1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra. Eigen itself is part of the KDE project.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
5 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11 #include "main.h"
12 #include <functional>
13 #include <Eigen/Array>
14
15 using namespace std;
16
17 template<typename Scalar> struct AddIfNull {
operator ()AddIfNull18 const Scalar operator() (const Scalar a, const Scalar b) const {return a<=1e-3 ? b : a;}
19 enum { Cost = NumTraits<Scalar>::AddCost };
20 };
21
cwiseops(const MatrixType & m)22 template<typename MatrixType> void cwiseops(const MatrixType& m)
23 {
24 typedef typename MatrixType::Scalar Scalar;
25 typedef typename NumTraits<Scalar>::Real RealScalar;
26 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
27
28 int rows = m.rows();
29 int cols = m.cols();
30
31 MatrixType m1 = MatrixType::Random(rows, cols),
32 m2 = MatrixType::Random(rows, cols),
33 m3(rows, cols),
34 m4(rows, cols),
35 mzero = MatrixType::Zero(rows, cols),
36 mones = MatrixType::Ones(rows, cols),
37 identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
38 ::Identity(rows, rows),
39 square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows);
40 VectorType v1 = VectorType::Random(rows),
41 v2 = VectorType::Random(rows),
42 vzero = VectorType::Zero(rows),
43 vones = VectorType::Ones(rows),
44 v3(rows);
45
46 int r = ei_random<int>(0, rows-1),
47 c = ei_random<int>(0, cols-1);
48
49 Scalar s1 = ei_random<Scalar>();
50
51 // test Zero, Ones, Constant, and the set* variants
52 m3 = MatrixType::Constant(rows, cols, s1);
53 for (int j=0; j<cols; ++j)
54 for (int i=0; i<rows; ++i)
55 {
56 VERIFY_IS_APPROX(mzero(i,j), Scalar(0));
57 VERIFY_IS_APPROX(mones(i,j), Scalar(1));
58 VERIFY_IS_APPROX(m3(i,j), s1);
59 }
60 VERIFY(mzero.isZero());
61 VERIFY(mones.isOnes());
62 VERIFY(m3.isConstant(s1));
63 VERIFY(identity.isIdentity());
64 VERIFY_IS_APPROX(m4.setConstant(s1), m3);
65 VERIFY_IS_APPROX(m4.setConstant(rows,cols,s1), m3);
66 VERIFY_IS_APPROX(m4.setZero(), mzero);
67 VERIFY_IS_APPROX(m4.setZero(rows,cols), mzero);
68 VERIFY_IS_APPROX(m4.setOnes(), mones);
69 VERIFY_IS_APPROX(m4.setOnes(rows,cols), mones);
70 m4.fill(s1);
71 VERIFY_IS_APPROX(m4, m3);
72
73 VERIFY_IS_APPROX(v3.setConstant(rows, s1), VectorType::Constant(rows,s1));
74 VERIFY_IS_APPROX(v3.setZero(rows), vzero);
75 VERIFY_IS_APPROX(v3.setOnes(rows), vones);
76
77 m2 = m2.template binaryExpr<AddIfNull<Scalar> >(mones);
78
79 VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().abs2());
80 VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square());
81 VERIFY_IS_APPROX(m1.cwise().pow(3), m1.cwise().cube());
82
83 VERIFY_IS_APPROX(m1 + mones, m1.cwise()+Scalar(1));
84 VERIFY_IS_APPROX(m1 - mones, m1.cwise()-Scalar(1));
85 m3 = m1; m3.cwise() += 1;
86 VERIFY_IS_APPROX(m1 + mones, m3);
