• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CodeGenFunction.h"
19 #include "clang/AST/RecordLayout.h"
20 #include "clang/CodeGen/CGFunctionInfo.h"
21 #include "clang/Frontend/CodeGenOptions.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Type.h"
25 #include "llvm/Support/raw_ostream.h"
26 
27 #include <algorithm>    // std::sort
28 
29 using namespace clang;
30 using namespace CodeGen;
31 
AssignToArrayRange(CodeGen::CGBuilderTy & Builder,llvm::Value * Array,llvm::Value * Value,unsigned FirstIndex,unsigned LastIndex)32 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
33                                llvm::Value *Array,
34                                llvm::Value *Value,
35                                unsigned FirstIndex,
36                                unsigned LastIndex) {
37   // Alternatively, we could emit this as a loop in the source.
38   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
39     llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
40     Builder.CreateStore(Value, Cell);
41   }
42 }
43 
isAggregateTypeForABI(QualType T)44 static bool isAggregateTypeForABI(QualType T) {
45   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
46          T->isMemberFunctionPointerType();
47 }
48 
~ABIInfo()49 ABIInfo::~ABIInfo() {}
50 
getRecordArgABI(const RecordType * RT,CGCXXABI & CXXABI)51 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
52                                               CGCXXABI &CXXABI) {
53   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
54   if (!RD)
55     return CGCXXABI::RAA_Default;
56   return CXXABI.getRecordArgABI(RD);
57 }
58 
getRecordArgABI(QualType T,CGCXXABI & CXXABI)59 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
60                                               CGCXXABI &CXXABI) {
61   const RecordType *RT = T->getAs<RecordType>();
62   if (!RT)
63     return CGCXXABI::RAA_Default;
64   return getRecordArgABI(RT, CXXABI);
65 }
66 
getCXXABI() const67 CGCXXABI &ABIInfo::getCXXABI() const {
68   return CGT.getCXXABI();
69 }
70 
getContext() const71 ASTContext &ABIInfo::getContext() const {
72   return CGT.getContext();
73 }
74 
getVMContext() const75 llvm::LLVMContext &ABIInfo::getVMContext() const {
76   return CGT.getLLVMContext();
77 }
78 
getDataLayout() const79 const llvm::DataLayout &ABIInfo::getDataLayout() const {
80   return CGT.getDataLayout();
81 }
82 
getTarget() const83 const TargetInfo &ABIInfo::getTarget() const {
84   return CGT.getTarget();
85 }
86 
dump() const87 void ABIArgInfo::dump() const {
88   raw_ostream &OS = llvm::errs();
89   OS << "(ABIArgInfo Kind=";
90   switch (TheKind) {
91   case Direct:
92     OS << "Direct Type=";
93     if (llvm::Type *Ty = getCoerceToType())
94       Ty->print(OS);
95     else
96       OS << "null";
97     break;
98   case Extend:
99     OS << "Extend";
100     break;
101   case Ignore:
102     OS << "Ignore";
103     break;
104   case InAlloca:
105     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
106     break;
107   case Indirect:
108     OS << "Indirect Align=" << getIndirectAlign()
109        << " ByVal=" << getIndirectByVal()
110        << " Realign=" << getIndirectRealign();
111     break;
112   case Expand:
113     OS << "Expand";
114     break;
115   }
116   OS << ")\n";
117 }
118 
~TargetCodeGenInfo()119 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
120 
121 // If someone can figure out a general rule for this, that would be great.
122 // It's probably just doomed to be platform-dependent, though.
getSizeOfUnwindException() const123 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
124   // Verified for:
125   //   x86-64     FreeBSD, Linux, Darwin
126   //   x86-32     FreeBSD, Linux, Darwin
127   //   PowerPC    Linux, Darwin
128   //   ARM        Darwin (*not* EABI)
129   //   AArch64    Linux
130   return 32;
131 }
132 
isNoProtoCallVariadic(const CallArgList & args,const FunctionNoProtoType * fnType) const133 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
134                                      const FunctionNoProtoType *fnType) const {
135   // The following conventions are known to require this to be false:
136   //   x86_stdcall
137   //   MIPS
138   // For everything else, we just prefer false unless we opt out.
139   return false;
140 }
141 
142 void
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const143 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
144                                              llvm::SmallString<24> &Opt) const {
145   // This assumes the user is passing a library name like "rt" instead of a
146   // filename like "librt.a/so", and that they don't care whether it's static or
147   // dynamic.
148   Opt = "-l";
149   Opt += Lib;
150 }
151 
152 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
153 
154 /// isEmptyField - Return true iff a the field is "empty", that is it
155 /// is an unnamed bit-field or an (array of) empty record(s).
isEmptyField(ASTContext & Context,const FieldDecl * FD,bool AllowArrays)156 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
157                          bool AllowArrays) {
158   if (FD->isUnnamedBitfield())
159     return true;
160 
161   QualType FT = FD->getType();
162 
163   // Constant arrays of empty records count as empty, strip them off.
164   // Constant arrays of zero length always count as empty.
165   if (AllowArrays)
166     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
167       if (AT->getSize() == 0)
168         return true;
169       FT = AT->getElementType();
170     }
171 
172   const RecordType *RT = FT->getAs<RecordType>();
173   if (!RT)
174     return false;
175 
176   // C++ record fields are never empty, at least in the Itanium ABI.
177   //
178   // FIXME: We should use a predicate for whether this behavior is true in the
179   // current ABI.
180   if (isa<CXXRecordDecl>(RT->getDecl()))
181     return false;
182 
183   return isEmptyRecord(Context, FT, AllowArrays);
184 }
185 
186 /// isEmptyRecord - Return true iff a structure contains only empty
187 /// fields. Note that a structure with a flexible array member is not
188 /// considered empty.
isEmptyRecord(ASTContext & Context,QualType T,bool AllowArrays)189 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
190   const RecordType *RT = T->getAs<RecordType>();
191   if (!RT)
192     return 0;
193   const RecordDecl *RD = RT->getDecl();
194   if (RD->hasFlexibleArrayMember())
195     return false;
196 
197   // If this is a C++ record, check the bases first.
198   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
199     for (const auto &I : CXXRD->bases())
200       if (!isEmptyRecord(Context, I.getType(), true))
201         return false;
202 
203   for (const auto *I : RD->fields())
204     if (!isEmptyField(Context, I, AllowArrays))
205       return false;
206   return true;
207 }
208 
209 /// isSingleElementStruct - Determine if a structure is a "single
210 /// element struct", i.e. it has exactly one non-empty field or
211 /// exactly one field which is itself a single element
212 /// struct. Structures with flexible array members are never
213 /// considered single element structs.
214 ///
215 /// \return The field declaration for the single non-empty field, if
216 /// it exists.
isSingleElementStruct(QualType T,ASTContext & Context)217 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
218   const RecordType *RT = T->getAsStructureType();
219   if (!RT)
220     return nullptr;
221 
222   const RecordDecl *RD = RT->getDecl();
223   if (RD->hasFlexibleArrayMember())
224     return nullptr;
225 
226   const Type *Found = nullptr;
227 
228   // If this is a C++ record, check the bases first.
229   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
230     for (const auto &I : CXXRD->bases()) {
231       // Ignore empty records.
232       if (isEmptyRecord(Context, I.getType(), true))
233         continue;
234 
235       // If we already found an element then this isn't a single-element struct.
236       if (Found)
237         return nullptr;
238 
239       // If this is non-empty and not a single element struct, the composite
240       // cannot be a single element struct.
241       Found = isSingleElementStruct(I.getType(), Context);
242       if (!Found)
243         return nullptr;
244     }
245   }
246 
247   // Check for single element.
248   for (const auto *FD : RD->fields()) {
249     QualType FT = FD->getType();
250 
251     // Ignore empty fields.
252     if (isEmptyField(Context, FD, true))
253       continue;
254 
255     // If we already found an element then this isn't a single-element
256     // struct.
257     if (Found)
258       return nullptr;
259 
260     // Treat single element arrays as the element.
261     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
262       if (AT->getSize().getZExtValue() != 1)
263         break;
264       FT = AT->getElementType();
265     }
266 
267     if (!isAggregateTypeForABI(FT)) {
268       Found = FT.getTypePtr();
269     } else {
270       Found = isSingleElementStruct(FT, Context);
271       if (!Found)
272         return nullptr;
273     }
274   }
275 
276   // We don't consider a struct a single-element struct if it has
277   // padding beyond the element type.
278   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
279     return nullptr;
280 
281   return Found;
282 }
283 
is32Or64BitBasicType(QualType Ty,ASTContext & Context)284 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
285   // Treat complex types as the element type.
286   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
287     Ty = CTy->getElementType();
288 
289   // Check for a type which we know has a simple scalar argument-passing
290   // convention without any padding.  (We're specifically looking for 32
291   // and 64-bit integer and integer-equivalents, float, and double.)
292   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
293       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
294     return false;
295 
296   uint64_t Size = Context.getTypeSize(Ty);
297   return Size == 32 || Size == 64;
298 }
299 
300 /// canExpandIndirectArgument - Test whether an argument type which is to be
301 /// passed indirectly (on the stack) would have the equivalent layout if it was
302 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
303 /// inhibiting optimizations.
304 ///
305 // FIXME: This predicate is missing many cases, currently it just follows
306 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
307 // should probably make this smarter, or better yet make the LLVM backend
308 // capable of handling it.
canExpandIndirectArgument(QualType Ty,ASTContext & Context)309 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
310   // We can only expand structure types.
311   const RecordType *RT = Ty->getAs<RecordType>();
312   if (!RT)
313     return false;
314 
315   // We can only expand (C) structures.
316   //
317   // FIXME: This needs to be generalized to handle classes as well.
318   const RecordDecl *RD = RT->getDecl();
319   if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
320     return false;
321 
322   uint64_t Size = 0;
323 
324   for (const auto *FD : RD->fields()) {
325     if (!is32Or64BitBasicType(FD->getType(), Context))
326       return false;
327 
328     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
329     // how to expand them yet, and the predicate for telling if a bitfield still
330     // counts as "basic" is more complicated than what we were doing previously.
331     if (FD->isBitField())
332       return false;
333 
334     Size += Context.getTypeSize(FD->getType());
335   }
336 
337   // Make sure there are not any holes in the struct.
338   if (Size != Context.getTypeSize(Ty))
339     return false;
340 
341   return true;
342 }
343 
344 namespace {
345 /// DefaultABIInfo - The default implementation for ABI specific
346 /// details. This implementation provides information which results in
347 /// self-consistent and sensible LLVM IR generation, but does not
348 /// conform to any particular ABI.
349 class DefaultABIInfo : public ABIInfo {
350 public:
DefaultABIInfo(CodeGen::CodeGenTypes & CGT)351   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
352 
353   ABIArgInfo classifyReturnType(QualType RetTy) const;
354   ABIArgInfo classifyArgumentType(QualType RetTy) const;
355 
computeInfo(CGFunctionInfo & FI) const356   void computeInfo(CGFunctionInfo &FI) const override {
357     if (!getCXXABI().classifyReturnType(FI))
358       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
359     for (auto &I : FI.arguments())
360       I.info = classifyArgumentType(I.type);
361   }
362 
363   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
364                          CodeGenFunction &CGF) const override;
365 };
366 
367 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
368 public:
DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)369   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
370     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
371 };
372 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const373 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
374                                        CodeGenFunction &CGF) const {
375   return nullptr;
376 }
377 
classifyArgumentType(QualType Ty) const378 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
379   if (isAggregateTypeForABI(Ty))
380     return ABIArgInfo::getIndirect(0);
381 
382   // Treat an enum type as its underlying type.
383   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
384     Ty = EnumTy->getDecl()->getIntegerType();
385 
386   return (Ty->isPromotableIntegerType() ?
387           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
388 }
389 
classifyReturnType(QualType RetTy) const390 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
391   if (RetTy->isVoidType())
392     return ABIArgInfo::getIgnore();
393 
394   if (isAggregateTypeForABI(RetTy))
395     return ABIArgInfo::getIndirect(0);
396 
397   // Treat an enum type as its underlying type.
398   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
399     RetTy = EnumTy->getDecl()->getIntegerType();
400 
401   return (RetTy->isPromotableIntegerType() ?
402           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
403 }
404 
405 //===----------------------------------------------------------------------===//
406 // le32/PNaCl bitcode ABI Implementation
407 //
408 // This is a simplified version of the x86_32 ABI.  Arguments and return values
409 // are always passed on the stack.
410 //===----------------------------------------------------------------------===//
411 
412 class PNaClABIInfo : public ABIInfo {
413  public:
PNaClABIInfo(CodeGen::CodeGenTypes & CGT)414   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
415 
416   ABIArgInfo classifyReturnType(QualType RetTy) const;
417   ABIArgInfo classifyArgumentType(QualType RetTy) const;
418 
419   void computeInfo(CGFunctionInfo &FI) const override;
420   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
421                          CodeGenFunction &CGF) const override;
422 };
423 
424 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
425  public:
PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)426   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
427     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
428 };
429 
computeInfo(CGFunctionInfo & FI) const430 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
431   if (!getCXXABI().classifyReturnType(FI))
432     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
433 
434   for (auto &I : FI.arguments())
435     I.info = classifyArgumentType(I.type);
436 }
437 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const438 llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
439                                        CodeGenFunction &CGF) const {
440   return nullptr;
441 }
442 
443 /// \brief Classify argument of given type \p Ty.
classifyArgumentType(QualType Ty) const444 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
445   if (isAggregateTypeForABI(Ty)) {
446     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
447       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
448     return ABIArgInfo::getIndirect(0);
449   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
450     // Treat an enum type as its underlying type.
451     Ty = EnumTy->getDecl()->getIntegerType();
452   } else if (Ty->isFloatingType()) {
453     // Floating-point types don't go inreg.
454     return ABIArgInfo::getDirect();
455   }
456 
457   return (Ty->isPromotableIntegerType() ?
458           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
459 }
460 
classifyReturnType(QualType RetTy) const461 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
462   if (RetTy->isVoidType())
463     return ABIArgInfo::getIgnore();
464 
465   // In the PNaCl ABI we always return records/structures on the stack.
466   if (isAggregateTypeForABI(RetTy))
467     return ABIArgInfo::getIndirect(0);
468 
469   // Treat an enum type as its underlying type.
470   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
471     RetTy = EnumTy->getDecl()->getIntegerType();
472 
473   return (RetTy->isPromotableIntegerType() ?
474           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
475 }
476 
477 /// IsX86_MMXType - Return true if this is an MMX type.
IsX86_MMXType(llvm::Type * IRType)478 bool IsX86_MMXType(llvm::Type *IRType) {
479   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
480   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
481     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
482     IRType->getScalarSizeInBits() != 64;
483 }
484 
X86AdjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty)485 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
486                                           StringRef Constraint,
487                                           llvm::Type* Ty) {
488   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
489     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
490       // Invalid MMX constraint
491       return nullptr;
492     }
493 
494     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
495   }
496 
497   // No operation needed
498   return Ty;
499 }
500 
501 //===----------------------------------------------------------------------===//
502 // X86-32 ABI Implementation
503 //===----------------------------------------------------------------------===//
504 
505 /// \brief Similar to llvm::CCState, but for Clang.
506 struct CCState {
CCState__anonc5f222370111::CCState507   CCState(unsigned CC) : CC(CC), FreeRegs(0) {}
508 
509   unsigned CC;
510   unsigned FreeRegs;
511   unsigned StackOffset;
512   bool UseInAlloca;
513 };
514 
515 /// X86_32ABIInfo - The X86-32 ABI information.
516 class X86_32ABIInfo : public ABIInfo {
517   enum Class {
518     Integer,
519     Float
520   };
521 
522   static const unsigned MinABIStackAlignInBytes = 4;
523 
524   bool IsDarwinVectorABI;
525   bool IsSmallStructInRegABI;
526   bool IsWin32StructABI;
527   unsigned DefaultNumRegisterParameters;
528 
isRegisterSize(unsigned Size)529   static bool isRegisterSize(unsigned Size) {
530     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
531   }
532 
533   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
534 
535   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
536   /// such that the argument will be passed in memory.
537   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
538 
539   ABIArgInfo getIndirectReturnResult(CCState &State) const;
540 
541   /// \brief Return the alignment to use for the given type on the stack.
542   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
543 
544   Class classify(QualType Ty) const;
545   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
546   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
547   bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const;
548 
549   /// \brief Rewrite the function info so that all memory arguments use
550   /// inalloca.
551   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
552 
553   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
554                            unsigned &StackOffset, ABIArgInfo &Info,
555                            QualType Type) const;
556 
557 public:
558 
559   void computeInfo(CGFunctionInfo &FI) const override;
560   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
561                          CodeGenFunction &CGF) const override;
562 
X86_32ABIInfo(CodeGen::CodeGenTypes & CGT,bool d,bool p,bool w,unsigned r)563   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w,
564                 unsigned r)
565     : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
566       IsWin32StructABI(w), DefaultNumRegisterParameters(r) {}
567 };
568 
569 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
570 public:
X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool d,bool p,bool w,unsigned r)571   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
572       bool d, bool p, bool w, unsigned r)
573     :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {}
574 
575   static bool isStructReturnInRegABI(
576       const llvm::Triple &Triple, const CodeGenOptions &Opts);
577 
578   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
579                            CodeGen::CodeGenModule &CGM) const override;
580 
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const581   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
582     // Darwin uses different dwarf register numbers for EH.
583     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
584     return 4;
585   }
586 
587   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
588                                llvm::Value *Address) const override;
589 
adjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty) const590   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
591                                   StringRef Constraint,
592                                   llvm::Type* Ty) const override {
593     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
594   }
595 
596   llvm::Constant *
getUBSanFunctionSignature(CodeGen::CodeGenModule & CGM) const597   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
598     unsigned Sig = (0xeb << 0) |  // jmp rel8
599                    (0x06 << 8) |  //           .+0x08
600                    ('F' << 16) |
601                    ('T' << 24);
602     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
603   }
604 
605 };
606 
607 }
608 
609 /// shouldReturnTypeInRegister - Determine if the given type should be
610 /// passed in a register (for the Darwin ABI).
shouldReturnTypeInRegister(QualType Ty,ASTContext & Context) const611 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
612                                                ASTContext &Context) const {
613   uint64_t Size = Context.getTypeSize(Ty);
614 
615   // Type must be register sized.
616   if (!isRegisterSize(Size))
617     return false;
618 
619   if (Ty->isVectorType()) {
620     // 64- and 128- bit vectors inside structures are not returned in
621     // registers.
622     if (Size == 64 || Size == 128)
623       return false;
624 
625     return true;
626   }
627 
628   // If this is a builtin, pointer, enum, complex type, member pointer, or
629   // member function pointer it is ok.
630   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
631       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
632       Ty->isBlockPointerType() || Ty->isMemberPointerType())
633     return true;
634 
635   // Arrays are treated like records.
636   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
637     return shouldReturnTypeInRegister(AT->getElementType(), Context);
638 
639   // Otherwise, it must be a record type.
640   const RecordType *RT = Ty->getAs<RecordType>();
641   if (!RT) return false;
642 
643   // FIXME: Traverse bases here too.
644 
645   // Structure types are passed in register if all fields would be
646   // passed in a register.
647   for (const auto *FD : RT->getDecl()->fields()) {
648     // Empty fields are ignored.
649     if (isEmptyField(Context, FD, true))
650       continue;
651 
652     // Check fields recursively.
653     if (!shouldReturnTypeInRegister(FD->getType(), Context))
654       return false;
655   }
656   return true;
657 }
658 
getIndirectReturnResult(CCState & State) const659 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const {
660   // If the return value is indirect, then the hidden argument is consuming one
661   // integer register.
662   if (State.FreeRegs) {
663     --State.FreeRegs;
664     return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false);
665   }
666   return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false);
667 }
668 
classifyReturnType(QualType RetTy,CCState & State) const669 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, CCState &State) const {
670   if (RetTy->isVoidType())
671     return ABIArgInfo::getIgnore();
672 
673   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
674     // On Darwin, some vectors are returned in registers.
675     if (IsDarwinVectorABI) {
676       uint64_t Size = getContext().getTypeSize(RetTy);
677 
678       // 128-bit vectors are a special case; they are returned in
679       // registers and we need to make sure to pick a type the LLVM
680       // backend will like.
681       if (Size == 128)
682         return ABIArgInfo::getDirect(llvm::VectorType::get(
683                   llvm::Type::getInt64Ty(getVMContext()), 2));
684 
685       // Always return in register if it fits in a general purpose
686       // register, or if it is 64 bits and has a single element.
687       if ((Size == 8 || Size == 16 || Size == 32) ||
688           (Size == 64 && VT->getNumElements() == 1))
689         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
690                                                             Size));
691 
692       return getIndirectReturnResult(State);
693     }
694 
695     return ABIArgInfo::getDirect();
696   }
697 
698   if (isAggregateTypeForABI(RetTy)) {
699     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
700       // Structures with flexible arrays are always indirect.
701       if (RT->getDecl()->hasFlexibleArrayMember())
702         return getIndirectReturnResult(State);
703     }
704 
705     // If specified, structs and unions are always indirect.
706     if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
707       return getIndirectReturnResult(State);
708 
709     // Small structures which are register sized are generally returned
710     // in a register.
711     if (shouldReturnTypeInRegister(RetTy, getContext())) {
712       uint64_t Size = getContext().getTypeSize(RetTy);
713 
714       // As a special-case, if the struct is a "single-element" struct, and
715       // the field is of type "float" or "double", return it in a
716       // floating-point register. (MSVC does not apply this special case.)
717       // We apply a similar transformation for pointer types to improve the
718       // quality of the generated IR.
719       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
720         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
721             || SeltTy->hasPointerRepresentation())
722           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
723 
724       // FIXME: We should be able to narrow this integer in cases with dead
725       // padding.
726       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
727     }
728 
729     return getIndirectReturnResult(State);
730   }
731 
732   // Treat an enum type as its underlying type.
733   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
734     RetTy = EnumTy->getDecl()->getIntegerType();
735 
736   return (RetTy->isPromotableIntegerType() ?
737           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
738 }
739 
isSSEVectorType(ASTContext & Context,QualType Ty)740 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
741   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
742 }
743 
isRecordWithSSEVectorType(ASTContext & Context,QualType Ty)744 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
745   const RecordType *RT = Ty->getAs<RecordType>();
746   if (!RT)
747     return 0;
748   const RecordDecl *RD = RT->getDecl();
749 
750   // If this is a C++ record, check the bases first.
751   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
752     for (const auto &I : CXXRD->bases())
753       if (!isRecordWithSSEVectorType(Context, I.getType()))
754         return false;
755 
756   for (const auto *i : RD->fields()) {
757     QualType FT = i->getType();
758 
759     if (isSSEVectorType(Context, FT))
760       return true;
761 
762     if (isRecordWithSSEVectorType(Context, FT))
763       return true;
764   }
765 
766   return false;
767 }
768 
getTypeStackAlignInBytes(QualType Ty,unsigned Align) const769 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
770                                                  unsigned Align) const {
771   // Otherwise, if the alignment is less than or equal to the minimum ABI
772   // alignment, just use the default; the backend will handle this.
773   if (Align <= MinABIStackAlignInBytes)
774     return 0; // Use default alignment.
775 
776   // On non-Darwin, the stack type alignment is always 4.
777   if (!IsDarwinVectorABI) {
778     // Set explicit alignment, since we may need to realign the top.
779     return MinABIStackAlignInBytes;
780   }
781 
782   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
783   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
784                       isRecordWithSSEVectorType(getContext(), Ty)))
785     return 16;
786 
787   return MinABIStackAlignInBytes;
788 }
789 
getIndirectResult(QualType Ty,bool ByVal,CCState & State) const790 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
791                                             CCState &State) const {
792   if (!ByVal) {
793     if (State.FreeRegs) {
794       --State.FreeRegs; // Non-byval indirects just use one pointer.
795       return ABIArgInfo::getIndirectInReg(0, false);
796     }
797     return ABIArgInfo::getIndirect(0, false);
798   }
799 
800   // Compute the byval alignment.
801   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
802   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
803   if (StackAlign == 0)
804     return ABIArgInfo::getIndirect(4, /*ByVal=*/true);
805 
806   // If the stack alignment is less than the type alignment, realign the
807   // argument.
808   bool Realign = TypeAlign > StackAlign;
809   return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign);
810 }
811 
classify(QualType Ty) const812 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
813   const Type *T = isSingleElementStruct(Ty, getContext());
814   if (!T)
815     T = Ty.getTypePtr();
816 
817   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
818     BuiltinType::Kind K = BT->getKind();
819     if (K == BuiltinType::Float || K == BuiltinType::Double)
820       return Float;
821   }
822   return Integer;
823 }
824 
shouldUseInReg(QualType Ty,CCState & State,bool & NeedsPadding) const825 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State,
826                                    bool &NeedsPadding) const {
827   NeedsPadding = false;
828   Class C = classify(Ty);
829   if (C == Float)
830     return false;
831 
832   unsigned Size = getContext().getTypeSize(Ty);
833   unsigned SizeInRegs = (Size + 31) / 32;
834 
835   if (SizeInRegs == 0)
836     return false;
837 
838   if (SizeInRegs > State.FreeRegs) {
839     State.FreeRegs = 0;
840     return false;
841   }
842 
843   State.FreeRegs -= SizeInRegs;
844 
845   if (State.CC == llvm::CallingConv::X86_FastCall) {
846     if (Size > 32)
847       return false;
848 
849     if (Ty->isIntegralOrEnumerationType())
850       return true;
851 
852     if (Ty->isPointerType())
853       return true;
854 
855     if (Ty->isReferenceType())
856       return true;
857 
858     if (State.FreeRegs)
859       NeedsPadding = true;
860 
861     return false;
862   }
863 
864   return true;
865 }
866 
classifyArgumentType(QualType Ty,CCState & State) const867 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
868                                                CCState &State) const {
869   // FIXME: Set alignment on indirect arguments.
870   if (isAggregateTypeForABI(Ty)) {
871     if (const RecordType *RT = Ty->getAs<RecordType>()) {
872       // Check with the C++ ABI first.
873       CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
874       if (RAA == CGCXXABI::RAA_Indirect) {
875         return getIndirectResult(Ty, false, State);
876       } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
877         // The field index doesn't matter, we'll fix it up later.
878         return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
879       }
880 
881       // Structs are always byval on win32, regardless of what they contain.
882       if (IsWin32StructABI)
883         return getIndirectResult(Ty, true, State);
884 
885       // Structures with flexible arrays are always indirect.
886       if (RT->getDecl()->hasFlexibleArrayMember())
887         return getIndirectResult(Ty, true, State);
888     }
889 
890     // Ignore empty structs/unions.
891     if (isEmptyRecord(getContext(), Ty, true))
892       return ABIArgInfo::getIgnore();
893 
894     llvm::LLVMContext &LLVMContext = getVMContext();
895     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
896     bool NeedsPadding;
897     if (shouldUseInReg(Ty, State, NeedsPadding)) {
898       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
899       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
900       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
901       return ABIArgInfo::getDirectInReg(Result);
902     }
903     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
904 
905     // Expand small (<= 128-bit) record types when we know that the stack layout
906     // of those arguments will match the struct. This is important because the
907     // LLVM backend isn't smart enough to remove byval, which inhibits many
908     // optimizations.
