1 /*
2 **********************************************************************
3 * Copyright (c) 2002-2009, International Business Machines
4 * Corporation and others. All Rights Reserved.
5 **********************************************************************
6 */
7 //
8 // rbbitblb.cpp
9 //
10
11
12 #include "unicode/utypes.h"
13
14 #if !UCONFIG_NO_BREAK_ITERATION
15
16 #include "unicode/unistr.h"
17 #include "rbbitblb.h"
18 #include "rbbirb.h"
19 #include "rbbisetb.h"
20 #include "rbbidata.h"
21 #include "cstring.h"
22 #include "uassert.h"
23 #include "cmemory.h"
24
25 U_NAMESPACE_BEGIN
26
RBBITableBuilder(RBBIRuleBuilder * rb,RBBINode ** rootNode)27 RBBITableBuilder::RBBITableBuilder(RBBIRuleBuilder *rb, RBBINode **rootNode) :
28 fTree(*rootNode) {
29 fRB = rb;
30 fStatus = fRB->fStatus;
31 UErrorCode status = U_ZERO_ERROR;
32 fDStates = new UVector(status);
33 if (U_FAILURE(*fStatus)) {
34 return;
35 }
36 if (U_FAILURE(status)) {
37 *fStatus = status;
38 return;
39 }
40 if (fDStates == NULL) {
41 *fStatus = U_MEMORY_ALLOCATION_ERROR;;
42 }
43 }
44
45
46
~RBBITableBuilder()47 RBBITableBuilder::~RBBITableBuilder() {
48 int i;
49 for (i=0; i<fDStates->size(); i++) {
50 delete (RBBIStateDescriptor *)fDStates->elementAt(i);
51 }
52 delete fDStates;
53 }
54
55
56 //-----------------------------------------------------------------------------
57 //
58 // RBBITableBuilder::build - This is the main function for building the DFA state transtion
59 // table from the RBBI rules parse tree.
60 //
61 //-----------------------------------------------------------------------------
build()62 void RBBITableBuilder::build() {
63
64 if (U_FAILURE(*fStatus)) {
65 return;
66 }
67
68 // If there were no rules, just return. This situation can easily arise
69 // for the reverse rules.
70 if (fTree==NULL) {
71 return;
72 }
73
74 //
75 // Walk through the tree, replacing any references to $variables with a copy of the
76 // parse tree for the substition expression.
77 //
78 fTree = fTree->flattenVariables();
79 #ifdef RBBI_DEBUG
80 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "ftree")) {
81 RBBIDebugPuts("Parse tree after flattening variable references.");
82 fTree->printTree(TRUE);
83 }
84 #endif
85
86 //
87 // If the rules contained any references to {bof}
88 // add a {bof} <cat> <former root of tree> to the
89 // tree. Means that all matches must start out with the
90 // {bof} fake character.
91 //
92 if (fRB->fSetBuilder->sawBOF()) {
93 RBBINode *bofTop = new RBBINode(RBBINode::opCat);
94 RBBINode *bofLeaf = new RBBINode(RBBINode::leafChar);
95 // Delete and exit if memory allocation failed.
96 if (bofTop == NULL || bofLeaf == NULL) {
97 *fStatus = U_MEMORY_ALLOCATION_ERROR;
98 delete bofTop;
99 delete bofLeaf;
100 return;
101 }
102 bofTop->fLeftChild = bofLeaf;
103 bofTop->fRightChild = fTree;
104 bofLeaf->fParent = bofTop;
105 bofLeaf->fVal = 2; // Reserved value for {bof}.
106 fTree = bofTop;
107 }
108
109 //
110 // Add a unique right-end marker to the expression.
111 // Appears as a cat-node, left child being the original tree,
112 // right child being the end marker.
113 //
114 RBBINode *cn = new RBBINode(RBBINode::opCat);
115 // Exit if memory allocation failed.
116 if (cn == NULL) {
117 *fStatus = U_MEMORY_ALLOCATION_ERROR;
118 return;
119 }
120 cn->fLeftChild = fTree;
121 fTree->fParent = cn;
122 cn->fRightChild = new RBBINode(RBBINode::endMark);
123 // Delete and exit if memory allocation failed.
124 if (cn->fRightChild == NULL) {
125 *fStatus = U_MEMORY_ALLOCATION_ERROR;
126 delete cn;
127 return;
128 }
129 cn->fRightChild->fParent = cn;
130 fTree = cn;
131
132 //
133 // Replace all references to UnicodeSets with the tree for the equivalent
134 // expression.
135 //
136 fTree->flattenSets();
137 #ifdef RBBI_DEBUG
138 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "stree")) {
139 RBBIDebugPuts("Parse tree after flattening Unicode Set references.");
140 fTree->printTree(TRUE);
141 }
142 #endif
143
144
145 //
146 // calculate the functions nullable, firstpos, lastpos and followpos on
147 // nodes in the parse tree.
148 // See the alogrithm description in Aho.
149 // Understanding how this works by looking at the code alone will be
150 // nearly impossible.
151 //
152 calcNullable(fTree);
153 calcFirstPos(fTree);
154 calcLastPos(fTree);
155 calcFollowPos(fTree);
156 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "pos")) {
157 RBBIDebugPuts("\n");
158 printPosSets(fTree);
159 }
160
161 //
162 // For "chained" rules, modify the followPos sets
163 //
164 if (fRB->fChainRules) {
165 calcChainedFollowPos(fTree);
166 }
167
168 //
169 // BOF (start of input) test fixup.
170 //
171 if (fRB->fSetBuilder->sawBOF()) {
172 bofFixup();
173 }
174
175 //
176 // Build the DFA state transition tables.
