206 if (getTypeString(Enc, D, CGM, TSC)) {
6207 llvm::LLVMContext &Ctx = CGM.getModule().getContext();
6208 llvm::SmallVector<llvm::Value *, 2> MDVals;
6209 MDVals.push_back(GV);
6210 MDVals.push_back(llvm::MDString::get(Ctx, Enc.str()));
6211 llvm::NamedMDNode *MD =
6212 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
6213 MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6214 }
6215 }
6216
6217 static bool appendType(SmallStringEnc &Enc, QualType QType,
6218 const CodeGen::CodeGenModule &CGM,
6219 TypeStringCache &TSC);
6220
6221 /// Helper function for appendRecordType().
6222 /// Builds a SmallVector containing the encoded field types in declaration order.
extractFieldType(SmallVectorImpl<FieldEncoding> & FE,const RecordDecl * RD,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)6223 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
6224 const RecordDecl *RD,
6225 const CodeGen::CodeGenModule &CGM,
6226 TypeStringCache &TSC) {
6227 for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
6228 I != E; ++I) {
6229 SmallStringEnc Enc;
6230 Enc += "m(";
6231 Enc += I->getName();
6232 Enc += "){";
6233 if (I->isBitField()) {
6234 Enc += "b(";
6235 llvm::raw_svector_ostream OS(Enc);
6236 OS.resync();
6237 OS << I->getBitWidthValue(CGM.getContext());
6238 OS.flush();
6239 Enc += ':';
6240 }
6241 if (!appendType(Enc, I->getType(), CGM, TSC))
6242 return false;
6243 if (I->isBitField())
6244 Enc += ')';
6245 Enc += '}';
6246 FE.push_back(FieldEncoding(!I->getName().empty(), Enc));
6247 }
6248 return true;
6249 }
6250
6251 /// Appends structure and union types to Enc and adds encoding to cache.
6252 /// Recursively calls appendType (via extractFieldType) for each field.
6253 /// Union types have their fields ordered according to the ABI.
appendRecordType(SmallStringEnc & Enc,const RecordType * RT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC,const IdentifierInfo * ID)6254 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
6255 const CodeGen::CodeGenModule &CGM,
6256 TypeStringCache &TSC, const IdentifierInfo *ID) {
6257 // Append the cached TypeString if we have one.
6258 StringRef TypeString = TSC.lookupStr(ID);
6259 if (!TypeString.empty()) {
6260 Enc += TypeString;
6261 return true;
6262 }
6263
6264 // Start to emit an incomplete TypeString.
6265 size_t Start = Enc.size();
6266 Enc += (RT->isUnionType()? 'u' : 's');
6267 Enc += '(';
6268 if (ID)
6269 Enc += ID->getName();
6270 Enc += "){";
6271
6272 // We collect all encoded fields and order as necessary.
6273 bool IsRecursive = false;
6274 const RecordDecl *RD = RT->getDecl()->getDefinition();
6275 if (RD && !RD->field_empty()) {
6276 // An incomplete TypeString stub is placed in the cache for this RecordType
6277 // so that recursive calls to this RecordType will use it whilst building a
6278 // complete TypeString for this RecordType.
6279 SmallVector<FieldEncoding, 16> FE;
6280 std::string StubEnc(Enc.substr(Start).str());
6281 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString.
6282 TSC.addIncomplete(ID, std::move(StubEnc));
6283 if (!extractFieldType(FE, RD, CGM, TSC)) {
6284 (void) TSC.removeIncomplete(ID);
6285 return false;
6286 }
6287 IsRecursive = TSC.removeIncomplete(ID);
6288 // The ABI requires unions to be sorted but not structures.
6289 // See FieldEncoding::operator< for sort algorithm.
6290 if (RT->isUnionType())
6291 std::sort(FE.begin(), FE.end());
6292 // We can now complete the TypeString.
6293 unsigned E = FE.size();
6294 for (unsigned I = 0; I != E; ++I) {
6295 if (I)
6296 Enc += ',';
6297 Enc += FE[I].str();
6298 }
6299 }
6300 Enc += '}';
6301 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
6302 return true;
6303 }
6304
6305 /// Appends enum types to Enc and adds the encoding to the cache.
appendEnumType(SmallStringEnc & Enc,const EnumType * ET,TypeStringCache & TSC,const IdentifierInfo * ID)6306 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
6307 TypeStringCache &TSC,
6308 const IdentifierInfo *ID) {
6309 // Append the cached TypeString if we have one.