909     if (getContext().getTypeSize(Ty) <= 4*32 &&
910         canExpandIndirectArgument(Ty, getContext()))
911       return ABIArgInfo::getExpandWithPadding(
912           State.CC == llvm::CallingConv::X86_FastCall, PaddingType);
913 
914     return getIndirectResult(Ty, true, State);
915   }
916 
917   if (const VectorType *VT = Ty->getAs<VectorType>()) {
918     // On Darwin, some vectors are passed in memory, we handle this by passing
919     // it as an i8/i16/i32/i64.
920     if (IsDarwinVectorABI) {
921       uint64_t Size = getContext().getTypeSize(Ty);
922       if ((Size == 8 || Size == 16 || Size == 32) ||
923           (Size == 64 && VT->getNumElements() == 1))
924         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
925                                                             Size));
926     }
927 
928     if (IsX86_MMXType(CGT.ConvertType(Ty)))
929       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
930 
931     return ABIArgInfo::getDirect();
932   }
933 
934 
935   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
936     Ty = EnumTy->getDecl()->getIntegerType();
937 
938   bool NeedsPadding;
939   bool InReg = shouldUseInReg(Ty, State, NeedsPadding);
940 
941   if (Ty->isPromotableIntegerType()) {
942     if (InReg)
943       return ABIArgInfo::getExtendInReg();
944     return ABIArgInfo::getExtend();
945   }
946   if (InReg)
947     return ABIArgInfo::getDirectInReg();
948   return ABIArgInfo::getDirect();
949 }
950 
computeInfo(CGFunctionInfo & FI) const951 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
952   CCState State(FI.getCallingConvention());
953   if (State.CC == llvm::CallingConv::X86_FastCall)
954     State.FreeRegs = 2;
955   else if (FI.getHasRegParm())
956     State.FreeRegs = FI.getRegParm();
957   else
958     State.FreeRegs = DefaultNumRegisterParameters;
959 
960   if (!getCXXABI().classifyReturnType(FI)) {
961     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
962   } else if (FI.getReturnInfo().isIndirect()) {
963     // The C++ ABI is not aware of register usage, so we have to check if the
964     // return value was sret and put it in a register ourselves if appropriate.
965     if (State.FreeRegs) {
966       --State.FreeRegs;  // The sret parameter consumes a register.
967       FI.getReturnInfo().setInReg(true);
968     }
969   }
970 
971   bool UsedInAlloca = false;
972   for (auto &I : FI.arguments()) {
973     I.info = classifyArgumentType(I.type, State);
974     UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
975   }
976 
977   // If we needed to use inalloca for any argument, do a second pass and rewrite
978   // all the memory arguments to use inalloca.
979   if (UsedInAlloca)
980     rewriteWithInAlloca(FI);
981 }
982 
983 void
addFieldToArgStruct(SmallVector<llvm::Type *,6> & FrameFields,unsigned & StackOffset,ABIArgInfo & Info,QualType Type) const984 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
985                                    unsigned &StackOffset,
986                                    ABIArgInfo &Info, QualType Type) const {
987   assert(StackOffset % 4U == 0 && "unaligned inalloca struct");
988   Info = ABIArgInfo::getInAlloca(FrameFields.size());
989   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
990   StackOffset += getContext().getTypeSizeInChars(Type).getQuantity();
991 
992   // Insert padding bytes to respect alignment.  For x86_32, each argument is 4
993   // byte aligned.
994   if (StackOffset % 4U) {
995     unsigned OldOffset = StackOffset;
996     StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U);
997     unsigned NumBytes = StackOffset - OldOffset;
998     assert(NumBytes);
999     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1000     Ty = llvm::ArrayType::get(Ty, NumBytes);
1001     FrameFields.push_back(Ty);
1002   }
1003 }
1004 
rewriteWithInAlloca(CGFunctionInfo & FI) const1005 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1006   assert(IsWin32StructABI && "inalloca only supported on win32");
1007 
1008   // Build a packed struct type for all of the arguments in memory.
1009   SmallVector<llvm::Type *, 6> FrameFields;
1010 
1011   unsigned StackOffset = 0;
1012 
1013   // Put the sret parameter into the inalloca struct if it's in memory.
1014   ABIArgInfo &Ret = FI.getReturnInfo();
1015   if (Ret.isIndirect() && !Ret.getInReg()) {
1016     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1017     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1018     // On Windows, the hidden sret parameter is always returned in eax.
1019     Ret.setInAllocaSRet(IsWin32StructABI);
1020   }
1021 
1022   // Skip the 'this' parameter in ecx.
1023   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1024   if (FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall)
1025     ++I;
1026 
1027   // Put arguments passed in memory into the struct.
1028   for (; I != E; ++I) {
1029 
1030     // Leave ignored and inreg arguments alone.
1031     switch (I->info.getKind()) {
1032     case ABIArgInfo::Indirect:
1033       assert(I->info.getIndirectByVal());
1034       break;
1035     case ABIArgInfo::Ignore:
1036       continue;
1037     case ABIArgInfo::Direct:
1038     case ABIArgInfo::Extend:
1039       if (I->info.getInReg())
1040         continue;
1041       break;
1042     default:
1043       break;
1044     }
1045 
1046     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1047   }
1048 
1049   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1050                                         /*isPacked=*/true));
1051 }
1052 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const1053 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1054                                       CodeGenFunction &CGF) const {
1055   llvm::Type *BPP = CGF.Int8PtrPtrTy;
1056 
1057   CGBuilderTy &Builder = CGF.Builder;
1058   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1059                                                        "ap");
1060   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1061 
1062   // Compute if the address needs to be aligned
1063   unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
1064   Align = getTypeStackAlignInBytes(Ty, Align);
1065   Align = std::max(Align, 4U);
1066   if (Align > 4) {
1067     // addr = (addr + align - 1) & -align;
1068     llvm::Value *Offset =
1069       llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
1070     Addr = CGF.Builder.CreateGEP(Addr, Offset);
1071     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
1072                                                     CGF.Int32Ty);
1073     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
1074     Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1075                                       Addr->getType(),
1076                                       "ap.cur.aligned");
1077   }
1078 
1079   llvm::Type *PTy =
1080     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1081   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1082 
1083   uint64_t Offset =
1084     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
1085   llvm::Value *NextAddr =
1086     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
1087                       "ap.next");
1088   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1089 
1090   return AddrTyped;
1091 }
1092 
isStructReturnInRegABI(const llvm::Triple & Triple,const CodeGenOptions & Opts)1093 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1094     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1095   assert(Triple.getArch() == llvm::Triple::x86);
1096 
1097   switch (Opts.getStructReturnConvention()) {
1098   case CodeGenOptions::SRCK_Default:
1099     break;
1100   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1101     return false;
1102   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1103     return true;
1104   }
1105 
1106   if (Triple.isOSDarwin())
1107     return true;
1108 
1109   switch (Triple.getOS()) {
1110   case llvm::Triple::AuroraUX:
1111   case llvm::Triple::DragonFly:
1112   case llvm::Triple::FreeBSD:
1113   case llvm::Triple::OpenBSD:
1114   case llvm::Triple::Bitrig:
1115     return true;
1116   case llvm::Triple::Win32:
1117     switch (Triple.getEnvironment()) {
1118     case llvm::Triple::UnknownEnvironment:
1119     case llvm::Triple::Cygnus:
1120     case llvm::Triple::GNU:
1121     case llvm::Triple::MSVC:
1122       return true;
1123     default:
1124       return false;
1125     }
1126   default:
1127     return false;
1128   }
1129 }
1130 
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const1131 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1132                                                   llvm::GlobalValue *GV,
1133                                             CodeGen::CodeGenModule &CGM) const {
1134   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1135     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1136       // Get the LLVM function.
1137       llvm::Function *Fn = cast<llvm::Function>(GV);
1138 
1139       // Now add the 'alignstack' attribute with a value of 16.
1140       llvm::AttrBuilder B;
1141       B.addStackAlignmentAttr(16);
1142       Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1143                       llvm::AttributeSet::get(CGM.getLLVMContext(),
1144                                               llvm::AttributeSet::FunctionIndex,
1145                                               B));
1146     }
1147   }
1148 }
1149 
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const1150 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1151                                                CodeGen::CodeGenFunction &CGF,
1152                                                llvm::Value *Address) const {
1153   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1154 
1155   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1156 
1157   // 0-7 are the eight integer registers;  the order is different
1158   //   on Darwin (for EH), but the range is the same.
1159   // 8 is %eip.
1160   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1161 
1162   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1163     // 12-16 are st(0..4).  Not sure why we stop at 4.
1164     // These have size 16, which is sizeof(long double) on
1165     // platforms with 8-byte alignment for that type.
1166     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1167     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1168 
1169   } else {
1170     // 9 is %eflags, which doesn't get a size on Darwin for some
1171     // reason.
1172     Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
1173 
1174     // 11-16 are st(0..5).  Not sure why we stop at 5.
1175     // These have size 12, which is sizeof(long double) on
1176     // platforms with 4-byte alignment for that type.
1177     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1178     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1179   }
1180 
1181   return false;
1182 }
1183 
1184 //===----------------------------------------------------------------------===//
1185 // X86-64 ABI Implementation
1186 //===----------------------------------------------------------------------===//
1187 
1188 
1189 namespace {
1190 /// X86_64ABIInfo - The X86_64 ABI information.
1191 class X86_64ABIInfo : public ABIInfo {
1192   enum Class {
1193     Integer = 0,
1194     SSE,
1195     SSEUp,
1196     X87,
1197     X87Up,
1198     ComplexX87,
1199     NoClass,
1200     Memory
1201   };
1202 
1203   /// merge - Implement the X86_64 ABI merging algorithm.
1204   ///
1205   /// Merge an accumulating classification \arg Accum with a field
1206   /// classification \arg Field.
1207   ///
1208   /// \param Accum - The accumulating classification. This should
1209   /// always be either NoClass or the result of a previous merge
1210   /// call. In addition, this should never be Memory (the caller
1211   /// should just return Memory for the aggregate).
1212   static Class merge(Class Accum, Class Field);
1213 
1214   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1215   ///
1216   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1217   /// final MEMORY or SSE classes when necessary.
1218   ///
1219   /// \param AggregateSize - The size of the current aggregate in
1220   /// the classification process.
1221   ///
1222   /// \param Lo - The classification for the parts of the type
1223   /// residing in the low word of the containing object.
1224   ///
1225   /// \param Hi - The classification for the parts of the type
1226   /// residing in the higher words of the containing object.
1227   ///
1228   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1229 
1230   /// classify - Determine the x86_64 register classes in which the
1231   /// given type T should be passed.
1232   ///
1233   /// \param Lo - The classification for the parts of the type
1234   /// residing in the low word of the containing object.
1235   ///
1236   /// \param Hi - The classification for the parts of the type
1237   /// residing in the high word of the containing object.
1238   ///
1239   /// \param OffsetBase - The bit offset of this type in the
1240   /// containing object.  Some parameters are classified different
1241   /// depending on whether they straddle an eightbyte boundary.
1242   ///
1243   /// \param isNamedArg - Whether the argument in question is a "named"
1244   /// argument, as used in AMD64-ABI 3.5.7.
1245   ///
1246   /// If a word is unused its result will be NoClass; if a type should
1247   /// be passed in Memory then at least the classification of \arg Lo
1248   /// will be Memory.
1249   ///
1250   /// The \arg Lo class will be NoClass iff the argument is ignored.
1251   ///
1252   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1253   /// also be ComplexX87.
1254   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1255                 bool isNamedArg) const;
1256 
1257   llvm::Type *GetByteVectorType(QualType Ty) const;
1258   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1259                                  unsigned IROffset, QualType SourceTy,
1260                                  unsigned SourceOffset) const;
1261   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1262                                      unsigned IROffset, QualType SourceTy,
1263                                      unsigned SourceOffset) const;
1264 
1265   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1266   /// such that the argument will be returned in memory.
1267   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1268 
1269   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1270   /// such that the argument will be passed in memory.
1271   ///
1272   /// \param freeIntRegs - The number of free integer registers remaining
1273   /// available.
1274   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1275 
1276   ABIArgInfo classifyReturnType(QualType RetTy) const;
1277 
1278   ABIArgInfo classifyArgumentType(QualType Ty,
1279                                   unsigned freeIntRegs,
1280                                   unsigned &neededInt,
1281                                   unsigned &neededSSE,
1282                                   bool isNamedArg) const;
1283 
1284   bool IsIllegalVectorType(QualType Ty) const;
1285 
1286   /// The 0.98 ABI revision clarified a lot of ambiguities,
1287   /// unfortunately in ways that were not always consistent with
1288   /// certain previous compilers.  In particular, platforms which
1289   /// required strict binary compatibility with older versions of GCC
1290   /// may need to exempt themselves.
honorsRevision0_98() const1291   bool honorsRevision0_98() const {
1292     return !getTarget().getTriple().isOSDarwin();
1293   }
1294 
1295   bool HasAVX;
1296   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1297   // 64-bit hardware.
1298   bool Has64BitPointers;
1299 
1300 public:
X86_64ABIInfo(CodeGen::CodeGenTypes & CGT,bool hasavx)1301   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
1302       ABIInfo(CGT), HasAVX(hasavx),
1303       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1304   }
1305 
isPassedUsingAVXType(QualType type) const1306   bool isPassedUsingAVXType(QualType type) const {
1307     unsigned neededInt, neededSSE;
1308     // The freeIntRegs argument doesn't matter here.
1309     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1310                                            /*isNamedArg*/true);
1311     if (info.isDirect()) {
1312       llvm::Type *ty = info.getCoerceToType();
1313       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1314         return (vectorTy->getBitWidth() > 128);
1315     }
1316     return false;
1317   }
1318 
1319   void computeInfo(CGFunctionInfo &FI) const override;
1320 
1321   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1322                          CodeGenFunction &CGF) const override;
1323 };
1324 
1325 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1326 class WinX86_64ABIInfo : public ABIInfo {
1327 
1328   ABIArgInfo classify(QualType Ty, bool IsReturnType) const;
1329 
1330 public:
WinX86_64ABIInfo(CodeGen::CodeGenTypes & CGT)1331   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1332 
1333   void computeInfo(CGFunctionInfo &FI) const override;
1334 
1335   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1336                          CodeGenFunction &CGF) const override;
1337 };
1338 
1339 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1340 public:
X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool HasAVX)1341   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1342       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
1343 
getABIInfo() const1344   const X86_64ABIInfo &getABIInfo() const {
1345     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1346   }
1347 
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const1348   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1349     return 7;
1350   }
1351 
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const1352   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1353                                llvm::Value *Address) const override {
1354     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1355 
1356     // 0-15 are the 16 integer registers.
1357     // 16 is %rip.
1358     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1359     return false;
1360   }
1361 
adjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty) const1362   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1363                                   StringRef Constraint,
1364                                   llvm::Type* Ty) const override {
1365     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1366   }
1367 
isNoProtoCallVariadic(const CallArgList & args,const FunctionNoProtoType * fnType) const1368   bool isNoProtoCallVariadic(const CallArgList &args,
1369                              const FunctionNoProtoType *fnType) const override {
1370     // The default CC on x86-64 sets %al to the number of SSA
1371     // registers used, and GCC sets this when calling an unprototyped
1372     // function, so we override the default behavior.  However, don't do
1373     // that when AVX types are involved: the ABI explicitly states it is
1374     // undefined, and it doesn't work in practice because of how the ABI
1375     // defines varargs anyway.
1376     if (fnType->getCallConv() == CC_C) {
1377       bool HasAVXType = false;
1378       for (CallArgList::const_iterator
1379              it = args.begin(), ie = args.end(); it != ie; ++it) {
1380         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1381           HasAVXType = true;
1382           break;
1383         }
1384       }
1385 
1386       if (!HasAVXType)
1387         return true;
1388     }
1389 
1390     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1391   }
1392 
1393   llvm::Constant *
getUBSanFunctionSignature(CodeGen::CodeGenModule & CGM) const1394   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1395     unsigned Sig = (0xeb << 0) |  // jmp rel8
1396                    (0x0a << 8) |  //           .+0x0c
1397                    ('F' << 16) |
1398                    ('T' << 24);
1399     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1400   }
1401 
1402 };
1403 
qualifyWindowsLibrary(llvm::StringRef Lib)1404 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
1405   // If the argument does not end in .lib, automatically add the suffix. This
1406   // matches the behavior of MSVC.
1407   std::string ArgStr = Lib;
1408   if (!Lib.endswith_lower(".lib"))
1409     ArgStr += ".lib";
1410   return ArgStr;
1411 }
1412 
1413 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1414 public:
WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool d,bool p,bool w,unsigned RegParms)1415   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1416         bool d, bool p, bool w, unsigned RegParms)
1417     : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {}
1418 
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const1419   void getDependentLibraryOption(llvm::StringRef Lib,
1420                                  llvm::SmallString<24> &Opt) const override {
1421     Opt = "/DEFAULTLIB:";
1422     Opt += qualifyWindowsLibrary(Lib);
1423   }
1424 
getDetectMismatchOption(llvm::StringRef Name,llvm::StringRef Value,llvm::SmallString<32> & Opt) const1425   void getDetectMismatchOption(llvm::StringRef Name,
1426                                llvm::StringRef Value,
1427                                llvm::SmallString<32> &Opt) const override {
1428     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1429   }
1430 };
1431 
1432 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1433 public:
WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)1434   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
1435     : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1436 
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const1437   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1438     return 7;
1439   }
1440 
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const1441   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1442                                llvm::Value *Address) const override {
1443     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1444 
1445     // 0-15 are the 16 integer registers.
1446     // 16 is %rip.
1447     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1448     return false;
1449   }
1450 
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const1451   void getDependentLibraryOption(llvm::StringRef Lib,
1452                                  llvm::SmallString<24> &Opt) const override {
1453     Opt = "/DEFAULTLIB:";
1454     Opt += qualifyWindowsLibrary(Lib);
1455   }
1456 
getDetectMismatchOption(llvm::StringRef Name,llvm::StringRef Value,llvm::SmallString<32> & Opt) const1457   void getDetectMismatchOption(llvm::StringRef Name,
1458                                llvm::StringRef Value,
1459                                llvm::SmallString<32> &Opt) const override {
1460     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1461   }
1462 };
1463 
1464 }
1465 
postMerge(unsigned AggregateSize,Class & Lo,Class & Hi) const1466 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1467                               Class &Hi) const {
1468   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1469   //
1470   // (a) If one of the classes is Memory, the whole argument is passed in
1471   //     memory.
1472   //
1473   // (b) If X87UP is not preceded by X87, the whole argument is passed in
1474   //     memory.
1475   //
1476   // (c) If the size of the aggregate exceeds two eightbytes and the first
1477   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1478   //     argument is passed in memory. NOTE: This is necessary to keep the
1479   //     ABI working for processors that don't support the __m256 type.
1480   //
1481   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1482   //
1483   // Some of these are enforced by the merging logic.  Others can arise
1484   // only with unions; for example:
1485   //   union { _Complex double; unsigned; }
1486   //
1487   // Note that clauses (b) and (c) were added in 0.98.
1488   //
1489   if (Hi == Memory)
1490     Lo = Memory;
1491   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1492     Lo = Memory;
1493   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1494     Lo = Memory;
1495   if (Hi == SSEUp && Lo != SSE)
1496     Hi = SSE;
1497 }
1498 
merge(Class Accum,Class Field)1499 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1500   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1501   // classified recursively so that always two fields are
1502   // considered. The resulting class is calculated according to
1503   // the classes of the fields in the eightbyte:
1504   //
1505   // (a) If both classes are equal, this is the resulting class.
1506   //
1507   // (b) If one of the classes is NO_CLASS, the resulting class is
1508   // the other class.
1509   //
1510   // (c) If one of the classes is MEMORY, the result is the MEMORY
1511   // class.
1512   //
1513   // (d) If one of the classes is INTEGER, the result is the
1514   // INTEGER.
1515   //
1516   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1517   // MEMORY is used as class.
1518   //
1519   // (f) Otherwise class SSE is used.
1520 
1521   // Accum should never be memory (we should have returned) or
1522   // ComplexX87 (because this cannot be passed in a structure).
1523   assert((Accum != Memory && Accum != ComplexX87) &&
1524          "Invalid accumulated classification during merge.");
1525   if (Accum == Field || Field == NoClass)
1526     return Accum;
1527   if (Field == Memory)
1528     return Memory;
1529   if (Accum == NoClass)
1530     return Field;
1531   if (Accum == Integer || Field == Integer)
1532     return Integer;
1533   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1534       Accum == X87 || Accum == X87Up)
1535     return Memory;
1536   return SSE;
1537 }
1538 
classify(QualType Ty,uint64_t OffsetBase,Class & Lo,Class & Hi,bool isNamedArg) const1539 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1540                              Class &Lo, Class &Hi, bool isNamedArg) const {
1541   // FIXME: This code can be simplified by introducing a simple value class for
1542   // Class pairs with appropriate constructor methods for the various
1543   // situations.
1544 
1545   // FIXME: Some of the split computations are wrong; unaligned vectors
1546   // shouldn't be passed in registers for example, so there is no chance they
1547   // can straddle an eightbyte. Verify & simplify.
1548 
1549   Lo = Hi = NoClass;
1550 
1551   Class &Current = OffsetBase < 64 ? Lo : Hi;
1552   Current = Memory;
1553 
1554   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1555     BuiltinType::Kind k = BT->getKind();
1556 
1557     if (k == BuiltinType::Void) {
1558       Current = NoClass;
1559     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1560       Lo = Integer;
1561       Hi = Integer;
1562     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1563       Current = Integer;
1564     } else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
1565                (k == BuiltinType::LongDouble &&
1566                 getTarget().getTriple().isOSNaCl())) {
1567       Current = SSE;
1568     } else if (k == BuiltinType::LongDouble) {
1569       Lo = X87;
1570       Hi = X87Up;
1571     }
1572     // FIXME: _Decimal32 and _Decimal64 are SSE.
1573     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1574     return;
1575   }
1576 
1577   if (const EnumType *ET = Ty->getAs<EnumType>()) {
1578     // Classify the underlying integer type.
1579     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
1580     return;
1581   }
1582 
1583   if (Ty->hasPointerRepresentation()) {
1584     Current = Integer;
1585     return;
1586   }
1587 
1588   if (Ty->isMemberPointerType()) {
1589     if (Ty->isMemberFunctionPointerType() && Has64BitPointers)
1590       Lo = Hi = Integer;
1591     else
1592       Current = Integer;
1593     return;
1594   }
1595 
1596   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1597     uint64_t Size = getContext().getTypeSize(VT);
1598     if (Size == 32) {
1599       // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1600       // float> as integer.
1601       Current = Integer;
1602 
1603       // If this type crosses an eightbyte boundary, it should be
1604       // split.
1605       uint64_t EB_Real = (OffsetBase) / 64;
1606       uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1607       if (EB_Real != EB_Imag)
1608         Hi = Lo;
1609     } else if (Size == 64) {
1610       // gcc passes <1 x double> in memory. :(
1611       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1612         return;
1613 
1614       // gcc passes <1 x long long> as INTEGER.
1615       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1616           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1617           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1618           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1619         Current = Integer;
1620       else
1621         Current = SSE;
1622 
1623       // If this type crosses an eightbyte boundary, it should be
1624       // split.
1625       if (OffsetBase && OffsetBase != 64)
1626         Hi = Lo;
1627     } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) {
1628       // Arguments of 256-bits are split into four eightbyte chunks. The
1629       // least significant one belongs to class SSE and all the others to class
1630       // SSEUP. The original Lo and Hi design considers that types can't be
1631       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1632       // This design isn't correct for 256-bits, but since there're no cases
1633       // where the upper parts would need to be inspected, avoid adding
1634       // complexity and just consider Hi to match the 64-256 part.
1635       //
1636       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
1637       // registers if they are "named", i.e. not part of the "..." of a
1638       // variadic function.
1639       Lo = SSE;
1640       Hi = SSEUp;
1641     }
1642     return;
1643   }
1644 
1645   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1646     QualType ET = getContext().getCanonicalType(CT->getElementType());
1647 
1648     uint64_t Size = getContext().getTypeSize(Ty);
1649     if (ET->isIntegralOrEnumerationType()) {
1650       if (Size <= 64)
1651         Current = Integer;
1652       else if (Size <= 128)
1653         Lo = Hi = Integer;
1654     } else if (ET == getContext().FloatTy)
1655       Current = SSE;
1656     else if (ET == getContext().DoubleTy ||
1657              (ET == getContext().LongDoubleTy &&
1658               getTarget().getTriple().isOSNaCl()))
1659       Lo = Hi = SSE;
1660     else if (ET == getContext().LongDoubleTy)
1661       Current = ComplexX87;
1662 
1663     // If this complex type crosses an eightbyte boundary then it
1664     // should be split.
1665     uint64_t EB_Real = (OffsetBase) / 64;
1666     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1667     if (Hi == NoClass && EB_Real != EB_Imag)
1668       Hi = Lo;
1669 
1670     return;
1671   }
1672 
1673   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1674     // Arrays are treated like structures.
1675 
1676     uint64_t Size = getContext().getTypeSize(Ty);
1677 
1678     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1679     // than four eightbytes, ..., it has class MEMORY.
1680     if (Size > 256)
1681       return;
1682 
1683     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1684     // fields, it has class MEMORY.
1685     //
1686     // Only need to check alignment of array base.
1687     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1688       return;
1689 
1690     // Otherwise implement simplified merge. We could be smarter about
1691     // this, but it isn't worth it and would be harder to verify.
1692     Current = NoClass;
1693     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1694     uint64_t ArraySize = AT->getSize().getZExtValue();
1695 
1696     // The only case a 256-bit wide vector could be used is when the array
1697     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1698     // to work for sizes wider than 128, early check and fallback to memory.
1699     if (Size > 128 && EltSize != 256)
1700       return;
1701 
1702     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1703       Class FieldLo, FieldHi;
1704       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
1705       Lo = merge(Lo, FieldLo);
1706       Hi = merge(Hi, FieldHi);
1707       if (Lo == Memory || Hi == Memory)
1708         break;
1709     }
1710 
1711     postMerge(Size, Lo, Hi);
1712     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1713     return;
1714   }
1715 
1716   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1717     uint64_t Size = getContext().getTypeSize(Ty);
1718 
1719     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1720     // than four eightbytes, ..., it has class MEMORY.
1721     if (Size > 256)
1722       return;
1723 
1724     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1725     // copy constructor or a non-trivial destructor, it is passed by invisible
1726     // reference.
1727     if (getRecordArgABI(RT, getCXXABI()))
1728       return;
1729 
1730     const RecordDecl *RD = RT->getDecl();
1731 
1732     // Assume variable sized types are passed in memory.
1733     if (RD->hasFlexibleArrayMember())
1734       return;
1735 
1736     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1737 
1738     // Reset Lo class, this will be recomputed.
1739     Current = NoClass;
1740 
1741     // If this is a C++ record, classify the bases first.
1742     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1743       for (const auto &I : CXXRD->bases()) {
1744         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
1745                "Unexpected base class!");
1746         const CXXRecordDecl *Base =
1747           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
1748 
1749         // Classify this field.
1750         //
1751         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1752         // single eightbyte, each is classified separately. Each eightbyte gets
1753         // initialized to class NO_CLASS.
1754         Class FieldLo, FieldHi;
1755         uint64_t Offset =
1756           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
1757         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
1758         Lo = merge(Lo, FieldLo);
1759         Hi = merge(Hi, FieldHi);
1760         if (Lo == Memory || Hi == Memory)
1761           break;
1762       }
1763     }
1764 
1765     // Classify the fields one at a time, merging the results.