177 //
178 buildStateTable();
179 flagAcceptingStates();
180 flagLookAheadStates();
181 flagTaggedStates();
182
183 //
184 // Update the global table of rule status {tag} values
185 // The rule builder has a global vector of status values that are common
186 // for all tables. Merge the ones from this table into the global set.
187 //
188 mergeRuleStatusVals();
189
190 if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "states")) {printStates();};
191 }
192
193
194
195 //-----------------------------------------------------------------------------
196 //
197 // calcNullable. Impossible to explain succinctly. See Aho, section 3.9
198 //
199 //-----------------------------------------------------------------------------
calcNullable(RBBINode * n)200 void RBBITableBuilder::calcNullable(RBBINode *n) {
201 if (n == NULL) {
202 return;
203 }
204 if (n->fType == RBBINode::setRef ||
205 n->fType == RBBINode::endMark ) {
206 // These are non-empty leaf node types.
207 n->fNullable = FALSE;
208 return;
209 }
210
211 if (n->fType == RBBINode::lookAhead || n->fType == RBBINode::tag) {
212 // Lookahead marker node. It's a leaf, so no recursion on children.
213 // It's nullable because it does not match any literal text from the input stream.
214 n->fNullable = TRUE;
215 return;
216 }
217
218
219 // The node is not a leaf.
220 // Calculate nullable on its children.
221 calcNullable(n->fLeftChild);
222 calcNullable(n->fRightChild);
223
224 // Apply functions from table 3.40 in Aho
225 if (n->fType == RBBINode::opOr) {
226 n->fNullable = n->fLeftChild->fNullable || n->fRightChild->fNullable;
227 }
228 else if (n->fType == RBBINode::opCat) {
229 n->fNullable = n->fLeftChild->fNullable && n->fRightChild->fNullable;
230 }
231 else if (n->fType == RBBINode::opStar || n->fType == RBBINode::opQuestion) {
232 n->fNullable = TRUE;
233 }
234 else {
235 n->fNullable = FALSE;
236 }
237 }
238
239
240
241
242 //-----------------------------------------------------------------------------
243 //
244 // calcFirstPos. Impossible to explain succinctly. See Aho, section 3.9
245 //
246 //-----------------------------------------------------------------------------
calcFirstPos(RBBINode * n)247 void RBBITableBuilder::calcFirstPos(RBBINode *n) {
248 if (n == NULL) {
249 return;
250 }
251 if (n->fType == RBBINode::leafChar ||
252 n->fType == RBBINode::endMark ||
253 n->fType == RBBINode::lookAhead ||
254 n->fType == RBBINode::tag) {
255 // These are non-empty leaf node types.
256 // Note: In order to maintain the sort invariant on the set,
257 // this function should only be called on a node whose set is
258 // empty to start with.
259 n->fFirstPosSet->addElement(n, *fStatus);
260 return;
261 }
262
263 // The node is not a leaf.
264 // Calculate firstPos on its children.
265 calcFirstPos(n->fLeftChild);
266 calcFirstPos(n->fRightChild);
267
268 // Apply functions from table 3.40 in Aho
269 if (n->fType == RBBINode::opOr) {
270 setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet);
271 setAdd(n->fFirstPosSet, n->fRightChild->fFirstPosSet);
272 }
273 else if (n->fType == RBBINode::opCat) {
274 setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet);
275 if (n->fLeftChild->fNullable) {
276 setAdd(n->fFirstPosSet, n->fRightChild->fFirstPosSet);
277 }
278 }
279 else if (n->fType == RBBINode::opStar ||
280 n->fType == RBBINode::opQuestion ||
281 n->fType == RBBINode::opPlus) {
282 setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet);
283 }
284 }
285
286
287
288 //-----------------------------------------------------------------------------
289 //
290 // calcLastPos. Impossible to explain succinctly. See Aho, section 3.9
291 //
292 //-----------------------------------------------------------------------------
calcLastPos(RBBINode * n)293 void RBBITableBuilder::calcLastPos(RBBINode *n) {
294 if (n == NULL) {
295 return;
296 }
297 if (n->fType == RBBINode::leafChar ||
298 n->fType == RBBINode::endMark ||
299 n->fType == RBBINode::lookAhead ||
300 n->fType == RBBINode::tag) {
301 // These are non-empty leaf node types.
302 // Note: In order to maintain the sort invariant on the set,
303 // this function should only be called on a node whose set is
304 // empty to start with.
305 n->fLastPosSet->addElement(n, *fStatus);
306 return;
307 }
308
309 // The node is not a leaf.
310 // Calculate lastPos on its children.
311 calcLastPos(n->fLeftChild);
312 calcLastPos(n->fRightChild);
313
314 // Apply functions from table 3.40 in Aho
315 if (n->fType == RBBINode::opOr) {
316 setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet);
317 setAdd(n->fLastPosSet, n->fRightChild->fLastPosSet);
318 }
319 else if (n->fType == RBBINode::opCat) {
320 setAdd(n->fLastPosSet, n->fRightChild->fLastPosSet);
321 if (n->fRightChild->fNullable) {
322 setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet);
323 }
324 }
325 else if (n->fType == RBBINode::opStar ||
326 n->fType == RBBINode::opQuestion ||
327 n->fType == RBBINode::opPlus) {
328 setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet);
329 }
330 }
331
332
333
334 //-----------------------------------------------------------------------------
335 //
336 // calcFollowPos. Impossible to explain succinctly. See Aho, section 3.9
337 //
338 //-----------------------------------------------------------------------------
calcFollowPos(RBBINode * n)339 void RBBITableBuilder::calcFollowPos(RBBINode *n) {
340 if (n == NULL ||
341 n->fType == RBBINode::leafChar ||
342 n->fType == RBBINode::endMark) {
343 return;
344 }
345
346 calcFollowPos(n->fLeftChild);
347 calcFollowPos(n->fRightChild);
348
349 // Aho rule #1
350 if (n->fType == RBBINode::opCat) {
351 RBBINode *i; // is 'i' in Aho's description
352 uint32_t ix;
353
354 UVector *LastPosOfLeftChild = n->fLeftChild->fLastPosSet;
355
356 for (ix=0; ix<(uint32_t)LastPosOfLeftChild->size(); ix++) {
357 i = (RBBINode *)LastPosOfLeftChild->elementAt(ix);
358 setAdd(i->fFollowPos, n->fRightChild->fFirstPosSet);
