1 /* libFLAC - Free Lossless Audio Codec library
2 * Copyright (C) 2000,2001,2002,2003,2004,2005,2006,2007 Josh Coalson
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * - Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * - Neither the name of the Xiph.org Foundation nor the names of its
16 * contributors may be used to endorse or promote products derived from
17 * this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #if HAVE_CONFIG_H
33 # include <config.h>
34 #endif
35
36 #include <math.h>
37 #include "FLAC/assert.h"
38 #include "FLAC/format.h"
39 #include "private/bitmath.h"
40 #include "private/lpc.h"
41 #if defined DEBUG || defined FLAC__OVERFLOW_DETECT || defined FLAC__OVERFLOW_DETECT_VERBOSE
42 #include <stdio.h>
43 #endif
44
45 #ifndef FLAC__INTEGER_ONLY_LIBRARY
46
47 #ifndef M_LN2
48 /* math.h in VC++ doesn't seem to have this (how Microsoft is that?) */
49 #define M_LN2 0.69314718055994530942
50 #endif
51
52 /* OPT: #undef'ing this may improve the speed on some architectures */
53 #define FLAC__LPC_UNROLLED_FILTER_LOOPS
54
55
FLAC__lpc_window_data(const FLAC__int32 in[],const FLAC__real window[],FLAC__real out[],unsigned data_len)56 void FLAC__lpc_window_data(const FLAC__int32 in[], const FLAC__real window[], FLAC__real out[], unsigned data_len)
57 {
58 unsigned i;
59 for(i = 0; i < data_len; i++)
60 out[i] = in[i] * window[i];
61 }
62
FLAC__lpc_compute_autocorrelation(const FLAC__real data[],unsigned data_len,unsigned lag,FLAC__real autoc[])63 void FLAC__lpc_compute_autocorrelation(const FLAC__real data[], unsigned data_len, unsigned lag, FLAC__real autoc[])
64 {
65 /* a readable, but slower, version */
66 #if 0
67 FLAC__real d;
68 unsigned i;
69
70 FLAC__ASSERT(lag > 0);
71 FLAC__ASSERT(lag <= data_len);
72
73 /*
74 * Technically we should subtract the mean first like so:
75 * for(i = 0; i < data_len; i++)
76 * data[i] -= mean;
77 * but it appears not to make enough of a difference to matter, and
78 * most signals are already closely centered around zero
79 */
80 while(lag--) {
81 for(i = lag, d = 0.0; i < data_len; i++)
82 d += data[i] * data[i - lag];
83 autoc[lag] = d;
84 }
85 #endif
86
87 /*
88 * this version tends to run faster because of better data locality
89 * ('data_len' is usually much larger than 'lag')
90 */
91 FLAC__real d;
92 unsigned sample, coeff;
93 const unsigned limit = data_len - lag;
94
95 FLAC__ASSERT(lag > 0);
96 FLAC__ASSERT(lag <= data_len);
97
98 for(coeff = 0; coeff < lag; coeff++)
99 autoc[coeff] = 0.0;
100 for(sample = 0; sample <= limit; sample++) {
101 d = data[sample];
102 for(coeff = 0; coeff < lag; coeff++)
103 autoc[coeff] += d * data[sample+coeff];
104 }
105 for(; sample < data_len; sample++) {
106 d = data[sample];
107 for(coeff = 0; coeff < data_len - sample; coeff++)
108 autoc[coeff] += d * data[sample+coeff];
109 }
110 }
111
FLAC__lpc_compute_lp_coefficients(const FLAC__real autoc[],unsigned * max_order,FLAC__real lp_coeff[][FLAC__MAX_LPC_ORDER],FLAC__double error[])112 void FLAC__lpc_compute_lp_coefficients(const FLAC__real autoc[], unsigned *max_order, FLAC__real lp_coeff[][FLAC__MAX_LPC_ORDER], FLAC__double error[])
113 {
114 unsigned i, j;
115 FLAC__double r, err, ref[FLAC__MAX_LPC_ORDER], lpc[FLAC__MAX_LPC_ORDER];
116
117 FLAC__ASSERT(0 != max_order);
118 FLAC__ASSERT(0 < *max_order);
119 FLAC__ASSERT(*max_order <= FLAC__MAX_LPC_ORDER);
120 FLAC__ASSERT(autoc[0] != 0.0);
121
122 err = autoc[0];
123
124 for(i = 0; i < *max_order; i++) {
125 /* Sum up this iteration's reflection coefficient. */
126 r = -autoc[i+1];
127 for(j = 0; j < i; j++)
128 r -= lpc[j] * autoc[i-j];
129 ref[i] = (r/=err);
130
131 /* Update LPC coefficients and total error. */
132 lpc[i]=r;
133 for(j = 0; j < (i>>1); j++) {
134 FLAC__double tmp = lpc[j];
135 lpc[j] += r * lpc[i-1-j];
136 lpc[i-1-j] += r * tmp;
137 }
138 if(i & 1)
139 lpc[j] += lpc[j] * r;
140
141 err *= (1.0 - r * r);
142
143 /* save this order */
144 for(j = 0; j <= i; j++)
145 lp_coeff[i][j] = (FLAC__real)(-lpc[j]); /* negate FIR filter coeff to get predictor coeff */
146 error[i] = err;
147
148 /* see SF bug #1601812 http://sourceforge.net/tracker/index.php?func=detail&aid=1601812&group_id=13478&atid=113478 */
149 if(err == 0.0) {
150 *max_order = i+1;
151 return;
152 }
153 }
154 }
155
FLAC__lpc_quantize_coefficients(const FLAC__real lp_coeff[],unsigned order,unsigned precision,FLAC__int32 qlp_coeff[],int * shift)156 int FLAC__lpc_quantize_coefficients(const FLAC__real lp_coeff[], unsigned order, unsigned precision, FLAC__int32 qlp_coeff[], int *shift)
157 {
158 unsigned i;
159 FLAC__double cmax;
160 FLAC__int32 qmax, qmin;
161
162 FLAC__ASSERT(precision > 0);
163 FLAC__ASSERT(precision >= FLAC__MIN_QLP_COEFF_PRECISION);
164
165 /* drop one bit for the sign; from here on out we consider only |lp_coeff[i]| */
166 precision--;
167 qmax = 1 << precision;
168 qmin = -qmax;
169 qmax--;
170
171 /* calc cmax = max( |lp_coeff[i]| ) */
