• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #include <cstdlib>
12 #include <cerrno>
13 #include <ctime>
14 #include <iostream>
15 #include <fstream>
16 #include <string>
17 #include <sstream>
18 #include <vector>
19 #include <typeinfo>
20 #include <limits>
21 #include <algorithm>
22 #include <sstream>
23 #include <complex>
24 #include <deque>
25 #include <queue>
26 
27 #define min(A,B) please_protect_your_min_with_parentheses
28 #define max(A,B) please_protect_your_max_with_parentheses
29 
30 #define FORBIDDEN_IDENTIFIER (this_identifier_is_forbidden_to_avoid_clashes) this_identifier_is_forbidden_to_avoid_clashes
31 // B0 is defined in POSIX header termios.h
32 #define B0 FORBIDDEN_IDENTIFIER
33 
34 
35 // shuts down ICC's remark #593: variable "XXX" was set but never used
36 #define TEST_SET_BUT_UNUSED_VARIABLE(X) X = X + 0;
37 
38 // the following file is automatically generated by cmake
39 #include "split_test_helper.h"
40 
41 #ifdef NDEBUG
42 #undef NDEBUG
43 #endif
44 
45 // On windows CE, NDEBUG is automatically defined <assert.h> if NDEBUG is not defined.
46 #ifndef DEBUG
47 #define DEBUG
48 #endif
49 
50 // bounds integer values for AltiVec
51 #ifdef __ALTIVEC__
52 #define EIGEN_MAKING_DOCS
53 #endif
54 
55 #ifndef EIGEN_TEST_FUNC
56 #error EIGEN_TEST_FUNC must be defined
57 #endif
58 
59 #define DEFAULT_REPEAT 10
60 
61 namespace Eigen
62 {
63   static std::vector<std::string> g_test_stack;
64   static int g_repeat;
65   static unsigned int g_seed;
66   static bool g_has_set_repeat, g_has_set_seed;
67 }
68 
69 #define EI_PP_MAKE_STRING2(S) #S
70 #define EI_PP_MAKE_STRING(S) EI_PP_MAKE_STRING2(S)
71 
72 #define EIGEN_DEFAULT_IO_FORMAT IOFormat(4, 0, "  ", "\n", "", "", "", "")
73 
74 #ifndef EIGEN_NO_ASSERTION_CHECKING
75 
76   namespace Eigen
77   {
78     static const bool should_raise_an_assert = false;
79 
80     // Used to avoid to raise two exceptions at a time in which
81     // case the exception is not properly caught.
82     // This may happen when a second exceptions is triggered in a destructor.
83     static bool no_more_assert = false;
84     static bool report_on_cerr_on_assert_failure = true;
85 
86     struct eigen_assert_exception
87     {
eigen_assert_exceptioneigen_assert_exception88       eigen_assert_exception(void) {}
~eigen_assert_exceptioneigen_assert_exception89       ~eigen_assert_exception() { Eigen::no_more_assert = false; }
90     };
91   }
92   // If EIGEN_DEBUG_ASSERTS is defined and if no assertion is triggered while
93   // one should have been, then the list of excecuted assertions is printed out.
94   //
95   // EIGEN_DEBUG_ASSERTS is not enabled by default as it
96   // significantly increases the compilation time
97   // and might even introduce side effects that would hide
98   // some memory errors.