359 }
360 }
361
362 // Aho rule #2
363 if (n->fType == RBBINode::opStar ||
364 n->fType == RBBINode::opPlus) {
365 RBBINode *i; // again, n and i are the names from Aho's description.
366 uint32_t ix;
367
368 for (ix=0; ix<(uint32_t)n->fLastPosSet->size(); ix++) {
369 i = (RBBINode *)n->fLastPosSet->elementAt(ix);
370 setAdd(i->fFollowPos, n->fFirstPosSet);
371 }
372 }
373
374
375
376 }
377
378
379 //-----------------------------------------------------------------------------
380 //
381 // calcChainedFollowPos. Modify the previously calculated followPos sets
382 // to implement rule chaining. NOT described by Aho
383 //
384 //-----------------------------------------------------------------------------
calcChainedFollowPos(RBBINode * tree)385 void RBBITableBuilder::calcChainedFollowPos(RBBINode *tree) {
386
387 UVector endMarkerNodes(*fStatus);
388 UVector leafNodes(*fStatus);
389 int32_t i;
390
391 if (U_FAILURE(*fStatus)) {
392 return;
393 }
394
395 // get a list of all endmarker nodes.
396 tree->findNodes(&endMarkerNodes, RBBINode::endMark, *fStatus);
397
398 // get a list all leaf nodes
399 tree->findNodes(&leafNodes, RBBINode::leafChar, *fStatus);
400 if (U_FAILURE(*fStatus)) {
401 return;
402 }
403
404 // Get all nodes that can be the start a match, which is FirstPosition()
405 // of the portion of the tree corresponding to user-written rules.
406 // See the tree description in bofFixup().
407 RBBINode *userRuleRoot = tree;
408 if (fRB->fSetBuilder->sawBOF()) {
409 userRuleRoot = tree->fLeftChild->fRightChild;
410 }
411 U_ASSERT(userRuleRoot != NULL);
412 UVector *matchStartNodes = userRuleRoot->fFirstPosSet;
413
414
415 // Iteratate over all leaf nodes,
416 //
417 int32_t endNodeIx;
418 int32_t startNodeIx;
419
420 for (endNodeIx=0; endNodeIx<leafNodes.size(); endNodeIx++) {
421 RBBINode *tNode = (RBBINode *)leafNodes.elementAt(endNodeIx);
422 RBBINode *endNode = NULL;
423
424 // Identify leaf nodes that correspond to overall rule match positions.
425 // These include an endMarkerNode in their followPos sets.
426 for (i=0; i<endMarkerNodes.size(); i++) {
427 if (tNode->fFollowPos->contains(endMarkerNodes.elementAt(i))) {
428 endNode = tNode;
429 break;
430 }
431 }
432 if (endNode == NULL) {
433 // node wasn't an end node. Try again with the next.
434 continue;
435 }
436
437 // We've got a node that can end a match.
438
439 // Line Break Specific hack: If this node's val correspond to the $CM char class,
440 // don't chain from it.
441 // TODO: Add rule syntax for this behavior, get specifics out of here and
442 // into the rule file.
443 if (fRB->fLBCMNoChain) {
444 UChar32 c = this->fRB->fSetBuilder->getFirstChar(endNode->fVal);
445 if (c != -1) {
446 // c == -1 occurs with sets containing only the {eof} marker string.
447 ULineBreak cLBProp = (ULineBreak)u_getIntPropertyValue(c, UCHAR_LINE_BREAK);
448 if (cLBProp == U_LB_COMBINING_MARK) {
449 continue;
450 }
451 }
452 }
453
454
455 // Now iterate over the nodes that can start a match, looking for ones
456 // with the same char class as our ending node.
457 RBBINode *startNode;
458 for (startNodeIx = 0; startNodeIx<matchStartNodes->size(); startNodeIx++) {
459 startNode = (RBBINode *)matchStartNodes->elementAt(startNodeIx);
460 if (startNode->fType != RBBINode::leafChar) {
461 continue;
462 }
463
464 if (endNode->fVal == startNode->fVal) {
465 // The end val (character class) of one possible match is the
466 // same as the start of another.
467
468 // Add all nodes from the followPos of the start node to the
469 // followPos set of the end node, which will have the effect of
470 // letting matches transition from a match state at endNode
471 // to the second char of a match starting with startNode.
472 setAdd(endNode->fFollowPos, startNode->fFollowPos);
473 }
474 }
475 }
476 }
477
478
479 //-----------------------------------------------------------------------------
480 //
481 // bofFixup. Fixup for state tables that include {bof} beginning of input testing.
482 // Do an swizzle similar to chaining, modifying the followPos set of
483 // the bofNode to include the followPos nodes from other {bot} nodes
484 // scattered through the tree.
485 //
486 // This function has much in common with calcChainedFollowPos().
487 //
488 //-----------------------------------------------------------------------------
bofFixup()489 void RBBITableBuilder::bofFixup() {
490
491 if (U_FAILURE(*fStatus)) {
492 return;
493 }
494
495 // The parse tree looks like this ...
496 // fTree root ---> <cat>
497 // / \ .