172 cmax = 0.0;
173 for(i = 0; i < order; i++) {
174 const FLAC__double d = fabs(lp_coeff[i]);
175 if(d > cmax)
176 cmax = d;
177 }
178
179 if(cmax <= 0.0) {
180 /* => coefficients are all 0, which means our constant-detect didn't work */
181 return 2;
182 }
183 else {
184 const int max_shiftlimit = (1 << (FLAC__SUBFRAME_LPC_QLP_SHIFT_LEN-1)) - 1;
185 const int min_shiftlimit = -max_shiftlimit - 1;
186 int log2cmax;
187
188 (void)frexp(cmax, &log2cmax);
189 log2cmax--;
190 *shift = (int)precision - log2cmax - 1;
191
192 if(*shift > max_shiftlimit)
193 *shift = max_shiftlimit;
194 else if(*shift < min_shiftlimit)
195 return 1;
196 }
197
198 if(*shift >= 0) {
199 FLAC__double error = 0.0;
200 FLAC__int32 q;
201 for(i = 0; i < order; i++) {
202 error += lp_coeff[i] * (1 << *shift);
203 #if 1 /* unfortunately lround() is C99 */
204 if(error >= 0.0)
205 q = (FLAC__int32)(error + 0.5);
206 else
207 q = (FLAC__int32)(error - 0.5);
208 #else
209 q = lround(error);
210 #endif
211 #ifdef FLAC__OVERFLOW_DETECT
212 if(q > qmax+1) /* we expect q==qmax+1 occasionally due to rounding */
213 fprintf(stderr,"FLAC__lpc_quantize_coefficients: quantizer overflow: q>qmax %d>%d shift=%d cmax=%f precision=%u lpc[%u]=%f\n",q,qmax,*shift,cmax,precision+1,i,lp_coeff[i]);
214 else if(q < qmin)
215 fprintf(stderr,"FLAC__lpc_quantize_coefficients: quantizer overflow: q<qmin %d<%d shift=%d cmax=%f precision=%u lpc[%u]=%f\n",q,qmin,*shift,cmax,precision+1,i,lp_coeff[i]);
216 #endif
217 if(q > qmax)
218 q = qmax;
219 else if(q < qmin)
220 q = qmin;
221 error -= q;
222 qlp_coeff[i] = q;
223 }
224 }
225 /* negative shift is very rare but due to design flaw, negative shift is
226 * a NOP in the decoder, so it must be handled specially by scaling down
227 * coeffs
228 */
229 else {
230 const int nshift = -(*shift);
231 FLAC__double error = 0.0;
232 FLAC__int32 q;
233 #ifdef DEBUG
234 fprintf(stderr,"FLAC__lpc_quantize_coefficients: negative shift=%d order=%u cmax=%f\n", *shift, order, cmax);
235 #endif
236 for(i = 0; i < order; i++) {
237 error += lp_coeff[i] / (1 << nshift);
238 #if 1 /* unfortunately lround() is C99 */
239 if(error >= 0.0)
240 q = (FLAC__int32)(error + 0.5);
241 else
242 q = (FLAC__int32)(error - 0.5);
243 #else
244 q = lround(error);
245 #endif
246 #ifdef FLAC__OVERFLOW_DETECT
247 if(q > qmax+1) /* we expect q==qmax+1 occasionally due to rounding */
248 fprintf(stderr,"FLAC__lpc_quantize_coefficients: quantizer overflow: q>qmax %d>%d shift=%d cmax=%f precision=%u lpc[%u]=%f\n",q,qmax,*shift,cmax,precision+1,i,lp_coeff[i]);
249 else if(q < qmin)
250 fprintf(stderr,"FLAC__lpc_quantize_coefficients: quantizer overflow: q<qmin %d<%d shift=%d cmax=%f precision=%u lpc[%u]=%f\n",q,qmin,*shift,cmax,precision+1,i,lp_coeff[i]);
251 #endif
252 if(q > qmax)
253 q = qmax;
254 else if(q < qmin)
255 q = qmin;
256 error -= q;
257 qlp_coeff[i] = q;
258 }
259 *shift = 0;
260 }
261
262 return 0;
263 }
264
FLAC__lpc_compute_residual_from_qlp_coefficients(const FLAC__int32 * data,unsigned data_len,const FLAC__int32 qlp_coeff[],unsigned order,int lp_quantization,FLAC__int32 residual[])265 void FLAC__lpc_compute_residual_from_qlp_coefficients(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[])
266 #if defined(FLAC__OVERFLOW_DETECT) || !defined(FLAC__LPC_UNROLLED_FILTER_LOOPS)
267 {
268 FLAC__int64 sumo;
269 unsigned i, j;
270 FLAC__int32 sum;
271 const FLAC__int32 *history;
272
273 #ifdef FLAC__OVERFLOW_DETECT_VERBOSE
274 fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization);
275 for(i=0;i<order;i++)
276 fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]);
277 fprintf(stderr,"\n");
278 #endif
279 FLAC__ASSERT(order > 0);
280
281 for(i = 0; i < data_len; i++) {
282 sumo = 0;
283 sum = 0;
284 history = data;
285 for(j = 0; j < order; j++) {
286 sum += qlp_coeff[j] * (*(--history));
287 sumo += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*history);
288 #if defined _MSC_VER
289 if(sumo > 2147483647I64 || sumo < -2147483648I64)
290 fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%I64d\n",i,j,qlp_coeff[j],*history,sumo);
291 #else
292 if(sumo > 2147483647ll || sumo < -2147483648ll)
293 fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%lld\n",i,j,qlp_coeff[j],*history,(long long)sumo);
294 #endif
295 }
296 *(residual++) = *(data++) - (sum >> lp_quantization);
297 }
298
299 /* Here's a slower but clearer version:
300 for(i = 0; i < data_len; i++) {
301 sum = 0;
302 for(j = 0; j < order; j++)
303 sum += qlp_coeff[j] * data[i-j-1];
304 residual[i] = data[i] - (sum >> lp_quantization);
305 }
306 */
307 }
308 #else /* fully unrolled version for normal use */
309 {
310 int i;
311 FLAC__int32 sum;
312
313 FLAC__ASSERT(order > 0);
314 FLAC__ASSERT(order <= 32);
315
316 /*
317 * We do unique versions up to 12th order since that's the subset limit.
318 * Also they are roughly ordered to match frequency of occurrence to
319 * minimize branching.
