• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===----------------------------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 // <random>
11 
12 // template<class RealType = double>
13 // class exponential_distribution
14 
15 // template<class _URNG> result_type operator()(_URNG& g, const param_type& parm);
16 
17 #include <random>
18 #include <cassert>
19 #include <vector>
20 #include <numeric>
21 
22 template <class T>
23 inline
24 T
sqr(T x)25 sqr(T x)
26 {
27     return x * x;
28 }
29 
main()30 int main()
31 {
32     {
33         typedef std::exponential_distribution<> D;
34         typedef D::param_type P;
35         typedef std::mt19937 G;
36         G g;
37         D d(.75);
38         P p(2);
39         const int N = 1000000;
40         std::vector<D::result_type> u;
41         for (int i = 0; i < N; ++i)
42         {
43             D::result_type v = d(g, p);
44             assert(d.min() < v);
45             u.push_back(v);
46         }
47         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
48         double var = 0;
49         double skew = 0;
50         double kurtosis = 0;
51         for (int i = 0; i < u.size(); ++i)
52         {
53             double d = (u[i] - mean);
54             double d2 = sqr(d);
55             var += d2;
56             skew += d * d2;
57             kurtosis += d2 * d2;
58         }
59         var /= u.size();
60         double dev = std::sqrt(var);
61         skew /= u.size() * dev * var;
62         kurtosis /= u.size() * var * var;
63         kurtosis -= 3;
64         double x_mean = 1/p.lambda();
65         double x_var = 1/sqr(p.lambda());
66         double x_skew = 2;
67         double x_kurtosis = 6;
68         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
69         assert(std::abs((var - x_var) / x_var) < 0.01);
70         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
71         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
72     }
73 }
74