498 // <cat> <#end node>
499 // / \ .
500 // <bofNode> rest
501 // of tree
502 //
503 // We will be adding things to the followPos set of the <bofNode>
504 //
505 RBBINode *bofNode = fTree->fLeftChild->fLeftChild;
506 U_ASSERT(bofNode->fType == RBBINode::leafChar);
507 U_ASSERT(bofNode->fVal == 2);
508
509 // Get all nodes that can be the start a match of the user-written rules
510 // (excluding the fake bofNode)
511 // We want the nodes that can start a match in the
512 // part labeled "rest of tree"
513 //
514 UVector *matchStartNodes = fTree->fLeftChild->fRightChild->fFirstPosSet;
515
516 RBBINode *startNode;
517 int startNodeIx;
518 for (startNodeIx = 0; startNodeIx<matchStartNodes->size(); startNodeIx++) {
519 startNode = (RBBINode *)matchStartNodes->elementAt(startNodeIx);
520 if (startNode->fType != RBBINode::leafChar) {
521 continue;
522 }
523
524 if (startNode->fVal == bofNode->fVal) {
525 // We found a leaf node corresponding to a {bof} that was
526 // explicitly written into a rule.
527 // Add everything from the followPos set of this node to the
528 // followPos set of the fake bofNode at the start of the tree.
529 //
530 setAdd(bofNode->fFollowPos, startNode->fFollowPos);
531 }
532 }
533 }
534
535 //-----------------------------------------------------------------------------
536 //
537 // buildStateTable() Determine the set of runtime DFA states and the
538 // transition tables for these states, by the algorithm
539 // of fig. 3.44 in Aho.
540 //
541 // Most of the comments are quotes of Aho's psuedo-code.
542 //
543 //-----------------------------------------------------------------------------
buildStateTable()544 void RBBITableBuilder::buildStateTable() {
545 if (U_FAILURE(*fStatus)) {
546 return;
547 }
548 RBBIStateDescriptor *failState;
549 // Set it to NULL to avoid uninitialized warning
550 RBBIStateDescriptor *initialState = NULL;
551 //
552 // Add a dummy state 0 - the stop state. Not from Aho.
553 int lastInputSymbol = fRB->fSetBuilder->getNumCharCategories() - 1;
554 failState = new RBBIStateDescriptor(lastInputSymbol, fStatus);
555 if (failState == NULL) {
556 *fStatus = U_MEMORY_ALLOCATION_ERROR;
557 goto ExitBuildSTdeleteall;
558 }
559 failState->fPositions = new UVector(*fStatus);
560 if (failState->fPositions == NULL) {
561 *fStatus = U_MEMORY_ALLOCATION_ERROR;
562 }
563 if (failState->fPositions == NULL || U_FAILURE(*fStatus)) {
564 goto ExitBuildSTdeleteall;
565 }
566 fDStates->addElement(failState, *fStatus);
567 if (U_FAILURE(*fStatus)) {
568 goto ExitBuildSTdeleteall;
569 }
570
571 // initially, the only unmarked state in Dstates is firstpos(root),
572 // where toot is the root of the syntax tree for (r)#;
573 initialState = new RBBIStateDescriptor(lastInputSymbol, fStatus);
574 if (initialState == NULL) {
575 *fStatus = U_MEMORY_ALLOCATION_ERROR;
576 }
577 if (U_FAILURE(*fStatus)) {
578 goto ExitBuildSTdeleteall;
579 }
580 initialState->fPositions = new UVector(*fStatus);
581 if (initialState->fPositions == NULL) {
582 *fStatus = U_MEMORY_ALLOCATION_ERROR;
583 }
584 if (U_FAILURE(*fStatus)) {
585 goto ExitBuildSTdeleteall;
586 }
587 setAdd(initialState->fPositions, fTree->fFirstPosSet);
588 fDStates->addElement(initialState, *fStatus);
589 if (U_FAILURE(*fStatus)) {
590 goto ExitBuildSTdeleteall;
591 }
592
593 // while there is an unmarked state T in Dstates do begin
594 for (;;) {
595 RBBIStateDescriptor *T = NULL;
596 int32_t tx;
597 for (tx=1; tx<fDStates->size(); tx++) {
598 RBBIStateDescriptor *temp;
599 temp = (RBBIStateDescriptor *)fDStates->elementAt(tx);
600 if (temp->fMarked == FALSE) {
601 T = temp;
602 break;
603 }
604 }
605 if (T == NULL) {
606 break;
607 }
608
609 // mark T;
610 T->fMarked = TRUE;
611
612 // for each input symbol a do begin
613 int32_t a;
614 for (a = 1; a<=lastInputSymbol; a++) {
615 // let U be the set of positions that are in followpos(p)
616 // for some position p in T
617 // such that the symbol at position p is a;
618 UVector *U = NULL;
619 RBBINode *p;
620 int32_t px;
621 for (px=0; px<T->fPositions->size(); px++) {
622 p = (RBBINode *)T->fPositions->elementAt(px);
623 if ((p->fType == RBBINode::leafChar) && (p->fVal == a)) {
624 if (U == NULL) {
625 U = new UVector(*fStatus);
626 if (U == NULL) {
627 *fStatus = U_MEMORY_ALLOCATION_ERROR;
628 goto ExitBuildSTdeleteall;
629 }
630 }
631 setAdd(U, p->fFollowPos);
632 }
633 }
634
635 // if U is not empty and not in DStates then
636 int32_t ux = 0;
637 UBool UinDstates = FALSE;
638 if (U != NULL) {
639 U_ASSERT(U->size() > 0);
640 int ix;
641 for (ix=0; ix<fDStates->size(); ix++) {
642 RBBIStateDescriptor *temp2;
643 temp2 = (RBBIStateDescriptor *)fDStates->elementAt(ix);
644 if (setEquals(U, temp2->fPositions)) {
645 delete U;
646 U = temp2->fPositions;
647 ux = ix;
648 UinDstates = TRUE;
649 break;
650 }
651 }
652
653 // Add U as an unmarked state to Dstates
654 if (!UinDstates)
655 {
656 RBBIStateDescriptor *newState = new RBBIStateDescriptor(lastInputSymbol, fStatus);
657 if (newState == NULL) {
658 *fStatus = U_MEMORY_ALLOCATION_ERROR;
659 }
660 if (U_FAILURE(*fStatus)) {
661 goto ExitBuildSTdeleteall;
662 }
663 newState->fPositions = U;
664 fDStates->addElement(newState, *fStatus);
665 if (U_FAILURE(*fStatus)) {
666 return;
667 }
668 ux = fDStates->size()-1;
669 }
670
671 // Dtran[T, a] := U;
672 T->fDtran->setElementAt(ux, a);
673 }
674 }
675 }
676 return;
677 // delete local pointers only if error occured.