320 */
321 if(order <= 12) {
322 if(order > 8) {
323 if(order > 10) {
324 if(order == 12) {
325 for(i = 0; i < (int)data_len; i++) {
326 sum = 0;
327 sum += qlp_coeff[11] * data[i-12];
328 sum += qlp_coeff[10] * data[i-11];
329 sum += qlp_coeff[9] * data[i-10];
330 sum += qlp_coeff[8] * data[i-9];
331 sum += qlp_coeff[7] * data[i-8];
332 sum += qlp_coeff[6] * data[i-7];
333 sum += qlp_coeff[5] * data[i-6];
334 sum += qlp_coeff[4] * data[i-5];
335 sum += qlp_coeff[3] * data[i-4];
336 sum += qlp_coeff[2] * data[i-3];
337 sum += qlp_coeff[1] * data[i-2];
338 sum += qlp_coeff[0] * data[i-1];
339 residual[i] = data[i] - (sum >> lp_quantization);
340 }
341 }
342 else { /* order == 11 */
343 for(i = 0; i < (int)data_len; i++) {
344 sum = 0;
345 sum += qlp_coeff[10] * data[i-11];
346 sum += qlp_coeff[9] * data[i-10];
347 sum += qlp_coeff[8] * data[i-9];
348 sum += qlp_coeff[7] * data[i-8];
349 sum += qlp_coeff[6] * data[i-7];
350 sum += qlp_coeff[5] * data[i-6];
351 sum += qlp_coeff[4] * data[i-5];
352 sum += qlp_coeff[3] * data[i-4];
353 sum += qlp_coeff[2] * data[i-3];
354 sum += qlp_coeff[1] * data[i-2];
355 sum += qlp_coeff[0] * data[i-1];
356 residual[i] = data[i] - (sum >> lp_quantization);
357 }
358 }
359 }
360 else {
361 if(order == 10) {
362 for(i = 0; i < (int)data_len; i++) {
363 sum = 0;
364 sum += qlp_coeff[9] * data[i-10];
365 sum += qlp_coeff[8] * data[i-9];
366 sum += qlp_coeff[7] * data[i-8];
367 sum += qlp_coeff[6] * data[i-7];
368 sum += qlp_coeff[5] * data[i-6];
369 sum += qlp_coeff[4] * data[i-5];
370 sum += qlp_coeff[3] * data[i-4];
371 sum += qlp_coeff[2] * data[i-3];
372 sum += qlp_coeff[1] * data[i-2];
373 sum += qlp_coeff[0] * data[i-1];
374 residual[i] = data[i] - (sum >> lp_quantization);
375 }
376 }
377 else { /* order == 9 */
378 for(i = 0; i < (int)data_len; i++) {
379 sum = 0;
380 sum += qlp_coeff[8] * data[i-9];
381 sum += qlp_coeff[7] * data[i-8];
382 sum += qlp_coeff[6] * data[i-7];
383 sum += qlp_coeff[5] * data[i-6];
384 sum += qlp_coeff[4] * data[i-5];
385 sum += qlp_coeff[3] * data[i-4];
386 sum += qlp_coeff[2] * data[i-3];
387 sum += qlp_coeff[1] * data[i-2];
388 sum += qlp_coeff[0] * data[i-1];
389 residual[i] = data[i] - (sum >> lp_quantization);
390 }
391 }
392 }
393 }
394 else if(order > 4) {
395 if(order > 6) {
396 if(order == 8) {
397 for(i = 0; i < (int)data_len; i++) {
398 sum = 0;
399 sum += qlp_coeff[7] * data[i-8];
400 sum += qlp_coeff[6] * data[i-7];
401 sum += qlp_coeff[5] * data[i-6];
402 sum += qlp_coeff[4] * data[i-5];
403 sum += qlp_coeff[3] * data[i-4];
404 sum += qlp_coeff[2] * data[i-3];
405 sum += qlp_coeff[1] * data[i-2];
406 sum += qlp_coeff[0] * data[i-1];
407 residual[i] = data[i] - (sum >> lp_quantization);
408 }
409 }
410 else { /* order == 7 */
411 for(i = 0; i < (int)data_len; i++) {
412 sum = 0;
413 sum += qlp_coeff[6] * data[i-7];
414 sum += qlp_coeff[5] * data[i-6];
415 sum += qlp_coeff[4] * data[i-5];
416 sum += qlp_coeff[3] * data[i-4];
417 sum += qlp_coeff[2] * data[i-3];
418 sum += qlp_coeff[1] * data[i-2];
419 sum += qlp_coeff[0] * data[i-1];
420 residual[i] = data[i] - (sum >> lp_quantization);
421 }
422 }
423 }
424 else {
425 if(order == 6) {
426 for(i = 0; i < (int)data_len; i++) {
427 sum = 0;
428 sum += qlp_coeff[5] * data[i-6];
429 sum += qlp_coeff[4] * data[i-5];
430 sum += qlp_coeff[3] * data[i-4];
431 sum += qlp_coeff[2] * data[i-3];
432 sum += qlp_coeff[1] * data[i-2];
433 sum += qlp_coeff[0] * data[i-1];
434 residual[i] = data[i] - (sum >> lp_quantization);
435 }
436 }
437 else { /* order == 5 */
438 for(i = 0; i < (int)data_len; i++) {
439 sum = 0;
440 sum += qlp_coeff[4] * data[i-5];
441 sum += qlp_coeff[3] * data[i-4];
442 sum += qlp_coeff[2] * data[i-3];
443 sum += qlp_coeff[1] * data[i-2];
444 sum += qlp_coeff[0] * data[i-1];
445 residual[i] = data[i] - (sum >> lp_quantization);
446 }
447 }
448 }
449 }
450 else {
451 if(order > 2) {
452 if(order == 4) {
453 for(i = 0; i < (int)data_len; i++) {
454 sum = 0;
455 sum += qlp_coeff[3] * data[i-4];
456 sum += qlp_coeff[2] * data[i-3];
457 sum += qlp_coeff[1] * data[i-2];
458 sum += qlp_coeff[0] * data[i-1];
459 residual[i] = data[i] - (sum >> lp_quantization);
460 }
461 }
462 else { /* order == 3 */
463 for(i = 0; i < (int)data_len; i++) {
464 sum = 0;
465 sum += qlp_coeff[2] * data[i-3];
466 sum += qlp_coeff[1] * data[i-2];
467 sum += qlp_coeff[0] * data[i-1];
468 residual[i] = data[i] - (sum >> lp_quantization);
469 }
470 }
471 }
472 else {
473 if(order == 2) {
474 for(i = 0; i < (int)data_len; i++) {
475 sum = 0;
476 sum += qlp_coeff[1] * data[i-2];
477 sum += qlp_coeff[0] * data[i-1];
478 residual[i] = data[i] - (sum >> lp_quantization);
479 }
480 }
481 else { /* order == 1 */
482 for(i = 0; i < (int)data_len; i++)
483 residual[i] = data[i] - ((qlp_coeff[0] * data[i-1]) >> lp_quantization);
484 }
485 }
486 }
487 }
488 else { /* order > 12 */
489 for(i = 0; i < (int)data_len; i++) {
490 sum = 0;
491 switch(order) {
492 case 32: sum += qlp_coeff[31] * data[i-32];
493 case 31: sum += qlp_coeff[30] * data[i-31];
494 case 30: sum += qlp_coeff[29] * data[i-30];
495 case 29: sum += qlp_coeff[28] * data[i-29];
496 case 28: sum += qlp_coeff[27] * data[i-28];
497 case 27: sum += qlp_coeff[26] * data[i-27];
498 case 26: sum += qlp_coeff[25] * data[i-26];
499 case 25: sum += qlp_coeff[24] * data[i-25];
500 case 24: sum += qlp_coeff[23] * data[i-24];
501 case 23: sum += qlp_coeff[22] * data[i-23];
502 case 22: sum += qlp_coeff[21] * data[i-22];
503 case 21: sum += qlp_coeff[20] * data[i-21];
504 case 20: sum += qlp_coeff[19] * data[i-20];
505 case 19: sum += qlp_coeff[18] * data[i-19];
506 case 18: sum += qlp_coeff[17] * data[i-18];
507 case 17: sum += qlp_coeff[16] * data[i-17];
508 case 16: sum += qlp_coeff[15] * data[i-16];
509 case 15: sum += qlp_coeff[14] * data[i-15];
510 case 14: sum += qlp_coeff[13] * data[i-14];
511 case 13: sum += qlp_coeff[12] * data[i-13];
512 sum += qlp_coeff[11] * data[i-12];
513 sum += qlp_coeff[10] * data[i-11];
514 sum += qlp_coeff[ 9] * data[i-10];
515 sum += qlp_coeff[ 8] * data[i- 9];
516 sum += qlp_coeff[ 7] * data[i- 8];
517 sum += qlp_coeff[ 6] * data[i- 7];
518 sum += qlp_coeff[ 5] * data[i- 6];
519 sum += qlp_coeff[ 4] * data[i- 5];
520 sum += qlp_coeff[ 3] * data[i- 4];
521 sum += qlp_coeff[ 2] * data[i- 3];
522 sum += qlp_coeff[ 1] * data[i- 2];
523 sum += qlp_coeff[ 0] * data[i- 1];
524 }
525 residual[i] = data[i] - (sum >> lp_quantization);
526 }
527 }
528 }
529 #endif
530
