• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- tsan_mman.cc ------------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "sanitizer_common/sanitizer_allocator_interface.h"
14 #include "sanitizer_common/sanitizer_common.h"
15 #include "sanitizer_common/sanitizer_placement_new.h"
16 #include "tsan_mman.h"
17 #include "tsan_rtl.h"
18 #include "tsan_report.h"
19 #include "tsan_flags.h"
20 
21 // May be overriden by front-end.
__tsan_malloc_hook(void * ptr,uptr size)22 extern "C" void WEAK __tsan_malloc_hook(void *ptr, uptr size) {
23   (void)ptr;
24   (void)size;
25 }
__sanitizer_malloc_hook(void * ptr,uptr size)26 extern "C" void WEAK __sanitizer_malloc_hook(void *ptr, uptr size) {
27   (void)ptr;
28   (void)size;
29 }
30 
__tsan_free_hook(void * ptr)31 extern "C" void WEAK __tsan_free_hook(void *ptr) {
32   (void)ptr;
33 }
__sanitizer_free_hook(void * ptr)34 extern "C" void WEAK __sanitizer_free_hook(void *ptr) {
35   (void)ptr;
36 }
37 
38 namespace __tsan {
39 
40 struct MapUnmapCallback {
OnMap__tsan::MapUnmapCallback41   void OnMap(uptr p, uptr size) const { }
OnUnmap__tsan::MapUnmapCallback42   void OnUnmap(uptr p, uptr size) const {
43     // We are about to unmap a chunk of user memory.
44     // Mark the corresponding shadow memory as not needed.
45     DontNeedShadowFor(p, size);
46   }
47 };
48 
49 static char allocator_placeholder[sizeof(Allocator)] ALIGNED(64);
allocator()50 Allocator *allocator() {
51   return reinterpret_cast<Allocator*>(&allocator_placeholder);
52 }
53 
InitializeAllocator()54 void InitializeAllocator() {
55   allocator()->Init();
56 }
57 
AllocatorThreadStart(ThreadState * thr)58 void AllocatorThreadStart(ThreadState *thr) {
59   allocator()->InitCache(&thr->alloc_cache);
60   internal_allocator()->InitCache(&thr->internal_alloc_cache);
61 }
62 
AllocatorThreadFinish(ThreadState * thr)63 void AllocatorThreadFinish(ThreadState *thr) {
64   allocator()->DestroyCache(&thr->alloc_cache);
65   internal_allocator()->DestroyCache(&thr->internal_alloc_cache);
66 }
67 
AllocatorPrintStats()68 void AllocatorPrintStats() {
69   allocator()->PrintStats();
70 }
71 
SignalUnsafeCall(ThreadState * thr,uptr pc)72 static void SignalUnsafeCall(ThreadState *thr, uptr pc) {
73   if (!thr->in_signal_handler || !flags()->report_signal_unsafe)
74     return;
75   StackTrace stack;
76   stack.ObtainCurrent(thr, pc);
77   ThreadRegistryLock l(ctx->thread_registry);
78   ScopedReport rep(ReportTypeSignalUnsafe);
79   if (!IsFiredSuppression(ctx, rep, stack)) {
80     rep.AddStack(&stack, true);
81     OutputReport(thr, rep);
82   }
83 }
84 
user_alloc(ThreadState * thr,uptr pc,uptr sz,uptr align)85 void *user_alloc(ThreadState *thr, uptr pc, uptr sz, uptr align) {
86   if ((sz >= (1ull << 40)) || (align >= (1ull << 40)))
87     return AllocatorReturnNull();
88   void *p = allocator()->Allocate(&thr->alloc_cache, sz, align);
89   if (p == 0)
90     return 0;
91   if (ctx && ctx->initialized)
92     OnUserAlloc(thr, pc, (uptr)p, sz, true);
93   SignalUnsafeCall(thr, pc);
94   return p;
95 }
96 
user_free(ThreadState * thr,uptr pc,void * p)97 void user_free(ThreadState *thr, uptr pc, void *p) {
98   if (ctx && ctx->initialized)
99     OnUserFree(thr, pc, (uptr)p, true);
100   allocator()->Deallocate(&thr->alloc_cache, p);
101   SignalUnsafeCall(thr, pc);
102 }
103 
OnUserAlloc(ThreadState * thr,uptr pc,uptr p,uptr sz,bool write)104 void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write) {
105   DPrintf("#%d: alloc(%zu) = %p\n", thr->tid, sz, p);
106   ctx->metamap.AllocBlock(thr, pc, p, sz);
107   if (write && thr->ignore_reads_and_writes == 0)
108     MemoryRangeImitateWrite(thr, pc, (uptr)p, sz);
109   else
110     MemoryResetRange(thr, pc, (uptr)p, sz);
111 }
112 
OnUserFree(ThreadState * thr,uptr pc,uptr p,bool write)113 void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write) {
114   CHECK_NE(p, (void*)0);
115   uptr sz = ctx->metamap.FreeBlock(thr, pc, p);
116   DPrintf("#%d: free(%p, %zu)\n", thr->tid, p, sz);
117   if (write && thr->ignore_reads_and_writes == 0)
118     MemoryRangeFreed(thr, pc, (uptr)p, sz);
119 }
120 
user_realloc(ThreadState * thr,uptr pc,void * p,uptr sz)121 void *user_realloc(ThreadState *thr, uptr pc, void *p, uptr sz) {
122   void *p2 = 0;
123   // FIXME: Handle "shrinking" more efficiently,
124   // it seems that some software actually does this.