99   #ifdef EIGEN_DEBUG_ASSERTS
100 
101     namespace Eigen
102     {
103       namespace internal
104       {
105         static bool push_assert = false;
106       }
107       static std::vector<std::string> eigen_assert_list;
108     }
109     #define eigen_assert(a)                       \
110       if( (!(a)) && (!no_more_assert) )     \
111       { \
112         if(report_on_cerr_on_assert_failure) \
113           std::cerr <<  #a << " " __FILE__ << "(" << __LINE__ << ")\n"; \
114         Eigen::no_more_assert = true;       \
115         throw Eigen::eigen_assert_exception(); \
116       }                                     \
117       else if (Eigen::internal::push_assert)       \
118       {                                     \
119         eigen_assert_list.push_back(std::string(EI_PP_MAKE_STRING(__FILE__) " (" EI_PP_MAKE_STRING(__LINE__) ") : " #a) ); \
120       }
121 
122     #define VERIFY_RAISES_ASSERT(a)                                                   \
123       {                                                                               \
124         Eigen::no_more_assert = false;                                                \
125         Eigen::eigen_assert_list.clear();                                                \
126         Eigen::internal::push_assert = true;                                                 \
127         Eigen::report_on_cerr_on_assert_failure = false;                              \
128         try {                                                                         \
129           a;                                                                          \
130           std::cerr << "One of the following asserts should have been triggered:\n";  \
131           for (uint ai=0 ; ai<eigen_assert_list.size() ; ++ai)                           \
132             std::cerr << "  " << eigen_assert_list[ai] << "\n";                          \
133           VERIFY(Eigen::should_raise_an_assert && # a);                               \
134         } catch (Eigen::eigen_assert_exception) {                                        \
135           Eigen::internal::push_assert = false; VERIFY(true);                                \
136         }                                                                             \
137         Eigen::report_on_cerr_on_assert_failure = true;                               \
138         Eigen::internal::push_assert = false;                                                \
139       }
140 
141   #else // EIGEN_DEBUG_ASSERTS
142     // see bug 89. The copy_bool here is working around a bug in gcc <= 4.3
143     #define eigen_assert(a) \
144       if( (!Eigen::internal::copy_bool(a)) && (!no_more_assert) )\
145       {                                       \
146         Eigen::no_more_assert = true;         \
147         if(report_on_cerr_on_assert_failure)  \
148           eigen_plain_assert(a);              \
149         else                                  \
150           throw Eigen::eigen_assert_exception(); \
151       }
152     #define VERIFY_RAISES_ASSERT(a) {                             \
153         Eigen::no_more_assert = false;                            \
154         Eigen::report_on_cerr_on_assert_failure = false;          \
155         try {                                                     \
156           a;                                                      \
157           VERIFY(Eigen::should_raise_an_assert && # a);           \
158         }                                                         \
159         catch (Eigen::eigen_assert_exception&) { VERIFY(true); }     \
160         Eigen::report_on_cerr_on_assert_failure = true;           \
161       }
162 
163   #endif // EIGEN_DEBUG_ASSERTS
164 
165   #define EIGEN_USE_CUSTOM_ASSERT
166 
167 #else // EIGEN_NO_ASSERTION_CHECKING
168 
169   #define VERIFY_RAISES_ASSERT(a) {}
170 
171 #endif // EIGEN_NO_ASSERTION_CHECKING
172 
173 
174 #define EIGEN_INTERNAL_DEBUGGING
175 #include <Eigen/QR> // required for createRandomPIMatrixOfRank
176 
verify_impl(bool condition,const char * testname,const char * file,int line,const char * condition_as_string)177 inline void verify_impl(bool condition, const char *testname, const char *file, int line, const char *condition_as_string)