FLAC__lpc_compute_residual_from_qlp_coefficients_wide(const FLAC__int32 * data,unsigned data_len,const FLAC__int32 qlp_coeff[],unsigned order,int lp_quantization,FLAC__int32 residual[])531 void FLAC__lpc_compute_residual_from_qlp_coefficients_wide(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[])
532 #if defined(FLAC__OVERFLOW_DETECT) || !defined(FLAC__LPC_UNROLLED_FILTER_LOOPS)
533 {
534 unsigned i, j;
535 FLAC__int64 sum;
536 const FLAC__int32 *history;
537
538 #ifdef FLAC__OVERFLOW_DETECT_VERBOSE
539 fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization);
540 for(i=0;i<order;i++)
541 fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]);
542 fprintf(stderr,"\n");
543 #endif
544 FLAC__ASSERT(order > 0);
545
546 for(i = 0; i < data_len; i++) {
547 sum = 0;
548 history = data;
549 for(j = 0; j < order; j++)
550 sum += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*(--history));
551 if(FLAC__bitmath_silog2_wide(sum >> lp_quantization) > 32) {
552 #if defined _MSC_VER
553 fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: OVERFLOW, i=%u, sum=%I64d\n", i, sum >> lp_quantization);
554 #else
555 fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: OVERFLOW, i=%u, sum=%lld\n", i, (long long)(sum >> lp_quantization));
556 #endif
557 break;
558 }
559 if(FLAC__bitmath_silog2_wide((FLAC__int64)(*data) - (sum >> lp_quantization)) > 32) {
560 #if defined _MSC_VER
561 fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: OVERFLOW, i=%u, data=%d, sum=%I64d, residual=%I64d\n", i, *data, sum >> lp_quantization, (FLAC__int64)(*data) - (sum >> lp_quantization));
562 #else
563 fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: OVERFLOW, i=%u, data=%d, sum=%lld, residual=%lld\n", i, *data, (long long)(sum >> lp_quantization), (long long)((FLAC__int64)(*data) - (sum >> lp_quantization)));
564 #endif
565 break;
566 }
567 *(residual++) = *(data++) - (FLAC__int32)(sum >> lp_quantization);
568 }
569 }
570 #else /* fully unrolled version for normal use */
571 {
572 int i;
573 FLAC__int64 sum;
574
575 FLAC__ASSERT(order > 0);
576 FLAC__ASSERT(order <= 32);
577
578 /*
579 * We do unique versions up to 12th order since that's the subset limit.
580 * Also they are roughly ordered to match frequency of occurrence to
581 * minimize branching.
582 */
583 if(order <= 12) {
584 if(order > 8) {
585 if(order > 10) {
586 if(order == 12) {
587 for(i = 0; i < (int)data_len; i++) {
588 sum = 0;
589 sum += qlp_coeff[11] * (FLAC__int64)data[i-12];
590 sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
591 sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
592 sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
593 sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
594 sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
595 sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
596 sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
597 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
598 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
599 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
600 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
601 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
602 }
603 }
604 else { /* order == 11 */
605 for(i = 0; i < (int)data_len; i++) {
606 sum = 0;
607 sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
608 sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
609 sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
610 sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
611 sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
612 sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
613 sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
614 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
615 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
616 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
617 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
618 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
619 }
620 }
621 }
622 else {
623 if(order == 10) {
624 for(i = 0; i < (int)data_len; i++) {
625 sum = 0;
626 sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
627 sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
628 sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
629 sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
630 sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
631 sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
632 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
633 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
634 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
635 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
636 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
637 }
638 }
639 else { /* order == 9 */
640 for(i = 0; i < (int)data_len; i++) {
641 sum = 0;
642 sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
643 sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
644 sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
645 sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
646 sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
647 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
648 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
649 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
650 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
651 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
652 }
653 }
654 }
655 }
656 else if(order > 4) {
657 if(order > 6) {
658 if(order == 8) {
659 for(i = 0; i < (int)data_len; i++) {
660 sum = 0;
661 sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
662 sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
663 sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
664 sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
665 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
666 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
667 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
668 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
669 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
670 }
671 }
672 else { /* order == 7 */
673 for(i = 0; i < (int)data_len; i++) {
674 sum = 0;
675 sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
676 sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
677 sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
678 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
679 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
680 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
681 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