1766     unsigned idx = 0;
1767     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1768            i != e; ++i, ++idx) {
1769       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1770       bool BitField = i->isBitField();
1771 
1772       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1773       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1774       //
1775       // The only case a 256-bit wide vector could be used is when the struct
1776       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1777       // to work for sizes wider than 128, early check and fallback to memory.
1778       //
1779       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1780         Lo = Memory;
1781         return;
1782       }
1783       // Note, skip this test for bit-fields, see below.
1784       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1785         Lo = Memory;
1786         return;
1787       }
1788 
1789       // Classify this field.
1790       //
1791       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1792       // exceeds a single eightbyte, each is classified
1793       // separately. Each eightbyte gets initialized to class
1794       // NO_CLASS.
1795       Class FieldLo, FieldHi;
1796 
1797       // Bit-fields require special handling, they do not force the
1798       // structure to be passed in memory even if unaligned, and
1799       // therefore they can straddle an eightbyte.
1800       if (BitField) {
1801         // Ignore padding bit-fields.
1802         if (i->isUnnamedBitfield())
1803           continue;
1804 
1805         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1806         uint64_t Size = i->getBitWidthValue(getContext());
1807 
1808         uint64_t EB_Lo = Offset / 64;
1809         uint64_t EB_Hi = (Offset + Size - 1) / 64;
1810 
1811         if (EB_Lo) {
1812           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1813           FieldLo = NoClass;
1814           FieldHi = Integer;
1815         } else {
1816           FieldLo = Integer;
1817           FieldHi = EB_Hi ? Integer : NoClass;
1818         }
1819       } else
1820         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
1821       Lo = merge(Lo, FieldLo);
1822       Hi = merge(Hi, FieldHi);
1823       if (Lo == Memory || Hi == Memory)
1824         break;
1825     }
1826 
1827     postMerge(Size, Lo, Hi);
1828   }
1829 }
1830 
getIndirectReturnResult(QualType Ty) const1831 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1832   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1833   // place naturally.
1834   if (!isAggregateTypeForABI(Ty)) {
1835     // Treat an enum type as its underlying type.
1836     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1837       Ty = EnumTy->getDecl()->getIntegerType();
1838 
1839     return (Ty->isPromotableIntegerType() ?
1840             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1841   }
1842 
1843   return ABIArgInfo::getIndirect(0);
1844 }
1845 
IsIllegalVectorType(QualType Ty) const1846 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
1847   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
1848     uint64_t Size = getContext().getTypeSize(VecTy);
1849     unsigned LargestVector = HasAVX ? 256 : 128;
1850     if (Size <= 64 || Size > LargestVector)
1851       return true;
1852   }
1853 
1854   return false;
1855 }
1856 
getIndirectResult(QualType Ty,unsigned freeIntRegs) const1857 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
1858                                             unsigned freeIntRegs) const {
1859   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1860   // place naturally.
1861   //
1862   // This assumption is optimistic, as there could be free registers available
1863   // when we need to pass this argument in memory, and LLVM could try to pass
1864   // the argument in the free register. This does not seem to happen currently,
1865   // but this code would be much safer if we could mark the argument with
1866   // 'onstack'. See PR12193.
1867   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
1868     // Treat an enum type as its underlying type.
1869     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1870       Ty = EnumTy->getDecl()->getIntegerType();
1871 
1872     return (Ty->isPromotableIntegerType() ?
1873             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1874   }
1875 
1876   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
1877     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
1878 
1879   // Compute the byval alignment. We specify the alignment of the byval in all
1880   // cases so that the mid-level optimizer knows the alignment of the byval.
1881   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
1882 
1883   // Attempt to avoid passing indirect results using byval when possible. This
1884   // is important for good codegen.
1885   //
1886   // We do this by coercing the value into a scalar type which the backend can
1887   // handle naturally (i.e., without using byval).
1888   //
1889   // For simplicity, we currently only do this when we have exhausted all of the
1890   // free integer registers. Doing this when there are free integer registers
1891   // would require more care, as we would have to ensure that the coerced value
1892   // did not claim the unused register. That would require either reording the
1893   // arguments to the function (so that any subsequent inreg values came first),
1894   // or only doing this optimization when there were no following arguments that
1895   // might be inreg.
1896   //
1897   // We currently expect it to be rare (particularly in well written code) for
1898   // arguments to be passed on the stack when there are still free integer
1899   // registers available (this would typically imply large structs being passed
1900   // by value), so this seems like a fair tradeoff for now.
1901   //
1902   // We can revisit this if the backend grows support for 'onstack' parameter
1903   // attributes. See PR12193.
1904   if (freeIntRegs == 0) {
1905     uint64_t Size = getContext().getTypeSize(Ty);
1906 
1907     // If this type fits in an eightbyte, coerce it into the matching integral
1908     // type, which will end up on the stack (with alignment 8).
1909     if (Align == 8 && Size <= 64)
1910       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1911                                                           Size));
1912   }
1913 
1914   return ABIArgInfo::getIndirect(Align);
1915 }
1916 
1917 /// GetByteVectorType - The ABI specifies that a value should be passed in an
1918 /// full vector XMM/YMM register.  Pick an LLVM IR type that will be passed as a
1919 /// vector register.
GetByteVectorType(QualType Ty) const1920 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
1921   llvm::Type *IRType = CGT.ConvertType(Ty);
1922 
1923   // Wrapper structs that just contain vectors are passed just like vectors,
1924   // strip them off if present.
1925   llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1926   while (STy && STy->getNumElements() == 1) {
1927     IRType = STy->getElementType(0);
1928     STy = dyn_cast<llvm::StructType>(IRType);
1929   }
1930 
1931   // If the preferred type is a 16-byte vector, prefer to pass it.
1932   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1933     llvm::Type *EltTy = VT->getElementType();
1934     unsigned BitWidth = VT->getBitWidth();
1935     if ((BitWidth >= 128 && BitWidth <= 256) &&
1936         (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1937          EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1938          EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1939          EltTy->isIntegerTy(128)))
1940       return VT;
1941   }
1942 
1943   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1944 }
1945 
1946 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
1947 /// is known to either be off the end of the specified type or being in
1948 /// alignment padding.  The user type specified is known to be at most 128 bits
1949 /// in size, and have passed through X86_64ABIInfo::classify with a successful
1950 /// classification that put one of the two halves in the INTEGER class.
1951 ///
1952 /// It is conservatively correct to return false.
BitsContainNoUserData(QualType Ty,unsigned StartBit,unsigned EndBit,ASTContext & Context)1953 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1954                                   unsigned EndBit, ASTContext &Context) {
1955   // If the bytes being queried are off the end of the type, there is no user
1956   // data hiding here.  This handles analysis of builtins, vectors and other
1957   // types that don't contain interesting padding.
1958   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1959   if (TySize <= StartBit)
1960     return true;
1961 
1962   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1963     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1964     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1965 
1966     // Check each element to see if the element overlaps with the queried range.
1967     for (unsigned i = 0; i != NumElts; ++i) {
1968       // If the element is after the span we care about, then we're done..
1969       unsigned EltOffset = i*EltSize;
1970       if (EltOffset >= EndBit) break;
1971 
1972       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1973       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1974                                  EndBit-EltOffset, Context))
1975         return false;
1976     }
1977     // If it overlaps no elements, then it is safe to process as padding.
1978     return true;
1979   }
1980 
1981   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1982     const RecordDecl *RD = RT->getDecl();
1983     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1984 
1985     // If this is a C++ record, check the bases first.
1986     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1987       for (const auto &I : CXXRD->bases()) {
1988         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
1989                "Unexpected base class!");
1990         const CXXRecordDecl *Base =
1991           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
1992 
1993         // If the base is after the span we care about, ignore it.
1994         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
1995         if (BaseOffset >= EndBit) continue;
1996 
1997         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1998         if (!BitsContainNoUserData(I.getType(), BaseStart,
1999                                    EndBit-BaseOffset, Context))
2000           return false;
2001       }
2002     }
2003 
2004     // Verify that no field has data that overlaps the region of interest.  Yes
2005     // this could be sped up a lot by being smarter about queried fields,
2006     // however we're only looking at structs up to 16 bytes, so we don't care
2007     // much.
2008     unsigned idx = 0;
2009     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2010          i != e; ++i, ++idx) {
2011       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
2012 
2013       // If we found a field after the region we care about, then we're done.
2014       if (FieldOffset >= EndBit) break;
2015 
2016       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2017       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2018                                  Context))
2019         return false;
2020     }
2021 
2022     // If nothing in this record overlapped the area of interest, then we're
2023     // clean.
2024     return true;
2025   }
2026 
2027   return false;
2028 }
2029 
2030 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
2031 /// float member at the specified offset.  For example, {int,{float}} has a
2032 /// float at offset 4.  It is conservatively correct for this routine to return
2033 /// false.
ContainsFloatAtOffset(llvm::Type * IRType,unsigned IROffset,const llvm::DataLayout & TD)2034 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
2035                                   const llvm::DataLayout &TD) {
2036   // Base case if we find a float.
2037   if (IROffset == 0 && IRType->isFloatTy())
2038     return true;
2039 
2040   // If this is a struct, recurse into the field at the specified offset.
2041   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2042     const llvm::StructLayout *SL = TD.getStructLayout(STy);
2043     unsigned Elt = SL->getElementContainingOffset(IROffset);
2044     IROffset -= SL->getElementOffset(Elt);
2045     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
2046   }
2047 
2048   // If this is an array, recurse into the field at the specified offset.
2049   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2050     llvm::Type *EltTy = ATy->getElementType();
2051     unsigned EltSize = TD.getTypeAllocSize(EltTy);
2052     IROffset -= IROffset/EltSize*EltSize;
2053     return ContainsFloatAtOffset(EltTy, IROffset, TD);
2054   }
2055 
2056   return false;
2057 }
2058 
2059 
2060 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2061 /// low 8 bytes of an XMM register, corresponding to the SSE class.
2062 llvm::Type *X86_64ABIInfo::
GetSSETypeAtOffset(llvm::Type * IRType,unsigned IROffset,QualType SourceTy,unsigned SourceOffset) const2063 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2064                    QualType SourceTy, unsigned SourceOffset) const {
2065   // The only three choices we have are either double, <2 x float>, or float. We
2066   // pass as float if the last 4 bytes is just padding.  This happens for
2067   // structs that contain 3 floats.
2068   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
2069                             SourceOffset*8+64, getContext()))
2070     return llvm::Type::getFloatTy(getVMContext());
2071 
2072   // We want to pass as <2 x float> if the LLVM IR type contains a float at
2073   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
2074   // case.
2075   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
2076       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
2077     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
2078 
2079   return llvm::Type::getDoubleTy(getVMContext());
2080 }
2081 
2082 
2083 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2084 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
2085 /// about the high or low part of an up-to-16-byte struct.  This routine picks
2086 /// the best LLVM IR type to represent this, which may be i64 or may be anything
2087 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2088 /// etc).
2089 ///
2090 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2091 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
2092 /// the 8-byte value references.  PrefType may be null.
2093 ///
2094 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
2095 /// an offset into this that we're processing (which is always either 0 or 8).
2096 ///
2097 llvm::Type *X86_64ABIInfo::
GetINTEGERTypeAtOffset(llvm::Type * IRType,unsigned IROffset,QualType SourceTy,unsigned SourceOffset) const2098 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2099                        QualType SourceTy, unsigned SourceOffset) const {
2100   // If we're dealing with an un-offset LLVM IR type, then it means that we're
2101   // returning an 8-byte unit starting with it.  See if we can safely use it.
2102   if (IROffset == 0) {
2103     // Pointers and int64's always fill the 8-byte unit.
2104     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2105         IRType->isIntegerTy(64))
2106       return IRType;
2107 
2108     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2109     // goodness in the source type is just tail padding.  This is allowed to
2110     // kick in for struct {double,int} on the int, but not on
2111     // struct{double,int,int} because we wouldn't return the second int.  We
2112     // have to do this analysis on the source type because we can't depend on
2113     // unions being lowered a specific way etc.
2114     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2115         IRType->isIntegerTy(32) ||
2116         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2117       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2118           cast<llvm::IntegerType>(IRType)->getBitWidth();
2119 
2120       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2121                                 SourceOffset*8+64, getContext()))
2122         return IRType;
2123     }
2124   }
2125 
2126   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2127     // If this is a struct, recurse into the field at the specified offset.
2128     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2129     if (IROffset < SL->getSizeInBytes()) {
2130       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2131       IROffset -= SL->getElementOffset(FieldIdx);
2132 
2133       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2134                                     SourceTy, SourceOffset);
2135     }
2136   }
2137 
2138   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2139     llvm::Type *EltTy = ATy->getElementType();
2140     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2141     unsigned EltOffset = IROffset/EltSize*EltSize;
2142     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2143                                   SourceOffset);
2144   }
2145 
2146   // Okay, we don't have any better idea of what to pass, so we pass this in an
2147   // integer register that isn't too big to fit the rest of the struct.
2148   unsigned TySizeInBytes =
2149     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2150 
2151   assert(TySizeInBytes != SourceOffset && "Empty field?");
2152 
2153   // It is always safe to classify this as an integer type up to i64 that
2154   // isn't larger than the structure.
2155   return llvm::IntegerType::get(getVMContext(),
2156                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2157 }
2158 
2159 
2160 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2161 /// be used as elements of a two register pair to pass or return, return a
2162 /// first class aggregate to represent them.  For example, if the low part of
2163 /// a by-value argument should be passed as i32* and the high part as float,
2164 /// return {i32*, float}.
2165 static llvm::Type *
GetX86_64ByValArgumentPair(llvm::Type * Lo,llvm::Type * Hi,const llvm::DataLayout & TD)2166 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2167                            const llvm::DataLayout &TD) {
2168   // In order to correctly satisfy the ABI, we need to the high part to start
2169   // at offset 8.  If the high and low parts we inferred are both 4-byte types
2170   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2171   // the second element at offset 8.  Check for this:
2172   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2173   unsigned HiAlign = TD.getABITypeAlignment(Hi);
2174   unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign);
2175   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2176 
2177   // To handle this, we have to increase the size of the low part so that the
2178   // second element will start at an 8 byte offset.  We can't increase the size
2179   // of the second element because it might make us access off the end of the
2180   // struct.
2181   if (HiStart != 8) {
2182     // There are only two sorts of types the ABI generation code can produce for
2183     // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
2184     // Promote these to a larger type.
2185     if (Lo->isFloatTy())
2186       Lo = llvm::Type::getDoubleTy(Lo->getContext());
2187     else {
2188       assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
2189       Lo = llvm::Type::getInt64Ty(Lo->getContext());
2190     }
2191   }
2192 
2193   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
2194 
2195 
2196   // Verify that the second element is at an 8-byte offset.
2197   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2198          "Invalid x86-64 argument pair!");
2199   return Result;
2200 }
2201 
2202 ABIArgInfo X86_64ABIInfo::
classifyReturnType(QualType RetTy) const2203 classifyReturnType(QualType RetTy) const {
2204   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2205   // classification algorithm.
2206   X86_64ABIInfo::Class Lo, Hi;
2207   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2208 
2209   // Check some invariants.
2210   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2211   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2212 
2213   llvm::Type *ResType = nullptr;
2214   switch (Lo) {
2215   case NoClass:
2216     if (Hi == NoClass)
2217       return ABIArgInfo::getIgnore();
2218     // If the low part is just padding, it takes no register, leave ResType
2219     // null.
2220     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2221            "Unknown missing lo part");
2222     break;
2223 
2224   case SSEUp:
2225   case X87Up:
2226     llvm_unreachable("Invalid classification for lo word.");
2227 
2228     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2229     // hidden argument.
2230   case Memory:
2231     return getIndirectReturnResult(RetTy);
2232 
2233     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2234     // available register of the sequence %rax, %rdx is used.
2235   case Integer:
2236     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2237 
2238     // If we have a sign or zero extended integer, make sure to return Extend
2239     // so that the parameter gets the right LLVM IR attributes.
2240     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2241       // Treat an enum type as its underlying type.
2242       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2243         RetTy = EnumTy->getDecl()->getIntegerType();
2244 
2245       if (RetTy->isIntegralOrEnumerationType() &&
2246           RetTy->isPromotableIntegerType())
2247         return ABIArgInfo::getExtend();
2248     }
2249     break;
2250 
2251     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2252     // available SSE register of the sequence %xmm0, %xmm1 is used.
2253   case SSE:
2254     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2255     break;
2256 
2257     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2258     // returned on the X87 stack in %st0 as 80-bit x87 number.
2259   case X87:
2260     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2261     break;
2262 
2263     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2264     // part of the value is returned in %st0 and the imaginary part in
2265     // %st1.
2266   case ComplexX87:
2267     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2268     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2269                                     llvm::Type::getX86_FP80Ty(getVMContext()),
2270                                     NULL);
2271     break;
2272   }
2273 
2274   llvm::Type *HighPart = nullptr;
2275   switch (Hi) {
2276     // Memory was handled previously and X87 should
2277     // never occur as a hi class.
2278   case Memory:
2279   case X87:
2280     llvm_unreachable("Invalid classification for hi word.");
2281 
2282   case ComplexX87: // Previously handled.
2283   case NoClass:
2284     break;
2285 
2286   case Integer:
2287     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2288     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2289       return ABIArgInfo::getDirect(HighPart, 8);
2290     break;
2291   case SSE:
2292     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2293     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2294       return ABIArgInfo::getDirect(HighPart, 8);
2295     break;
2296 
2297     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2298     // is passed in the next available eightbyte chunk if the last used
2299     // vector register.
2300     //
2301     // SSEUP should always be preceded by SSE, just widen.
2302   case SSEUp:
2303     assert(Lo == SSE && "Unexpected SSEUp classification.");
2304     ResType = GetByteVectorType(RetTy);
2305     break;
2306 
2307     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2308     // returned together with the previous X87 value in %st0.
2309   case X87Up:
2310     // If X87Up is preceded by X87, we don't need to do
2311     // anything. However, in some cases with unions it may not be
2312     // preceded by X87. In such situations we follow gcc and pass the
2313     // extra bits in an SSE reg.
2314     if (Lo != X87) {
2315       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2316       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2317         return ABIArgInfo::getDirect(HighPart, 8);
2318     }
2319     break;
2320   }
2321 
2322   // If a high part was specified, merge it together with the low part.  It is
2323   // known to pass in the high eightbyte of the result.  We do this by forming a
2324   // first class struct aggregate with the high and low part: {low, high}
2325   if (HighPart)
2326     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2327 
2328   return ABIArgInfo::getDirect(ResType);
2329 }
2330 
classifyArgumentType(QualType Ty,unsigned freeIntRegs,unsigned & neededInt,unsigned & neededSSE,bool isNamedArg) const2331 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2332   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
2333   bool isNamedArg)
2334   const
2335 {
2336   X86_64ABIInfo::Class Lo, Hi;
2337   classify(Ty, 0, Lo, Hi, isNamedArg);
2338 
2339   // Check some invariants.
2340   // FIXME: Enforce these by construction.
2341   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2342   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2343 
2344   neededInt = 0;
2345   neededSSE = 0;
2346   llvm::Type *ResType = nullptr;
2347   switch (Lo) {
2348   case NoClass:
2349     if (Hi == NoClass)
2350       return ABIArgInfo::getIgnore();
2351     // If the low part is just padding, it takes no register, leave ResType
2352     // null.
2353     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2354            "Unknown missing lo part");
2355     break;
2356 
2357     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2358     // on the stack.
2359   case Memory:
2360 
2361     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2362     // COMPLEX_X87, it is passed in memory.
2363   case X87:
2364   case ComplexX87:
2365     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2366       ++neededInt;
2367     return getIndirectResult(Ty, freeIntRegs);
2368 
2369   case SSEUp:
2370   case X87Up:
2371     llvm_unreachable("Invalid classification for lo word.");
2372 
2373     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2374     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2375     // and %r9 is used.
2376   case Integer:
2377     ++neededInt;
2378 
2379     // Pick an 8-byte type based on the preferred type.
2380     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2381 
2382     // If we have a sign or zero extended integer, make sure to return Extend
2383     // so that the parameter gets the right LLVM IR attributes.
2384     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2385       // Treat an enum type as its underlying type.
2386       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2387         Ty = EnumTy->getDecl()->getIntegerType();
2388 
2389       if (Ty->isIntegralOrEnumerationType() &&
2390           Ty->isPromotableIntegerType())
2391         return ABIArgInfo::getExtend();
2392     }
2393 
2394     break;
2395 
2396     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2397     // available SSE register is used, the registers are taken in the
2398     // order from %xmm0 to %xmm7.
2399   case SSE: {
2400     llvm::Type *IRType = CGT.ConvertType(Ty);
2401     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2402     ++neededSSE;
2403     break;
2404   }
2405   }
2406 
2407   llvm::Type *HighPart = nullptr;
2408   switch (Hi) {
2409     // Memory was handled previously, ComplexX87 and X87 should
2410     // never occur as hi classes, and X87Up must be preceded by X87,
2411     // which is passed in memory.
2412   case Memory:
2413   case X87:
2414   case ComplexX87:
2415     llvm_unreachable("Invalid classification for hi word.");
2416 
2417   case NoClass: break;
2418 
2419   case Integer:
2420     ++neededInt;
2421     // Pick an 8-byte type based on the preferred type.
2422     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2423 
2424     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2425       return ABIArgInfo::getDirect(HighPart, 8);
2426     break;
2427 
2428     // X87Up generally doesn't occur here (long double is passed in
2429     // memory), except in situations involving unions.
2430   case X87Up:
2431   case SSE:
2432     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2433 
2434     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2435       return ABIArgInfo::getDirect(HighPart, 8);
2436 
2437     ++neededSSE;
2438     break;
2439 
2440     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2441     // eightbyte is passed in the upper half of the last used SSE
2442     // register.  This only happens when 128-bit vectors are passed.
2443   case SSEUp:
2444     assert(Lo == SSE && "Unexpected SSEUp classification");
2445     ResType = GetByteVectorType(Ty);
2446     break;
2447   }
2448 
2449   // If a high part was specified, merge it together with the low part.  It is
2450   // known to pass in the high eightbyte of the result.  We do this by forming a
2451   // first class struct aggregate with the high and low part: {low, high}
2452   if (HighPart)
2453     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2454 
2455   return ABIArgInfo::getDirect(ResType);
2456 }
2457 
computeInfo(CGFunctionInfo & FI) const2458 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2459 
2460   if (!getCXXABI().classifyReturnType(FI))
2461     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2462 
2463   // Keep track of the number of assigned registers.
2464   unsigned freeIntRegs = 6, freeSSERegs = 8;
2465 
2466   // If the return value is indirect, then the hidden argument is consuming one
2467   // integer register.
2468   if (FI.getReturnInfo().isIndirect())
2469     --freeIntRegs;
2470 
2471   bool isVariadic = FI.isVariadic();
2472   unsigned numRequiredArgs = 0;
2473   if (isVariadic)
2474     numRequiredArgs = FI.getRequiredArgs().getNumRequiredArgs();
2475 
2476   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2477   // get assigned (in left-to-right order) for passing as follows...
2478   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2479        it != ie; ++it) {
2480     bool isNamedArg = true;
2481     if (isVariadic)
2482       isNamedArg = (it - FI.arg_begin()) <
2483                     static_cast<signed>(numRequiredArgs);
2484 
2485     unsigned neededInt, neededSSE;
2486     it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2487                                     neededSSE, isNamedArg);
2488 
2489     // AMD64-ABI 3.2.3p3: If there are no registers available for any
2490     // eightbyte of an argument, the whole argument is passed on the
2491     // stack. If registers have already been assigned for some
2492     // eightbytes of such an argument, the assignments get reverted.
2493     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2494       freeIntRegs -= neededInt;
2495       freeSSERegs -= neededSSE;
2496     } else {
2497       it->info = getIndirectResult(it->type, freeIntRegs);
2498     }
2499   }
2500 }
2501 
EmitVAArgFromMemory(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF)2502 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2503                                         QualType Ty,
2504                                         CodeGenFunction &CGF) {
2505   llvm::Value *overflow_arg_area_p =
2506     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2507   llvm::Value *overflow_arg_area =
2508     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2509 
2510   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2511   // byte boundary if alignment needed by type exceeds 8 byte boundary.
2512   // It isn't stated explicitly in the standard, but in practice we use
2513   // alignment greater than 16 where necessary.
2514   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2515   if (Align > 8) {
2516     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2517     llvm::Value *Offset =
2518       llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2519     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2520     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2521                                                     CGF.Int64Ty);
2522     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2523     overflow_arg_area =
2524       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2525                                  overflow_arg_area->getType(),
2526                                  "overflow_arg_area.align");
2527   }
2528 
2529   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2530   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2531   llvm::Value *Res =
2532     CGF.Builder.CreateBitCast(overflow_arg_area,
2533                               llvm::PointerType::getUnqual(LTy));
2534 
2535   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2536   // l->overflow_arg_area + sizeof(type).
2537   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2538   // an 8 byte boundary.
2539 
2540   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2541   llvm::Value *Offset =
2542       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2543   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2544                                             "overflow_arg_area.next");
2545   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2546 
2547   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2548   return Res;
2549 }
2550 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const2551 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2552                                       CodeGenFunction &CGF) const {
2553   // Assume that va_list type is correct; should be pointer to LLVM type:
2554   // struct {
2555   //   i32 gp_offset;
2556   //   i32 fp_offset;
2557   //   i8* overflow_arg_area;
2558   //   i8* reg_save_area;
2559   // };
2560   unsigned neededInt, neededSSE;
2561 
2562   Ty = CGF.getContext().getCanonicalType(Ty);
2563   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
2564                                        /*isNamedArg*/false);
2565 
2566   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2567   // in the registers. If not go to step 7.
2568   if (!neededInt && !neededSSE)
2569     return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2570 
2571   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2572   // general purpose registers needed to pass type and num_fp to hold
2573   // the number of floating point registers needed.
2574 
2575   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2576   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2577   // l->fp_offset > 304 - num_fp * 16 go to step 7.
2578   //
2579   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2580   // register save space).
2581 
2582   llvm::Value *InRegs = nullptr;
2583   llvm::Value *gp_offset_p = nullptr, *gp_offset = nullptr;
2584   llvm::Value *fp_offset_p = nullptr, *fp_offset = nullptr;
2585   if (neededInt) {
2586     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2587     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2588     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2589     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2590   }
2591 
2592   if (neededSSE) {
2593     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2594     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2595     llvm::Value *FitsInFP =
2596       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2597     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2598     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2599   }
2600 
2601   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2602   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2603   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2604   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2605 
2606   // Emit code to load the value if it was passed in registers.
2607 
2608   CGF.EmitBlock(InRegBlock);
2609 
2610   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2611   // an offset of l->gp_offset and/or l->fp_offset. This may require
2612   // copying to a temporary location in case the parameter is passed
2613   // in different register classes or requires an alignment greater
2614   // than 8 for general purpose registers and 16 for XMM registers.
2615   //
2616   // FIXME: This really results in shameful code when we end up needing to
2617   // collect arguments from different places; often what should result in a
2618   // simple assembling of a structure from scattered addresses has many more
2619   // loads than necessary. Can we clean this up?
2620   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2621   llvm::Value *RegAddr =
2622     CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2623                            "reg_save_area");
2624   if (neededInt && neededSSE) {
2625     // FIXME: Cleanup.