178 {
179   if (!condition)
180   {
181     std::cerr << "Test " << testname << " failed in " << file << " (" << line << ")"
182       << std::endl << "    " << condition_as_string << std::endl;
183     std::cerr << "Stack:\n";
184     const int test_stack_size = static_cast<int>(Eigen::g_test_stack.size());
185     for(int i=test_stack_size-1; i>=0; --i)
186       std::cerr << "  - " << Eigen::g_test_stack[i] << "\n";
187     std::cerr << "\n";
188     abort();
189   }
190 }
191 
192 #define VERIFY(a) ::verify_impl(a, g_test_stack.back().c_str(), __FILE__, __LINE__, EI_PP_MAKE_STRING(a))
193 
194 #define VERIFY_IS_EQUAL(a, b) VERIFY(test_is_equal(a, b))
195 #define VERIFY_IS_APPROX(a, b) VERIFY(test_isApprox(a, b))
196 #define VERIFY_IS_NOT_APPROX(a, b) VERIFY(!test_isApprox(a, b))
197 #define VERIFY_IS_MUCH_SMALLER_THAN(a, b) VERIFY(test_isMuchSmallerThan(a, b))
198 #define VERIFY_IS_NOT_MUCH_SMALLER_THAN(a, b) VERIFY(!test_isMuchSmallerThan(a, b))
199 #define VERIFY_IS_APPROX_OR_LESS_THAN(a, b) VERIFY(test_isApproxOrLessThan(a, b))
200 #define VERIFY_IS_NOT_APPROX_OR_LESS_THAN(a, b) VERIFY(!test_isApproxOrLessThan(a, b))
201 
202 #define VERIFY_IS_UNITARY(a) VERIFY(test_isUnitary(a))
203 
204 #define CALL_SUBTEST(FUNC) do { \
205     g_test_stack.push_back(EI_PP_MAKE_STRING(FUNC)); \
206     FUNC; \
207     g_test_stack.pop_back(); \
208   } while (0)
209 
210 
211 namespace Eigen {
212 
test_precision()213 template<typename T> inline typename NumTraits<T>::Real test_precision() { return NumTraits<T>::dummy_precision(); }
214 template<> inline float test_precision<float>() { return 1e-3f; }
215 template<> inline double test_precision<double>() { return 1e-6; }
216 template<> inline float test_precision<std::complex<float> >() { return test_precision<float>(); }
217 template<> inline double test_precision<std::complex<double> >() { return test_precision<double>(); }
218 template<> inline long double test_precision<long double>() { return 1e-6; }
219 
test_isApprox(const int & a,const int & b)220 inline bool test_isApprox(const int& a, const int& b)
221 { return internal::isApprox(a, b, test_precision<int>()); }
test_isMuchSmallerThan(const int & a,const int & b)222 inline bool test_isMuchSmallerThan(const int& a, const int& b)
223 { return internal::isMuchSmallerThan(a, b, test_precision<int>()); }
test_isApproxOrLessThan(const int & a,const int & b)224 inline bool test_isApproxOrLessThan(const int& a, const int& b)
225 { return internal::isApproxOrLessThan(a, b, test_precision<int>()); }
226 
test_isApprox(const float & a,const float & b)227 inline bool test_isApprox(const float& a, const float& b)
228 { return internal::isApprox(a, b, test_precision<float>()); }
test_isMuchSmallerThan(const float & a,const float & b)229 inline bool test_isMuchSmallerThan(const float& a, const float& b)
230 { return internal::isMuchSmallerThan(a, b, test_precision<float>()); }
test_isApproxOrLessThan(const float & a,const float & b)231 inline bool test_isApproxOrLessThan(const float& a, const float& b)
232 { return internal::isApproxOrLessThan(a, b, test_precision<float>()); }
test_isApprox(const double & a,const double & b)233 inline bool test_isApprox(const double& a, const double& b)
234 { return internal::isApprox(a, b, test_precision<double>()); }
235 
test_isMuchSmallerThan(const double & a,const double & b)236 inline bool test_isMuchSmallerThan(const double& a, const double& b)
237 { return internal::isMuchSmallerThan(a, b, test_precision<double>()); }
test_isApproxOrLessThan(const double & a,const double & b)238 inline bool test_isApproxOrLessThan(const double& a, const double& b)
239 { return internal::isApproxOrLessThan(a, b, test_precision<double>()); }
240 
test_isApprox(const std::complex<float> & a,const std::complex<float> & b)241 inline bool test_isApprox(const std::complex<float>& a, const std::complex<float>& b)
242 { return internal::isApprox(a, b, test_precision<std::complex<float> >()); }
test_isMuchSmallerThan(const std::complex<float> & a,const std::complex<float> & b)243 inline bool test_isMuchSmallerThan(const std::complex<float>& a, const std::complex<float>& b)
244 { return internal::isMuchSmallerThan(a, b, test_precision<std::complex<float> >()); }