682 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
683 }
684 }
685 }
686 else {
687 if(order == 6) {
688 for(i = 0; i < (int)data_len; i++) {
689 sum = 0;
690 sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
691 sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
692 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
693 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
694 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
695 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
696 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
697 }
698 }
699 else { /* order == 5 */
700 for(i = 0; i < (int)data_len; i++) {
701 sum = 0;
702 sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
703 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
704 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
705 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
706 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
707 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
708 }
709 }
710 }
711 }
712 else {
713 if(order > 2) {
714 if(order == 4) {
715 for(i = 0; i < (int)data_len; i++) {
716 sum = 0;
717 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
718 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
719 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
720 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
721 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
722 }
723 }
724 else { /* order == 3 */
725 for(i = 0; i < (int)data_len; i++) {
726 sum = 0;
727 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
728 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
729 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
730 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
731 }
732 }
733 }
734 else {
735 if(order == 2) {
736 for(i = 0; i < (int)data_len; i++) {
737 sum = 0;
738 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
739 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
740 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
741 }
742 }
743 else { /* order == 1 */
744 for(i = 0; i < (int)data_len; i++)
745 residual[i] = data[i] - (FLAC__int32)((qlp_coeff[0] * (FLAC__int64)data[i-1]) >> lp_quantization);
746 }
747 }
748 }
749 }
750 else { /* order > 12 */
751 for(i = 0; i < (int)data_len; i++) {
752 sum = 0;
753 switch(order) {
754 case 32: sum += qlp_coeff[31] * (FLAC__int64)data[i-32];
755 case 31: sum += qlp_coeff[30] * (FLAC__int64)data[i-31];
756 case 30: sum += qlp_coeff[29] * (FLAC__int64)data[i-30];
757 case 29: sum += qlp_coeff[28] * (FLAC__int64)data[i-29];
758 case 28: sum += qlp_coeff[27] * (FLAC__int64)data[i-28];
759 case 27: sum += qlp_coeff[26] * (FLAC__int64)data[i-27];
760 case 26: sum += qlp_coeff[25] * (FLAC__int64)data[i-26];
761 case 25: sum += qlp_coeff[24] * (FLAC__int64)data[i-25];
762 case 24: sum += qlp_coeff[23] * (FLAC__int64)data[i-24];
763 case 23: sum += qlp_coeff[22] * (FLAC__int64)data[i-23];
764 case 22: sum += qlp_coeff[21] * (FLAC__int64)data[i-22];
765 case 21: sum += qlp_coeff[20] * (FLAC__int64)data[i-21];
766 case 20: sum += qlp_coeff[19] * (FLAC__int64)data[i-20];
767 case 19: sum += qlp_coeff[18] * (FLAC__int64)data[i-19];
768 case 18: sum += qlp_coeff[17] * (FLAC__int64)data[i-18];
769 case 17: sum += qlp_coeff[16] * (FLAC__int64)data[i-17];
770 case 16: sum += qlp_coeff[15] * (FLAC__int64)data[i-16];
771 case 15: sum += qlp_coeff[14] * (FLAC__int64)data[i-15];
772 case 14: sum += qlp_coeff[13] * (FLAC__int64)data[i-14];
773 case 13: sum += qlp_coeff[12] * (FLAC__int64)data[i-13];
774 sum += qlp_coeff[11] * (FLAC__int64)data[i-12];
775 sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
776 sum += qlp_coeff[ 9] * (FLAC__int64)data[i-10];
777 sum += qlp_coeff[ 8] * (FLAC__int64)data[i- 9];
778 sum += qlp_coeff[ 7] * (FLAC__int64)data[i- 8];
779 sum += qlp_coeff[ 6] * (FLAC__int64)data[i- 7];
780 sum += qlp_coeff[ 5] * (FLAC__int64)data[i- 6];
781 sum += qlp_coeff[ 4] * (FLAC__int64)data[i- 5];
782 sum += qlp_coeff[ 3] * (FLAC__int64)data[i- 4];
783 sum += qlp_coeff[ 2] * (FLAC__int64)data[i- 3];
784 sum += qlp_coeff[ 1] * (FLAC__int64)data[i- 2];
785 sum += qlp_coeff[ 0] * (FLAC__int64)data[i- 1];
786 }
787 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
788 }
789 }
790 }
791 #endif
792
793 #endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */
794
FLAC__lpc_restore_signal(const FLAC__int32 residual[],unsigned data_len,const FLAC__int32 qlp_coeff[],unsigned order,int lp_quantization,FLAC__int32 data[])795 void FLAC__lpc_restore_signal(const FLAC__int32 residual[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 data[])
796 #if defined(FLAC__OVERFLOW_DETECT) || !defined(FLAC__LPC_UNROLLED_FILTER_LOOPS)
797 {
798 FLAC__int64 sumo;
799 unsigned i, j;
800 FLAC__int32 sum;
801 const FLAC__int32 *r = residual, *history;
802
803 #ifdef FLAC__OVERFLOW_DETECT_VERBOSE
804 fprintf(stderr,"FLAC__lpc_restore_signal: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization);
805 for(i=0;i<order;i++)
806 fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]);
807 fprintf(stderr,"\n");
808 #endif
809 FLAC__ASSERT(order > 0);
810
811 for(i = 0; i < data_len; i++) {
812 sumo = 0;
813 sum = 0;
814 history = data;
815 for(j = 0; j < order; j++) {
816 sum += qlp_coeff[j] * (*(--history));
817 sumo += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*history);
818 #ifdef FLAC__OVERFLOW_DETECT_VERBOSE
819 #if defined _MSC_VER
820 if(sumo > 2147483647I64 || sumo < -2147483648I64)
821 fprintf(stderr,"FLAC__lpc_restore_signal: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%I64d\n",i,j,qlp_coeff[j],*history,sumo);
822 #else
823 if(sumo > 2147483647ll || sumo < -2147483648ll)
824 fprintf(stderr,"FLAC__lpc_restore_signal: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%lld\n",i,j,qlp_coeff[j],*history,(long long)sumo);
825 #endif
826 #endif
827 }
828 *(data++) = *(r++) + (sum >> lp_quantization);
829 }
830
831 /* Here's a slower but clearer version:
832 for(i = 0; i < data_len; i++) {
833 sum = 0;
834 for(j = 0; j < order; j++)
835 sum += qlp_coeff[j] * data[i-j-1];
836 data[i] = residual[i] + (sum >> lp_quantization);
837 }
838 */
839 }
840 #else /* fully unrolled version for normal use */
841 {
842 int i;
843 FLAC__int32 sum;
844
845 FLAC__ASSERT(order > 0);
846 FLAC__ASSERT(order <= 32);
847
848 /*
849 * We do unique versions up to 12th order since that's the subset limit.
850 * Also they are roughly ordered to match frequency of occurrence to
851 * minimize branching.