2626     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2627     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2628     llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2629     Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2630     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2631     llvm::Type *TyLo = ST->getElementType(0);
2632     llvm::Type *TyHi = ST->getElementType(1);
2633     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2634            "Unexpected ABI info for mixed regs");
2635     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2636     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2637     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2638     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2639     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
2640     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
2641     llvm::Value *V =
2642       CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2643     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2644     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2645     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2646 
2647     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2648                                         llvm::PointerType::getUnqual(LTy));
2649   } else if (neededInt) {
2650     RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2651     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2652                                         llvm::PointerType::getUnqual(LTy));
2653 
2654     // Copy to a temporary if necessary to ensure the appropriate alignment.
2655     std::pair<CharUnits, CharUnits> SizeAlign =
2656         CGF.getContext().getTypeInfoInChars(Ty);
2657     uint64_t TySize = SizeAlign.first.getQuantity();
2658     unsigned TyAlign = SizeAlign.second.getQuantity();
2659     if (TyAlign > 8) {
2660       llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2661       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false);
2662       RegAddr = Tmp;
2663     }
2664   } else if (neededSSE == 1) {
2665     RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2666     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2667                                         llvm::PointerType::getUnqual(LTy));
2668   } else {
2669     assert(neededSSE == 2 && "Invalid number of needed registers!");
2670     // SSE registers are spaced 16 bytes apart in the register save
2671     // area, we need to collect the two eightbytes together.
2672     llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2673     llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2674     llvm::Type *DoubleTy = CGF.DoubleTy;
2675     llvm::Type *DblPtrTy =
2676       llvm::PointerType::getUnqual(DoubleTy);
2677     llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, NULL);
2678     llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty);
2679     Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2680     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2681                                                          DblPtrTy));
2682     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2683     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2684                                                          DblPtrTy));
2685     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2686     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2687                                         llvm::PointerType::getUnqual(LTy));
2688   }
2689 
2690   // AMD64-ABI 3.5.7p5: Step 5. Set:
2691   // l->gp_offset = l->gp_offset + num_gp * 8
2692   // l->fp_offset = l->fp_offset + num_fp * 16.
2693   if (neededInt) {
2694     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2695     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2696                             gp_offset_p);
2697   }
2698   if (neededSSE) {
2699     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2700     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2701                             fp_offset_p);
2702   }
2703   CGF.EmitBranch(ContBlock);
2704 
2705   // Emit code to load the value if it was passed in memory.
2706 
2707   CGF.EmitBlock(InMemBlock);
2708   llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2709 
2710   // Return the appropriate result.
2711 
2712   CGF.EmitBlock(ContBlock);
2713   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2714                                                  "vaarg.addr");
2715   ResAddr->addIncoming(RegAddr, InRegBlock);
2716   ResAddr->addIncoming(MemAddr, InMemBlock);
2717   return ResAddr;
2718 }
2719 
classify(QualType Ty,bool IsReturnType) const2720 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, bool IsReturnType) const {
2721 
2722   if (Ty->isVoidType())
2723     return ABIArgInfo::getIgnore();
2724 
2725   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2726     Ty = EnumTy->getDecl()->getIntegerType();
2727 
2728   uint64_t Size = getContext().getTypeSize(Ty);
2729 
2730   const RecordType *RT = Ty->getAs<RecordType>();
2731   if (RT) {
2732     if (!IsReturnType) {
2733       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
2734         return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2735     }
2736 
2737     if (RT->getDecl()->hasFlexibleArrayMember())
2738       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2739 
2740     // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2741     if (Size == 128 && getTarget().getTriple().isWindowsGNUEnvironment())
2742       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2743                                                           Size));
2744   }
2745 
2746   if (Ty->isMemberPointerType()) {
2747     // If the member pointer is represented by an LLVM int or ptr, pass it
2748     // directly.
2749     llvm::Type *LLTy = CGT.ConvertType(Ty);
2750     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
2751       return ABIArgInfo::getDirect();
2752   }
2753 
2754   if (RT || Ty->isMemberPointerType()) {
2755     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2756     // not 1, 2, 4, or 8 bytes, must be passed by reference."
2757     if (Size > 64 || !llvm::isPowerOf2_64(Size))
2758       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2759 
2760     // Otherwise, coerce it to a small integer.
2761     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
2762   }
2763 
2764   if (Ty->isPromotableIntegerType())
2765     return ABIArgInfo::getExtend();
2766 
2767   return ABIArgInfo::getDirect();
2768 }
2769 
computeInfo(CGFunctionInfo & FI) const2770 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2771   if (!getCXXABI().classifyReturnType(FI))
2772     FI.getReturnInfo() = classify(FI.getReturnType(), true);
2773 
2774   for (auto &I : FI.arguments())
2775     I.info = classify(I.type, false);
2776 }
2777 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const2778 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2779                                       CodeGenFunction &CGF) const {
2780   llvm::Type *BPP = CGF.Int8PtrPtrTy;
2781 
2782   CGBuilderTy &Builder = CGF.Builder;
2783   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2784                                                        "ap");
2785   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2786   llvm::Type *PTy =
2787     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2788   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2789 
2790   uint64_t Offset =
2791     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2792   llvm::Value *NextAddr =
2793     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2794                       "ap.next");
2795   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2796 
2797   return AddrTyped;
2798 }
2799 
2800 namespace {
2801 
2802 class NaClX86_64ABIInfo : public ABIInfo {
2803  public:
NaClX86_64ABIInfo(CodeGen::CodeGenTypes & CGT,bool HasAVX)2804   NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2805       : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {}
2806   void computeInfo(CGFunctionInfo &FI) const override;
2807   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2808                          CodeGenFunction &CGF) const override;
2809  private:
2810   PNaClABIInfo PInfo;  // Used for generating calls with pnaclcall callingconv.
2811   X86_64ABIInfo NInfo; // Used for everything else.
2812 };
2813 
2814 class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo  {
2815  public:
NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool HasAVX)2816   NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2817       : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {}
2818 };
2819 
2820 }
2821 
computeInfo(CGFunctionInfo & FI) const2822 void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2823   if (FI.getASTCallingConvention() == CC_PnaclCall)
2824     PInfo.computeInfo(FI);
2825   else
2826     NInfo.computeInfo(FI);
2827 }
2828 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const2829 llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2830                                           CodeGenFunction &CGF) const {
2831   // Always use the native convention; calling pnacl-style varargs functions
2832   // is unuspported.
2833   return NInfo.EmitVAArg(VAListAddr, Ty, CGF);
2834 }
2835 
2836 
2837 // PowerPC-32
2838 
2839 namespace {
2840 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2841 public:
PPC32TargetCodeGenInfo(CodeGenTypes & CGT)2842   PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2843 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const2844   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
2845     // This is recovered from gcc output.
2846     return 1; // r1 is the dedicated stack pointer
2847   }
2848 
2849   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2850                                llvm::Value *Address) const override;
2851 };
2852 
2853 }
2854 
2855 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const2856 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2857                                                 llvm::Value *Address) const {
2858   // This is calculated from the LLVM and GCC tables and verified
2859   // against gcc output.  AFAIK all ABIs use the same encoding.
2860 
2861   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2862 
2863   llvm::IntegerType *i8 = CGF.Int8Ty;
2864   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2865   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2866   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2867 
2868   // 0-31: r0-31, the 4-byte general-purpose registers
2869   AssignToArrayRange(Builder, Address, Four8, 0, 31);
2870 
2871   // 32-63: fp0-31, the 8-byte floating-point registers
2872   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2873 
2874   // 64-76 are various 4-byte special-purpose registers:
2875   // 64: mq
2876   // 65: lr
2877   // 66: ctr
2878   // 67: ap
2879   // 68-75 cr0-7
2880   // 76: xer
2881   AssignToArrayRange(Builder, Address, Four8, 64, 76);
2882 
2883   // 77-108: v0-31, the 16-byte vector registers
2884   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2885 
2886   // 109: vrsave
2887   // 110: vscr
2888   // 111: spe_acc
2889   // 112: spefscr
2890   // 113: sfp
2891   AssignToArrayRange(Builder, Address, Four8, 109, 113);
2892 
2893   return false;
2894 }
2895 
2896 // PowerPC-64
2897 
2898 namespace {
2899 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
2900 class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
2901 
2902 public:
PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes & CGT)2903   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
2904 
2905   bool isPromotableTypeForABI(QualType Ty) const;
2906   bool isAlignedParamType(QualType Ty) const;
2907 
2908   ABIArgInfo classifyReturnType(QualType RetTy) const;
2909   ABIArgInfo classifyArgumentType(QualType Ty) const;
2910 
2911   // TODO: We can add more logic to computeInfo to improve performance.
2912   // Example: For aggregate arguments that fit in a register, we could
2913   // use getDirectInReg (as is done below for structs containing a single
2914   // floating-point value) to avoid pushing them to memory on function
2915   // entry.  This would require changing the logic in PPCISelLowering
2916   // when lowering the parameters in the caller and args in the callee.
computeInfo(CGFunctionInfo & FI) const2917   void computeInfo(CGFunctionInfo &FI) const override {
2918     if (!getCXXABI().classifyReturnType(FI))
2919       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2920     for (auto &I : FI.arguments()) {
2921       // We rely on the default argument classification for the most part.
2922       // One exception:  An aggregate containing a single floating-point
2923       // or vector item must be passed in a register if one is available.
2924       const Type *T = isSingleElementStruct(I.type, getContext());
2925       if (T) {
2926         const BuiltinType *BT = T->getAs<BuiltinType>();
2927         if ((T->isVectorType() && getContext().getTypeSize(T) == 128) ||
2928             (BT && BT->isFloatingPoint())) {
2929           QualType QT(T, 0);
2930           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
2931           continue;
2932         }
2933       }
2934       I.info = classifyArgumentType(I.type);
2935     }
2936   }
2937 
2938   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2939                          CodeGenFunction &CGF) const override;
2940 };
2941 
2942 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
2943 public:
PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes & CGT)2944   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT)
2945     : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT)) {}
2946 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const2947   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
2948     // This is recovered from gcc output.
2949     return 1; // r1 is the dedicated stack pointer
2950   }
2951 
2952   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2953                                llvm::Value *Address) const override;
2954 };
2955 
2956 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2957 public:
PPC64TargetCodeGenInfo(CodeGenTypes & CGT)2958   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2959 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const2960   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
2961     // This is recovered from gcc output.
2962     return 1; // r1 is the dedicated stack pointer
2963   }
2964 
2965   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2966                                llvm::Value *Address) const override;
2967 };
2968 
2969 }
2970 
2971 // Return true if the ABI requires Ty to be passed sign- or zero-
2972 // extended to 64 bits.
2973 bool
isPromotableTypeForABI(QualType Ty) const2974 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
2975   // Treat an enum type as its underlying type.
2976   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2977     Ty = EnumTy->getDecl()->getIntegerType();
2978 
2979   // Promotable integer types are required to be promoted by the ABI.
2980   if (Ty->isPromotableIntegerType())
2981     return true;
2982 
2983   // In addition to the usual promotable integer types, we also need to
2984   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
2985   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2986     switch (BT->getKind()) {
2987     case BuiltinType::Int:
2988     case BuiltinType::UInt:
2989       return true;
2990     default:
2991       break;
2992     }
2993 
2994   return false;
2995 }
2996 
2997 /// isAlignedParamType - Determine whether a type requires 16-byte
2998 /// alignment in the parameter area.
2999 bool
isAlignedParamType(QualType Ty) const3000 PPC64_SVR4_ABIInfo::isAlignedParamType(QualType Ty) const {
3001   // Complex types are passed just like their elements.
3002   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
3003     Ty = CTy->getElementType();
3004 
3005   // Only vector types of size 16 bytes need alignment (larger types are
3006   // passed via reference, smaller types are not aligned).
3007   if (Ty->isVectorType())
3008     return getContext().getTypeSize(Ty) == 128;
3009 
3010   // For single-element float/vector structs, we consider the whole type
3011   // to have the same alignment requirements as its single element.
3012   const Type *AlignAsType = nullptr;
3013   const Type *EltType = isSingleElementStruct(Ty, getContext());
3014   if (EltType) {
3015     const BuiltinType *BT = EltType->getAs<BuiltinType>();
3016     if ((EltType->isVectorType() &&
3017          getContext().getTypeSize(EltType) == 128) ||
3018         (BT && BT->isFloatingPoint()))
3019       AlignAsType = EltType;
3020   }
3021 
3022   // With special case aggregates, only vector base types need alignment.
3023   if (AlignAsType)
3024     return AlignAsType->isVectorType();
3025 
3026   // Otherwise, we only need alignment for any aggregate type that
3027   // has an alignment requirement of >= 16 bytes.
3028   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128)
3029     return true;
3030 
3031   return false;
3032 }
3033 
3034 ABIArgInfo
classifyArgumentType(QualType Ty) const3035 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
3036   if (Ty->isAnyComplexType())
3037     return ABIArgInfo::getDirect();
3038 
3039   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
3040   // or via reference (larger than 16 bytes).
3041   if (Ty->isVectorType()) {
3042     uint64_t Size = getContext().getTypeSize(Ty);
3043     if (Size > 128)
3044       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3045     else if (Size < 128) {
3046       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3047       return ABIArgInfo::getDirect(CoerceTy);
3048     }
3049   }
3050 
3051   if (isAggregateTypeForABI(Ty)) {
3052     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3053       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3054 
3055     uint64_t ABIAlign = isAlignedParamType(Ty)? 16 : 8;
3056     uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
3057     return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true,
3058                                    /*Realign=*/TyAlign > ABIAlign);
3059   }
3060 
3061   return (isPromotableTypeForABI(Ty) ?
3062           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3063 }
3064 
3065 ABIArgInfo
classifyReturnType(QualType RetTy) const3066 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
3067   if (RetTy->isVoidType())
3068     return ABIArgInfo::getIgnore();
3069 
3070   if (RetTy->isAnyComplexType())
3071     return ABIArgInfo::getDirect();
3072 
3073   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
3074   // or via reference (larger than 16 bytes).
3075   if (RetTy->isVectorType()) {
3076     uint64_t Size = getContext().getTypeSize(RetTy);
3077     if (Size > 128)
3078       return ABIArgInfo::getIndirect(0);
3079     else if (Size < 128) {
3080       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3081       return ABIArgInfo::getDirect(CoerceTy);
3082     }
3083   }
3084 
3085   if (isAggregateTypeForABI(RetTy))
3086     return ABIArgInfo::getIndirect(0);
3087 
3088   return (isPromotableTypeForABI(RetTy) ?
3089           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3090 }
3091 
3092 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const3093 llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
3094                                            QualType Ty,
3095                                            CodeGenFunction &CGF) const {
3096   llvm::Type *BP = CGF.Int8PtrTy;
3097   llvm::Type *BPP = CGF.Int8PtrPtrTy;
3098 
3099   CGBuilderTy &Builder = CGF.Builder;
3100   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3101   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3102 
3103   // Handle types that require 16-byte alignment in the parameter save area.
3104   if (isAlignedParamType(Ty)) {
3105     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3106     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(15));
3107     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt64(-16));
3108     Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
3109   }
3110 
3111   // Update the va_list pointer.  The pointer should be bumped by the
3112   // size of the object.  We can trust getTypeSize() except for a complex
3113   // type whose base type is smaller than a doubleword.  For these, the
3114   // size of the object is 16 bytes; see below for further explanation.
3115   unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
3116   QualType BaseTy;
3117   unsigned CplxBaseSize = 0;
3118 
3119   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3120     BaseTy = CTy->getElementType();
3121     CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8;
3122     if (CplxBaseSize < 8)
3123       SizeInBytes = 16;
3124   }
3125 
3126   unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
3127   llvm::Value *NextAddr =
3128     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
3129                       "ap.next");
3130   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3131 
3132   // If we have a complex type and the base type is smaller than 8 bytes,
3133   // the ABI calls for the real and imaginary parts to be right-adjusted
3134   // in separate doublewords.  However, Clang expects us to produce a
3135   // pointer to a structure with the two parts packed tightly.  So generate
3136   // loads of the real and imaginary parts relative to the va_list pointer,
3137   // and store them to a temporary structure.
3138   if (CplxBaseSize && CplxBaseSize < 8) {
3139     llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3140     llvm::Value *ImagAddr = RealAddr;
3141     if (CGF.CGM.getDataLayout().isBigEndian()) {
3142       RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize));
3143       ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize));
3144     } else {
3145       ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(8));
3146     }
3147     llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy));
3148     RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy);
3149     ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy);
3150     llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal");
3151     llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag");
3152     llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty),
3153                                             "vacplx");
3154     llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real");
3155     llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag");
3156     Builder.CreateStore(Real, RealPtr, false);
3157     Builder.CreateStore(Imag, ImagPtr, false);
3158     return Ptr;
3159   }
3160 
3161   // If the argument is smaller than 8 bytes, it is right-adjusted in
3162   // its doubleword slot.  Adjust the pointer to pick it up from the
3163   // correct offset.
3164   if (SizeInBytes < 8 && CGF.CGM.getDataLayout().isBigEndian()) {
3165     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3166     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
3167     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
3168   }
3169 
3170   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3171   return Builder.CreateBitCast(Addr, PTy);
3172 }
3173 
3174 static bool
PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address)3175 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3176                               llvm::Value *Address) {
3177   // This is calculated from the LLVM and GCC tables and verified
3178   // against gcc output.  AFAIK all ABIs use the same encoding.
3179 
3180   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3181 
3182   llvm::IntegerType *i8 = CGF.Int8Ty;
3183   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3184   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3185   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3186 
3187   // 0-31: r0-31, the 8-byte general-purpose registers
3188   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
3189 
3190   // 32-63: fp0-31, the 8-byte floating-point registers
3191   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3192 
3193   // 64-76 are various 4-byte special-purpose registers:
3194   // 64: mq
3195   // 65: lr
3196   // 66: ctr
3197   // 67: ap
3198   // 68-75 cr0-7
3199   // 76: xer
3200   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3201 
3202   // 77-108: v0-31, the 16-byte vector registers
3203   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3204 
3205   // 109: vrsave
3206   // 110: vscr
3207   // 111: spe_acc
3208   // 112: spefscr
3209   // 113: sfp
3210   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3211 
3212   return false;
3213 }
3214 
3215 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const3216 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
3217   CodeGen::CodeGenFunction &CGF,
3218   llvm::Value *Address) const {
3219 
3220   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3221 }
3222 
3223 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const3224 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3225                                                 llvm::Value *Address) const {
3226 
3227   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3228 }
3229 
3230 //===----------------------------------------------------------------------===//
3231 // AArch64 ABI Implementation
3232 //===----------------------------------------------------------------------===//
3233 
3234 namespace {
3235 
3236 class AArch64ABIInfo : public ABIInfo {
3237 public:
3238   enum ABIKind {
3239     AAPCS = 0,
3240     DarwinPCS
3241   };
3242 
3243 private:
3244   ABIKind Kind;
3245 
3246 public:
AArch64ABIInfo(CodeGenTypes & CGT,ABIKind Kind)3247   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {}
3248 
3249 private:
getABIKind() const3250   ABIKind getABIKind() const { return Kind; }
isDarwinPCS() const3251   bool isDarwinPCS() const { return Kind == DarwinPCS; }
3252 
3253   ABIArgInfo classifyReturnType(QualType RetTy) const;
3254   ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &AllocatedVFP,
3255                                   bool &IsHA, unsigned &AllocatedGPR,
3256                                   bool &IsSmallAggr, bool IsNamedArg) const;
3257   bool isIllegalVectorType(QualType Ty) const;
3258 
computeInfo(CGFunctionInfo & FI) const3259   virtual void computeInfo(CGFunctionInfo &FI) const {
3260     // To correctly handle Homogeneous Aggregate, we need to keep track of the
3261     // number of SIMD and Floating-point registers allocated so far.
3262     // If the argument is an HFA or an HVA and there are sufficient unallocated
3263     // SIMD and Floating-point registers, then the argument is allocated to SIMD
3264     // and Floating-point Registers (with one register per member of the HFA or
3265     // HVA). Otherwise, the NSRN is set to 8.
3266     unsigned AllocatedVFP = 0;
3267 
3268     // To correctly handle small aggregates, we need to keep track of the number
3269     // of GPRs allocated so far. If the small aggregate can't all fit into
3270     // registers, it will be on stack. We don't allow the aggregate to be
3271     // partially in registers.
3272     unsigned AllocatedGPR = 0;
3273 
3274     // Find the number of named arguments. Variadic arguments get special
3275     // treatment with the Darwin ABI.
3276     unsigned NumRequiredArgs = (FI.isVariadic() ?
3277                                 FI.getRequiredArgs().getNumRequiredArgs() :
3278                                 FI.arg_size());
3279 
3280     if (!getCXXABI().classifyReturnType(FI))
3281       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3282     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3283          it != ie; ++it) {
3284       unsigned PreAllocation = AllocatedVFP, PreGPR = AllocatedGPR;
3285       bool IsHA = false, IsSmallAggr = false;
3286       const unsigned NumVFPs = 8;
3287       const unsigned NumGPRs = 8;
3288       bool IsNamedArg = ((it - FI.arg_begin()) <
3289                          static_cast<signed>(NumRequiredArgs));
3290       it->info = classifyArgumentType(it->type, AllocatedVFP, IsHA,
3291                                       AllocatedGPR, IsSmallAggr, IsNamedArg);
3292 
3293       // Under AAPCS the 64-bit stack slot alignment means we can't pass HAs
3294       // as sequences of floats since they'll get "holes" inserted as
3295       // padding by the back end.
3296       if (IsHA && AllocatedVFP > NumVFPs && !isDarwinPCS() &&
3297           getContext().getTypeAlign(it->type) < 64) {
3298         uint32_t NumStackSlots = getContext().getTypeSize(it->type);
3299         NumStackSlots = llvm::RoundUpToAlignment(NumStackSlots, 64) / 64;
3300 
3301         llvm::Type *CoerceTy = llvm::ArrayType::get(
3302             llvm::Type::getDoubleTy(getVMContext()), NumStackSlots);
3303         it->info = ABIArgInfo::getDirect(CoerceTy);
3304       }
3305 
3306       // If we do not have enough VFP registers for the HA, any VFP registers
3307       // that are unallocated are marked as unavailable. To achieve this, we add
3308       // padding of (NumVFPs - PreAllocation) floats.
3309       if (IsHA && AllocatedVFP > NumVFPs && PreAllocation < NumVFPs) {
3310         llvm::Type *PaddingTy = llvm::ArrayType::get(
3311             llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocation);
3312         it->info.setPaddingType(PaddingTy);
3313       }
3314 
3315       // If we do not have enough GPRs for the small aggregate, any GPR regs
3316       // that are unallocated are marked as unavailable.
3317       if (IsSmallAggr && AllocatedGPR > NumGPRs && PreGPR < NumGPRs) {
3318         llvm::Type *PaddingTy = llvm::ArrayType::get(
3319             llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreGPR);
3320         it->info =
3321             ABIArgInfo::getDirect(it->info.getCoerceToType(), 0, PaddingTy);
3322       }
3323     }
3324   }
3325 
3326   llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
3327                                CodeGenFunction &CGF) const;
3328 
3329   llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty,
3330                               CodeGenFunction &CGF) const;
3331 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const3332   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3333                                  CodeGenFunction &CGF) const {
3334     return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
3335                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
3336   }
3337 };
3338 
3339 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
3340 public:
AArch64TargetCodeGenInfo(CodeGenTypes & CGT,AArch64ABIInfo::ABIKind Kind)3341   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
3342       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
3343 
getARCRetainAutoreleasedReturnValueMarker() const3344   StringRef getARCRetainAutoreleasedReturnValueMarker() const {
3345     return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
3346   }
3347 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const3348   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { return 31; }
3349 
doesReturnSlotInterfereWithArgs() const3350   virtual bool doesReturnSlotInterfereWithArgs() const { return false; }
3351 };
3352 }
3353 
3354 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
3355                                    ASTContext &Context,
3356                                    uint64_t *HAMembers = nullptr);
3357 
classifyArgumentType(QualType Ty,unsigned & AllocatedVFP,bool & IsHA,unsigned & AllocatedGPR,bool & IsSmallAggr,bool IsNamedArg) const3358 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty,
3359                                                 unsigned &AllocatedVFP,
3360                                                 bool &IsHA,
3361                                                 unsigned &AllocatedGPR,
3362                                                 bool &IsSmallAggr,
3363                                                 bool IsNamedArg) const {
3364   // Handle illegal vector types here.
3365   if (isIllegalVectorType(Ty)) {
3366     uint64_t Size = getContext().getTypeSize(Ty);
3367     // Android promotes <2 x i8> to i16, not i32
3368     if (Size <= 16) {
3369       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
3370       AllocatedGPR++;
3371       return ABIArgInfo::getDirect(ResType);
3372     }
3373     if (Size == 32) {
3374       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
3375       AllocatedGPR++;
3376       return ABIArgInfo::getDirect(ResType);
3377     }
3378     if (Size == 64) {
3379       llvm::Type *ResType =
3380           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
3381       AllocatedVFP++;
3382       return ABIArgInfo::getDirect(ResType);
3383     }
3384     if (Size == 128) {
3385       llvm::Type *ResType =
3386           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
3387       AllocatedVFP++;
3388       return ABIArgInfo::getDirect(ResType);
3389     }
3390     AllocatedGPR++;
3391     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3392   }
3393   if (Ty->isVectorType())
3394     // Size of a legal vector should be either 64 or 128.
3395     AllocatedVFP++;
3396   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3397     if (BT->getKind() == BuiltinType::Half ||
3398         BT->getKind() == BuiltinType::Float ||
3399         BT->getKind() == BuiltinType::Double ||
3400         BT->getKind() == BuiltinType::LongDouble)
3401       AllocatedVFP++;
3402   }
3403 
3404   if (!isAggregateTypeForABI(Ty)) {
3405     // Treat an enum type as its underlying type.
3406     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3407       Ty = EnumTy->getDecl()->getIntegerType();
3408 
3409     if (!Ty->isFloatingType() && !Ty->isVectorType()) {
3410       unsigned Alignment = getContext().getTypeAlign(Ty);
3411       if (!isDarwinPCS() && Alignment > 64)
3412         AllocatedGPR = llvm::RoundUpToAlignment(AllocatedGPR, Alignment / 64);
3413 
3414       int RegsNeeded = getContext().getTypeSize(Ty) > 64 ? 2 : 1;
3415       AllocatedGPR += RegsNeeded;
3416     }
3417     return (Ty->isPromotableIntegerType() && isDarwinPCS()
3418                 ? ABIArgInfo::getExtend()
3419                 : ABIArgInfo::getDirect());
3420   }
3421 
3422   // Structures with either a non-trivial destructor or a non-trivial
3423   // copy constructor are always indirect.
3424   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
3425     AllocatedGPR++;
3426     return ABIArgInfo::getIndirect(0, /*ByVal=*/RAA ==
3427                                           CGCXXABI::RAA_DirectInMemory);
3428   }
3429 
3430   // Empty records are always ignored on Darwin, but actually passed in C++ mode
3431   // elsewhere for GNU compatibility.
3432   if (isEmptyRecord(getContext(), Ty, true)) {
3433     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
3434       return ABIArgInfo::getIgnore();
3435 
3436     ++AllocatedGPR;
3437     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3438   }
3439 
3440   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
3441   const Type *Base = nullptr;
3442   uint64_t Members = 0;
3443   if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) {
3444     IsHA = true;
3445     if (!IsNamedArg && isDarwinPCS()) {
3446       // With the Darwin ABI, variadic arguments are always passed on the stack
3447       // and should not be expanded. Treat variadic HFAs as arrays of doubles.
