• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "product.h"
11 
test_product_large()12 void test_product_large()
13 {
14   for(int i = 0; i < g_repeat; i++) {
15     CALL_SUBTEST_1( product(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
16     CALL_SUBTEST_2( product(MatrixXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
17     CALL_SUBTEST_3( product(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
18     CALL_SUBTEST_4( product(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
19     CALL_SUBTEST_5( product(Matrix<float,Dynamic,Dynamic,RowMajor>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
20   }
21 
22 #if defined EIGEN_TEST_PART_6
23   {
24     // test a specific issue in DiagonalProduct
25     int N = 1000000;
26     VectorXf v = VectorXf::Ones(N);
27     MatrixXf m = MatrixXf::Ones(N,3);
28     m = (v+v).asDiagonal() * m;
29     VERIFY_IS_APPROX(m, MatrixXf::Constant(N,3,2));
30   }
31 
32   {
33     // test deferred resizing in Matrix::operator=
34     MatrixXf a = MatrixXf::Random(10,4), b = MatrixXf::Random(4,10), c = a;
35     VERIFY_IS_APPROX((a = a * b), (c * b).eval());
36   }
37 
38   {
39     // check the functions to setup blocking sizes compile and do not segfault
40     // FIXME check they do what they are supposed to do !!
41     std::ptrdiff_t l1 = internal::random<int>(10000,20000);
42     std::ptrdiff_t l2 = internal::random<int>(1000000,2000000);
43     setCpuCacheSizes(l1,l2);
44     VERIFY(l1==l1CacheSize());
45     VERIFY(l2==l2CacheSize());
46     std::ptrdiff_t k1 = internal::random<int>(10,100)*16;
47     std::ptrdiff_t m1 = internal::random<int>(10,100)*16;
48     std::ptrdiff_t n1 = internal::random<int>(10,100)*16;
49     // only makes sure it compiles fine
50     internal::computeProductBlockingSizes<float,float>(k1,m1,n1);
51   }
52 
53   {
54     // test regression in row-vector by matrix (bad Map type)
55     MatrixXf mat1(10,32); mat1.setRandom();
56     MatrixXf mat2(32,32); mat2.setRandom();
57     MatrixXf r1 = mat1.row(2)*mat2.transpose();
58     VERIFY_IS_APPROX(r1, (mat1.row(2)*mat2.transpose()).eval());
59 
60     MatrixXf r2 = mat1.row(2)*mat2;
61     VERIFY_IS_APPROX(r2, (mat1.row(2)*mat2).eval());
62   }
63 #endif
64 }
65