852 */
853 if(order <= 12) {
854 if(order > 8) {
855 if(order > 10) {
856 if(order == 12) {
857 for(i = 0; i < (int)data_len; i++) {
858 sum = 0;
859 sum += qlp_coeff[11] * data[i-12];
860 sum += qlp_coeff[10] * data[i-11];
861 sum += qlp_coeff[9] * data[i-10];
862 sum += qlp_coeff[8] * data[i-9];
863 sum += qlp_coeff[7] * data[i-8];
864 sum += qlp_coeff[6] * data[i-7];
865 sum += qlp_coeff[5] * data[i-6];
866 sum += qlp_coeff[4] * data[i-5];
867 sum += qlp_coeff[3] * data[i-4];
868 sum += qlp_coeff[2] * data[i-3];
869 sum += qlp_coeff[1] * data[i-2];
870 sum += qlp_coeff[0] * data[i-1];
871 data[i] = residual[i] + (sum >> lp_quantization);
872 }
873 }
874 else { /* order == 11 */
875 for(i = 0; i < (int)data_len; i++) {
876 sum = 0;
877 sum += qlp_coeff[10] * data[i-11];
878 sum += qlp_coeff[9] * data[i-10];
879 sum += qlp_coeff[8] * data[i-9];
880 sum += qlp_coeff[7] * data[i-8];
881 sum += qlp_coeff[6] * data[i-7];
882 sum += qlp_coeff[5] * data[i-6];
883 sum += qlp_coeff[4] * data[i-5];
884 sum += qlp_coeff[3] * data[i-4];
885 sum += qlp_coeff[2] * data[i-3];
886 sum += qlp_coeff[1] * data[i-2];
887 sum += qlp_coeff[0] * data[i-1];
888 data[i] = residual[i] + (sum >> lp_quantization);
889 }
890 }
891 }
892 else {
893 if(order == 10) {
894 for(i = 0; i < (int)data_len; i++) {
895 sum = 0;
896 sum += qlp_coeff[9] * data[i-10];
897 sum += qlp_coeff[8] * data[i-9];
898 sum += qlp_coeff[7] * data[i-8];
899 sum += qlp_coeff[6] * data[i-7];
900 sum += qlp_coeff[5] * data[i-6];
901 sum += qlp_coeff[4] * data[i-5];
902 sum += qlp_coeff[3] * data[i-4];
903 sum += qlp_coeff[2] * data[i-3];
904 sum += qlp_coeff[1] * data[i-2];
905 sum += qlp_coeff[0] * data[i-1];
906 data[i] = residual[i] + (sum >> lp_quantization);
907 }
908 }
909 else { /* order == 9 */
910 for(i = 0; i < (int)data_len; i++) {
911 sum = 0;
912 sum += qlp_coeff[8] * data[i-9];
913 sum += qlp_coeff[7] * data[i-8];
914 sum += qlp_coeff[6] * data[i-7];
915 sum += qlp_coeff[5] * data[i-6];
916 sum += qlp_coeff[4] * data[i-5];
917 sum += qlp_coeff[3] * data[i-4];
918 sum += qlp_coeff[2] * data[i-3];
919 sum += qlp_coeff[1] * data[i-2];
920 sum += qlp_coeff[0] * data[i-1];
921 data[i] = residual[i] + (sum >> lp_quantization);
922 }
923 }
924 }
925 }
926 else if(order > 4) {
927 if(order > 6) {
928 if(order == 8) {
929 for(i = 0; i < (int)data_len; i++) {
930 sum = 0;
931 sum += qlp_coeff[7] * data[i-8];
932 sum += qlp_coeff[6] * data[i-7];
933 sum += qlp_coeff[5] * data[i-6];
934 sum += qlp_coeff[4] * data[i-5];
935 sum += qlp_coeff[3] * data[i-4];
936 sum += qlp_coeff[2] * data[i-3];
937 sum += qlp_coeff[1] * data[i-2];
938 sum += qlp_coeff[0] * data[i-1];
939 data[i] = residual[i] + (sum >> lp_quantization);
940 }
941 }
942 else { /* order == 7 */
943 for(i = 0; i < (int)data_len; i++) {
944 sum = 0;
945 sum += qlp_coeff[6] * data[i-7];
946 sum += qlp_coeff[5] * data[i-6];
947 sum += qlp_coeff[4] * data[i-5];
948 sum += qlp_coeff[3] * data[i-4];
949 sum += qlp_coeff[2] * data[i-3];
950 sum += qlp_coeff[1] * data[i-2];
951 sum += qlp_coeff[0] * data[i-1];
952 data[i] = residual[i] + (sum >> lp_quantization);
953 }
954 }
955 }
956 else {
957 if(order == 6) {
958 for(i = 0; i < (int)data_len; i++) {
959 sum = 0;
960 sum += qlp_coeff[5] * data[i-6];
961 sum += qlp_coeff[4] * data[i-5];
962 sum += qlp_coeff[3] * data[i-4];
963 sum += qlp_coeff[2] * data[i-3];
964 sum += qlp_coeff[1] * data[i-2];
965 sum += qlp_coeff[0] * data[i-1];
966 data[i] = residual[i] + (sum >> lp_quantization);
967 }
968 }
969 else { /* order == 5 */
970 for(i = 0; i < (int)data_len; i++) {
971 sum = 0;
972 sum += qlp_coeff[4] * data[i-5];
973 sum += qlp_coeff[3] * data[i-4];
974 sum += qlp_coeff[2] * data[i-3];
975 sum += qlp_coeff[1] * data[i-2];
976 sum += qlp_coeff[0] * data[i-1];
977 data[i] = residual[i] + (sum >> lp_quantization);
978 }
979 }
980 }
981 }
982 else {
983 if(order > 2) {
984 if(order == 4) {
985 for(i = 0; i < (int)data_len; i++) {
986 sum = 0;
987 sum += qlp_coeff[3] * data[i-4];
988 sum += qlp_coeff[2] * data[i-3];
989 sum += qlp_coeff[1] * data[i-2];
990 sum += qlp_coeff[0] * data[i-1];
991 data[i] = residual[i] + (sum >> lp_quantization);
992 }
993 }
994 else { /* order == 3 */
995 for(i = 0; i < (int)data_len; i++) {
996 sum = 0;
997 sum += qlp_coeff[2] * data[i-3];
998 sum += qlp_coeff[1] * data[i-2];
999 sum += qlp_coeff[0] * data[i-1];
1000 data[i] = residual[i] + (sum >> lp_quantization);
1001 }
1002 }
1003 }
1004 else {
1005 if(order == 2) {
1006 for(i = 0; i < (int)data_len; i++) {
1007 sum = 0;
1008 sum += qlp_coeff[1] * data[i-2];
1009 sum += qlp_coeff[0] * data[i-1];
1010 data[i] = residual[i] + (sum >> lp_quantization);
1011 }
1012 }
1013 else { /* order == 1 */
1014 for(i = 0; i < (int)data_len; i++)
1015 data[i] = residual[i] + ((qlp_coeff[0] * data[i-1]) >> lp_quantization);
1016 }
1017 }
1018 }
1019 }
1020 else { /* order > 12 */
1021 for(i = 0; i < (int)data_len; i++) {
1022 sum = 0;
1023 switch(order) {
1024 case 32: sum += qlp_coeff[31] * data[i-32];
1025 case 31: sum += qlp_coeff[30] * data[i-31];
1026 case 30: sum += qlp_coeff[29] * data[i-30];
1027 case 29: sum += qlp_coeff[28] * data[i-29];
1028 case 28: sum += qlp_coeff[27] * data[i-28];
1029 case 27: sum += qlp_coeff[26] * data[i-27];
1030 case 26: sum += qlp_coeff[25] * data[i-26];
1031 case 25: sum += qlp_coeff[24] * data[i-25];
1032 case 24: sum += qlp_coeff[23] * data[i-24];
1033 case 23: sum += qlp_coeff[22] * data[i-23];
1034 case 22: sum += qlp_coeff[21] * data[i-22];
1035 case 21: sum += qlp_coeff[20] * data[i-21];
1036 case 20: sum += qlp_coeff[19] * data[i-20];
1037 case 19: sum += qlp_coeff[18] * data[i-19];
1038 case 18: sum += qlp_coeff[17] * data[i-18];
1039 case 17: sum += qlp_coeff[16] * data[i-17];
1040 case 16: sum += qlp_coeff[15] * data[i-16];
1041 case 15: sum += qlp_coeff[14] * data[i-15];
1042 case 14: sum += qlp_coeff[13] * data[i-14];
1043 case 13: sum += qlp_coeff[12] * data[i-13];
1044 sum += qlp_coeff[11] * data[i-12];
1045 sum += qlp_coeff[10] * data[i-11];
1046 sum += qlp_coeff[ 9] * data[i-10];
1047 sum += qlp_coeff[ 8] * data[i- 9];
1048 sum += qlp_coeff[ 7] * data[i- 8];
1049 sum += qlp_coeff[ 6] * data[i- 7];
1050 sum += qlp_coeff[ 5] * data[i- 6];
1051 sum += qlp_coeff[ 4] * data[i- 5];
1052 sum += qlp_coeff[ 3] * data[i- 4];
1053 sum += qlp_coeff[ 2] * data[i- 3];
1054 sum += qlp_coeff[ 1] * data[i- 2];
1055 sum += qlp_coeff[ 0] * data[i- 1];
1056 }
1057 data[i] = residual[i] + (sum >> lp_quantization);
1058 }
1059 }
1060 }
1061 #endif
1062
FLAC__lpc_restore_signal_wide(const FLAC__int32 residual[],unsigned data_len,const FLAC__int32 qlp_coeff[],unsigned order,int lp_quantization,FLAC__int32 data[])1063 void FLAC__lpc_restore_signal_wide(const FLAC__int32 residual[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 data[])