3448       uint64_t Size = getContext().getTypeSize(Ty);
3449       llvm::Type *BaseTy = llvm::Type::getDoubleTy(getVMContext());
3450       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
3451     }
3452     AllocatedVFP += Members;
3453     return ABIArgInfo::getExpand();
3454   }
3455 
3456   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
3457   uint64_t Size = getContext().getTypeSize(Ty);
3458   if (Size <= 128) {
3459     unsigned Alignment = getContext().getTypeAlign(Ty);
3460     if (!isDarwinPCS() && Alignment > 64)
3461       AllocatedGPR = llvm::RoundUpToAlignment(AllocatedGPR, Alignment / 64);
3462 
3463     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
3464     AllocatedGPR += Size / 64;
3465     IsSmallAggr = true;
3466     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
3467     // For aggregates with 16-byte alignment, we use i128.
3468     if (Alignment < 128 && Size == 128) {
3469       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
3470       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
3471     }
3472     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
3473   }
3474 
3475   AllocatedGPR++;
3476   return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3477 }
3478 
classifyReturnType(QualType RetTy) const3479 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
3480   if (RetTy->isVoidType())
3481     return ABIArgInfo::getIgnore();
3482 
3483   // Large vector types should be returned via memory.
3484   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
3485     return ABIArgInfo::getIndirect(0);
3486 
3487   if (!isAggregateTypeForABI(RetTy)) {
3488     // Treat an enum type as its underlying type.
3489     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3490       RetTy = EnumTy->getDecl()->getIntegerType();
3491 
3492     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
3493                 ? ABIArgInfo::getExtend()
3494                 : ABIArgInfo::getDirect());
3495   }
3496 
3497   if (isEmptyRecord(getContext(), RetTy, true))
3498     return ABIArgInfo::getIgnore();
3499 
3500   const Type *Base = nullptr;
3501   if (isHomogeneousAggregate(RetTy, Base, getContext()))
3502     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
3503     return ABIArgInfo::getDirect();
3504 
3505   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
3506   uint64_t Size = getContext().getTypeSize(RetTy);
3507   if (Size <= 128) {
3508     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
3509     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
3510   }
3511 
3512   return ABIArgInfo::getIndirect(0);
3513 }
3514 
3515 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
isIllegalVectorType(QualType Ty) const3516 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
3517   if (const VectorType *VT = Ty->getAs<VectorType>()) {
3518     // Check whether VT is legal.
3519     unsigned NumElements = VT->getNumElements();
3520     uint64_t Size = getContext().getTypeSize(VT);
3521     // NumElements should be power of 2 between 1 and 16.
3522     if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16)
3523       return true;
3524     return Size != 64 && (Size != 128 || NumElements == 1);
3525   }
3526   return false;
3527 }
3528 
EmitAArch64VAArg(llvm::Value * VAListAddr,QualType Ty,int AllocatedGPR,int AllocatedVFP,bool IsIndirect,CodeGenFunction & CGF)3529 static llvm::Value *EmitAArch64VAArg(llvm::Value *VAListAddr, QualType Ty,
3530                                      int AllocatedGPR, int AllocatedVFP,
3531                                      bool IsIndirect, CodeGenFunction &CGF) {
3532   // The AArch64 va_list type and handling is specified in the Procedure Call
3533   // Standard, section B.4:
3534   //
3535   // struct {
3536   //   void *__stack;
3537   //   void *__gr_top;
3538   //   void *__vr_top;
3539   //   int __gr_offs;
3540   //   int __vr_offs;
3541   // };
3542 
3543   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
3544   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3545   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
3546   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3547   auto &Ctx = CGF.getContext();
3548 
3549   llvm::Value *reg_offs_p = nullptr, *reg_offs = nullptr;
3550   int reg_top_index;
3551   int RegSize;
3552   if (AllocatedGPR) {
3553     assert(!AllocatedVFP && "Arguments never split between int & VFP regs");
3554     // 3 is the field number of __gr_offs
3555     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
3556     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
3557     reg_top_index = 1; // field number for __gr_top
3558     RegSize = 8 * AllocatedGPR;
3559   } else {
3560     assert(!AllocatedGPR && "Argument must go in VFP or int regs");
3561     // 4 is the field number of __vr_offs.
3562     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
3563     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
3564     reg_top_index = 2; // field number for __vr_top
3565     RegSize = 16 * AllocatedVFP;
3566   }
3567 
3568   //=======================================
3569   // Find out where argument was passed
3570   //=======================================
3571 
3572   // If reg_offs >= 0 we're already using the stack for this type of
3573   // argument. We don't want to keep updating reg_offs (in case it overflows,
3574   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
3575   // whatever they get).
3576   llvm::Value *UsingStack = nullptr;
3577   UsingStack = CGF.Builder.CreateICmpSGE(
3578       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
3579 
3580   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
3581 
3582   // Otherwise, at least some kind of argument could go in these registers, the
3583   // question is whether this particular type is too big.
3584   CGF.EmitBlock(MaybeRegBlock);
3585 
3586   // Integer arguments may need to correct register alignment (for example a
3587   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
3588   // align __gr_offs to calculate the potential address.
3589   if (AllocatedGPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
3590     int Align = Ctx.getTypeAlign(Ty) / 8;
3591 
3592     reg_offs = CGF.Builder.CreateAdd(
3593         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
3594         "align_regoffs");
3595     reg_offs = CGF.Builder.CreateAnd(
3596         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
3597         "aligned_regoffs");
3598   }
3599 
3600   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
3601   llvm::Value *NewOffset = nullptr;
3602   NewOffset = CGF.Builder.CreateAdd(
3603       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
3604   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
3605 
3606   // Now we're in a position to decide whether this argument really was in
3607   // registers or not.
3608   llvm::Value *InRegs = nullptr;
3609   InRegs = CGF.Builder.CreateICmpSLE(
3610       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
3611 
3612   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
3613 
3614   //=======================================
3615   // Argument was in registers
3616   //=======================================
3617 
3618   // Now we emit the code for if the argument was originally passed in
3619   // registers. First start the appropriate block:
3620   CGF.EmitBlock(InRegBlock);
3621 
3622   llvm::Value *reg_top_p = nullptr, *reg_top = nullptr;
3623   reg_top_p =
3624       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
3625   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
3626   llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs);
3627   llvm::Value *RegAddr = nullptr;
3628   llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
3629 
3630   if (IsIndirect) {
3631     // If it's been passed indirectly (actually a struct), whatever we find from
3632     // stored registers or on the stack will actually be a struct **.
3633     MemTy = llvm::PointerType::getUnqual(MemTy);
3634   }
3635 
3636   const Type *Base = nullptr;
3637   uint64_t NumMembers;
3638   bool IsHFA = isHomogeneousAggregate(Ty, Base, Ctx, &NumMembers);
3639   if (IsHFA && NumMembers > 1) {
3640     // Homogeneous aggregates passed in registers will have their elements split
3641     // and stored 16-bytes apart regardless of size (they're notionally in qN,
3642     // qN+1, ...). We reload and store into a temporary local variable
3643     // contiguously.
3644     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
3645     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
3646     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
3647     llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy);
3648     int Offset = 0;
3649 
3650     if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128)
3651       Offset = 16 - Ctx.getTypeSize(Base) / 8;
3652     for (unsigned i = 0; i < NumMembers; ++i) {
3653       llvm::Value *BaseOffset =
3654           llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset);
3655       llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset);
3656       LoadAddr = CGF.Builder.CreateBitCast(
3657           LoadAddr, llvm::PointerType::getUnqual(BaseTy));
3658       llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i);
3659 
3660       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
3661       CGF.Builder.CreateStore(Elem, StoreAddr);
3662     }
3663 
3664     RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy);
3665   } else {
3666     // Otherwise the object is contiguous in memory
3667     unsigned BeAlign = reg_top_index == 2 ? 16 : 8;
3668     if (CGF.CGM.getDataLayout().isBigEndian() &&
3669         (IsHFA || !isAggregateTypeForABI(Ty)) &&
3670         Ctx.getTypeSize(Ty) < (BeAlign * 8)) {
3671       int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8;
3672       BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty);
3673 
3674       BaseAddr = CGF.Builder.CreateAdd(
3675           BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
3676 
3677       BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy);
3678     }
3679 
3680     RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy);
3681   }
3682 
3683   CGF.EmitBranch(ContBlock);
3684 
3685   //=======================================
3686   // Argument was on the stack
3687   //=======================================
3688   CGF.EmitBlock(OnStackBlock);
3689 
3690   llvm::Value *stack_p = nullptr, *OnStackAddr = nullptr;
3691   stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
3692   OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack");
3693 
3694   // Again, stack arguments may need realigmnent. In this case both integer and
3695   // floating-point ones might be affected.
3696   if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
3697     int Align = Ctx.getTypeAlign(Ty) / 8;
3698 
3699     OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
3700 
3701     OnStackAddr = CGF.Builder.CreateAdd(
3702         OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
3703         "align_stack");
3704     OnStackAddr = CGF.Builder.CreateAnd(
3705         OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
3706         "align_stack");
3707 
3708     OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
3709   }
3710 
3711   uint64_t StackSize;
3712   if (IsIndirect)
3713     StackSize = 8;
3714   else
3715     StackSize = Ctx.getTypeSize(Ty) / 8;
3716 
3717   // All stack slots are 8 bytes
3718   StackSize = llvm::RoundUpToAlignment(StackSize, 8);
3719 
3720   llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize);
3721   llvm::Value *NewStack =
3722       CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack");
3723 
3724   // Write the new value of __stack for the next call to va_arg
3725   CGF.Builder.CreateStore(NewStack, stack_p);
3726 
3727   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
3728       Ctx.getTypeSize(Ty) < 64) {
3729     int Offset = 8 - Ctx.getTypeSize(Ty) / 8;
3730     OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
3731 
3732     OnStackAddr = CGF.Builder.CreateAdd(
3733         OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
3734 
3735     OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
3736   }
3737 
3738   OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy);
3739 
3740   CGF.EmitBranch(ContBlock);
3741 
3742   //=======================================
3743   // Tidy up
3744   //=======================================
3745   CGF.EmitBlock(ContBlock);
3746 
3747   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr");
3748   ResAddr->addIncoming(RegAddr, InRegBlock);
3749   ResAddr->addIncoming(OnStackAddr, OnStackBlock);
3750 
3751   if (IsIndirect)
3752     return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr");
3753 
3754   return ResAddr;
3755 }
3756 
EmitAAPCSVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const3757 llvm::Value *AArch64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty,
3758                                           CodeGenFunction &CGF) const {
3759 
3760   unsigned AllocatedGPR = 0, AllocatedVFP = 0;
3761   bool IsHA = false, IsSmallAggr = false;
3762   ABIArgInfo AI = classifyArgumentType(Ty, AllocatedVFP, IsHA, AllocatedGPR,
3763                                        IsSmallAggr, false /*IsNamedArg*/);
3764 
3765   return EmitAArch64VAArg(VAListAddr, Ty, AllocatedGPR, AllocatedVFP,
3766                           AI.isIndirect(), CGF);
3767 }
3768 
EmitDarwinVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const3769 llvm::Value *AArch64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
3770                                            CodeGenFunction &CGF) const {
3771   // We do not support va_arg for aggregates or illegal vector types.
3772   // Lower VAArg here for these cases and use the LLVM va_arg instruction for
3773   // other cases.
3774   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
3775     return nullptr;
3776 
3777   uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
3778   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
3779 
3780   const Type *Base = nullptr;
3781   bool isHA = isHomogeneousAggregate(Ty, Base, getContext());
3782 
3783   bool isIndirect = false;
3784   // Arguments bigger than 16 bytes which aren't homogeneous aggregates should
3785   // be passed indirectly.
3786   if (Size > 16 && !isHA) {
3787     isIndirect = true;
3788     Size = 8;
3789     Align = 8;
3790   }
3791 
3792   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
3793   llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
3794 
3795   CGBuilderTy &Builder = CGF.Builder;
3796   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3797   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3798 
3799   if (isEmptyRecord(getContext(), Ty, true)) {
3800     // These are ignored for parameter passing purposes.
3801     llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3802     return Builder.CreateBitCast(Addr, PTy);
3803   }
3804 
3805   const uint64_t MinABIAlign = 8;
3806   if (Align > MinABIAlign) {
3807     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
3808     Addr = Builder.CreateGEP(Addr, Offset);
3809     llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3810     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1));
3811     llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask);
3812     Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align");
3813   }
3814 
3815   uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign);
3816   llvm::Value *NextAddr = Builder.CreateGEP(
3817       Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
3818   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3819 
3820   if (isIndirect)
3821     Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
3822   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3823   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3824 
3825   return AddrTyped;
3826 }
3827 
3828 //===----------------------------------------------------------------------===//
3829 // ARM ABI Implementation
3830 //===----------------------------------------------------------------------===//
3831 
3832 namespace {
3833 
3834 class ARMABIInfo : public ABIInfo {
3835 public:
3836   enum ABIKind {
3837     APCS = 0,
3838     AAPCS = 1,
3839     AAPCS_VFP
3840   };
3841 
3842 private:
3843   ABIKind Kind;
3844   mutable int VFPRegs[16];
3845   const unsigned NumVFPs;
3846   const unsigned NumGPRs;
3847   mutable unsigned AllocatedGPRs;
3848   mutable unsigned AllocatedVFPs;
3849 
3850 public:
ARMABIInfo(CodeGenTypes & CGT,ABIKind _Kind)3851   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind),
3852     NumVFPs(16), NumGPRs(4) {
3853     setRuntimeCC();
3854     resetAllocatedRegs();
3855   }
3856 
isEABI() const3857   bool isEABI() const {
3858     switch (getTarget().getTriple().getEnvironment()) {
3859     case llvm::Triple::Android:
3860     case llvm::Triple::EABI:
3861     case llvm::Triple::EABIHF:
3862     case llvm::Triple::GNUEABI:
3863     case llvm::Triple::GNUEABIHF:
3864       return true;
3865     default:
3866       return false;
3867     }
3868   }
3869 
isEABIHF() const3870   bool isEABIHF() const {
3871     switch (getTarget().getTriple().getEnvironment()) {
3872     case llvm::Triple::EABIHF:
3873     case llvm::Triple::GNUEABIHF:
3874       return true;
3875     default:
3876       return false;
3877     }
3878   }
3879 
getABIKind() const3880   ABIKind getABIKind() const { return Kind; }
3881 
3882 private:
3883   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
3884   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
3885                                   bool &IsCPRC) const;
3886   bool isIllegalVectorType(QualType Ty) const;
3887 
3888   void computeInfo(CGFunctionInfo &FI) const override;
3889 
3890   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3891                          CodeGenFunction &CGF) const override;
3892 
3893   llvm::CallingConv::ID getLLVMDefaultCC() const;
3894   llvm::CallingConv::ID getABIDefaultCC() const;
3895   void setRuntimeCC();
3896 
3897   void markAllocatedGPRs(unsigned Alignment, unsigned NumRequired) const;
3898   void markAllocatedVFPs(unsigned Alignment, unsigned NumRequired) const;
3899   void resetAllocatedRegs(void) const;
3900 };
3901 
3902 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
3903 public:
ARMTargetCodeGenInfo(CodeGenTypes & CGT,ARMABIInfo::ABIKind K)3904   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
3905     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
3906 
getABIInfo() const3907   const ARMABIInfo &getABIInfo() const {
3908     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
3909   }
3910 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const3911   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3912     return 13;
3913   }
3914 
getARCRetainAutoreleasedReturnValueMarker() const3915   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
3916     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
3917   }
3918 
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const3919   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3920                                llvm::Value *Address) const override {
3921     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
3922 
3923     // 0-15 are the 16 integer registers.
3924     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
3925     return false;
3926   }
3927 
getSizeOfUnwindException() const3928   unsigned getSizeOfUnwindException() const override {
3929     if (getABIInfo().isEABI()) return 88;
3930     return TargetCodeGenInfo::getSizeOfUnwindException();
3931   }
3932 
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const3933   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3934                            CodeGen::CodeGenModule &CGM) const override {
3935     const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3936     if (!FD)
3937       return;
3938 
3939     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
3940     if (!Attr)
3941       return;
3942 
3943     const char *Kind;
3944     switch (Attr->getInterrupt()) {
3945     case ARMInterruptAttr::Generic: Kind = ""; break;
3946     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
3947     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
3948     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
3949     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
3950     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
3951     }
3952 
3953     llvm::Function *Fn = cast<llvm::Function>(GV);
3954 
3955     Fn->addFnAttr("interrupt", Kind);
3956 
3957     if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS)
3958       return;
3959 
3960     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
3961     // however this is not necessarily true on taking any interrupt. Instruct
3962     // the backend to perform a realignment as part of the function prologue.
3963     llvm::AttrBuilder B;
3964     B.addStackAlignmentAttr(8);
3965     Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
3966                       llvm::AttributeSet::get(CGM.getLLVMContext(),
3967                                               llvm::AttributeSet::FunctionIndex,
3968                                               B));
3969   }
3970 
3971 };
3972 
3973 }
3974 
computeInfo(CGFunctionInfo & FI) const3975 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
3976   // To correctly handle Homogeneous Aggregate, we need to keep track of the
3977   // VFP registers allocated so far.
3978   // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
3979   // VFP registers of the appropriate type unallocated then the argument is
3980   // allocated to the lowest-numbered sequence of such registers.
3981   // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
3982   // unallocated are marked as unavailable.
3983   resetAllocatedRegs();
3984 
3985   if (getCXXABI().classifyReturnType(FI)) {
3986     if (FI.getReturnInfo().isIndirect())
3987       markAllocatedGPRs(1, 1);
3988   } else {
3989     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic());
3990   }
3991   for (auto &I : FI.arguments()) {
3992     unsigned PreAllocationVFPs = AllocatedVFPs;
3993     unsigned PreAllocationGPRs = AllocatedGPRs;
3994     bool IsCPRC = false;
3995     // 6.1.2.3 There is one VFP co-processor register class using registers
3996     // s0-s15 (d0-d7) for passing arguments.
3997     I.info = classifyArgumentType(I.type, FI.isVariadic(), IsCPRC);
3998 
3999     // If we have allocated some arguments onto the stack (due to running
4000     // out of VFP registers), we cannot split an argument between GPRs and
4001     // the stack. If this situation occurs, we add padding to prevent the
4002     // GPRs from being used. In this situation, the current argument could
4003     // only be allocated by rule C.8, so rule C.6 would mark these GPRs as
4004     // unusable anyway.
4005     const bool StackUsed = PreAllocationGPRs > NumGPRs || PreAllocationVFPs > NumVFPs;
4006     if (!IsCPRC && PreAllocationGPRs < NumGPRs && AllocatedGPRs > NumGPRs && StackUsed) {
4007       llvm::Type *PaddingTy = llvm::ArrayType::get(
4008           llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreAllocationGPRs);
4009       if (I.info.canHaveCoerceToType()) {
4010         I.info = ABIArgInfo::getDirect(I.info.getCoerceToType() /* type */, 0 /* offset */,
4011                                        PaddingTy);
4012       } else {
4013         I.info = ABIArgInfo::getDirect(nullptr /* type */, 0 /* offset */,
4014                                        PaddingTy);
4015       }
4016     }
4017   }
4018 
4019   // Always honor user-specified calling convention.
4020   if (FI.getCallingConvention() != llvm::CallingConv::C)
4021     return;
4022 
4023   llvm::CallingConv::ID cc = getRuntimeCC();
4024   if (cc != llvm::CallingConv::C)
4025     FI.setEffectiveCallingConvention(cc);
4026 }
4027 
4028 /// Return the default calling convention that LLVM will use.
getLLVMDefaultCC() const4029 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
4030   // The default calling convention that LLVM will infer.
4031   if (isEABIHF())
4032     return llvm::CallingConv::ARM_AAPCS_VFP;
4033   else if (isEABI())
4034     return llvm::CallingConv::ARM_AAPCS;
4035   else
4036     return llvm::CallingConv::ARM_APCS;
4037 }
4038 
4039 /// Return the calling convention that our ABI would like us to use
4040 /// as the C calling convention.
getABIDefaultCC() const4041 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
4042   switch (getABIKind()) {
4043   case APCS: return llvm::CallingConv::ARM_APCS;
4044   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
4045   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
4046   }
4047   llvm_unreachable("bad ABI kind");
4048 }
4049 
setRuntimeCC()4050 void ARMABIInfo::setRuntimeCC() {
4051   assert(getRuntimeCC() == llvm::CallingConv::C);
4052 
4053   // Don't muddy up the IR with a ton of explicit annotations if
4054   // they'd just match what LLVM will infer from the triple.
4055   llvm::CallingConv::ID abiCC = getABIDefaultCC();
4056   if (abiCC != getLLVMDefaultCC())
4057     RuntimeCC = abiCC;
4058 }
4059 
4060 /// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
4061 /// aggregate.  If HAMembers is non-null, the number of base elements
4062 /// contained in the type is returned through it; this is used for the
4063 /// recursive calls that check aggregate component types.
isHomogeneousAggregate(QualType Ty,const Type * & Base,ASTContext & Context,uint64_t * HAMembers)4064 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
4065                                    ASTContext &Context, uint64_t *HAMembers) {
4066   uint64_t Members = 0;
4067   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
4068     if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
4069       return false;
4070     Members *= AT->getSize().getZExtValue();
4071   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
4072     const RecordDecl *RD = RT->getDecl();
4073     if (RD->hasFlexibleArrayMember())
4074       return false;
4075 
4076     Members = 0;
4077     for (const auto *FD : RD->fields()) {
4078       uint64_t FldMembers;
4079       if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
4080         return false;
4081 
4082       Members = (RD->isUnion() ?
4083                  std::max(Members, FldMembers) : Members + FldMembers);
4084     }
4085   } else {
4086     Members = 1;
4087     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
4088       Members = 2;
4089       Ty = CT->getElementType();
4090     }
4091 
4092     // Homogeneous aggregates for AAPCS-VFP must have base types of float,
4093     // double, or 64-bit or 128-bit vectors.
4094     if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4095       if (BT->getKind() != BuiltinType::Float &&
4096           BT->getKind() != BuiltinType::Double &&
4097           BT->getKind() != BuiltinType::LongDouble)
4098         return false;
4099     } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4100       unsigned VecSize = Context.getTypeSize(VT);
4101       if (VecSize != 64 && VecSize != 128)
4102         return false;
4103     } else {
4104       return false;
4105     }
4106 
4107     // The base type must be the same for all members.  Vector types of the
4108     // same total size are treated as being equivalent here.
4109     const Type *TyPtr = Ty.getTypePtr();
4110     if (!Base)
4111       Base = TyPtr;
4112 
4113     if (Base != TyPtr) {
4114       // Homogeneous aggregates are defined as containing members with the
4115       // same machine type. There are two cases in which two members have
4116       // different TypePtrs but the same machine type:
4117 
4118       // 1) Vectors of the same length, regardless of the type and number
4119       //    of their members.
4120       const bool SameLengthVectors = Base->isVectorType() && TyPtr->isVectorType()
4121         && (Context.getTypeSize(Base) == Context.getTypeSize(TyPtr));
4122 
4123       // 2) In the 32-bit AAPCS, `double' and `long double' have the same
4124       //    machine type. This is not the case for the 64-bit AAPCS.
4125       const bool SameSizeDoubles =
4126            (   (   Base->isSpecificBuiltinType(BuiltinType::Double)
4127                 && TyPtr->isSpecificBuiltinType(BuiltinType::LongDouble))
4128             || (   Base->isSpecificBuiltinType(BuiltinType::LongDouble)
4129                 && TyPtr->isSpecificBuiltinType(BuiltinType::Double)))
4130         && (Context.getTypeSize(Base) == Context.getTypeSize(TyPtr));
4131 
4132       if (!SameLengthVectors && !SameSizeDoubles)
4133         return false;
4134     }
4135   }
4136 
4137   // Homogeneous Aggregates can have at most 4 members of the base type.
4138   if (HAMembers)
4139     *HAMembers = Members;
4140 
4141   return (Members > 0 && Members <= 4);
4142 }
4143 
4144 /// markAllocatedVFPs - update VFPRegs according to the alignment and
4145 /// number of VFP registers (unit is S register) requested.
markAllocatedVFPs(unsigned Alignment,unsigned NumRequired) const4146 void ARMABIInfo::markAllocatedVFPs(unsigned Alignment,
4147                                    unsigned NumRequired) const {
4148   // Early Exit.
4149   if (AllocatedVFPs >= 16) {
4150     // We use AllocatedVFP > 16 to signal that some CPRCs were allocated on
4151     // the stack.
4152     AllocatedVFPs = 17;
4153     return;
4154   }
4155   // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
4156   // VFP registers of the appropriate type unallocated then the argument is
4157   // allocated to the lowest-numbered sequence of such registers.
4158   for (unsigned I = 0; I < 16; I += Alignment) {
4159     bool FoundSlot = true;
4160     for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
4161       if (J >= 16 || VFPRegs[J]) {
4162          FoundSlot = false;
4163          break;
4164       }
4165     if (FoundSlot) {
4166       for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
4167         VFPRegs[J] = 1;
4168       AllocatedVFPs += NumRequired;
4169       return;
4170     }
4171   }
4172   // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
4173   // unallocated are marked as unavailable.
4174   for (unsigned I = 0; I < 16; I++)
4175     VFPRegs[I] = 1;
4176   AllocatedVFPs = 17; // We do not have enough VFP registers.
4177 }
4178 
4179 /// Update AllocatedGPRs to record the number of general purpose registers
4180 /// which have been allocated. It is valid for AllocatedGPRs to go above 4,
4181 /// this represents arguments being stored on the stack.
markAllocatedGPRs(unsigned Alignment,unsigned NumRequired) const4182 void ARMABIInfo::markAllocatedGPRs(unsigned Alignment,
4183                                    unsigned NumRequired) const {
4184   assert((Alignment == 1 || Alignment == 2) && "Alignment must be 4 or 8 bytes");
4185 
4186   if (Alignment == 2 && AllocatedGPRs & 0x1)
4187     AllocatedGPRs += 1;
4188 
4189   AllocatedGPRs += NumRequired;
4190 }
4191 
resetAllocatedRegs(void) const4192 void ARMABIInfo::resetAllocatedRegs(void) const {
4193   AllocatedGPRs = 0;
4194   AllocatedVFPs = 0;
4195   for (unsigned i = 0; i < NumVFPs; ++i)
4196     VFPRegs[i] = 0;
4197 }
4198 
classifyArgumentType(QualType Ty,bool isVariadic,bool & IsCPRC) const4199 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
4200                                             bool &IsCPRC) const {
4201   // We update number of allocated VFPs according to
4202   // 6.1.2.1 The following argument types are VFP CPRCs:
4203   //   A single-precision floating-point type (including promoted
4204   //   half-precision types); A double-precision floating-point type;
4205   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
4206   //   with a Base Type of a single- or double-precision floating-point type,
4207   //   64-bit containerized vectors or 128-bit containerized vectors with one
4208   //   to four Elements.
4209 
4210   // Handle illegal vector types here.