245 
test_isApprox(const std::complex<double> & a,const std::complex<double> & b)246 inline bool test_isApprox(const std::complex<double>& a, const std::complex<double>& b)
247 { return internal::isApprox(a, b, test_precision<std::complex<double> >()); }
test_isMuchSmallerThan(const std::complex<double> & a,const std::complex<double> & b)248 inline bool test_isMuchSmallerThan(const std::complex<double>& a, const std::complex<double>& b)
249 { return internal::isMuchSmallerThan(a, b, test_precision<std::complex<double> >()); }
250 
test_isApprox(const long double & a,const long double & b)251 inline bool test_isApprox(const long double& a, const long double& b)
252 {
253     bool ret = internal::isApprox(a, b, test_precision<long double>());
254     if (!ret) std::cerr
255         << std::endl << "    actual   = " << a
256         << std::endl << "    expected = " << b << std::endl << std::endl;
257     return ret;
258 }
259 
test_isMuchSmallerThan(const long double & a,const long double & b)260 inline bool test_isMuchSmallerThan(const long double& a, const long double& b)
261 { return internal::isMuchSmallerThan(a, b, test_precision<long double>()); }
test_isApproxOrLessThan(const long double & a,const long double & b)262 inline bool test_isApproxOrLessThan(const long double& a, const long double& b)
263 { return internal::isApproxOrLessThan(a, b, test_precision<long double>()); }
264 
265 template<typename Type1, typename Type2>
test_isApprox(const Type1 & a,const Type2 & b)266 inline bool test_isApprox(const Type1& a, const Type2& b)
267 {
268   return a.isApprox(b, test_precision<typename Type1::Scalar>());
269 }
270 
271 // The idea behind this function is to compare the two scalars a and b where
272 // the scalar ref is a hint about the expected order of magnitude of a and b.
273 // WARNING: the scalar a and b must be positive
274 // Therefore, if for some reason a and b are very small compared to ref,
275 // we won't issue a false negative.
276 // This test could be: abs(a-b) <= eps * ref
277 // However, it seems that simply comparing a+ref and b+ref is more sensitive to true error.
278 template<typename Scalar,typename ScalarRef>
test_isApproxWithRef(const Scalar & a,const Scalar & b,const ScalarRef & ref)279 inline bool test_isApproxWithRef(const Scalar& a, const Scalar& b, const ScalarRef& ref)
280 {
281   return test_isApprox(a+ref, b+ref);
282 }
283 
284 template<typename Derived1, typename Derived2>
test_isMuchSmallerThan(const MatrixBase<Derived1> & m1,const MatrixBase<Derived2> & m2)285 inline bool test_isMuchSmallerThan(const MatrixBase<Derived1>& m1,
286                                    const MatrixBase<Derived2>& m2)
287 {
288   return m1.isMuchSmallerThan(m2, test_precision<typename internal::traits<Derived1>::Scalar>());
289 }
290 
291 template<typename Derived>
test_isMuchSmallerThan(const MatrixBase<Derived> & m,const typename NumTraits<typename internal::traits<Derived>::Scalar>::Real & s)292 inline bool test_isMuchSmallerThan(const MatrixBase<Derived>& m,
293                                    const typename NumTraits<typename internal::traits<Derived>::Scalar>::Real& s)
294 {
295   return m.isMuchSmallerThan(s, test_precision<typename internal::traits<Derived>::Scalar>());
296 }
297 
298 template<typename Derived>
test_isUnitary(const MatrixBase<Derived> & m)299 inline bool test_isUnitary(const MatrixBase<Derived>& m)
300 {
301   return m.isUnitary(test_precision<typename internal::traits<Derived>::Scalar>());
302 }
303 
304 // Forward declaration to avoid ICC warning
305 template<typename T, typename U>
306 bool test_is_equal(const T& actual, const U& expected);
307 
308 template<typename T, typename U>
test_is_equal(const T & actual,const U & expected)309 bool test_is_equal(const T& actual, const U& expected)
310 {
311     if (actual==expected)
312         return true;
313     // false:
314     std::cerr
315         << std::endl << "    actual   = " << actual
316         << std::endl << "    expected = " << expected << std::endl << std::endl;
317     return false;
318 }
319 
320 /** Creates a random Partial Isometry matrix of given rank.
321   *
322   * A partial isometry is a matrix all of whose singular values are either 0 or 1.