87 m3 = m1; m3.cwise() -= 1;
88 VERIFY_IS_APPROX(m1 - mones, m3);
89
90 VERIFY_IS_APPROX(m2, m2.cwise() * mones);
91 VERIFY_IS_APPROX(m1.cwise() * m2, m2.cwise() * m1);
92 m3 = m1;
93 m3.cwise() *= m2;
94 VERIFY_IS_APPROX(m3, m1.cwise() * m2);
95
96 VERIFY_IS_APPROX(mones, m2.cwise()/m2);
97 if(NumTraits<Scalar>::HasFloatingPoint)
98 {
99 VERIFY_IS_APPROX(m1.cwise() / m2, m1.cwise() * (m2.cwise().inverse()));
100 m3 = m1.cwise().abs().cwise().sqrt();
101 VERIFY_IS_APPROX(m3.cwise().square(), m1.cwise().abs());
102 VERIFY_IS_APPROX(m1.cwise().square().cwise().sqrt(), m1.cwise().abs());
103 VERIFY_IS_APPROX(m1.cwise().abs().cwise().log().cwise().exp() , m1.cwise().abs());
104
105 VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square());
106 m3 = (m1.cwise().abs().cwise()<=RealScalar(0.01)).select(mones,m1);
107 VERIFY_IS_APPROX(m3.cwise().pow(-1), m3.cwise().inverse());
108 m3 = m1.cwise().abs();
109 VERIFY_IS_APPROX(m3.cwise().pow(RealScalar(0.5)), m3.cwise().sqrt());
110
111 // VERIFY_IS_APPROX(m1.cwise().tan(), m1.cwise().sin().cwise() / m1.cwise().cos());
112 VERIFY_IS_APPROX(mones, m1.cwise().sin().cwise().square() + m1.cwise().cos().cwise().square());
113 m3 = m1;
114 m3.cwise() /= m2;
115 VERIFY_IS_APPROX(m3, m1.cwise() / m2);
116 }
117
118 // check min
119 VERIFY_IS_APPROX( m1.cwise().min(m2), m2.cwise().min(m1) );
120 VERIFY_IS_APPROX( m1.cwise().min(m1+mones), m1 );
121 VERIFY_IS_APPROX( m1.cwise().min(m1-mones), m1-mones );
122
123 // check max
124 VERIFY_IS_APPROX( m1.cwise().max(m2), m2.cwise().max(m1) );
125 VERIFY_IS_APPROX( m1.cwise().max(m1-mones), m1 );
126 VERIFY_IS_APPROX( m1.cwise().max(m1+mones), m1+mones );
127
128 VERIFY( (m1.cwise() == m1).all() );
129 VERIFY( (m1.cwise() != m2).any() );
130 VERIFY(!(m1.cwise() == (m1+mones)).any() );
131 if (rows*cols>1)
132 {
133 m3 = m1;
134 m3(r,c) += 1;
135 VERIFY( (m1.cwise() == m3).any() );
136 VERIFY( !(m1.cwise() == m3).all() );
137 }
138 VERIFY( (m1.cwise().min(m2).cwise() <= m2).all() );
139 VERIFY( (m1.cwise().max(m2).cwise() >= m2).all() );
140 VERIFY( (m1.cwise().min(m2).cwise() < (m1+mones)).all() );
141 VERIFY( (m1.cwise().max(m2).cwise() > (m1-mones)).all() );
142
143 VERIFY( (m1.cwise()<m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).all() );
144 VERIFY( !(m1.cwise()<m1.unaryExpr(bind2nd(minus<Scalar>(), Scalar(1)))).all() );
145 VERIFY( !(m1.cwise()>m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).any() );
146 }
147
test_eigen2_cwiseop()148 void test_eigen2_cwiseop()
149 {
150 for(int i = 0; i < g_repeat ; i++) {
151 CALL_SUBTEST_1( cwiseops(Matrix<float, 1, 1>()) );
152 CALL_SUBTEST_2( cwiseops(Matrix4d()) );
153 CALL_SUBTEST_3( cwiseops(MatrixXf(3, 3)) );
154 CALL_SUBTEST_3( cwiseops(MatrixXf(22, 22)) );
155 CALL_SUBTEST_4( cwiseops(MatrixXi(8, 12)) );
156 CALL_SUBTEST_5( cwiseops(MatrixXd(20, 20)) );
157 }
158 }
159