4211   if (isIllegalVectorType(Ty)) {
4212     uint64_t Size = getContext().getTypeSize(Ty);
4213     if (Size <= 32) {
4214       llvm::Type *ResType =
4215           llvm::Type::getInt32Ty(getVMContext());
4216       markAllocatedGPRs(1, 1);
4217       return ABIArgInfo::getDirect(ResType);
4218     }
4219     if (Size == 64) {
4220       llvm::Type *ResType = llvm::VectorType::get(
4221           llvm::Type::getInt32Ty(getVMContext()), 2);
4222       if (getABIKind() == ARMABIInfo::AAPCS || isVariadic){
4223         markAllocatedGPRs(2, 2);
4224       } else {
4225         markAllocatedVFPs(2, 2);
4226         IsCPRC = true;
4227       }
4228       return ABIArgInfo::getDirect(ResType);
4229     }
4230     if (Size == 128) {
4231       llvm::Type *ResType = llvm::VectorType::get(
4232           llvm::Type::getInt32Ty(getVMContext()), 4);
4233       if (getABIKind() == ARMABIInfo::AAPCS || isVariadic) {
4234         markAllocatedGPRs(2, 4);
4235       } else {
4236         markAllocatedVFPs(4, 4);
4237         IsCPRC = true;
4238       }
4239       return ABIArgInfo::getDirect(ResType);
4240     }
4241     markAllocatedGPRs(1, 1);
4242     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4243   }
4244   // Update VFPRegs for legal vector types.
4245   if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) {
4246     if (const VectorType *VT = Ty->getAs<VectorType>()) {
4247       uint64_t Size = getContext().getTypeSize(VT);
4248       // Size of a legal vector should be power of 2 and above 64.
4249       markAllocatedVFPs(Size >= 128 ? 4 : 2, Size / 32);
4250       IsCPRC = true;
4251     }
4252   }
4253   // Update VFPRegs for floating point types.
4254   if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) {
4255     if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4256       if (BT->getKind() == BuiltinType::Half ||
4257           BT->getKind() == BuiltinType::Float) {
4258         markAllocatedVFPs(1, 1);
4259         IsCPRC = true;
4260       }
4261       if (BT->getKind() == BuiltinType::Double ||
4262           BT->getKind() == BuiltinType::LongDouble) {
4263         markAllocatedVFPs(2, 2);
4264         IsCPRC = true;
4265       }
4266     }
4267   }
4268 
4269   if (!isAggregateTypeForABI(Ty)) {
4270     // Treat an enum type as its underlying type.
4271     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
4272       Ty = EnumTy->getDecl()->getIntegerType();
4273     }
4274 
4275     unsigned Size = getContext().getTypeSize(Ty);
4276     if (!IsCPRC)
4277       markAllocatedGPRs(Size > 32 ? 2 : 1, (Size + 31) / 32);
4278     return (Ty->isPromotableIntegerType() ?
4279             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4280   }
4281 
4282   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4283     markAllocatedGPRs(1, 1);
4284     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4285   }
4286 
4287   // Ignore empty records.
4288   if (isEmptyRecord(getContext(), Ty, true))
4289     return ABIArgInfo::getIgnore();
4290 
4291   if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) {
4292     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
4293     // into VFP registers.
4294     const Type *Base = nullptr;
4295     uint64_t Members = 0;
4296     if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) {
4297       assert(Base && "Base class should be set for homogeneous aggregate");
4298       // Base can be a floating-point or a vector.
4299       if (Base->isVectorType()) {
4300         // ElementSize is in number of floats.
4301         unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4;
4302         markAllocatedVFPs(ElementSize,
4303                           Members * ElementSize);
4304       } else if (Base->isSpecificBuiltinType(BuiltinType::Float))
4305         markAllocatedVFPs(1, Members);
4306       else {
4307         assert(Base->isSpecificBuiltinType(BuiltinType::Double) ||
4308                Base->isSpecificBuiltinType(BuiltinType::LongDouble));
4309         markAllocatedVFPs(2, Members * 2);
4310       }
4311       IsCPRC = true;
4312       return ABIArgInfo::getDirect();
4313     }
4314   }
4315 
4316   // Support byval for ARM.
4317   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
4318   // most 8-byte. We realign the indirect argument if type alignment is bigger
4319   // than ABI alignment.
4320   uint64_t ABIAlign = 4;
4321   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
4322   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
4323       getABIKind() == ARMABIInfo::AAPCS)
4324     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
4325   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
4326     // Update Allocated GPRs. Since this is only used when the size of the
4327     // argument is greater than 64 bytes, this will always use up any available
4328     // registers (of which there are 4). We also don't care about getting the
4329     // alignment right, because general-purpose registers cannot be back-filled.
4330     markAllocatedGPRs(1, 4);
4331     return ABIArgInfo::getIndirect(TyAlign, /*ByVal=*/true,
4332            /*Realign=*/TyAlign > ABIAlign);
4333   }
4334 
4335   // Otherwise, pass by coercing to a structure of the appropriate size.
4336   llvm::Type* ElemTy;
4337   unsigned SizeRegs;
4338   // FIXME: Try to match the types of the arguments more accurately where
4339   // we can.
4340   if (getContext().getTypeAlign(Ty) <= 32) {
4341     ElemTy = llvm::Type::getInt32Ty(getVMContext());
4342     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
4343     markAllocatedGPRs(1, SizeRegs);
4344   } else {
4345     ElemTy = llvm::Type::getInt64Ty(getVMContext());
4346     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
4347     markAllocatedGPRs(2, SizeRegs * 2);
4348   }
4349 
4350   llvm::Type *STy =
4351     llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
4352   return ABIArgInfo::getDirect(STy);
4353 }
4354 
isIntegerLikeType(QualType Ty,ASTContext & Context,llvm::LLVMContext & VMContext)4355 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
4356                               llvm::LLVMContext &VMContext) {
4357   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
4358   // is called integer-like if its size is less than or equal to one word, and
4359   // the offset of each of its addressable sub-fields is zero.
4360 
4361   uint64_t Size = Context.getTypeSize(Ty);
4362 
4363   // Check that the type fits in a word.
4364   if (Size > 32)
4365     return false;
4366 
4367   // FIXME: Handle vector types!
4368   if (Ty->isVectorType())
4369     return false;
4370 
4371   // Float types are never treated as "integer like".
4372   if (Ty->isRealFloatingType())
4373     return false;
4374 
4375   // If this is a builtin or pointer type then it is ok.
4376   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
4377     return true;
4378 
4379   // Small complex integer types are "integer like".
4380   if (const ComplexType *CT = Ty->getAs<ComplexType>())
4381     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
4382 
4383   // Single element and zero sized arrays should be allowed, by the definition
4384   // above, but they are not.
4385 
4386   // Otherwise, it must be a record type.
4387   const RecordType *RT = Ty->getAs<RecordType>();
4388   if (!RT) return false;
4389 
4390   // Ignore records with flexible arrays.
4391   const RecordDecl *RD = RT->getDecl();
4392   if (RD->hasFlexibleArrayMember())
4393     return false;
4394 
4395   // Check that all sub-fields are at offset 0, and are themselves "integer
4396   // like".
4397   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
4398 
4399   bool HadField = false;
4400   unsigned idx = 0;
4401   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
4402        i != e; ++i, ++idx) {
4403     const FieldDecl *FD = *i;
4404 
4405     // Bit-fields are not addressable, we only need to verify they are "integer
4406     // like". We still have to disallow a subsequent non-bitfield, for example:
4407     //   struct { int : 0; int x }
4408     // is non-integer like according to gcc.
4409     if (FD->isBitField()) {
4410       if (!RD->isUnion())
4411         HadField = true;
4412 
4413       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
4414         return false;
4415 
4416       continue;
4417     }
4418 
4419     // Check if this field is at offset 0.
4420     if (Layout.getFieldOffset(idx) != 0)
4421       return false;
4422 
4423     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
4424       return false;
4425 
4426     // Only allow at most one field in a structure. This doesn't match the
4427     // wording above, but follows gcc in situations with a field following an
4428     // empty structure.
4429     if (!RD->isUnion()) {
4430       if (HadField)
4431         return false;
4432 
4433       HadField = true;
4434     }
4435   }
4436 
4437   return true;
4438 }
4439 
classifyReturnType(QualType RetTy,bool isVariadic) const4440 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
4441                                           bool isVariadic) const {
4442   if (RetTy->isVoidType())
4443     return ABIArgInfo::getIgnore();
4444 
4445   // Large vector types should be returned via memory.
4446   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
4447     markAllocatedGPRs(1, 1);
4448     return ABIArgInfo::getIndirect(0);
4449   }
4450 
4451   if (!isAggregateTypeForABI(RetTy)) {
4452     // Treat an enum type as its underlying type.
4453     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4454       RetTy = EnumTy->getDecl()->getIntegerType();
4455 
4456     return (RetTy->isPromotableIntegerType() ?
4457             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4458   }
4459 
4460   // Are we following APCS?
4461   if (getABIKind() == APCS) {
4462     if (isEmptyRecord(getContext(), RetTy, false))
4463       return ABIArgInfo::getIgnore();
4464 
4465     // Complex types are all returned as packed integers.
4466     //
4467     // FIXME: Consider using 2 x vector types if the back end handles them
4468     // correctly.
4469     if (RetTy->isAnyComplexType())
4470       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
4471                                               getContext().getTypeSize(RetTy)));
4472 
4473     // Integer like structures are returned in r0.
4474     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
4475       // Return in the smallest viable integer type.
4476       uint64_t Size = getContext().getTypeSize(RetTy);
4477       if (Size <= 8)
4478         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4479       if (Size <= 16)
4480         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4481       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4482     }
4483 
4484     // Otherwise return in memory.
4485     markAllocatedGPRs(1, 1);
4486     return ABIArgInfo::getIndirect(0);
4487   }
4488 
4489   // Otherwise this is an AAPCS variant.
4490 
4491   if (isEmptyRecord(getContext(), RetTy, true))
4492     return ABIArgInfo::getIgnore();
4493 
4494   // Check for homogeneous aggregates with AAPCS-VFP.
4495   if (getABIKind() == AAPCS_VFP && !isVariadic) {
4496     const Type *Base = nullptr;
4497     if (isHomogeneousAggregate(RetTy, Base, getContext())) {
4498       assert(Base && "Base class should be set for homogeneous aggregate");
4499       // Homogeneous Aggregates are returned directly.
4500       return ABIArgInfo::getDirect();
4501     }
4502   }
4503 
4504   // Aggregates <= 4 bytes are returned in r0; other aggregates
4505   // are returned indirectly.
4506   uint64_t Size = getContext().getTypeSize(RetTy);
4507   if (Size <= 32) {
4508     if (getDataLayout().isBigEndian())
4509       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
4510       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4511 
4512     // Return in the smallest viable integer type.
4513     if (Size <= 8)
4514       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4515     if (Size <= 16)
4516       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4517     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4518   }
4519 
4520   markAllocatedGPRs(1, 1);
4521   return ABIArgInfo::getIndirect(0);
4522 }
4523 
4524 /// isIllegalVector - check whether Ty is an illegal vector type.
isIllegalVectorType(QualType Ty) const4525 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
4526   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4527     // Check whether VT is legal.
4528     unsigned NumElements = VT->getNumElements();
4529     // NumElements should be power of 2.
4530     if (((NumElements & (NumElements - 1)) != 0) && NumElements != 3)
4531       return true;
4532   }
4533   return false;
4534 }
4535 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const4536 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4537                                    CodeGenFunction &CGF) const {
4538   llvm::Type *BP = CGF.Int8PtrTy;
4539   llvm::Type *BPP = CGF.Int8PtrPtrTy;
4540 
4541   CGBuilderTy &Builder = CGF.Builder;
4542   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
4543   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4544 
4545   if (isEmptyRecord(getContext(), Ty, true)) {
4546     // These are ignored for parameter passing purposes.
4547     llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4548     return Builder.CreateBitCast(Addr, PTy);
4549   }
4550 
4551   uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
4552   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
4553   bool IsIndirect = false;
4554 
4555   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
4556   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
4557   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
4558       getABIKind() == ARMABIInfo::AAPCS)
4559     TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
4560   else
4561     TyAlign = 4;
4562   // Use indirect if size of the illegal vector is bigger than 32 bytes.
4563   if (isIllegalVectorType(Ty) && Size > 32) {
4564     IsIndirect = true;
4565     Size = 4;
4566     TyAlign = 4;
4567   }
4568 
4569   // Handle address alignment for ABI alignment > 4 bytes.
4570   if (TyAlign > 4) {
4571     assert((TyAlign & (TyAlign - 1)) == 0 &&
4572            "Alignment is not power of 2!");
4573     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
4574     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
4575     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
4576     Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
4577   }
4578 
4579   uint64_t Offset =
4580     llvm::RoundUpToAlignment(Size, 4);
4581   llvm::Value *NextAddr =
4582     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
4583                       "ap.next");
4584   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4585 
4586   if (IsIndirect)
4587     Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
4588   else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
4589     // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
4590     // may not be correctly aligned for the vector type. We create an aligned
4591     // temporary space and copy the content over from ap.cur to the temporary
4592     // space. This is necessary if the natural alignment of the type is greater
4593     // than the ABI alignment.
4594     llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
4595     CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
4596     llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
4597                                                     "var.align");
4598     llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
4599     llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
4600     Builder.CreateMemCpy(Dst, Src,
4601         llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
4602         TyAlign, false);
4603     Addr = AlignedTemp; //The content is in aligned location.
4604   }
4605   llvm::Type *PTy =
4606     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4607   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
4608 
4609   return AddrTyped;
4610 }
4611 
4612 namespace {
4613 
4614 class NaClARMABIInfo : public ABIInfo {
4615  public:
NaClARMABIInfo(CodeGen::CodeGenTypes & CGT,ARMABIInfo::ABIKind Kind)4616   NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
4617       : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {}
4618   void computeInfo(CGFunctionInfo &FI) const override;
4619   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4620                          CodeGenFunction &CGF) const override;
4621  private:
4622   PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv.
4623   ARMABIInfo NInfo; // Used for everything else.
4624 };
4625 
4626 class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo  {
4627  public:
NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,ARMABIInfo::ABIKind Kind)4628   NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
4629       : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {}
4630 };
4631 
4632 }
4633 
computeInfo(CGFunctionInfo & FI) const4634 void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
4635   if (FI.getASTCallingConvention() == CC_PnaclCall)
4636     PInfo.computeInfo(FI);
4637   else
4638     static_cast<const ABIInfo&>(NInfo).computeInfo(FI);
4639 }
4640 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const4641 llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4642                                        CodeGenFunction &CGF) const {
4643   // Always use the native convention; calling pnacl-style varargs functions
4644   // is unsupported.
4645   return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF);
4646 }
4647 
4648 //===----------------------------------------------------------------------===//
4649 // NVPTX ABI Implementation
4650 //===----------------------------------------------------------------------===//
4651 
4652 namespace {
4653 
4654 class NVPTXABIInfo : public ABIInfo {
4655 public:
NVPTXABIInfo(CodeGenTypes & CGT)4656   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4657 
4658   ABIArgInfo classifyReturnType(QualType RetTy) const;
4659   ABIArgInfo classifyArgumentType(QualType Ty) const;
4660 
4661   void computeInfo(CGFunctionInfo &FI) const override;
4662   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4663                          CodeGenFunction &CFG) const override;
4664 };
4665 
4666 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
4667 public:
NVPTXTargetCodeGenInfo(CodeGenTypes & CGT)4668   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
4669     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
4670 
4671   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4672                            CodeGen::CodeGenModule &M) const override;
4673 private:
4674   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
4675   // resulting MDNode to the nvvm.annotations MDNode.
4676   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
4677 };
4678 
classifyReturnType(QualType RetTy) const4679 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
4680   if (RetTy->isVoidType())
4681     return ABIArgInfo::getIgnore();
4682 
4683   // note: this is different from default ABI
4684   if (!RetTy->isScalarType())
4685     return ABIArgInfo::getDirect();
4686 
4687   // Treat an enum type as its underlying type.
4688   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4689     RetTy = EnumTy->getDecl()->getIntegerType();
4690 
4691   return (RetTy->isPromotableIntegerType() ?
4692           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4693 }
4694 
classifyArgumentType(QualType Ty) const4695 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
4696   // Treat an enum type as its underlying type.
4697   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4698     Ty = EnumTy->getDecl()->getIntegerType();
4699 
4700   return (Ty->isPromotableIntegerType() ?
4701           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4702 }
4703 
computeInfo(CGFunctionInfo & FI) const4704 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
4705   if (!getCXXABI().classifyReturnType(FI))
4706     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4707   for (auto &I : FI.arguments())
4708     I.info = classifyArgumentType(I.type);
4709 
4710   // Always honor user-specified calling convention.
4711   if (FI.getCallingConvention() != llvm::CallingConv::C)
4712     return;
4713 
4714   FI.setEffectiveCallingConvention(getRuntimeCC());
4715 }
4716 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CFG) const4717 llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4718                                      CodeGenFunction &CFG) const {
4719   llvm_unreachable("NVPTX does not support varargs");
4720 }
4721 
4722 void NVPTXTargetCodeGenInfo::
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const4723 SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4724                     CodeGen::CodeGenModule &M) const{
4725   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4726   if (!FD) return;
4727 
4728   llvm::Function *F = cast<llvm::Function>(GV);
4729 
4730   // Perform special handling in OpenCL mode
4731   if (M.getLangOpts().OpenCL) {
4732     // Use OpenCL function attributes to check for kernel functions
4733     // By default, all functions are device functions
4734     if (FD->hasAttr<OpenCLKernelAttr>()) {
4735       // OpenCL __kernel functions get kernel metadata
4736       // Create !{<func-ref>, metadata !"kernel", i32 1} node
4737       addNVVMMetadata(F, "kernel", 1);
4738       // And kernel functions are not subject to inlining
4739       F->addFnAttr(llvm::Attribute::NoInline);
4740     }
4741   }
4742 
4743   // Perform special handling in CUDA mode.
4744   if (M.getLangOpts().CUDA) {
4745     // CUDA __global__ functions get a kernel metadata entry.  Since
4746     // __global__ functions cannot be called from the device, we do not
4747     // need to set the noinline attribute.
4748     if (FD->hasAttr<CUDAGlobalAttr>()) {
4749       // Create !{<func-ref>, metadata !"kernel", i32 1} node
4750       addNVVMMetadata(F, "kernel", 1);
4751     }
4752     if (FD->hasAttr<CUDALaunchBoundsAttr>()) {
4753       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
4754       addNVVMMetadata(F, "maxntidx",
4755                       FD->getAttr<CUDALaunchBoundsAttr>()->getMaxThreads());
4756       // min blocks is a default argument for CUDALaunchBoundsAttr, so getting a
4757       // zero value from getMinBlocks either means it was not specified in
4758       // __launch_bounds__ or the user specified a 0 value. In both cases, we
4759       // don't have to add a PTX directive.
4760       int MinCTASM = FD->getAttr<CUDALaunchBoundsAttr>()->getMinBlocks();
4761       if (MinCTASM > 0) {
4762         // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
4763         addNVVMMetadata(F, "minctasm", MinCTASM);
4764       }
4765     }
4766   }
4767 }
4768 
addNVVMMetadata(llvm::Function * F,StringRef Name,int Operand)4769 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
4770                                              int Operand) {
4771   llvm::Module *M = F->getParent();
4772   llvm::LLVMContext &Ctx = M->getContext();
4773 
4774   // Get "nvvm.annotations" metadata node
4775   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
4776 
4777   llvm::Value *MDVals[] = {
4778       F, llvm::MDString::get(Ctx, Name),
4779       llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand)};
4780   // Append metadata to nvvm.annotations
4781   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
4782 }
4783 }
4784 
4785 //===----------------------------------------------------------------------===//
4786 // SystemZ ABI Implementation
4787 //===----------------------------------------------------------------------===//
4788 
4789 namespace {
4790 
4791 class SystemZABIInfo : public ABIInfo {
4792 public:
SystemZABIInfo(CodeGenTypes & CGT)4793   SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4794 
4795   bool isPromotableIntegerType(QualType Ty) const;
4796   bool isCompoundType(QualType Ty) const;
4797   bool isFPArgumentType(QualType Ty) const;
4798 
4799   ABIArgInfo classifyReturnType(QualType RetTy) const;
4800   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
4801 
computeInfo(CGFunctionInfo & FI) const4802   void computeInfo(CGFunctionInfo &FI) const override {
4803     if (!getCXXABI().classifyReturnType(FI))
4804       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4805     for (auto &I : FI.arguments())
4806       I.info = classifyArgumentType(I.type);
4807   }
4808 
4809   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4810                          CodeGenFunction &CGF) const override;
4811 };
4812 
4813 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
4814 public:
SystemZTargetCodeGenInfo(CodeGenTypes & CGT)4815   SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
4816     : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
4817 };
4818 
4819 }
4820 
isPromotableIntegerType(QualType Ty) const4821 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
4822   // Treat an enum type as its underlying type.
4823   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4824     Ty = EnumTy->getDecl()->getIntegerType();
4825 
4826   // Promotable integer types are required to be promoted by the ABI.
4827   if (Ty->isPromotableIntegerType())
4828     return true;
4829 
4830   // 32-bit values must also be promoted.
4831   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4832     switch (BT->getKind()) {
4833     case BuiltinType::Int:
4834     case BuiltinType::UInt:
4835       return true;
4836     default:
4837       return false;
4838     }
4839   return false;
4840 }
4841 
isCompoundType(QualType Ty) const4842 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
4843   return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty);
4844 }
4845 
isFPArgumentType(QualType Ty) const4846 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
4847   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4848     switch (BT->getKind()) {
4849     case BuiltinType::Float:
4850     case BuiltinType::Double:
4851       return true;
4852     default:
4853       return false;
4854     }
4855 
4856   if (const RecordType *RT = Ty->getAsStructureType()) {
4857     const RecordDecl *RD = RT->getDecl();
4858     bool Found = false;
4859 
4860     // If this is a C++ record, check the bases first.
4861     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
4862       for (const auto &I : CXXRD->bases()) {
4863         QualType Base = I.getType();
4864 
4865         // Empty bases don't affect things either way.
4866         if (isEmptyRecord(getContext(), Base, true))
4867           continue;
4868 
4869         if (Found)
4870           return false;
4871         Found = isFPArgumentType(Base);
4872         if (!Found)
4873           return false;
4874       }
4875 
4876     // Check the fields.
4877     for (const auto *FD : RD->fields()) {
4878       // Empty bitfields don't affect things either way.
4879       // Unlike isSingleElementStruct(), empty structure and array fields
4880       // do count.  So do anonymous bitfields that aren't zero-sized.
4881       if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
4882         return true;
4883 
4884       // Unlike isSingleElementStruct(), arrays do not count.
4885       // Nested isFPArgumentType structures still do though.
4886       if (Found)
4887         return false;
4888       Found = isFPArgumentType(FD->getType());
4889       if (!Found)
4890         return false;
4891     }
4892 
4893     // Unlike isSingleElementStruct(), trailing padding is allowed.
4894     // An 8-byte aligned struct s { float f; } is passed as a double.
4895     return Found;
4896   }
4897 
4898   return false;
4899 }
4900 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const4901 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4902                                        CodeGenFunction &CGF) const {
4903   // Assume that va_list type is correct; should be pointer to LLVM type:
4904   // struct {
4905   //   i64 __gpr;
4906   //   i64 __fpr;
4907   //   i8 *__overflow_arg_area;
4908   //   i8 *__reg_save_area;
4909   // };
4910 
4911   // Every argument occupies 8 bytes and is passed by preference in either
4912   // GPRs or FPRs.
4913   Ty = CGF.getContext().getCanonicalType(Ty);
4914   ABIArgInfo AI = classifyArgumentType(Ty);
4915   bool InFPRs = isFPArgumentType(Ty);
4916 
4917   llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
4918   bool IsIndirect = AI.isIndirect();
4919   unsigned UnpaddedBitSize;
4920   if (IsIndirect) {
4921     APTy = llvm::PointerType::getUnqual(APTy);
4922     UnpaddedBitSize = 64;
4923   } else
4924     UnpaddedBitSize = getContext().getTypeSize(Ty);
4925   unsigned PaddedBitSize = 64;
4926   assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size.");
4927 
4928   unsigned PaddedSize = PaddedBitSize / 8;
4929   unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8;
4930 
4931   unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding;
4932   if (InFPRs) {
4933     MaxRegs = 4; // Maximum of 4 FPR arguments
4934     RegCountField = 1; // __fpr
4935     RegSaveIndex = 16; // save offset for f0
4936     RegPadding = 0; // floats are passed in the high bits of an FPR
4937   } else {
4938     MaxRegs = 5; // Maximum of 5 GPR arguments
4939     RegCountField = 0; // __gpr
4940     RegSaveIndex = 2; // save offset for r2
4941     RegPadding = Padding; // values are passed in the low bits of a GPR
4942   }
4943 
4944   llvm::Value *RegCountPtr =
4945     CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
4946   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
4947   llvm::Type *IndexTy = RegCount->getType();
4948   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
4949   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
4950                                                  "fits_in_regs");
4951 
4952   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4953   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
4954   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4955   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
4956 
4957   // Emit code to load the value if it was passed in registers.
4958   CGF.EmitBlock(InRegBlock);
4959 
4960   // Work out the address of an argument register.
4961   llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize);
4962   llvm::Value *ScaledRegCount =
4963     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
4964   llvm::Value *RegBase =
4965     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding);
4966   llvm::Value *RegOffset =
4967     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
4968   llvm::Value *RegSaveAreaPtr =
4969     CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
4970   llvm::Value *RegSaveArea =
4971     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
4972   llvm::Value *RawRegAddr =
4973     CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr");
4974   llvm::Value *RegAddr =
4975     CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr");
4976 
4977   // Update the register count
4978   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
4979   llvm::Value *NewRegCount =
4980     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
4981   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
4982   CGF.EmitBranch(ContBlock);
4983 
4984   // Emit code to load the value if it was passed in memory.
4985   CGF.EmitBlock(InMemBlock);
4986 
4987   // Work out the address of a stack argument.
4988   llvm::Value *OverflowArgAreaPtr =
4989     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
4990   llvm::Value *OverflowArgArea =
4991     CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
4992   llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding);
4993   llvm::Value *RawMemAddr =
4994     CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr");
4995   llvm::Value *MemAddr =
4996     CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr");
4997 
4998   // Update overflow_arg_area_ptr pointer
4999   llvm::Value *NewOverflowArgArea =
5000     CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
5001   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5002   CGF.EmitBranch(ContBlock);
5003 
5004   // Return the appropriate result.
5005   CGF.EmitBlock(ContBlock);
5006   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr");
5007   ResAddr->addIncoming(RegAddr, InRegBlock);
5008   ResAddr->addIncoming(MemAddr, InMemBlock);
5009 
5010   if (IsIndirect)
5011     return CGF.Builder.CreateLoad(ResAddr, "indirect_arg");
5012 
5013   return ResAddr;
5014 }
5015 
classifyReturnType(QualType RetTy) const5016 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
5017   if (RetTy->isVoidType())
5018     return ABIArgInfo::getIgnore();
5019   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
5020     return ABIArgInfo::getIndirect(0);
5021   return (isPromotableIntegerType(RetTy) ?
5022           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5023 }
5024 
classifyArgumentType(QualType Ty) const5025 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
5026   // Handle the generic C++ ABI.
5027   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5028     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5029 
5030   // Integers and enums are extended to full register width.
5031   if (isPromotableIntegerType(Ty))
5032     return ABIArgInfo::getExtend();
5033 
5034   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
5035   uint64_t Size = getContext().getTypeSize(Ty);
5036   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
5037     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5038 
5039   // Handle small structures.
5040   if (const RecordType *RT = Ty->getAs<RecordType>()) {
5041     // Structures with flexible arrays have variable length, so really
5042     // fail the size test above.
5043     const RecordDecl *RD = RT->getDecl();
5044     if (RD->hasFlexibleArrayMember())
5045       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5046 
5047     // The structure is passed as an unextended integer, a float, or a double.