678 ExitBuildSTdeleteall:
679 delete initialState;
680 delete failState;
681 }
682
683
684
685 //-----------------------------------------------------------------------------
686 //
687 // flagAcceptingStates Identify accepting states.
688 // First get a list of all of the end marker nodes.
689 // Then, for each state s,
690 // if s contains one of the end marker nodes in its list of tree positions then
691 // s is an accepting state.
692 //
693 //-----------------------------------------------------------------------------
flagAcceptingStates()694 void RBBITableBuilder::flagAcceptingStates() {
695 if (U_FAILURE(*fStatus)) {
696 return;
697 }
698 UVector endMarkerNodes(*fStatus);
699 RBBINode *endMarker;
700 int32_t i;
701 int32_t n;
702
703 if (U_FAILURE(*fStatus)) {
704 return;
705 }
706
707 fTree->findNodes(&endMarkerNodes, RBBINode::endMark, *fStatus);
708 if (U_FAILURE(*fStatus)) {
709 return;
710 }
711
712 for (i=0; i<endMarkerNodes.size(); i++) {
713 endMarker = (RBBINode *)endMarkerNodes.elementAt(i);
714 for (n=0; n<fDStates->size(); n++) {
715 RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n);
716 if (sd->fPositions->indexOf(endMarker) >= 0) {
717 // Any non-zero value for fAccepting means this is an accepting node.
718 // The value is what will be returned to the user as the break status.
719 // If no other value was specified, force it to -1.
720
721 if (sd->fAccepting==0) {
722 // State hasn't been marked as accepting yet. Do it now.
723 sd->fAccepting = endMarker->fVal;
724 if (sd->fAccepting == 0) {
725 sd->fAccepting = -1;
726 }
727 }
728 if (sd->fAccepting==-1 && endMarker->fVal != 0) {
729 // Both lookahead and non-lookahead accepting for this state.
730 // Favor the look-ahead. Expedient for line break.
731 // TODO: need a more elegant resolution for conflicting rules.
732 sd->fAccepting = endMarker->fVal;
733 }
734 // implicit else:
735 // if sd->fAccepting already had a value other than 0 or -1, leave it be.
736
737 // If the end marker node is from a look-ahead rule, set
738 // the fLookAhead field or this state also.
739 if (endMarker->fLookAheadEnd) {
740 // TODO: don't change value if already set?
741 // TODO: allow for more than one active look-ahead rule in engine.
742 // Make value here an index to a side array in engine?
743 sd->fLookAhead = sd->fAccepting;
744 }
745 }
746 }
747 }
748 }
749
750
751 //-----------------------------------------------------------------------------
752 //
753 // flagLookAheadStates Very similar to flagAcceptingStates, above.
754 //
755 //-----------------------------------------------------------------------------
flagLookAheadStates()756 void RBBITableBuilder::flagLookAheadStates() {
757 if (U_FAILURE(*fStatus)) {
758 return;
759 }
760 UVector lookAheadNodes(*fStatus);
761 RBBINode *lookAheadNode;
762 int32_t i;
763 int32_t n;
764
765 fTree->findNodes(&lookAheadNodes, RBBINode::lookAhead, *fStatus);
766 if (U_FAILURE(*fStatus)) {
767 return;
768 }
769 for (i=0; i<lookAheadNodes.size(); i++) {
770 lookAheadNode = (RBBINode *)lookAheadNodes.elementAt(i);
771
772 for (n=0; n<fDStates->size(); n++) {
773 RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n);
774 if (sd->fPositions->indexOf(lookAheadNode) >= 0) {
775 sd->fLookAhead = lookAheadNode->fVal;
776 }
777 }
778 }
779 }
780
781
782
783
784 //-----------------------------------------------------------------------------
785 //
786 // flagTaggedStates
787 //
788 //-----------------------------------------------------------------------------
flagTaggedStates()789 void RBBITableBuilder::flagTaggedStates() {
790 if (U_FAILURE(*fStatus)) {
791 return;
792 }
793 UVector tagNodes(*fStatus);
794 RBBINode *tagNode;
795 int32_t i;
796 int32_t n;
797
798 if (U_FAILURE(*fStatus)) {
799 return;
800 }
801 fTree->findNodes(&tagNodes, RBBINode::tag, *fStatus);
802 if (U_FAILURE(*fStatus)) {
803 return;
804 }
805 for (i=0; i<tagNodes.size(); i++) { // For each tag node t (all of 'em)
806 tagNode = (RBBINode *)tagNodes.elementAt(i);
807
808 for (n=0; n<fDStates->size(); n++) { // For each state s (row in the state table)
809 RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n);
810 if (sd->fPositions->indexOf(tagNode) >= 0) { // if s include the tag node t
811 sortedAdd(&sd->fTagVals, tagNode->fVal);
812 }
813 }
814 }
815 }
816
817
818
819
820 //-----------------------------------------------------------------------------
821 //
822 // mergeRuleStatusVals
823 //
824 // Update the global table of rule status {tag} values
825 // The rule builder has a global vector of status values that are common
826 // for all tables. Merge the ones from this table into the global set.