1064 #if defined(FLAC__OVERFLOW_DETECT) || !defined(FLAC__LPC_UNROLLED_FILTER_LOOPS)
1065 {
1066 unsigned i, j;
1067 FLAC__int64 sum;
1068 const FLAC__int32 *r = residual, *history;
1069
1070 #ifdef FLAC__OVERFLOW_DETECT_VERBOSE
1071 fprintf(stderr,"FLAC__lpc_restore_signal_wide: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization);
1072 for(i=0;i<order;i++)
1073 fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]);
1074 fprintf(stderr,"\n");
1075 #endif
1076 FLAC__ASSERT(order > 0);
1077
1078 for(i = 0; i < data_len; i++) {
1079 sum = 0;
1080 history = data;
1081 for(j = 0; j < order; j++)
1082 sum += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*(--history));
1083 if(FLAC__bitmath_silog2_wide(sum >> lp_quantization) > 32) {
1084 #ifdef FLAC__OVERFLOW_DETECT_VERBOSE
1085 #ifdef _MSC_VER
1086 fprintf(stderr,"FLAC__lpc_restore_signal_wide: OVERFLOW, i=%u, sum=%I64d\n", i, sum >> lp_quantization);
1087 #else
1088 fprintf(stderr,"FLAC__lpc_restore_signal_wide: OVERFLOW, i=%u, sum=%lld\n", i, (long long)(sum >> lp_quantization));
1089 #endif
1090 #endif
1091 break;
1092 }
1093 if(FLAC__bitmath_silog2_wide((FLAC__int64)(*r) + (sum >> lp_quantization)) > 32) {
1094 #ifdef FLAC__OVERFLOW_DETECT_VERBOSE
1095 #ifdef _MSC_VER
1096 fprintf(stderr,"FLAC__lpc_restore_signal_wide: OVERFLOW, i=%u, residual=%d, sum=%I64d, data=%I64d\n", i, *r, sum >> lp_quantization, (FLAC__int64)(*r) + (sum >> lp_quantization));
1097 #else
1098 fprintf(stderr,"FLAC__lpc_restore_signal_wide: OVERFLOW, i=%u, residual=%d, sum=%lld, data=%lld\n", i, *r, (long long)(sum >> lp_quantization), (long long)((FLAC__int64)(*r) + (sum >> lp_quantization)));
1099 #endif
1100 #endif
1101 break;
1102 }
1103 *(data++) = *(r++) + (FLAC__int32)(sum >> lp_quantization);
1104 }
1105 }
1106 #else /* fully unrolled version for normal use */
1107 {
1108 int i;
1109 FLAC__int64 sum;
1110
1111 FLAC__ASSERT(order > 0);
1112 FLAC__ASSERT(order <= 32);
1113
1114 /*
1115 * We do unique versions up to 12th order since that's the subset limit.
1116 * Also they are roughly ordered to match frequency of occurrence to
1117 * minimize branching.
1118 */
1119 if(order <= 12) {
1120 if(order > 8) {
1121 if(order > 10) {
1122 if(order == 12) {
1123 for(i = 0; i < (int)data_len; i++) {
1124 sum = 0;
1125 sum += qlp_coeff[11] * (FLAC__int64)data[i-12];
1126 sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
1127 sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
1128 sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
1129 sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
1130 sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
1131 sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
1132 sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
1133 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
1134 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
1135 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
1136 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
1137 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1138 }
1139 }
1140 else { /* order == 11 */
1141 for(i = 0; i < (int)data_len; i++) {
1142 sum = 0;
1143 sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
1144 sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
1145 sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
1146 sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
1147 sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
1148 sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
1149 sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
1150 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
1151 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
1152 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
1153 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
1154 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1155 }
1156 }
1157 }
1158 else {
1159 if(order == 10) {
1160 for(i = 0; i < (int)data_len; i++) {
1161 sum = 0;
1162 sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
1163 sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
1164 sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
1165 sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
1166 sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
1167 sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
1168 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
1169 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
1170 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
1171 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
1172 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1173 }
1174 }
1175 else { /* order == 9 */
1176 for(i = 0; i < (int)data_len; i++) {
1177 sum = 0;
1178 sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
1179 sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
1180 sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
1181 sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
1182 sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
1183 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
1184 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
1185 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
1186 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
1187 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1188 }
1189 }
1190 }
1191 }
1192 else if(order > 4) {
1193 if(order > 6) {
1194 if(order == 8) {
1195 for(i = 0; i < (int)data_len; i++) {
1196 sum = 0;
1197 sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
1198 sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
1199 sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
1200 sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
1201 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
1202 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
1203 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
1204 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
1205 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1206 }
1207 }
1208 else { /* order == 7 */
1209 for(i = 0; i < (int)data_len; i++) {
1210 sum = 0;
1211 sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
1212 sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
1213 sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
1214 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
1215 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
1216 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
1217 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
1218 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1219 }