5048     llvm::Type *PassTy;
5049     if (isFPArgumentType(Ty)) {
5050       assert(Size == 32 || Size == 64);
5051       if (Size == 32)
5052         PassTy = llvm::Type::getFloatTy(getVMContext());
5053       else
5054         PassTy = llvm::Type::getDoubleTy(getVMContext());
5055     } else
5056       PassTy = llvm::IntegerType::get(getVMContext(), Size);
5057     return ABIArgInfo::getDirect(PassTy);
5058   }
5059 
5060   // Non-structure compounds are passed indirectly.
5061   if (isCompoundType(Ty))
5062     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5063 
5064   return ABIArgInfo::getDirect(nullptr);
5065 }
5066 
5067 //===----------------------------------------------------------------------===//
5068 // MSP430 ABI Implementation
5069 //===----------------------------------------------------------------------===//
5070 
5071 namespace {
5072 
5073 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
5074 public:
MSP430TargetCodeGenInfo(CodeGenTypes & CGT)5075   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
5076     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
5077   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5078                            CodeGen::CodeGenModule &M) const override;
5079 };
5080 
5081 }
5082 
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const5083 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
5084                                                   llvm::GlobalValue *GV,
5085                                              CodeGen::CodeGenModule &M) const {
5086   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5087     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
5088       // Handle 'interrupt' attribute:
5089       llvm::Function *F = cast<llvm::Function>(GV);
5090 
5091       // Step 1: Set ISR calling convention.
5092       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
5093 
5094       // Step 2: Add attributes goodness.
5095       F->addFnAttr(llvm::Attribute::NoInline);
5096 
5097       // Step 3: Emit ISR vector alias.
5098       unsigned Num = attr->getNumber() / 2;
5099       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
5100                                 "__isr_" + Twine(Num), F);
5101     }
5102   }
5103 }
5104 
5105 //===----------------------------------------------------------------------===//
5106 // MIPS ABI Implementation.  This works for both little-endian and
5107 // big-endian variants.
5108 //===----------------------------------------------------------------------===//
5109 
5110 namespace {
5111 class MipsABIInfo : public ABIInfo {
5112   bool IsO32;
5113   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
5114   void CoerceToIntArgs(uint64_t TySize,
5115                        SmallVectorImpl<llvm::Type *> &ArgList) const;
5116   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
5117   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
5118   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
5119 public:
MipsABIInfo(CodeGenTypes & CGT,bool _IsO32)5120   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
5121     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
5122     StackAlignInBytes(IsO32 ? 8 : 16) {}
5123 
5124   ABIArgInfo classifyReturnType(QualType RetTy) const;
5125   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
5126   void computeInfo(CGFunctionInfo &FI) const override;
5127   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5128                          CodeGenFunction &CGF) const override;
5129 };
5130 
5131 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
5132   unsigned SizeOfUnwindException;
5133 public:
MIPSTargetCodeGenInfo(CodeGenTypes & CGT,bool IsO32)5134   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
5135     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
5136       SizeOfUnwindException(IsO32 ? 24 : 32) {}
5137 
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const5138   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
5139     return 29;
5140   }
5141 
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const5142   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5143                            CodeGen::CodeGenModule &CGM) const override {
5144     const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5145     if (!FD) return;
5146     llvm::Function *Fn = cast<llvm::Function>(GV);
5147     if (FD->hasAttr<Mips16Attr>()) {
5148       Fn->addFnAttr("mips16");
5149     }
5150     else if (FD->hasAttr<NoMips16Attr>()) {
5151       Fn->addFnAttr("nomips16");
5152     }
5153   }
5154 
5155   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5156                                llvm::Value *Address) const override;
5157 
getSizeOfUnwindException() const5158   unsigned getSizeOfUnwindException() const override {
5159     return SizeOfUnwindException;
5160   }
5161 };
5162 }
5163 
CoerceToIntArgs(uint64_t TySize,SmallVectorImpl<llvm::Type * > & ArgList) const5164 void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
5165                                   SmallVectorImpl<llvm::Type *> &ArgList) const {
5166   llvm::IntegerType *IntTy =
5167     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
5168 
5169   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
5170   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
5171     ArgList.push_back(IntTy);
5172 
5173   // If necessary, add one more integer type to ArgList.
5174   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
5175 
5176   if (R)
5177     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
5178 }
5179 
5180 // In N32/64, an aligned double precision floating point field is passed in
5181 // a register.
HandleAggregates(QualType Ty,uint64_t TySize) const5182 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
5183   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
5184 
5185   if (IsO32) {
5186     CoerceToIntArgs(TySize, ArgList);
5187     return llvm::StructType::get(getVMContext(), ArgList);
5188   }
5189 
5190   if (Ty->isComplexType())
5191     return CGT.ConvertType(Ty);
5192 
5193   const RecordType *RT = Ty->getAs<RecordType>();
5194 
5195   // Unions/vectors are passed in integer registers.
5196   if (!RT || !RT->isStructureOrClassType()) {
5197     CoerceToIntArgs(TySize, ArgList);
5198     return llvm::StructType::get(getVMContext(), ArgList);
5199   }
5200 
5201   const RecordDecl *RD = RT->getDecl();
5202   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5203   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
5204 
5205   uint64_t LastOffset = 0;
5206   unsigned idx = 0;
5207   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
5208 
5209   // Iterate over fields in the struct/class and check if there are any aligned
5210   // double fields.
5211   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5212        i != e; ++i, ++idx) {
5213     const QualType Ty = i->getType();
5214     const BuiltinType *BT = Ty->getAs<BuiltinType>();
5215 
5216     if (!BT || BT->getKind() != BuiltinType::Double)
5217       continue;
5218 
5219     uint64_t Offset = Layout.getFieldOffset(idx);
5220     if (Offset % 64) // Ignore doubles that are not aligned.
5221       continue;
5222 
5223     // Add ((Offset - LastOffset) / 64) args of type i64.
5224     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
5225       ArgList.push_back(I64);
5226 
5227     // Add double type.
5228     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
5229     LastOffset = Offset + 64;
5230   }
5231 
5232   CoerceToIntArgs(TySize - LastOffset, IntArgList);
5233   ArgList.append(IntArgList.begin(), IntArgList.end());
5234 
5235   return llvm::StructType::get(getVMContext(), ArgList);
5236 }
5237 
getPaddingType(uint64_t OrigOffset,uint64_t Offset) const5238 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
5239                                         uint64_t Offset) const {
5240   if (OrigOffset + MinABIStackAlignInBytes > Offset)
5241     return nullptr;
5242 
5243   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
5244 }
5245 
5246 ABIArgInfo
classifyArgumentType(QualType Ty,uint64_t & Offset) const5247 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
5248   uint64_t OrigOffset = Offset;
5249   uint64_t TySize = getContext().getTypeSize(Ty);
5250   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
5251 
5252   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
5253                    (uint64_t)StackAlignInBytes);
5254   unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align);
5255   Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
5256 
5257   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
5258     // Ignore empty aggregates.
5259     if (TySize == 0)
5260       return ABIArgInfo::getIgnore();
5261 
5262     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5263       Offset = OrigOffset + MinABIStackAlignInBytes;
5264       return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5265     }
5266 
5267     // If we have reached here, aggregates are passed directly by coercing to
5268     // another structure type. Padding is inserted if the offset of the
5269     // aggregate is unaligned.
5270     return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
5271                                  getPaddingType(OrigOffset, CurrOffset));
5272   }
5273 
5274   // Treat an enum type as its underlying type.
5275   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5276     Ty = EnumTy->getDecl()->getIntegerType();
5277 
5278   if (Ty->isPromotableIntegerType())
5279     return ABIArgInfo::getExtend();
5280 
5281   return ABIArgInfo::getDirect(
5282       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
5283 }
5284 
5285 llvm::Type*
returnAggregateInRegs(QualType RetTy,uint64_t Size) const5286 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
5287   const RecordType *RT = RetTy->getAs<RecordType>();
5288   SmallVector<llvm::Type*, 8> RTList;
5289 
5290   if (RT && RT->isStructureOrClassType()) {
5291     const RecordDecl *RD = RT->getDecl();
5292     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5293     unsigned FieldCnt = Layout.getFieldCount();
5294 
5295     // N32/64 returns struct/classes in floating point registers if the
5296     // following conditions are met:
5297     // 1. The size of the struct/class is no larger than 128-bit.
5298     // 2. The struct/class has one or two fields all of which are floating
5299     //    point types.
5300     // 3. The offset of the first field is zero (this follows what gcc does).
5301     //
5302     // Any other composite results are returned in integer registers.
5303     //
5304     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
5305       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
5306       for (; b != e; ++b) {
5307         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
5308 
5309         if (!BT || !BT->isFloatingPoint())
5310           break;
5311 
5312         RTList.push_back(CGT.ConvertType(b->getType()));
5313       }
5314 
5315       if (b == e)
5316         return llvm::StructType::get(getVMContext(), RTList,
5317                                      RD->hasAttr<PackedAttr>());
5318 
5319       RTList.clear();
5320     }
5321   }
5322 
5323   CoerceToIntArgs(Size, RTList);
5324   return llvm::StructType::get(getVMContext(), RTList);
5325 }
5326 
classifyReturnType(QualType RetTy) const5327 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
5328   uint64_t Size = getContext().getTypeSize(RetTy);
5329 
5330   if (RetTy->isVoidType() || Size == 0)
5331     return ABIArgInfo::getIgnore();
5332 
5333   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
5334     if (Size <= 128) {
5335       if (RetTy->isAnyComplexType())
5336         return ABIArgInfo::getDirect();
5337 
5338       // O32 returns integer vectors in registers.
5339       if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())
5340         return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
5341 
5342       if (!IsO32)
5343         return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
5344     }
5345 
5346     return ABIArgInfo::getIndirect(0);
5347   }
5348 
5349   // Treat an enum type as its underlying type.
5350   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5351     RetTy = EnumTy->getDecl()->getIntegerType();
5352 
5353   return (RetTy->isPromotableIntegerType() ?
5354           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5355 }
5356 
computeInfo(CGFunctionInfo & FI) const5357 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
5358   ABIArgInfo &RetInfo = FI.getReturnInfo();
5359   if (!getCXXABI().classifyReturnType(FI))
5360     RetInfo = classifyReturnType(FI.getReturnType());
5361 
5362   // Check if a pointer to an aggregate is passed as a hidden argument.
5363   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
5364 
5365   for (auto &I : FI.arguments())
5366     I.info = classifyArgumentType(I.type, Offset);
5367 }
5368 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const5369 llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5370                                     CodeGenFunction &CGF) const {
5371   llvm::Type *BP = CGF.Int8PtrTy;
5372   llvm::Type *BPP = CGF.Int8PtrPtrTy;
5373 
5374   CGBuilderTy &Builder = CGF.Builder;
5375   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
5376   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5377   int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8;
5378   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5379   llvm::Value *AddrTyped;
5380   unsigned PtrWidth = getTarget().getPointerWidth(0);
5381   llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
5382 
5383   if (TypeAlign > MinABIStackAlignInBytes) {
5384     llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
5385     llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
5386     llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
5387     llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
5388     llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
5389     AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
5390   }
5391   else
5392     AddrTyped = Builder.CreateBitCast(Addr, PTy);
5393 
5394   llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
5395   TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
5396   uint64_t Offset =
5397     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
5398   llvm::Value *NextAddr =
5399     Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
5400                       "ap.next");
5401   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5402 
5403   return AddrTyped;
5404 }
5405 
5406 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const5407 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5408                                                llvm::Value *Address) const {
5409   // This information comes from gcc's implementation, which seems to
5410   // as canonical as it gets.
5411 
5412   // Everything on MIPS is 4 bytes.  Double-precision FP registers
5413   // are aliased to pairs of single-precision FP registers.
5414   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5415 
5416   // 0-31 are the general purpose registers, $0 - $31.
5417   // 32-63 are the floating-point registers, $f0 - $f31.
5418   // 64 and 65 are the multiply/divide registers, $hi and $lo.
5419   // 66 is the (notional, I think) register for signal-handler return.
5420   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
5421 
5422   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
5423   // They are one bit wide and ignored here.
5424 
5425   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
5426   // (coprocessor 1 is the FP unit)
5427   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
5428   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
5429   // 176-181 are the DSP accumulator registers.
5430   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
5431   return false;
5432 }
5433 
5434 //===----------------------------------------------------------------------===//
5435 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
5436 // Currently subclassed only to implement custom OpenCL C function attribute
5437 // handling.
5438 //===----------------------------------------------------------------------===//
5439 
5440 namespace {
5441 
5442 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
5443 public:
TCETargetCodeGenInfo(CodeGenTypes & CGT)5444   TCETargetCodeGenInfo(CodeGenTypes &CGT)
5445     : DefaultTargetCodeGenInfo(CGT) {}
5446 
5447   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5448                            CodeGen::CodeGenModule &M) const override;
5449 };
5450 
SetTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const5451 void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
5452                                                llvm::GlobalValue *GV,
5453                                                CodeGen::CodeGenModule &M) const {
5454   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5455   if (!FD) return;
5456 
5457   llvm::Function *F = cast<llvm::Function>(GV);
5458 
5459   if (M.getLangOpts().OpenCL) {
5460     if (FD->hasAttr<OpenCLKernelAttr>()) {
5461       // OpenCL C Kernel functions are not subject to inlining
5462       F->addFnAttr(llvm::Attribute::NoInline);
5463       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
5464       if (Attr) {
5465         // Convert the reqd_work_group_size() attributes to metadata.
5466         llvm::LLVMContext &Context = F->getContext();
5467         llvm::NamedMDNode *OpenCLMetadata =
5468             M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
5469 
5470         SmallVector<llvm::Value*, 5> Operands;
5471         Operands.push_back(F);
5472 
5473         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5474                              llvm::APInt(32, Attr->getXDim())));
5475         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5476                              llvm::APInt(32, Attr->getYDim())));
5477         Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5478                              llvm::APInt(32, Attr->getZDim())));
5479 
5480         // Add a boolean constant operand for "required" (true) or "hint" (false)
5481         // for implementing the work_group_size_hint attr later. Currently
5482         // always true as the hint is not yet implemented.
5483         Operands.push_back(llvm::ConstantInt::getTrue(Context));
5484         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
5485       }
5486     }
5487   }
5488 }
5489 
5490 }
5491 
5492 //===----------------------------------------------------------------------===//
5493 // Hexagon ABI Implementation
5494 //===----------------------------------------------------------------------===//
5495 
5496 namespace {
5497 
5498 class HexagonABIInfo : public ABIInfo {
5499 
5500 
5501 public:
HexagonABIInfo(CodeGenTypes & CGT)5502   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5503 
5504 private:
5505 
5506   ABIArgInfo classifyReturnType(QualType RetTy) const;
5507   ABIArgInfo classifyArgumentType(QualType RetTy) const;
5508 
5509   void computeInfo(CGFunctionInfo &FI) const override;
5510 
5511   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5512                          CodeGenFunction &CGF) const override;
5513 };
5514 
5515 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
5516 public:
HexagonTargetCodeGenInfo(CodeGenTypes & CGT)5517   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
5518     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
5519 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const5520   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5521     return 29;
5522   }
5523 };
5524 
5525 }
5526 
computeInfo(CGFunctionInfo & FI) const5527 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
5528   if (!getCXXABI().classifyReturnType(FI))
5529     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5530   for (auto &I : FI.arguments())
5531     I.info = classifyArgumentType(I.type);
5532 }
5533 
classifyArgumentType(QualType Ty) const5534 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
5535   if (!isAggregateTypeForABI(Ty)) {
5536     // Treat an enum type as its underlying type.
5537     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5538       Ty = EnumTy->getDecl()->getIntegerType();
5539 
5540     return (Ty->isPromotableIntegerType() ?
5541             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5542   }
5543 
5544   // Ignore empty records.
5545   if (isEmptyRecord(getContext(), Ty, true))
5546     return ABIArgInfo::getIgnore();
5547 
5548   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5549     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5550 
5551   uint64_t Size = getContext().getTypeSize(Ty);
5552   if (Size > 64)
5553     return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5554     // Pass in the smallest viable integer type.
5555   else if (Size > 32)
5556       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5557   else if (Size > 16)
5558       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5559   else if (Size > 8)
5560       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5561   else
5562       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5563 }
5564 
classifyReturnType(QualType RetTy) const5565 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
5566   if (RetTy->isVoidType())
5567     return ABIArgInfo::getIgnore();
5568 
5569   // Large vector types should be returned via memory.
5570   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
5571     return ABIArgInfo::getIndirect(0);
5572 
5573   if (!isAggregateTypeForABI(RetTy)) {
5574     // Treat an enum type as its underlying type.
5575     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5576       RetTy = EnumTy->getDecl()->getIntegerType();
5577 
5578     return (RetTy->isPromotableIntegerType() ?
5579             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5580   }
5581 
5582   if (isEmptyRecord(getContext(), RetTy, true))
5583     return ABIArgInfo::getIgnore();
5584 
5585   // Aggregates <= 8 bytes are returned in r0; other aggregates
5586   // are returned indirectly.
5587   uint64_t Size = getContext().getTypeSize(RetTy);
5588   if (Size <= 64) {
5589     // Return in the smallest viable integer type.
5590     if (Size <= 8)
5591       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5592     if (Size <= 16)
5593       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5594     if (Size <= 32)
5595       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5596     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5597   }
5598 
5599   return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5600 }
5601 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const5602 llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5603                                        CodeGenFunction &CGF) const {
5604   // FIXME: Need to handle alignment
5605   llvm::Type *BPP = CGF.Int8PtrPtrTy;
5606 
5607   CGBuilderTy &Builder = CGF.Builder;
5608   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
5609                                                        "ap");
5610   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5611   llvm::Type *PTy =
5612     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5613   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
5614 
5615   uint64_t Offset =
5616     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
5617   llvm::Value *NextAddr =
5618     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
5619                       "ap.next");
5620   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5621 
5622   return AddrTyped;
5623 }
5624 
5625 
5626 //===----------------------------------------------------------------------===//
5627 // SPARC v9 ABI Implementation.
5628 // Based on the SPARC Compliance Definition version 2.4.1.
5629 //
5630 // Function arguments a mapped to a nominal "parameter array" and promoted to
5631 // registers depending on their type. Each argument occupies 8 or 16 bytes in
5632 // the array, structs larger than 16 bytes are passed indirectly.
5633 //
5634 // One case requires special care:
5635 //
5636 //   struct mixed {
5637 //     int i;
5638 //     float f;
5639 //   };
5640 //
5641 // When a struct mixed is passed by value, it only occupies 8 bytes in the
5642 // parameter array, but the int is passed in an integer register, and the float
5643 // is passed in a floating point register. This is represented as two arguments
5644 // with the LLVM IR inreg attribute:
5645 //
5646 //   declare void f(i32 inreg %i, float inreg %f)
5647 //
5648 // The code generator will only allocate 4 bytes from the parameter array for
5649 // the inreg arguments. All other arguments are allocated a multiple of 8
5650 // bytes.
5651 //
5652 namespace {
5653 class SparcV9ABIInfo : public ABIInfo {
5654 public:
SparcV9ABIInfo(CodeGenTypes & CGT)5655   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5656 
5657 private:
5658   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
5659   void computeInfo(CGFunctionInfo &FI) const override;
5660   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5661                          CodeGenFunction &CGF) const override;
5662 
5663   // Coercion type builder for structs passed in registers. The coercion type
5664   // serves two purposes:
5665   //
5666   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
5667   //    in registers.
5668   // 2. Expose aligned floating point elements as first-level elements, so the
5669   //    code generator knows to pass them in floating point registers.
5670   //
5671   // We also compute the InReg flag which indicates that the struct contains
5672   // aligned 32-bit floats.
5673   //
5674   struct CoerceBuilder {
5675     llvm::LLVMContext &Context;
5676     const llvm::DataLayout &DL;
5677     SmallVector<llvm::Type*, 8> Elems;
5678     uint64_t Size;
5679     bool InReg;
5680 
CoerceBuilder__anonc5f222370f11::SparcV9ABIInfo::CoerceBuilder5681     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
5682       : Context(c), DL(dl), Size(0), InReg(false) {}
5683 
5684     // Pad Elems with integers until Size is ToSize.
pad__anonc5f222370f11::SparcV9ABIInfo::CoerceBuilder5685     void pad(uint64_t ToSize) {
5686       assert(ToSize >= Size && "Cannot remove elements");
5687       if (ToSize == Size)
5688         return;
5689 
5690       // Finish the current 64-bit word.
5691       uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
5692       if (Aligned > Size && Aligned <= ToSize) {
5693         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
5694         Size = Aligned;
5695       }
5696 
5697       // Add whole 64-bit words.
5698       while (Size + 64 <= ToSize) {
5699         Elems.push_back(llvm::Type::getInt64Ty(Context));
5700         Size += 64;
5701       }
5702 
5703       // Final in-word padding.
5704       if (Size < ToSize) {
5705         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
5706         Size = ToSize;
5707       }
5708     }
5709 
5710     // Add a floating point element at Offset.
addFloat__anonc5f222370f11::SparcV9ABIInfo::CoerceBuilder5711     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
5712       // Unaligned floats are treated as integers.
5713       if (Offset % Bits)
5714         return;
5715       // The InReg flag is only required if there are any floats < 64 bits.
5716       if (Bits < 64)
5717         InReg = true;
5718       pad(Offset);
5719       Elems.push_back(Ty);
5720       Size = Offset + Bits;
5721     }
5722 
5723     // Add a struct type to the coercion type, starting at Offset (in bits).
addStruct__anonc5f222370f11::SparcV9ABIInfo::CoerceBuilder5724     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
5725       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
5726       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
5727         llvm::Type *ElemTy = StrTy->getElementType(i);
5728         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
5729         switch (ElemTy->getTypeID()) {
5730         case llvm::Type::StructTyID:
5731           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
5732           break;
5733         case llvm::Type::FloatTyID:
5734           addFloat(ElemOffset, ElemTy, 32);
5735           break;
5736         case llvm::Type::DoubleTyID:
5737           addFloat(ElemOffset, ElemTy, 64);
5738           break;
5739         case llvm::Type::FP128TyID:
5740           addFloat(ElemOffset, ElemTy, 128);
5741           break;
5742         case llvm::Type::PointerTyID:
5743           if (ElemOffset % 64 == 0) {
5744             pad(ElemOffset);
5745             Elems.push_back(ElemTy);
5746             Size += 64;
5747           }
5748           break;
5749         default:
5750           break;
5751         }
5752       }
5753     }
5754 
5755     // Check if Ty is a usable substitute for the coercion type.
isUsableType__anonc5f222370f11::SparcV9ABIInfo::CoerceBuilder5756     bool isUsableType(llvm::StructType *Ty) const {
5757       if (Ty->getNumElements() != Elems.size())
5758         return false;
5759       for (unsigned i = 0, e = Elems.size(); i != e; ++i)
5760         if (Elems[i] != Ty->getElementType(i))
5761           return false;
5762       return true;
5763     }
5764 
5765     // Get the coercion type as a literal struct type.
getType__anonc5f222370f11::SparcV9ABIInfo::CoerceBuilder5766     llvm::Type *getType() const {
5767       if (Elems.size() == 1)
5768         return Elems.front();
5769       else
5770         return llvm::StructType::get(Context, Elems);
5771     }
5772   };
5773 };
5774 } // end anonymous namespace
5775 
5776 ABIArgInfo
classifyType(QualType Ty,unsigned SizeLimit) const5777 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
5778   if (Ty->isVoidType())
5779     return ABIArgInfo::getIgnore();
5780 
5781   uint64_t Size = getContext().getTypeSize(Ty);
5782 
5783   // Anything too big to fit in registers is passed with an explicit indirect
5784   // pointer / sret pointer.
5785   if (Size > SizeLimit)
5786     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5787 
5788   // Treat an enum type as its underlying type.
5789   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5790     Ty = EnumTy->getDecl()->getIntegerType();
5791 
5792   // Integer types smaller than a register are extended.
5793   if (Size < 64 && Ty->isIntegerType())
5794     return ABIArgInfo::getExtend();
5795 
5796   // Other non-aggregates go in registers.
5797   if (!isAggregateTypeForABI(Ty))
5798     return ABIArgInfo::getDirect();
5799 
5800   // If a C++ object has either a non-trivial copy constructor or a non-trivial
5801   // destructor, it is passed with an explicit indirect pointer / sret pointer.
5802   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5803     return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5804 
5805   // This is a small aggregate type that should be passed in registers.
5806   // Build a coercion type from the LLVM struct type.
5807   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
5808   if (!StrTy)
5809     return ABIArgInfo::getDirect();
5810 
5811   CoerceBuilder CB(getVMContext(), getDataLayout());
5812   CB.addStruct(0, StrTy);
5813   CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
5814 
5815   // Try to use the original type for coercion.
5816   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
5817 
5818   if (CB.InReg)
5819     return ABIArgInfo::getDirectInReg(CoerceTy);
5820   else
5821     return ABIArgInfo::getDirect(CoerceTy);
5822 }
5823 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const5824 llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5825                                        CodeGenFunction &CGF) const {
5826   ABIArgInfo AI = classifyType(Ty, 16 * 8);
5827   llvm::Type *ArgTy = CGT.ConvertType(Ty);
5828   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
5829     AI.setCoerceToType(ArgTy);
5830 
5831   llvm::Type *BPP = CGF.Int8PtrPtrTy;
5832   CGBuilderTy &Builder = CGF.Builder;
5833   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
5834   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5835   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
5836   llvm::Value *ArgAddr;
5837   unsigned Stride;
5838 
5839   switch (AI.getKind()) {
5840   case ABIArgInfo::Expand:
5841   case ABIArgInfo::InAlloca:
5842     llvm_unreachable("Unsupported ABI kind for va_arg");
5843 
5844   case ABIArgInfo::Extend:
5845     Stride = 8;
5846     ArgAddr = Builder
5847       .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy),
5848                           "extend");
5849     break;
5850 
5851   case ABIArgInfo::Direct:
5852     Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
5853     ArgAddr = Addr;
5854     break;
5855 
5856   case ABIArgInfo::Indirect:
5857     Stride = 8;
5858     ArgAddr = Builder.CreateBitCast(Addr,
5859                                     llvm::PointerType::getUnqual(ArgPtrTy),
5860                                     "indirect");
5861     ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg");
5862     break;
5863 
5864   case ABIArgInfo::Ignore:
5865     return llvm::UndefValue::get(ArgPtrTy);
5866   }
5867 
5868   // Update VAList.
5869   Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next");
5870   Builder.CreateStore(Addr, VAListAddrAsBPP);
5871 
5872   return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr");
5873 }
5874 
computeInfo(CGFunctionInfo & FI) const5875 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
5876   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
5877   for (auto &I : FI.arguments())
5878     I.info = classifyType(I.type, 16 * 8);
5879 }
5880 
5881 namespace {
5882 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
5883 public:
SparcV9TargetCodeGenInfo(CodeGenTypes & CGT)5884   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
5885     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
5886 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const5887   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5888     return 14;
5889   }
5890 
5891   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5892                                llvm::Value *Address) const override;
5893 };
5894 } // end anonymous namespace
5895 
5896 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const5897 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5898                                                 llvm::Value *Address) const {
5899   // This is calculated from the LLVM and GCC tables and verified
5900   // against gcc output.  AFAIK all ABIs use the same encoding.