827 //
828 //-----------------------------------------------------------------------------
mergeRuleStatusVals()829 void RBBITableBuilder::mergeRuleStatusVals() {
830 //
831 // The basic outline of what happens here is this...
832 //
833 // for each state in this state table
834 // if the status tag list for this state is in the global statuses list
835 // record where and
836 // continue with the next state
837 // else
838 // add the tag list for this state to the global list.
839 //
840 int i;
841 int n;
842
843 // Pre-set a single tag of {0} into the table.
844 // We will need this as a default, for rule sets with no explicit tagging.
845 if (fRB->fRuleStatusVals->size() == 0) {
846 fRB->fRuleStatusVals->addElement(1, *fStatus); // Num of statuses in group
847 fRB->fRuleStatusVals->addElement((int32_t)0, *fStatus); // and our single status of zero
848 }
849
850 // For each state
851 for (n=0; n<fDStates->size(); n++) {
852 RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n);
853 UVector *thisStatesTagValues = sd->fTagVals;
854 if (thisStatesTagValues == NULL) {
855 // No tag values are explicitly associated with this state.
856 // Set the default tag value.
857 sd->fTagsIdx = 0;
858 continue;
859 }
860
861 // There are tag(s) associated with this state.
862 // fTagsIdx will be the index into the global tag list for this state's tag values.
863 // Initial value of -1 flags that we haven't got it set yet.
864 sd->fTagsIdx = -1;
865 int32_t thisTagGroupStart = 0; // indexes into the global rule status vals list
866 int32_t nextTagGroupStart = 0;
867
868 // Loop runs once per group of tags in the global list
869 while (nextTagGroupStart < fRB->fRuleStatusVals->size()) {
870 thisTagGroupStart = nextTagGroupStart;
871 nextTagGroupStart += fRB->fRuleStatusVals->elementAti(thisTagGroupStart) + 1;
872 if (thisStatesTagValues->size() != fRB->fRuleStatusVals->elementAti(thisTagGroupStart)) {
873 // The number of tags for this state is different from
874 // the number of tags in this group from the global list.
875 // Continue with the next group from the global list.
876 continue;
877 }
878 // The lengths match, go ahead and compare the actual tag values
879 // between this state and the group from the global list.
880 for (i=0; i<thisStatesTagValues->size(); i++) {
881 if (thisStatesTagValues->elementAti(i) !=
882 fRB->fRuleStatusVals->elementAti(thisTagGroupStart + 1 + i) ) {
883 // Mismatch.
884 break;
885 }
886 }
887
888 if (i == thisStatesTagValues->size()) {
889 // We found a set of tag values in the global list that match
890 // those for this state. Use them.
891 sd->fTagsIdx = thisTagGroupStart;
892 break;
893 }
894 }
895
896 if (sd->fTagsIdx == -1) {
897 // No suitable entry in the global tag list already. Add one
898 sd->fTagsIdx = fRB->fRuleStatusVals->size();
899 fRB->fRuleStatusVals->addElement(thisStatesTagValues->size(), *fStatus);
900 for (i=0; i<thisStatesTagValues->size(); i++) {
901 fRB->fRuleStatusVals->addElement(thisStatesTagValues->elementAti(i), *fStatus);
902 }
903 }
904 }
905 }
906
907
908
909
910
911
912
913 //-----------------------------------------------------------------------------
914 //
915 // sortedAdd Add a value to a vector of sorted values (ints).
916 // Do not replicate entries; if the value is already there, do not
917 // add a second one.
918 // Lazily create the vector if it does not already exist.
919 //
920 //-----------------------------------------------------------------------------
sortedAdd(UVector ** vector,int32_t val)921 void RBBITableBuilder::sortedAdd(UVector **vector, int32_t val) {
922 int32_t i;
923
924 if (*vector == NULL) {
925 *vector = new UVector(*fStatus);
926 }
927 if (*vector == NULL || U_FAILURE(*fStatus)) {
928 return;
929 }
930 UVector *vec = *vector;
931 int32_t vSize = vec->size();
932 for (i=0; i<vSize; i++) {
933 int32_t valAtI = vec->elementAti(i);
934 if (valAtI == val) {
935 // The value is already in the vector. Don't add it again.
936 return;
937 }
938 if (valAtI > val) {
939 break;
940 }
941 }
942 vec->insertElementAt(val, i, *fStatus);
943 }
944
945
946
947 //-----------------------------------------------------------------------------
948 //
949 // setAdd Set operation on UVector
950 // dest = dest union source
951 // Elements may only appear once and must be sorted.
952 //
953 //-----------------------------------------------------------------------------
setAdd(UVector * dest,UVector * source)954 void RBBITableBuilder::setAdd(UVector *dest, UVector *source) {
955 int32_t destOriginalSize = dest->size();
956 int32_t sourceSize = source->size();
957 int32_t di = 0;
958 MaybeStackArray<void *, 16> destArray, sourceArray; // Handle small cases without malloc
959 void **destPtr, **sourcePtr;
960 void **destLim, **sourceLim;
961
962 if (destOriginalSize > destArray.getCapacity()) {
963 if (destArray.resize(destOriginalSize) == NULL) {
964 return;
965 }
966 }
967 destPtr = destArray.getAlias();
968 destLim = destPtr + destOriginalSize; // destArray.getArrayLimit()?