6310 StringRef TypeString = TSC.lookupStr(ID);
6311 if (!TypeString.empty()) {
6312 Enc += TypeString;
6313 return true;
6314 }
6315
6316 size_t Start = Enc.size();
6317 Enc += "e(";
6318 if (ID)
6319 Enc += ID->getName();
6320 Enc += "){";
6321
6322 // We collect all encoded enumerations and order them alphanumerically.
6323 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
6324 SmallVector<FieldEncoding, 16> FE;
6325 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
6326 ++I) {
6327 SmallStringEnc EnumEnc;
6328 EnumEnc += "m(";
6329 EnumEnc += I->getName();
6330 EnumEnc += "){";
6331 I->getInitVal().toString(EnumEnc);
6332 EnumEnc += '}';
6333 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
6334 }
6335 std::sort(FE.begin(), FE.end());
6336 unsigned E = FE.size();
6337 for (unsigned I = 0; I != E; ++I) {
6338 if (I)
6339 Enc += ',';
6340 Enc += FE[I].str();
6341 }
6342 }
6343 Enc += '}';
6344 TSC.addIfComplete(ID, Enc.substr(Start), false);
6345 return true;
6346 }
6347
6348 /// Appends type's qualifier to Enc.
6349 /// This is done prior to appending the type's encoding.
appendQualifier(SmallStringEnc & Enc,QualType QT)6350 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
6351 // Qualifiers are emitted in alphabetical order.
6352 static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"};
6353 int Lookup = 0;
6354 if (QT.isConstQualified())
6355 Lookup += 1<<0;
6356 if (QT.isRestrictQualified())
6357 Lookup += 1<<1;
6358 if (QT.isVolatileQualified())
6359 Lookup += 1<<2;
6360 Enc += Table[Lookup];
6361 }
6362
6363 /// Appends built-in types to Enc.
appendBuiltinType(SmallStringEnc & Enc,const BuiltinType * BT)6364 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
6365 const char *EncType;
6366 switch (BT->getKind()) {
6367 case BuiltinType::Void:
6368 EncType = "0";
6369 break;
6370 case BuiltinType::Bool:
6371 EncType = "b";
6372 break;
6373 case BuiltinType::Char_U:
6374 EncType = "uc";
6375 break;
6376 case BuiltinType::UChar:
6377 EncType = "uc";
6378 break;
6379 case BuiltinType::SChar:
6380 EncType = "sc";
6381 break;
6382 case BuiltinType::UShort:
6383 EncType = "us";
6384 break;
6385 case BuiltinType::Short:
6386 EncType = "ss";
6387 break;
6388 case BuiltinType::UInt:
6389 EncType = "ui";
6390 break;
6391 case BuiltinType::Int:
6392 EncType = "si";
6393 break;
6394 case BuiltinType::ULong:
6395 EncType = "ul";
6396 break;
6397 case BuiltinType::Long:
6398 EncType = "sl";
6399 break;
6400 case BuiltinType::ULongLong:
6401 EncType = "ull";
6402 break;
6403 case BuiltinType::LongLong:
6404 EncType = "sll";
6405 break;
6406 case BuiltinType::Float:
6407 EncType = "ft";
6408 break;
6409 case BuiltinType::Double:
6410 EncType = "d";
6411 break;
6412 case BuiltinType::LongDouble:
6413 EncType = "ld";
6414 break;
6415 default:
6416 return false;
6417 }
6418 Enc += EncType;
6419 return true;
6420 }
6421
6422 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
appendPointerType(SmallStringEnc & Enc,const PointerType * PT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)6423 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
6424 const CodeGen::CodeGenModule &CGM,
6425 TypeStringCache &TSC) {
6426 Enc += "p(";
6427 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
6428 return false;
6429 Enc += ')';
6430 return true;
6431 }
6432
6433 /// Appends array encoding to Enc before calling appendType for the element.
appendArrayType(SmallStringEnc & Enc,QualType QT,const ArrayType * AT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC,StringRef NoSizeEnc)6434 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
6435 const ArrayType *AT,
6436 const CodeGen::CodeGenModule &CGM,
6437 TypeStringCache &TSC, StringRef NoSizeEnc) {
6438 if (AT->getSizeModifier() != ArrayType::Normal)
6439 return false;
6440 Enc += "a(";
6441 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
6442 CAT->getSize().toStringUnsigned(Enc);
6443 else
6444 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
6445 Enc += ':';
6446 // The Qualifiers should be attached to the type rather than the array.