125   if (sz) {
126     p2 = user_alloc(thr, pc, sz);
127     if (p2 == 0)
128       return 0;
129     if (p) {
130       uptr oldsz = user_alloc_usable_size(p);
131       internal_memcpy(p2, p, min(oldsz, sz));
132     }
133   }
134   if (p)
135     user_free(thr, pc, p);
136   return p2;
137 }
138 
user_alloc_usable_size(const void * p)139 uptr user_alloc_usable_size(const void *p) {
140   if (p == 0)
141     return 0;
142   MBlock *b = ctx->metamap.GetBlock((uptr)p);
143   return b ? b->siz : 0;
144 }
145 
invoke_malloc_hook(void * ptr,uptr size)146 void invoke_malloc_hook(void *ptr, uptr size) {
147   ThreadState *thr = cur_thread();
148   if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
149     return;
150   __tsan_malloc_hook(ptr, size);
151   __sanitizer_malloc_hook(ptr, size);
152 }
153 
invoke_free_hook(void * ptr)154 void invoke_free_hook(void *ptr) {
155   ThreadState *thr = cur_thread();
156   if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
157     return;
158   __tsan_free_hook(ptr);
159   __sanitizer_free_hook(ptr);
160 }
161 
internal_alloc(MBlockType typ,uptr sz)162 void *internal_alloc(MBlockType typ, uptr sz) {
163   ThreadState *thr = cur_thread();
164   CHECK_LE(sz, InternalSizeClassMap::kMaxSize);
165   if (thr->nomalloc) {
166     thr->nomalloc = 0;  // CHECK calls internal_malloc().
167     CHECK(0);
168   }
169   return InternalAlloc(sz, &thr->internal_alloc_cache);
170 }
171 
internal_free(void * p)172 void internal_free(void *p) {
173   ThreadState *thr = cur_thread();
174   if (thr->nomalloc) {
175     thr->nomalloc = 0;  // CHECK calls internal_malloc().
176     CHECK(0);
177   }
178   InternalFree(p, &thr->internal_alloc_cache);
179 }
180 
181 }  // namespace __tsan
182 
183 using namespace __tsan;
184 
185 extern "C" {
__sanitizer_get_current_allocated_bytes()186 uptr __sanitizer_get_current_allocated_bytes() {
187   uptr stats[AllocatorStatCount];
188   allocator()->GetStats(stats);
189   return stats[AllocatorStatAllocated];
190 }
__tsan_get_current_allocated_bytes()191 uptr __tsan_get_current_allocated_bytes() {
192   return __sanitizer_get_current_allocated_bytes();
193 }
194 
__sanitizer_get_heap_size()195 uptr __sanitizer_get_heap_size() {
196   uptr stats[AllocatorStatCount];
197   allocator()->GetStats(stats);
198   return stats[AllocatorStatMapped];
199 }
__tsan_get_heap_size()200 uptr __tsan_get_heap_size() {
201   return __sanitizer_get_heap_size();
202 }
203 
__sanitizer_get_free_bytes()204 uptr __sanitizer_get_free_bytes() {
205   return 1;
206 }
__tsan_get_free_bytes()207 uptr __tsan_get_free_bytes() {
208   return __sanitizer_get_free_bytes();
209 }
210 
__sanitizer_get_unmapped_bytes()211 uptr __sanitizer_get_unmapped_bytes() {
212   return 1;
213 }
__tsan_get_unmapped_bytes()214 uptr __tsan_get_unmapped_bytes() {
215   return __sanitizer_get_unmapped_bytes();
216 }
217 
__sanitizer_get_estimated_allocated_size(uptr size)218 uptr __sanitizer_get_estimated_allocated_size(uptr size) {
219   return size;
220 }
__tsan_get_estimated_allocated_size(uptr size)221 uptr __tsan_get_estimated_allocated_size(uptr size) {
222   return __sanitizer_get_estimated_allocated_size(size);
223 }
224 
__sanitizer_get_ownership(const void * p)225 int __sanitizer_get_ownership(const void *p) {
226   return allocator()->GetBlockBegin(p) != 0;
227 }
__tsan_get_ownership(const void * p)228 int __tsan_get_ownership(const void *p) {
229   return __sanitizer_get_ownership(p);
230 }
231 
__sanitizer_get_allocated_size(const void * p)232 uptr __sanitizer_get_allocated_size(const void *p) {
233   return user_alloc_usable_size(p);
234 }
__tsan_get_allocated_size(const void * p)235 uptr __tsan_get_allocated_size(const void *p) {
236   return __sanitizer_get_allocated_size(p);
237 }
238 
__tsan_on_thread_idle()239 void __tsan_on_thread_idle() {
240   ThreadState *thr = cur_thread();
241   allocator()->SwallowCache(&thr->alloc_cache);
242   internal_allocator()->SwallowCache(&thr->internal_alloc_cache);
243   ctx->metamap.OnThreadIdle(thr);
244 }
245 }  // extern "C"
246