1220 }
1221 }
1222 else {
1223 if(order == 6) {
1224 for(i = 0; i < (int)data_len; i++) {
1225 sum = 0;
1226 sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
1227 sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
1228 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
1229 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
1230 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
1231 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
1232 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1233 }
1234 }
1235 else { /* order == 5 */
1236 for(i = 0; i < (int)data_len; i++) {
1237 sum = 0;
1238 sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
1239 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
1240 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
1241 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
1242 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
1243 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1244 }
1245 }
1246 }
1247 }
1248 else {
1249 if(order > 2) {
1250 if(order == 4) {
1251 for(i = 0; i < (int)data_len; i++) {
1252 sum = 0;
1253 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
1254 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
1255 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
1256 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
1257 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1258 }
1259 }
1260 else { /* order == 3 */
1261 for(i = 0; i < (int)data_len; i++) {
1262 sum = 0;
1263 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
1264 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
1265 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
1266 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1267 }
1268 }
1269 }
1270 else {
1271 if(order == 2) {
1272 for(i = 0; i < (int)data_len; i++) {
1273 sum = 0;
1274 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
1275 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
1276 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1277 }
1278 }
1279 else { /* order == 1 */
1280 for(i = 0; i < (int)data_len; i++)
1281 data[i] = residual[i] + (FLAC__int32)((qlp_coeff[0] * (FLAC__int64)data[i-1]) >> lp_quantization);
1282 }
1283 }
1284 }
1285 }
1286 else { /* order > 12 */
1287 for(i = 0; i < (int)data_len; i++) {
1288 sum = 0;
1289 switch(order) {
1290 case 32: sum += qlp_coeff[31] * (FLAC__int64)data[i-32];
1291 case 31: sum += qlp_coeff[30] * (FLAC__int64)data[i-31];
1292 case 30: sum += qlp_coeff[29] * (FLAC__int64)data[i-30];
1293 case 29: sum += qlp_coeff[28] * (FLAC__int64)data[i-29];
1294 case 28: sum += qlp_coeff[27] * (FLAC__int64)data[i-28];
1295 case 27: sum += qlp_coeff[26] * (FLAC__int64)data[i-27];
1296 case 26: sum += qlp_coeff[25] * (FLAC__int64)data[i-26];
1297 case 25: sum += qlp_coeff[24] * (FLAC__int64)data[i-25];
1298 case 24: sum += qlp_coeff[23] * (FLAC__int64)data[i-24];
1299 case 23: sum += qlp_coeff[22] * (FLAC__int64)data[i-23];
1300 case 22: sum += qlp_coeff[21] * (FLAC__int64)data[i-22];
1301 case 21: sum += qlp_coeff[20] * (FLAC__int64)data[i-21];
1302 case 20: sum += qlp_coeff[19] * (FLAC__int64)data[i-20];
1303 case 19: sum += qlp_coeff[18] * (FLAC__int64)data[i-19];
1304 case 18: sum += qlp_coeff[17] * (FLAC__int64)data[i-18];
1305 case 17: sum += qlp_coeff[16] * (FLAC__int64)data[i-17];
1306 case 16: sum += qlp_coeff[15] * (FLAC__int64)data[i-16];
1307 case 15: sum += qlp_coeff[14] * (FLAC__int64)data[i-15];
1308 case 14: sum += qlp_coeff[13] * (FLAC__int64)data[i-14];
1309 case 13: sum += qlp_coeff[12] * (FLAC__int64)data[i-13];
1310 sum += qlp_coeff[11] * (FLAC__int64)data[i-12];
1311 sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
1312 sum += qlp_coeff[ 9] * (FLAC__int64)data[i-10];
1313 sum += qlp_coeff[ 8] * (FLAC__int64)data[i- 9];
1314 sum += qlp_coeff[ 7] * (FLAC__int64)data[i- 8];
1315 sum += qlp_coeff[ 6] * (FLAC__int64)data[i- 7];
1316 sum += qlp_coeff[ 5] * (FLAC__int64)data[i- 6];
1317 sum += qlp_coeff[ 4] * (FLAC__int64)data[i- 5];
1318 sum += qlp_coeff[ 3] * (FLAC__int64)data[i- 4];
1319 sum += qlp_coeff[ 2] * (FLAC__int64)data[i- 3];
1320 sum += qlp_coeff[ 1] * (FLAC__int64)data[i- 2];
1321 sum += qlp_coeff[ 0] * (FLAC__int64)data[i- 1];
1322 }
1323 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1324 }
1325 }
1326 }
1327 #endif
1328
1329 #ifndef FLAC__INTEGER_ONLY_LIBRARY
1330
FLAC__lpc_compute_expected_bits_per_residual_sample(FLAC__double lpc_error,unsigned total_samples)1331 FLAC__double FLAC__lpc_compute_expected_bits_per_residual_sample(FLAC__double lpc_error, unsigned total_samples)
1332 {
1333 FLAC__double error_scale;
1334
1335 FLAC__ASSERT(total_samples > 0);
1336
1337 error_scale = 0.5 * M_LN2 * M_LN2 / (FLAC__double)total_samples;
1338
1339 return FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(lpc_error, error_scale);
1340 }
1341
FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(FLAC__double lpc_error,FLAC__double error_scale)1342 FLAC__double FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(FLAC__double lpc_error, FLAC__double error_scale)
1343 {
1344 if(lpc_error > 0.0) {
1345 FLAC__double bps = (FLAC__double)0.5 * log(error_scale * lpc_error) / M_LN2;
1346 if(bps >= 0.0)
1347 return bps;
1348 else
1349 return 0.0;
1350 }
1351 else if(lpc_error < 0.0) { /* error should not be negative but can happen due to inadequate floating-point resolution */
1352 return 1e32;
1353 }
1354 else {
1355 return 0.0;
1356 }
1357 }
1358
FLAC__lpc_compute_best_order(const FLAC__double lpc_error[],unsigned max_order,unsigned total_samples,unsigned overhead_bits_per_order)1359 unsigned FLAC__lpc_compute_best_order(const FLAC__double lpc_error[], unsigned max_order, unsigned total_samples, unsigned overhead_bits_per_order)
1360 {
1361 unsigned order, index, best_index; /* 'index' the index into lpc_error; index==order-1 since lpc_error[0] is for order==1, lpc_error[1] is for order==2, etc */
1362 FLAC__double bits, best_bits, error_scale;
1363
1364 FLAC__ASSERT(max_order > 0);
1365 FLAC__ASSERT(total_samples > 0);
1366
1367 error_scale = 0.5 * M_LN2 * M_LN2 / (FLAC__double)total_samples;
1368
1369 best_index = 0;
1370 best_bits = (unsigned)(-1);
1371
1372 for(index = 0, order = 1; index < max_order; index++, order++) {
1373 bits = FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(lpc_error[index], error_scale) * (FLAC__double)(total_samples - order) + (FLAC__double)(order * overhead_bits_per_order);
1374 if(bits < best_bits) {
1375 best_index = index;
1376 best_bits = bits;
1377 }
1378 }
1379
1380 return best_index+1; /* +1 since index of lpc_error[] is order-1 */
1381 }
1382
1383 #endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */
1384