323   * This is very useful to test rank-revealing algorithms.
324   */
325 // Forward declaration to avoid ICC warning
326 template<typename MatrixType>
327 void createRandomPIMatrixOfRank(typename MatrixType::Index desired_rank, typename MatrixType::Index rows, typename MatrixType::Index cols, MatrixType& m);
328 template<typename MatrixType>
createRandomPIMatrixOfRank(typename MatrixType::Index desired_rank,typename MatrixType::Index rows,typename MatrixType::Index cols,MatrixType & m)329 void createRandomPIMatrixOfRank(typename MatrixType::Index desired_rank, typename MatrixType::Index rows, typename MatrixType::Index cols, MatrixType& m)
330 {
331   typedef typename internal::traits<MatrixType>::Index Index;
332   typedef typename internal::traits<MatrixType>::Scalar Scalar;
333   enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
334 
335   typedef Matrix<Scalar, Dynamic, 1> VectorType;
336   typedef Matrix<Scalar, Rows, Rows> MatrixAType;
337   typedef Matrix<Scalar, Cols, Cols> MatrixBType;
338 
339   if(desired_rank == 0)
340   {
341     m.setZero(rows,cols);
342     return;
343   }
344 
345   if(desired_rank == 1)
346   {
347     // here we normalize the vectors to get a partial isometry
348     m = VectorType::Random(rows).normalized() * VectorType::Random(cols).normalized().transpose();
349     return;
350   }
351 
352   MatrixAType a = MatrixAType::Random(rows,rows);
353   MatrixType d = MatrixType::Identity(rows,cols);
354   MatrixBType  b = MatrixBType::Random(cols,cols);
355 
356   // set the diagonal such that only desired_rank non-zero entries reamain
357   const Index diag_size = (std::min)(d.rows(),d.cols());
358   if(diag_size != desired_rank)
359     d.diagonal().segment(desired_rank, diag_size-desired_rank) = VectorType::Zero(diag_size-desired_rank);
360 
361   HouseholderQR<MatrixAType> qra(a);
362   HouseholderQR<MatrixBType> qrb(b);
363   m = qra.householderQ() * d * qrb.householderQ();
364 }
365 
366 // Forward declaration to avoid ICC warning
367 template<typename PermutationVectorType>
368 void randomPermutationVector(PermutationVectorType& v, typename PermutationVectorType::Index size);
369 template<typename PermutationVectorType>
randomPermutationVector(PermutationVectorType & v,typename PermutationVectorType::Index size)370 void randomPermutationVector(PermutationVectorType& v, typename PermutationVectorType::Index size)
371 {
372   typedef typename PermutationVectorType::Index Index;
373   typedef typename PermutationVectorType::Scalar Scalar;
374   v.resize(size);
375   for(Index i = 0; i < size; ++i) v(i) = Scalar(i);
376   if(size == 1) return;
377   for(Index n = 0; n < 3 * size; ++n)
378   {
379     Index i = internal::random<Index>(0, size-1);
380     Index j;
381     do j = internal::random<Index>(0, size-1); while(j==i);
382     std::swap(v(i), v(j));
383   }
384 }
385 
386 } // end namespace Eigen
387 
388 template<typename T> struct GetDifferentType;
389 
390 template<> struct GetDifferentType<float> { typedef double type; };
391 template<> struct GetDifferentType<double> { typedef float type; };
392 template<typename T> struct GetDifferentType<std::complex<T> >
393 { typedef std::complex<typename GetDifferentType<T>::type> type; };
394 
395 // Forward declaration to avoid ICC warning
396 template<typename T> std::string type_name();
397 template<typename T> std::string type_name()              { return "other"; }
398 template<> std::string type_name<float>()                 { return "float"; }
399 template<> std::string type_name<double>()                { return "double"; }
400 template<> std::string type_name<int>()                   { return "int"; }
401 template<> std::string type_name<std::complex<float> >()  { return "complex<float>"; }
402 template<> std::string type_name<std::complex<double> >() { return "complex<double>"; }