5901 
5902   CodeGen::CGBuilderTy &Builder = CGF.Builder;
5903 
5904   llvm::IntegerType *i8 = CGF.Int8Ty;
5905   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
5906   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
5907 
5908   // 0-31: the 8-byte general-purpose registers
5909   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
5910 
5911   // 32-63: f0-31, the 4-byte floating-point registers
5912   AssignToArrayRange(Builder, Address, Four8, 32, 63);
5913 
5914   //   Y   = 64
5915   //   PSR = 65
5916   //   WIM = 66
5917   //   TBR = 67
5918   //   PC  = 68
5919   //   NPC = 69
5920   //   FSR = 70
5921   //   CSR = 71
5922   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
5923 
5924   // 72-87: d0-15, the 8-byte floating-point registers
5925   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
5926 
5927   return false;
5928 }
5929 
5930 
5931 //===----------------------------------------------------------------------===//
5932 // XCore ABI Implementation
5933 //===----------------------------------------------------------------------===//
5934 
5935 namespace {
5936 
5937 /// A SmallStringEnc instance is used to build up the TypeString by passing
5938 /// it by reference between functions that append to it.
5939 typedef llvm::SmallString<128> SmallStringEnc;
5940 
5941 /// TypeStringCache caches the meta encodings of Types.
5942 ///
5943 /// The reason for caching TypeStrings is two fold:
5944 ///   1. To cache a type's encoding for later uses;
5945 ///   2. As a means to break recursive member type inclusion.
5946 ///
5947 /// A cache Entry can have a Status of:
5948 ///   NonRecursive:   The type encoding is not recursive;
5949 ///   Recursive:      The type encoding is recursive;
5950 ///   Incomplete:     An incomplete TypeString;
5951 ///   IncompleteUsed: An incomplete TypeString that has been used in a
5952 ///                   Recursive type encoding.
5953 ///
5954 /// A NonRecursive entry will have all of its sub-members expanded as fully
5955 /// as possible. Whilst it may contain types which are recursive, the type
5956 /// itself is not recursive and thus its encoding may be safely used whenever
5957 /// the type is encountered.
5958 ///
5959 /// A Recursive entry will have all of its sub-members expanded as fully as
5960 /// possible. The type itself is recursive and it may contain other types which
5961 /// are recursive. The Recursive encoding must not be used during the expansion
5962 /// of a recursive type's recursive branch. For simplicity the code uses
5963 /// IncompleteCount to reject all usage of Recursive encodings for member types.
5964 ///
5965 /// An Incomplete entry is always a RecordType and only encodes its
5966 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
5967 /// are placed into the cache during type expansion as a means to identify and
5968 /// handle recursive inclusion of types as sub-members. If there is recursion
5969 /// the entry becomes IncompleteUsed.
5970 ///
5971 /// During the expansion of a RecordType's members:
5972 ///
5973 ///   If the cache contains a NonRecursive encoding for the member type, the
5974 ///   cached encoding is used;
5975 ///
5976 ///   If the cache contains a Recursive encoding for the member type, the
5977 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
5978 ///
5979 ///   If the member is a RecordType, an Incomplete encoding is placed into the
5980 ///   cache to break potential recursive inclusion of itself as a sub-member;
5981 ///
5982 ///   Once a member RecordType has been expanded, its temporary incomplete
5983 ///   entry is removed from the cache. If a Recursive encoding was swapped out
5984 ///   it is swapped back in;
5985 ///
5986 ///   If an incomplete entry is used to expand a sub-member, the incomplete
5987 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
5988 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
5989 ///
5990 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
5991 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
5992 ///   Else the member is part of a recursive type and thus the recursion has
5993 ///   been exited too soon for the encoding to be correct for the member.
5994 ///
5995 class TypeStringCache {
5996   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
5997   struct Entry {
5998     std::string Str;     // The encoded TypeString for the type.
5999     enum Status State;   // Information about the encoding in 'Str'.
6000     std::string Swapped; // A temporary place holder for a Recursive encoding
6001                          // during the expansion of RecordType's members.
6002   };
6003   std::map<const IdentifierInfo *, struct Entry> Map;
6004   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
6005   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
6006 public:
TypeStringCache()6007   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {};
6008   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
6009   bool removeIncomplete(const IdentifierInfo *ID);
6010   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
6011                      bool IsRecursive);
6012   StringRef lookupStr(const IdentifierInfo *ID);
6013 };
6014 
6015 /// TypeString encodings for enum & union fields must be order.
6016 /// FieldEncoding is a helper for this ordering process.
6017 class FieldEncoding {
6018   bool HasName;
6019   std::string Enc;
6020 public:
FieldEncoding(bool b,SmallStringEnc & e)6021   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {};
str()6022   StringRef str() {return Enc.c_str();};
operator <(const FieldEncoding & rhs) const6023   bool operator<(const FieldEncoding &rhs) const {
6024     if (HasName != rhs.HasName) return HasName;
6025     return Enc < rhs.Enc;
6026   }
6027 };
6028 
6029 class XCoreABIInfo : public DefaultABIInfo {
6030 public:
XCoreABIInfo(CodeGen::CodeGenTypes & CGT)6031   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
6032   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6033                          CodeGenFunction &CGF) const override;
6034 };
6035 
6036 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
6037   mutable TypeStringCache TSC;
6038 public:
XCoreTargetCodeGenInfo(CodeGenTypes & CGT)6039   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
6040     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
6041   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6042                     CodeGen::CodeGenModule &M) const override;
6043 };
6044 
6045 } // End anonymous namespace.
6046 
EmitVAArg(llvm::Value * VAListAddr,QualType Ty,CodeGenFunction & CGF) const6047 llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6048                                      CodeGenFunction &CGF) const {
6049   CGBuilderTy &Builder = CGF.Builder;
6050 
6051   // Get the VAList.
6052   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr,
6053                                                        CGF.Int8PtrPtrTy);
6054   llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP);
6055 
6056   // Handle the argument.
6057   ABIArgInfo AI = classifyArgumentType(Ty);
6058   llvm::Type *ArgTy = CGT.ConvertType(Ty);
6059   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6060     AI.setCoerceToType(ArgTy);
6061   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6062   llvm::Value *Val;
6063   uint64_t ArgSize = 0;
6064   switch (AI.getKind()) {
6065   case ABIArgInfo::Expand:
6066   case ABIArgInfo::InAlloca:
6067     llvm_unreachable("Unsupported ABI kind for va_arg");
6068   case ABIArgInfo::Ignore:
6069     Val = llvm::UndefValue::get(ArgPtrTy);
6070     ArgSize = 0;
6071     break;
6072   case ABIArgInfo::Extend:
6073   case ABIArgInfo::Direct:
6074     Val = Builder.CreatePointerCast(AP, ArgPtrTy);
6075     ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
6076     if (ArgSize < 4)
6077       ArgSize = 4;
6078     break;
6079   case ABIArgInfo::Indirect:
6080     llvm::Value *ArgAddr;
6081     ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy));
6082     ArgAddr = Builder.CreateLoad(ArgAddr);
6083     Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy);
6084     ArgSize = 4;
6085     break;
6086   }
6087 
6088   // Increment the VAList.
6089   if (ArgSize) {
6090     llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize);
6091     Builder.CreateStore(APN, VAListAddrAsBPP);
6092   }
6093   return Val;
6094 }
6095 
6096 /// During the expansion of a RecordType, an incomplete TypeString is placed
6097 /// into the cache as a means to identify and break recursion.
6098 /// If there is a Recursive encoding in the cache, it is swapped out and will
6099 /// be reinserted by removeIncomplete().
6100 /// All other types of encoding should have been used rather than arriving here.
addIncomplete(const IdentifierInfo * ID,std::string StubEnc)6101 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
6102                                     std::string StubEnc) {
6103   if (!ID)
6104     return;
6105   Entry &E = Map[ID];
6106   assert( (E.Str.empty() || E.State == Recursive) &&
6107          "Incorrectly use of addIncomplete");
6108   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
6109   E.Swapped.swap(E.Str); // swap out the Recursive
6110   E.Str.swap(StubEnc);
6111   E.State = Incomplete;
6112   ++IncompleteCount;
6113 }
6114 
6115 /// Once the RecordType has been expanded, the temporary incomplete TypeString
6116 /// must be removed from the cache.
6117 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
6118 /// Returns true if the RecordType was defined recursively.
removeIncomplete(const IdentifierInfo * ID)6119 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
6120   if (!ID)
6121     return false;
6122   auto I = Map.find(ID);
6123   assert(I != Map.end() && "Entry not present");
6124   Entry &E = I->second;
6125   assert( (E.State == Incomplete ||
6126            E.State == IncompleteUsed) &&
6127          "Entry must be an incomplete type");
6128   bool IsRecursive = false;
6129   if (E.State == IncompleteUsed) {
6130     // We made use of our Incomplete encoding, thus we are recursive.
6131     IsRecursive = true;
6132     --IncompleteUsedCount;
6133   }
6134   if (E.Swapped.empty())
6135     Map.erase(I);
6136   else {
6137     // Swap the Recursive back.
6138     E.Swapped.swap(E.Str);
6139     E.Swapped.clear();
6140     E.State = Recursive;
6141   }
6142   --IncompleteCount;
6143   return IsRecursive;
6144 }
6145 
6146 /// Add the encoded TypeString to the cache only if it is NonRecursive or
6147 /// Recursive (viz: all sub-members were expanded as fully as possible).
addIfComplete(const IdentifierInfo * ID,StringRef Str,bool IsRecursive)6148 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
6149                                     bool IsRecursive) {
6150   if (!ID || IncompleteUsedCount)
6151     return; // No key or it is is an incomplete sub-type so don't add.
6152   Entry &E = Map[ID];
6153   if (IsRecursive && !E.Str.empty()) {
6154     assert(E.State==Recursive && E.Str.size() == Str.size() &&
6155            "This is not the same Recursive entry");
6156     // The parent container was not recursive after all, so we could have used
6157     // this Recursive sub-member entry after all, but we assumed the worse when
6158     // we started viz: IncompleteCount!=0.
6159     return;
6160   }
6161   assert(E.Str.empty() && "Entry already present");
6162   E.Str = Str.str();
6163   E.State = IsRecursive? Recursive : NonRecursive;
6164 }
6165 
6166 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
6167 /// are recursively expanding a type (IncompleteCount != 0) and the cached
6168 /// encoding is Recursive, return an empty StringRef.
lookupStr(const IdentifierInfo * ID)6169 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
6170   if (!ID)
6171     return StringRef();   // We have no key.
6172   auto I = Map.find(ID);
6173   if (I == Map.end())
6174     return StringRef();   // We have no encoding.
6175   Entry &E = I->second;
6176   if (E.State == Recursive && IncompleteCount)
6177     return StringRef();   // We don't use Recursive encodings for member types.
6178 
6179   if (E.State == Incomplete) {
6180     // The incomplete type is being used to break out of recursion.
6181     E.State = IncompleteUsed;
6182     ++IncompleteUsedCount;
6183   }
6184   return E.Str.c_str();
6185 }
6186 
6187 /// The XCore ABI includes a type information section that communicates symbol
6188 /// type information to the linker. The linker uses this information to verify
6189 /// safety/correctness of things such as array bound and pointers et al.
6190 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
6191 /// This type information (TypeString) is emitted into meta data for all global
6192 /// symbols: definitions, declarations, functions & variables.
6193 ///
6194 /// The TypeString carries type, qualifier, name, size & value details.
6195 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
6196 /// <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf>
6197 /// The output is tested by test/CodeGen/xcore-stringtype.c.
6198 ///
6199 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
6200                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
6201 
6202 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
emitTargetMD(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const6203 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6204                                           CodeGen::CodeGenModule &CGM) const {
6205   SmallStringEnc Enc;
6206   if (getTypeString(Enc, D, CGM, TSC)) {
6207     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
6208     llvm::SmallVector<llvm::Value *, 2> MDVals;
6209     MDVals.push_back(GV);
6210     MDVals.push_back(llvm::MDString::get(Ctx, Enc.str()));
6211     llvm::NamedMDNode *MD =
6212       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
6213     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6214   }
6215 }
6216 
6217 static bool appendType(SmallStringEnc &Enc, QualType QType,
6218                        const CodeGen::CodeGenModule &CGM,
6219                        TypeStringCache &TSC);
6220 
6221 /// Helper function for appendRecordType().
6222 /// Builds a SmallVector containing the encoded field types in declaration order.
extractFieldType(SmallVectorImpl<FieldEncoding> & FE,const RecordDecl * RD,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)6223 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
6224                              const RecordDecl *RD,
6225                              const CodeGen::CodeGenModule &CGM,
6226                              TypeStringCache &TSC) {
6227   for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
6228        I != E; ++I) {
6229     SmallStringEnc Enc;
6230     Enc += "m(";
6231     Enc += I->getName();
6232     Enc += "){";
6233     if (I->isBitField()) {
6234       Enc += "b(";
6235       llvm::raw_svector_ostream OS(Enc);
6236       OS.resync();
6237       OS << I->getBitWidthValue(CGM.getContext());
6238       OS.flush();
6239       Enc += ':';
6240     }
6241     if (!appendType(Enc, I->getType(), CGM, TSC))
6242       return false;
6243     if (I->isBitField())
6244       Enc += ')';
6245     Enc += '}';
6246     FE.push_back(FieldEncoding(!I->getName().empty(), Enc));
6247   }
6248   return true;
6249 }
6250 
6251 /// Appends structure and union types to Enc and adds encoding to cache.
6252 /// Recursively calls appendType (via extractFieldType) for each field.
6253 /// Union types have their fields ordered according to the ABI.
appendRecordType(SmallStringEnc & Enc,const RecordType * RT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC,const IdentifierInfo * ID)6254 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
6255                              const CodeGen::CodeGenModule &CGM,
6256                              TypeStringCache &TSC, const IdentifierInfo *ID) {
6257   // Append the cached TypeString if we have one.
6258   StringRef TypeString = TSC.lookupStr(ID);
6259   if (!TypeString.empty()) {
6260     Enc += TypeString;
6261     return true;
6262   }
6263 
6264   // Start to emit an incomplete TypeString.
6265   size_t Start = Enc.size();
6266   Enc += (RT->isUnionType()? 'u' : 's');
6267   Enc += '(';
6268   if (ID)
6269     Enc += ID->getName();
6270   Enc += "){";
6271 
6272   // We collect all encoded fields and order as necessary.
6273   bool IsRecursive = false;
6274   const RecordDecl *RD = RT->getDecl()->getDefinition();
6275   if (RD && !RD->field_empty()) {
6276     // An incomplete TypeString stub is placed in the cache for this RecordType
6277     // so that recursive calls to this RecordType will use it whilst building a
6278     // complete TypeString for this RecordType.
6279     SmallVector<FieldEncoding, 16> FE;
6280     std::string StubEnc(Enc.substr(Start).str());
6281     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
6282     TSC.addIncomplete(ID, std::move(StubEnc));
6283     if (!extractFieldType(FE, RD, CGM, TSC)) {
6284       (void) TSC.removeIncomplete(ID);
6285       return false;
6286     }
6287     IsRecursive = TSC.removeIncomplete(ID);
6288     // The ABI requires unions to be sorted but not structures.
6289     // See FieldEncoding::operator< for sort algorithm.
6290     if (RT->isUnionType())
6291       std::sort(FE.begin(), FE.end());
6292     // We can now complete the TypeString.
6293     unsigned E = FE.size();
6294     for (unsigned I = 0; I != E; ++I) {
6295       if (I)
6296         Enc += ',';
6297       Enc += FE[I].str();
6298     }
6299   }
6300   Enc += '}';
6301   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
6302   return true;
6303 }
6304 
6305 /// Appends enum types to Enc and adds the encoding to the cache.
appendEnumType(SmallStringEnc & Enc,const EnumType * ET,TypeStringCache & TSC,const IdentifierInfo * ID)6306 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
6307                            TypeStringCache &TSC,
6308                            const IdentifierInfo *ID) {
6309   // Append the cached TypeString if we have one.
6310   StringRef TypeString = TSC.lookupStr(ID);
6311   if (!TypeString.empty()) {
6312     Enc += TypeString;
6313     return true;
6314   }
6315 
6316   size_t Start = Enc.size();
6317   Enc += "e(";
6318   if (ID)
6319     Enc += ID->getName();
6320   Enc += "){";
6321 
6322   // We collect all encoded enumerations and order them alphanumerically.
6323   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
6324     SmallVector<FieldEncoding, 16> FE;
6325     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
6326          ++I) {
6327       SmallStringEnc EnumEnc;
6328       EnumEnc += "m(";
6329       EnumEnc += I->getName();
6330       EnumEnc += "){";
6331       I->getInitVal().toString(EnumEnc);
6332       EnumEnc += '}';
6333       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
6334     }
6335     std::sort(FE.begin(), FE.end());
6336     unsigned E = FE.size();
6337     for (unsigned I = 0; I != E; ++I) {
6338       if (I)
6339         Enc += ',';
6340       Enc += FE[I].str();
6341     }
6342   }
6343   Enc += '}';
6344   TSC.addIfComplete(ID, Enc.substr(Start), false);
6345   return true;
6346 }
6347 
6348 /// Appends type's qualifier to Enc.
6349 /// This is done prior to appending the type's encoding.
appendQualifier(SmallStringEnc & Enc,QualType QT)6350 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
6351   // Qualifiers are emitted in alphabetical order.
6352   static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"};
6353   int Lookup = 0;
6354   if (QT.isConstQualified())
6355     Lookup += 1<<0;
6356   if (QT.isRestrictQualified())
6357     Lookup += 1<<1;
6358   if (QT.isVolatileQualified())
6359     Lookup += 1<<2;
6360   Enc += Table[Lookup];
6361 }
6362 
6363 /// Appends built-in types to Enc.
appendBuiltinType(SmallStringEnc & Enc,const BuiltinType * BT)6364 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
6365   const char *EncType;
6366   switch (BT->getKind()) {
6367     case BuiltinType::Void:
6368       EncType = "0";
6369       break;
6370     case BuiltinType::Bool:
6371       EncType = "b";
6372       break;
6373     case BuiltinType::Char_U:
6374       EncType = "uc";
6375       break;
6376     case BuiltinType::UChar:
6377       EncType = "uc";
6378       break;
6379     case BuiltinType::SChar:
6380       EncType = "sc";
6381       break;
6382     case BuiltinType::UShort:
6383       EncType = "us";
6384       break;
6385     case BuiltinType::Short:
6386       EncType = "ss";
6387       break;
6388     case BuiltinType::UInt:
6389       EncType = "ui";
6390       break;
6391     case BuiltinType::Int:
6392       EncType = "si";
6393       break;
6394     case BuiltinType::ULong:
6395       EncType = "ul";
6396       break;
6397     case BuiltinType::Long:
6398       EncType = "sl";
6399       break;
6400     case BuiltinType::ULongLong:
6401       EncType = "ull";
6402       break;
6403     case BuiltinType::LongLong:
6404       EncType = "sll";
6405       break;
6406     case BuiltinType::Float:
6407       EncType = "ft";
6408       break;
6409     case BuiltinType::Double:
6410       EncType = "d";
6411       break;
6412     case BuiltinType::LongDouble:
6413       EncType = "ld";
6414       break;
6415     default:
6416       return false;
6417   }
6418   Enc += EncType;
6419   return true;
6420 }
6421 
6422 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
appendPointerType(SmallStringEnc & Enc,const PointerType * PT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)6423 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
6424                               const CodeGen::CodeGenModule &CGM,
6425                               TypeStringCache &TSC) {
6426   Enc += "p(";
6427   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
6428     return false;
6429   Enc += ')';
6430   return true;
6431 }
6432 
6433 /// Appends array encoding to Enc before calling appendType for the element.
appendArrayType(SmallStringEnc & Enc,QualType QT,const ArrayType * AT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC,StringRef NoSizeEnc)6434 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
6435                             const ArrayType *AT,
6436                             const CodeGen::CodeGenModule &CGM,
6437                             TypeStringCache &TSC, StringRef NoSizeEnc) {
6438   if (AT->getSizeModifier() != ArrayType::Normal)
6439     return false;
6440   Enc += "a(";
6441   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
6442     CAT->getSize().toStringUnsigned(Enc);
6443   else
6444     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
6445   Enc += ':';
6446   // The Qualifiers should be attached to the type rather than the array.
6447   appendQualifier(Enc, QT);
6448   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
6449     return false;
6450   Enc += ')';
6451   return true;
6452 }
6453 
6454 /// Appends a function encoding to Enc, calling appendType for the return type
6455 /// and the arguments.
appendFunctionType(SmallStringEnc & Enc,const FunctionType * FT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)6456 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
6457                              const CodeGen::CodeGenModule &CGM,
6458                              TypeStringCache &TSC) {
6459   Enc += "f{";
6460   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
6461     return false;
6462   Enc += "}(";
6463   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
6464     // N.B. we are only interested in the adjusted param types.
6465     auto I = FPT->param_type_begin();
6466     auto E = FPT->param_type_end();
6467     if (I != E) {
6468       do {
6469         if (!appendType(Enc, *I, CGM, TSC))
6470           return false;
6471         ++I;
6472         if (I != E)
6473           Enc += ',';
6474       } while (I != E);
6475       if (FPT->isVariadic())
6476         Enc += ",va";
6477     } else {
6478       if (FPT->isVariadic())
6479         Enc += "va";
6480       else
6481         Enc += '0';
6482     }
6483   }
6484   Enc += ')';
6485   return true;
6486 }
6487 
6488 /// Handles the type's qualifier before dispatching a call to handle specific
6489 /// type encodings.
appendType(SmallStringEnc & Enc,QualType QType,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)6490 static bool appendType(SmallStringEnc &Enc, QualType QType,
6491                        const CodeGen::CodeGenModule &CGM,
6492                        TypeStringCache &TSC) {
6493 
6494   QualType QT = QType.getCanonicalType();
6495 
6496   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
6497     // The Qualifiers should be attached to the type rather than the array.
6498     // Thus we don't call appendQualifier() here.
6499     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
6500 
6501   appendQualifier(Enc, QT);
6502 
6503   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
6504     return appendBuiltinType(Enc, BT);
6505 
6506   if (const PointerType *PT = QT->getAs<PointerType>())
6507     return appendPointerType(Enc, PT, CGM, TSC);
6508 
6509   if (const EnumType *ET = QT->getAs<EnumType>())
6510     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
6511 
6512   if (const RecordType *RT = QT->getAsStructureType())
6513     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
6514 
6515   if (const RecordType *RT = QT->getAsUnionType())
6516     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
6517 
6518   if (const FunctionType *FT = QT->getAs<FunctionType>())
6519     return appendFunctionType(Enc, FT, CGM, TSC);
6520 
6521   return false;
6522 }
6523 
getTypeString(SmallStringEnc & Enc,const Decl * D,CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)6524 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
6525                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
6526   if (!D)
6527     return false;
6528 
6529   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6530     if (FD->getLanguageLinkage() != CLanguageLinkage)
6531       return false;
6532     return appendType(Enc, FD->getType(), CGM, TSC);
6533   }
6534 
6535   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
6536     if (VD->getLanguageLinkage() != CLanguageLinkage)
6537       return false;
6538     QualType QT = VD->getType().getCanonicalType();
6539     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
6540       // Global ArrayTypes are given a size of '*' if the size is unknown.
6541       // The Qualifiers should be attached to the type rather than the array.
6542       // Thus we don't call appendQualifier() here.
6543       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
6544     }
6545     return appendType(Enc, QT, CGM, TSC);
6546   }
6547   return false;
6548 }
6549 
6550 
6551 //===----------------------------------------------------------------------===//
6552 // Driver code
6553 //===----------------------------------------------------------------------===//
6554 
getTargetCodeGenInfo()6555 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
6556   if (TheTargetCodeGenInfo)
6557     return *TheTargetCodeGenInfo;
6558 
6559   const llvm::Triple &Triple = getTarget().getTriple();
6560   switch (Triple.getArch()) {
6561   default:
6562     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
6563 
6564   case llvm::Triple::le32:
6565     return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
6566   case llvm::Triple::mips:
6567   case llvm::Triple::mipsel:
6568     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
6569 
6570   case llvm::Triple::mips64:
6571   case llvm::Triple::mips64el:
6572     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
6573 
6574   case llvm::Triple::aarch64:
6575   case llvm::Triple::aarch64_be:
6576   case llvm::Triple::arm64:
6577   case llvm::Triple::arm64_be: {
6578     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
6579     if (getTarget().getABI() == "darwinpcs")
6580       Kind = AArch64ABIInfo::DarwinPCS;
6581 
6582     return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind));
6583   }
6584 
6585   case llvm::Triple::arm:
6586   case llvm::Triple::armeb:
6587   case llvm::Triple::thumb:
6588   case llvm::Triple::thumbeb:
6589     {
6590       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
6591       if (getTarget().getABI() == "apcs-gnu")
6592         Kind = ARMABIInfo::APCS;
6593       else if (CodeGenOpts.FloatABI == "hard" ||
6594                (CodeGenOpts.FloatABI != "soft" &&
6595                 Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
6596         Kind = ARMABIInfo::AAPCS_VFP;
6597 
6598       switch (Triple.getOS()) {
6599         case llvm::Triple::NaCl:
6600           return *(TheTargetCodeGenInfo =
6601                    new NaClARMTargetCodeGenInfo(Types, Kind));
6602         default:
6603           return *(TheTargetCodeGenInfo =
6604                    new ARMTargetCodeGenInfo(Types, Kind));
6605       }
6606     }
6607 
6608   case llvm::Triple::ppc:
6609     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
6610   case llvm::Triple::ppc64:
6611     if (Triple.isOSBinFormatELF())
6612       return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
6613     else
6614       return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
6615   case llvm::Triple::ppc64le:
6616     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
6617     return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
6618 
6619   case llvm::Triple::nvptx:
6620   case llvm::Triple::nvptx64:
6621     return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
6622 
6623   case llvm::Triple::msp430:
6624     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
6625 
6626   case llvm::Triple::systemz:
6627     return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
6628 
6629   case llvm::Triple::tce:
6630     return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
6631 
6632   case llvm::Triple::x86: {
6633     bool IsDarwinVectorABI = Triple.isOSDarwin();
6634     bool IsSmallStructInRegABI =
6635         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
6636     bool IsWin32FloatStructABI = Triple.isWindowsMSVCEnvironment();
6637 
6638     if (Triple.getOS() == llvm::Triple::Win32) {
6639       return *(TheTargetCodeGenInfo =
6640                new WinX86_32TargetCodeGenInfo(Types,
6641                                               IsDarwinVectorABI, IsSmallStructInRegABI,
6642                                               IsWin32FloatStructABI,
6643                                               CodeGenOpts.NumRegisterParameters));
6644     } else {
6645       return *(TheTargetCodeGenInfo =
6646                new X86_32TargetCodeGenInfo(Types,
6647                                            IsDarwinVectorABI, IsSmallStructInRegABI,
6648                                            IsWin32FloatStructABI,
6649                                            CodeGenOpts.NumRegisterParameters));
6650     }
6651   }
6652 
6653   case llvm::Triple::x86_64: {
6654     bool HasAVX = getTarget().getABI() == "avx";
6655 
6656     switch (Triple.getOS()) {
6657     case llvm::Triple::Win32:
6658       return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
6659     case llvm::Triple::NaCl:
6660       return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types,
6661                                                                       HasAVX));
6662     default:
6663       return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
6664                                                                   HasAVX));
6665     }
6666   }
6667   case llvm::Triple::hexagon:
6668     return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
6669   case llvm::Triple::sparcv9:
6670     return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
6671   case llvm::Triple::xcore:
6672     return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types));
6673   }
6674 }
6675