969
970 if (sourceSize > sourceArray.getCapacity()) {
971 if (sourceArray.resize(sourceSize) == NULL) {
972 return;
973 }
974 }
975 sourcePtr = sourceArray.getAlias();
976 sourceLim = sourcePtr + sourceSize; // sourceArray.getArrayLimit()?
977
978 // Avoid multiple "get element" calls by getting the contents into arrays
979 (void) dest->toArray(destPtr);
980 (void) source->toArray(sourcePtr);
981
982 dest->setSize(sourceSize+destOriginalSize, *fStatus);
983
984 while (sourcePtr < sourceLim && destPtr < destLim) {
985 if (*destPtr == *sourcePtr) {
986 dest->setElementAt(*sourcePtr++, di++);
987 destPtr++;
988 }
989 // This check is required for machines with segmented memory, like i5/OS.
990 // Direct pointer comparison is not recommended.
991 else if (uprv_memcmp(destPtr, sourcePtr, sizeof(void *)) < 0) {
992 dest->setElementAt(*destPtr++, di++);
993 }
994 else { /* *sourcePtr < *destPtr */
995 dest->setElementAt(*sourcePtr++, di++);
996 }
997 }
998
999 // At most one of these two cleanup loops will execute
1000 while (destPtr < destLim) {
1001 dest->setElementAt(*destPtr++, di++);
1002 }
1003 while (sourcePtr < sourceLim) {
1004 dest->setElementAt(*sourcePtr++, di++);
1005 }
1006
1007 dest->setSize(di, *fStatus);
1008 }
1009
1010
1011
1012 //-----------------------------------------------------------------------------
1013 //
1014 // setEqual Set operation on UVector.
1015 // Compare for equality.
1016 // Elements must be sorted.
1017 //
1018 //-----------------------------------------------------------------------------
setEquals(UVector * a,UVector * b)1019 UBool RBBITableBuilder::setEquals(UVector *a, UVector *b) {
1020 return a->equals(*b);
1021 }
1022
1023
1024 //-----------------------------------------------------------------------------
1025 //
1026 // printPosSets Debug function. Dump Nullable, firstpos, lastpos and followpos
1027 // for each node in the tree.
1028 //
1029 //-----------------------------------------------------------------------------
1030 #ifdef RBBI_DEBUG
printPosSets(RBBINode * n)1031 void RBBITableBuilder::printPosSets(RBBINode *n) {
1032 if (n==NULL) {
1033 return;
1034 }
1035 n->printNode();
1036 RBBIDebugPrintf(" Nullable: %s\n", n->fNullable?"TRUE":"FALSE");
1037
1038 RBBIDebugPrintf(" firstpos: ");
1039 printSet(n->fFirstPosSet);
1040
1041 RBBIDebugPrintf(" lastpos: ");
1042 printSet(n->fLastPosSet);
1043
1044 RBBIDebugPrintf(" followpos: ");
1045 printSet(n->fFollowPos);
1046
1047 printPosSets(n->fLeftChild);
1048 printPosSets(n->fRightChild);
1049 }
1050 #endif
1051
1052
1053
1054 //-----------------------------------------------------------------------------
1055 //
1056 // getTableSize() Calculate the size of the runtime form of this
1057 // state transition table.
1058 //
1059 //-----------------------------------------------------------------------------
getTableSize() const1060 int32_t RBBITableBuilder::getTableSize() const {
1061 int32_t size = 0;
1062 int32_t numRows;
1063 int32_t numCols;
1064 int32_t rowSize;
1065
1066 if (fTree == NULL) {
1067 return 0;
1068 }
1069
1070 size = sizeof(RBBIStateTable) - 4; // The header, with no rows to the table.
1071
1072 numRows = fDStates->size();
1073 numCols = fRB->fSetBuilder->getNumCharCategories();
1074
1075 // Note The declaration of RBBIStateTableRow is for a table of two columns.
1076 // Therefore we subtract two from numCols when determining
1077 // how much storage to add to a row for the total columns.
1078 rowSize = sizeof(RBBIStateTableRow) + sizeof(uint16_t)*(numCols-2);
1079 size += numRows * rowSize;
1080 return size;
1081 }
1082
1083
1084
1085 //-----------------------------------------------------------------------------
1086 //
1087 // exportTable() export the state transition table in the format required
1088 // by the runtime engine. getTableSize() bytes of memory
1089 // must be available at the output address "where".