403 template<> std::string type_name<std::complex<int> >()    { return "complex<int>"; }
404 
405 // forward declaration of the main test function
406 void EIGEN_CAT(test_,EIGEN_TEST_FUNC)();
407 
408 using namespace Eigen;
409 
410 inline void set_repeat_from_string(const char *str)
411 {
412   errno = 0;
413   g_repeat = int(strtoul(str, 0, 10));
414   if(errno || g_repeat <= 0)
415   {
416     std::cout << "Invalid repeat value " << str << std::endl;
417     exit(EXIT_FAILURE);
418   }
419   g_has_set_repeat = true;
420 }
421 
422 inline void set_seed_from_string(const char *str)
423 {
424   errno = 0;
425   g_seed = int(strtoul(str, 0, 10));
426   if(errno || g_seed == 0)
427   {
428     std::cout << "Invalid seed value " << str << std::endl;
429     exit(EXIT_FAILURE);
430   }
431   g_has_set_seed = true;
432 }
433 
434 int main(int argc, char *argv[])
435 {
436     g_has_set_repeat = false;
437     g_has_set_seed = false;
438     bool need_help = false;
439 
440     for(int i = 1; i < argc; i++)
441     {
442       if(argv[i][0] == 'r')
443       {
444         if(g_has_set_repeat)
445         {
446           std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl;
447           return 1;
448         }
449         set_repeat_from_string(argv[i]+1);
450       }
451       else if(argv[i][0] == 's')
452       {
453         if(g_has_set_seed)
454         {
455           std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl;
456           return 1;
457         }
458          set_seed_from_string(argv[i]+1);
459       }
460       else
461       {
462         need_help = true;
463       }
464     }
465 
466     if(need_help)
467     {
468       std::cout << "This test application takes the following optional arguments:" << std::endl;
469       std::cout << "  rN     Repeat each test N times (default: " << DEFAULT_REPEAT << ")" << std::endl;
470       std::cout << "  sN     Use N as seed for random numbers (default: based on current time)" << std::endl;
471       std::cout << std::endl;
472       std::cout << "If defined, the environment variables EIGEN_REPEAT and EIGEN_SEED" << std::endl;
473       std::cout << "will be used as default values for these parameters." << std::endl;
474       return 1;
475     }
476 
477     char *env_EIGEN_REPEAT = getenv("EIGEN_REPEAT");
478     if(!g_has_set_repeat && env_EIGEN_REPEAT)
479       set_repeat_from_string(env_EIGEN_REPEAT);
480     char *env_EIGEN_SEED = getenv("EIGEN_SEED");
481     if(!g_has_set_seed && env_EIGEN_SEED)
482       set_seed_from_string(env_EIGEN_SEED);
483 
484     if(!g_has_set_seed) g_seed = (unsigned int) time(NULL);
485     if(!g_has_set_repeat) g_repeat = DEFAULT_REPEAT;
486 
487     std::cout << "Initializing random number generator with seed " << g_seed << std::endl;
488     std::stringstream ss;
489     ss << "Seed: " << g_seed;
490     g_test_stack.push_back(ss.str());
491     srand(g_seed);
492     std::cout << "Repeating each test " << g_repeat << " times" << std::endl;
493 
494     Eigen::g_test_stack.push_back(std::string(EI_PP_MAKE_STRING(EIGEN_TEST_FUNC)));
495 
496     EIGEN_CAT(test_,EIGEN_TEST_FUNC)();
497     return 0;
498 }
499 
500 // These warning are disabled here such that they are still ON when parsing Eigen's header files.
501 #if defined __INTEL_COMPILER
502   // remark #383: value copied to temporary, reference to temporary used
503   //  -> this warning is raised even for legal usage as: g_test_stack.push_back("foo"); where g_test_stack is a std::vector<std::string>
504   // remark #1418: external function definition with no prior declaration
505   //  -> this warning is raised for all our test functions. Declaring them static would fix the issue.
506   // warning #279: controlling expression is constant
507   // remark #1572: floating-point equality and inequality comparisons are unreliable
508   #pragma warning disable 279 383 1418 1572
509 #endif
510