6447 appendQualifier(Enc, QT);
6448 if (!appendType(Enc, AT->getElementType(), CGM, TSC))
6449 return false;
6450 Enc += ')';
6451 return true;
6452 }
6453
6454 /// Appends a function encoding to Enc, calling appendType for the return type
6455 /// and the arguments.
appendFunctionType(SmallStringEnc & Enc,const FunctionType * FT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)6456 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
6457 const CodeGen::CodeGenModule &CGM,
6458 TypeStringCache &TSC) {
6459 Enc += "f{";
6460 if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
6461 return false;
6462 Enc += "}(";
6463 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
6464 // N.B. we are only interested in the adjusted param types.
6465 auto I = FPT->param_type_begin();
6466 auto E = FPT->param_type_end();
6467 if (I != E) {
6468 do {
6469 if (!appendType(Enc, *I, CGM, TSC))
6470 return false;
6471 ++I;
6472 if (I != E)
6473 Enc += ',';
6474 } while (I != E);
6475 if (FPT->isVariadic())
6476 Enc += ",va";
6477 } else {
6478 if (FPT->isVariadic())
6479 Enc += "va";
6480 else
6481 Enc += '0';
6482 }
6483 }
6484 Enc += ')';
6485 return true;
6486 }
6487
6488 /// Handles the type's qualifier before dispatching a call to handle specific
6489 /// type encodings.
appendType(SmallStringEnc & Enc,QualType QType,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)6490 static bool appendType(SmallStringEnc &Enc, QualType QType,
6491 const CodeGen::CodeGenModule &CGM,
6492 TypeStringCache &TSC) {
6493
6494 QualType QT = QType.getCanonicalType();
6495
6496 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
6497 // The Qualifiers should be attached to the type rather than the array.
6498 // Thus we don't call appendQualifier() here.
6499 return appendArrayType(Enc, QT, AT, CGM, TSC, "");
6500
6501 appendQualifier(Enc, QT);
6502
6503 if (const BuiltinType *BT = QT->getAs<BuiltinType>())
6504 return appendBuiltinType(Enc, BT);
6505
6506 if (const PointerType *PT = QT->getAs<PointerType>())
6507 return appendPointerType(Enc, PT, CGM, TSC);
6508
6509 if (const EnumType *ET = QT->getAs<EnumType>())
6510 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
6511
6512 if (const RecordType *RT = QT->getAsStructureType())
6513 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
6514
6515 if (const RecordType *RT = QT->getAsUnionType())
6516 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
6517
6518 if (const FunctionType *FT = QT->getAs<FunctionType>())
6519 return appendFunctionType(Enc, FT, CGM, TSC);
6520
6521 return false;
6522 }
6523
getTypeString(SmallStringEnc & Enc,const Decl * D,CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)6524 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
6525 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
6526 if (!D)
6527 return false;
6528
6529 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6530 if (FD->getLanguageLinkage() != CLanguageLinkage)
6531 return false;
6532 return appendType(Enc, FD->getType(), CGM, TSC);
6533 }
6534
6535 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
6536 if (VD->getLanguageLinkage() != CLanguageLinkage)
6537 return false;
6538 QualType QT = VD->getType().getCanonicalType();
6539 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
6540 // Global ArrayTypes are given a size of '*' if the size is unknown.
6541 // The Qualifiers should be attached to the type rather than the array.
6542 // Thus we don't call appendQualifier() here.