1090 //
1091 //-----------------------------------------------------------------------------
exportTable(void * where)1092 void RBBITableBuilder::exportTable(void *where) {
1093 RBBIStateTable *table = (RBBIStateTable *)where;
1094 uint32_t state;
1095 int col;
1096
1097 if (U_FAILURE(*fStatus) || fTree == NULL) {
1098 return;
1099 }
1100
1101 if (fRB->fSetBuilder->getNumCharCategories() > 0x7fff ||
1102 fDStates->size() > 0x7fff) {
1103 *fStatus = U_BRK_INTERNAL_ERROR;
1104 return;
1105 }
1106
1107 table->fRowLen = sizeof(RBBIStateTableRow) +
1108 sizeof(uint16_t) * (fRB->fSetBuilder->getNumCharCategories() - 2);
1109 table->fNumStates = fDStates->size();
1110 table->fFlags = 0;
1111 if (fRB->fLookAheadHardBreak) {
1112 table->fFlags |= RBBI_LOOKAHEAD_HARD_BREAK;
1113 }
1114 if (fRB->fSetBuilder->sawBOF()) {
1115 table->fFlags |= RBBI_BOF_REQUIRED;
1116 }
1117 table->fReserved = 0;
1118
1119 for (state=0; state<table->fNumStates; state++) {
1120 RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(state);
1121 RBBIStateTableRow *row = (RBBIStateTableRow *)(table->fTableData + state*table->fRowLen);
1122 U_ASSERT (-32768 < sd->fAccepting && sd->fAccepting <= 32767);
1123 U_ASSERT (-32768 < sd->fLookAhead && sd->fLookAhead <= 32767);
1124 row->fAccepting = (int16_t)sd->fAccepting;
1125 row->fLookAhead = (int16_t)sd->fLookAhead;
1126 row->fTagIdx = (int16_t)sd->fTagsIdx;
1127 for (col=0; col<fRB->fSetBuilder->getNumCharCategories(); col++) {
1128 row->fNextState[col] = (uint16_t)sd->fDtran->elementAti(col);
1129 }
1130 }
1131 }
1132
1133
1134
1135 //-----------------------------------------------------------------------------
1136 //
1137 // printSet Debug function. Print the contents of a UVector
1138 //
1139 //-----------------------------------------------------------------------------
1140 #ifdef RBBI_DEBUG
printSet(UVector * s)1141 void RBBITableBuilder::printSet(UVector *s) {
1142 int32_t i;
1143 for (i=0; i<s->size(); i++) {
1144 void *v = s->elementAt(i);
1145 RBBIDebugPrintf("%10p", v);
1146 }
1147 RBBIDebugPrintf("\n");
1148 }
1149 #endif
1150
1151
1152 //-----------------------------------------------------------------------------
1153 //
1154 // printStates Debug Function. Dump the fully constructed state transition table.
1155 //
1156 //-----------------------------------------------------------------------------
1157 #ifdef RBBI_DEBUG
printStates()1158 void RBBITableBuilder::printStates() {
1159 int c; // input "character"
1160 int n; // state number
1161
1162 RBBIDebugPrintf("state | i n p u t s y m b o l s \n");
1163 RBBIDebugPrintf(" | Acc LA Tag");
1164 for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) {
1165 RBBIDebugPrintf(" %2d", c);
1166 }
1167 RBBIDebugPrintf("\n");
1168 RBBIDebugPrintf(" |---------------");
1169 for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) {
1170 RBBIDebugPrintf("---");
1171 }
1172 RBBIDebugPrintf("\n");
1173
1174 for (n=0; n<fDStates->size(); n++) {
1175 RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n);
1176 RBBIDebugPrintf(" %3d | " , n);
1177 RBBIDebugPrintf("%3d %3d %5d ", sd->fAccepting, sd->fLookAhead, sd->fTagsIdx);
1178 for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) {
1179 RBBIDebugPrintf(" %2d", sd->fDtran->elementAti(c));
1180 }
1181 RBBIDebugPrintf("\n");
1182 }
1183 RBBIDebugPrintf("\n\n");
1184 }
1185 #endif
1186
1187
1188
1189 //-----------------------------------------------------------------------------
1190 //
1191 // printRuleStatusTable Debug Function. Dump the common rule status table
1192 //
1193 //-----------------------------------------------------------------------------
1194 #ifdef RBBI_DEBUG
printRuleStatusTable()1195 void RBBITableBuilder::printRuleStatusTable() {
1196 int32_t thisRecord = 0;
1197 int32_t nextRecord = 0;
1198 int i;
1199 UVector *tbl = fRB->fRuleStatusVals;
1200
1201 RBBIDebugPrintf("index | tags \n");
1202 RBBIDebugPrintf("-------------------\n");
1203
1204 while (nextRecord < tbl->size()) {
1205 thisRecord = nextRecord;
1206 nextRecord = thisRecord + tbl->elementAti(thisRecord) + 1;
1207 RBBIDebugPrintf("%4d ", thisRecord);
1208 for (i=thisRecord+1; i<nextRecord; i++) {
1209 RBBIDebugPrintf(" %5d", tbl->elementAti(i));
1210 }
1211 RBBIDebugPrintf("\n");
1212 }
1213 RBBIDebugPrintf("\n\n");
1214 }
1215 #endif
1216
1217
1218 //-----------------------------------------------------------------------------
1219 //
1220 // RBBIStateDescriptor Methods. This is a very struct-like class
1221 // Most access is directly to the fields.
1222 //
1223 //-----------------------------------------------------------------------------
1224
RBBIStateDescriptor(int lastInputSymbol,UErrorCode * fStatus)1225 RBBIStateDescriptor::RBBIStateDescriptor(int lastInputSymbol, UErrorCode *fStatus) {
1226 fMarked = FALSE;
1227 fAccepting = 0;
1228 fLookAhead = 0;
1229 fTagsIdx = 0;
1230 fTagVals = NULL;
1231 fPositions = NULL;
1232 fDtran = NULL;
1233
1234 fDtran = new UVector(lastInputSymbol+1, *fStatus);
1235 if (U_FAILURE(*fStatus)) {
1236 return;
1237 }
1238 if (fDtran == NULL) {
1239 *fStatus = U_MEMORY_ALLOCATION_ERROR;
1240 return;
1241 }
1242 fDtran->setSize(lastInputSymbol+1, *fStatus); // fDtran needs to be pre-sized.
1243 // It is indexed by input symbols, and will
1244 // hold the next state number for each
1245 // symbol.
1246 }
1247
1248
~RBBIStateDescriptor()1249 RBBIStateDescriptor::~RBBIStateDescriptor() {
1250 delete fPositions;
1251 delete fDtran;
1252 delete fTagVals;
1253 fPositions = NULL;
1254 fDtran = NULL;
1255 fTagVals = NULL;
1256 }
1257
1258 U_NAMESPACE_END
1259
1260 #endif /* #if !UCONFIG_NO_BREAK_ITERATION */
1261