• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra. Eigen itself is part of the KDE project.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
5 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #include "main.h"
12 #include <functional>
13 #include <Eigen/Array>
14 
15 using namespace std;
16 
17 template<typename Scalar> struct AddIfNull {
operator ()AddIfNull18     const Scalar operator() (const Scalar a, const Scalar b) const {return a<=1e-3 ? b : a;}
19     enum { Cost = NumTraits<Scalar>::AddCost };
20 };
21 
cwiseops(const MatrixType & m)22 template<typename MatrixType> void cwiseops(const MatrixType& m)
23 {
24   typedef typename MatrixType::Scalar Scalar;
25   typedef typename NumTraits<Scalar>::Real RealScalar;
26   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
27 
28   int rows = m.rows();
29   int cols = m.cols();
30 
31   MatrixType m1 = MatrixType::Random(rows, cols),
32              m2 = MatrixType::Random(rows, cols),
33              m3(rows, cols),
34              m4(rows, cols),
35              mzero = MatrixType::Zero(rows, cols),
36              mones = MatrixType::Ones(rows, cols),
37              identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
38                               ::Identity(rows, rows),
39              square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows);
40   VectorType v1 = VectorType::Random(rows),
41              v2 = VectorType::Random(rows),
42              vzero = VectorType::Zero(rows),
43              vones = VectorType::Ones(rows),
44              v3(rows);
45 
46   int r = ei_random<int>(0, rows-1),
47       c = ei_random<int>(0, cols-1);
48 
49   Scalar s1 = ei_random<Scalar>();
50 
51   // test Zero, Ones, Constant, and the set* variants
52   m3 = MatrixType::Constant(rows, cols, s1);
53   for (int j=0; j<cols; ++j)
54     for (int i=0; i<rows; ++i)
55     {
56       VERIFY_IS_APPROX(mzero(i,j), Scalar(0));
57       VERIFY_IS_APPROX(mones(i,j), Scalar(1));
58       VERIFY_IS_APPROX(m3(i,j), s1);
59     }
60   VERIFY(mzero.isZero());
61   VERIFY(mones.isOnes());
62   VERIFY(m3.isConstant(s1));
63   VERIFY(identity.isIdentity());
64   VERIFY_IS_APPROX(m4.setConstant(s1), m3);
65   VERIFY_IS_APPROX(m4.setConstant(rows,cols,s1), m3);
66   VERIFY_IS_APPROX(m4.setZero(), mzero);
67   VERIFY_IS_APPROX(m4.setZero(rows,cols), mzero);
68   VERIFY_IS_APPROX(m4.setOnes(), mones);
69   VERIFY_IS_APPROX(m4.setOnes(rows,cols), mones);
70   m4.fill(s1);
71   VERIFY_IS_APPROX(m4, m3);
72 
73   VERIFY_IS_APPROX(v3.setConstant(rows, s1), VectorType::Constant(rows,s1));
74   VERIFY_IS_APPROX(v3.setZero(rows), vzero);
75   VERIFY_IS_APPROX(v3.setOnes(rows), vones);
76 
77   m2 = m2.template binaryExpr<AddIfNull<Scalar> >(mones);
78 
79   VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().abs2());
80   VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square());
81   VERIFY_IS_APPROX(m1.cwise().pow(3), m1.cwise().cube());
82 
83   VERIFY_IS_APPROX(m1 + mones, m1.cwise()+Scalar(1));
84   VERIFY_IS_APPROX(m1 - mones, m1.cwise()-Scalar(1));
85   m3 = m1; m3.cwise() += 1;