6543 return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
6544 }
6545 return appendType(Enc, QT, CGM, TSC);
6546 }
6547 return false;
6548 }
6549
6550
6551 //===----------------------------------------------------------------------===//
6552 // Driver code
6553 //===----------------------------------------------------------------------===//
6554
getTargetCodeGenInfo()6555 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
6556 if (TheTargetCodeGenInfo)
6557 return *TheTargetCodeGenInfo;
6558
6559 const llvm::Triple &Triple = getTarget().getTriple();
6560 switch (Triple.getArch()) {
6561 default:
6562 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
6563
6564 case llvm::Triple::le32:
6565 return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
6566 case llvm::Triple::mips:
6567 case llvm::Triple::mipsel:
6568 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
6569
6570 case llvm::Triple::mips64:
6571 case llvm::Triple::mips64el:
6572 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
6573
6574 case llvm::Triple::aarch64:
6575 case llvm::Triple::aarch64_be:
6576 case llvm::Triple::arm64:
6577 case llvm::Triple::arm64_be: {
6578 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
6579 if (getTarget().getABI() == "darwinpcs")
6580 Kind = AArch64ABIInfo::DarwinPCS;
6581
6582 return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind));
6583 }
6584
6585 case llvm::Triple::arm:
6586 case llvm::Triple::armeb:
6587 case llvm::Triple::thumb:
6588 case llvm::Triple::thumbeb:
6589 {
6590 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
6591 if (getTarget().getABI() == "apcs-gnu")
6592 Kind = ARMABIInfo::APCS;
6593 else if (CodeGenOpts.FloatABI == "hard" ||
6594 (CodeGenOpts.FloatABI != "soft" &&
6595 Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
6596 Kind = ARMABIInfo::AAPCS_VFP;
6597
6598 switch (Triple.getOS()) {
6599 case llvm::Triple::NaCl:
6600 return *(TheTargetCodeGenInfo =
6601 new NaClARMTargetCodeGenInfo(Types, Kind));
6602 default:
6603 return *(TheTargetCodeGenInfo =
6604 new ARMTargetCodeGenInfo(Types, Kind));
6605 }
6606 }
6607
6608 case llvm::Triple::ppc:
6609 return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
6610 case llvm::Triple::ppc64:
6611 if (Triple.isOSBinFormatELF())
6612 return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
6613 else
6614 return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
6615 case llvm::Triple::ppc64le:
6616 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
6617 return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
6618
6619 case llvm::Triple::nvptx:
6620 case llvm::Triple::nvptx64:
6621 return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
6622
6623 case llvm::Triple::msp430:
6624 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
6625
6626 case llvm::Triple::systemz:
6627 return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
6628
6629 case llvm::Triple::tce:
6630 return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
6631
6632 case llvm::Triple::x86: {
6633 bool IsDarwinVectorABI = Triple.isOSDarwin();
6634 bool IsSmallStructInRegABI =
6635 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
6636 bool IsWin32FloatStructABI = Triple.isWindowsMSVCEnvironment();
6637
6638 if (Triple.getOS() == llvm::Triple::Win32) {
6639 return *(TheTargetCodeGenInfo =
6640 new WinX86_32TargetCodeGenInfo(Types,
6641 IsDarwinVectorABI, IsSmallStructInRegABI,
6642 IsWin32FloatStructABI,
6643 CodeGenOpts.NumRegisterParameters));
6644 } else {
6645 return *(TheTargetCodeGenInfo =
6646 new X86_32TargetCodeGenInfo(Types,
6647 IsDarwinVectorABI, IsSmallStructInRegABI,
6648 IsWin32FloatStructABI,
6649 CodeGenOpts.NumRegisterParameters));
6650 }
6651 }
6652
6653 case llvm::Triple::x86_64: {
6654 bool HasAVX = getTarget().getABI() == "avx";
6655
6656 switch (Triple.getOS()) {
6657 case llvm::Triple::Win32:
6658 return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
6659 case llvm::Triple::NaCl:
6660 return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types,
6661 HasAVX));
6662 default:
6663 return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
6664 HasAVX));
6665 }
6666 }
6667 case llvm::Triple::hexagon:
6668 return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
6669 case llvm::Triple::sparcv9:
6670 return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
6671 case llvm::Triple::xcore:
6672 return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types));
6673 }
6674 }
6675