86   VERIFY_IS_APPROX(m1 + mones, m3);
87   m3 = m1; m3.cwise() -= 1;
88   VERIFY_IS_APPROX(m1 - mones, m3);
89 
90   VERIFY_IS_APPROX(m2, m2.cwise() * mones);
91   VERIFY_IS_APPROX(m1.cwise() * m2,  m2.cwise() * m1);
92   m3 = m1;
93   m3.cwise() *= m2;
94   VERIFY_IS_APPROX(m3, m1.cwise() * m2);
95 
96   VERIFY_IS_APPROX(mones,    m2.cwise()/m2);
97   if(NumTraits<Scalar>::HasFloatingPoint)
98   {
99     VERIFY_IS_APPROX(m1.cwise() / m2,    m1.cwise() * (m2.cwise().inverse()));
100     m3 = m1.cwise().abs().cwise().sqrt();
101     VERIFY_IS_APPROX(m3.cwise().square(), m1.cwise().abs());
102     VERIFY_IS_APPROX(m1.cwise().square().cwise().sqrt(), m1.cwise().abs());
103     VERIFY_IS_APPROX(m1.cwise().abs().cwise().log().cwise().exp() , m1.cwise().abs());
104 
105     VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square());
106     m3 = (m1.cwise().abs().cwise()<=RealScalar(0.01)).select(mones,m1);
107     VERIFY_IS_APPROX(m3.cwise().pow(-1), m3.cwise().inverse());
108     m3 = m1.cwise().abs();
109     VERIFY_IS_APPROX(m3.cwise().pow(RealScalar(0.5)), m3.cwise().sqrt());
110 
111 //     VERIFY_IS_APPROX(m1.cwise().tan(), m1.cwise().sin().cwise() / m1.cwise().cos());
112     VERIFY_IS_APPROX(mones, m1.cwise().sin().cwise().square() + m1.cwise().cos().cwise().square());
113     m3 = m1;
114     m3.cwise() /= m2;
115     VERIFY_IS_APPROX(m3, m1.cwise() / m2);
116   }
117 
118   // check min
119   VERIFY_IS_APPROX( m1.cwise().min(m2), m2.cwise().min(m1) );
120   VERIFY_IS_APPROX( m1.cwise().min(m1+mones), m1 );
121   VERIFY_IS_APPROX( m1.cwise().min(m1-mones), m1-mones );
122 
123   // check max
124   VERIFY_IS_APPROX( m1.cwise().max(m2), m2.cwise().max(m1) );
125   VERIFY_IS_APPROX( m1.cwise().max(m1-mones), m1 );
126   VERIFY_IS_APPROX( m1.cwise().max(m1+mones), m1+mones );
127 
128   VERIFY( (m1.cwise() == m1).all() );
129   VERIFY( (m1.cwise() != m2).any() );
130   VERIFY(!(m1.cwise() == (m1+mones)).any() );
131   if (rows*cols>1)
132   {
133     m3 = m1;
134     m3(r,c) += 1;
135     VERIFY( (m1.cwise() == m3).any() );
136     VERIFY( !(m1.cwise() == m3).all() );
137   }
138   VERIFY( (m1.cwise().min(m2).cwise() <= m2).all() );
139   VERIFY( (m1.cwise().max(m2).cwise() >= m2).all() );
140   VERIFY( (m1.cwise().min(m2).cwise() < (m1+mones)).all() );
141   VERIFY( (m1.cwise().max(m2).cwise() > (m1-mones)).all() );
142 
143   VERIFY( (m1.cwise()<m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).all() );
144   VERIFY( !(m1.cwise()<m1.unaryExpr(bind2nd(minus<Scalar>(), Scalar(1)))).all() );
145   VERIFY( !(m1.cwise()>m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).any() );
146 }
147 
test_eigen2_cwiseop()148 void test_eigen2_cwiseop()
149 {
150   for(int i = 0; i < g_repeat ; i++) {
151     CALL_SUBTEST_1( cwiseops(Matrix<float, 1, 1>()) );
152     CALL_SUBTEST_2( cwiseops(Matrix4d()) );
153     CALL_SUBTEST_3( cwiseops(MatrixXf(3, 3)) );
154     CALL_SUBTEST_3( cwiseops(MatrixXf(22, 22)) );
155     CALL_SUBTEST_4( cwiseops(MatrixXi(8, 12)) );
156     CALL_SUBTEST_5( cwiseops(MatrixXd(20, 20)) );
157   }
158 }
159