1 /***********************************************************************
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
3 Redistribution and use in source and binary forms, with or without
4 modification, are permitted provided that the following conditions
5 are met:
6 - Redistributions of source code must retain the above copyright notice,
7 this list of conditions and the following disclaimer.
8 - Redistributions in binary form must reproduce the above copyright
9 notice, this list of conditions and the following disclaimer in the
10 documentation and/or other materials provided with the distribution.
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
12 names of specific contributors, may be used to endorse or promote
13 products derived from this software without specific prior written
14 permission.
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 POSSIBILITY OF SUCH DAMAGE.
26 ***********************************************************************/
27
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31
32 #include "main_FLP.h"
33
34 /* Wrappers. Calls flp / fix code */
35
36 /* Convert AR filter coefficients to NLSF parameters */
silk_A2NLSF_FLP(opus_int16 * NLSF_Q15,const silk_float * pAR,const opus_int LPC_order)37 void silk_A2NLSF_FLP(
38 opus_int16 *NLSF_Q15, /* O NLSF vector [ LPC_order ] */
39 const silk_float *pAR, /* I LPC coefficients [ LPC_order ] */
40 const opus_int LPC_order /* I LPC order */
41 )
42 {
43 opus_int i;
44 opus_int32 a_fix_Q16[ MAX_LPC_ORDER ];
45
46 for( i = 0; i < LPC_order; i++ ) {
47 a_fix_Q16[ i ] = silk_float2int( pAR[ i ] * 65536.0f );
48 }
49
50 silk_A2NLSF( NLSF_Q15, a_fix_Q16, LPC_order );
51 }
52
53 /* Convert LSF parameters to AR prediction filter coefficients */
silk_NLSF2A_FLP(silk_float * pAR,const opus_int16 * NLSF_Q15,const opus_int LPC_order)54 void silk_NLSF2A_FLP(
55 silk_float *pAR, /* O LPC coefficients [ LPC_order ] */
56 const opus_int16 *NLSF_Q15, /* I NLSF vector [ LPC_order ] */
57 const opus_int LPC_order /* I LPC order */
58 )
59 {
60 opus_int i;
61 opus_int16 a_fix_Q12[ MAX_LPC_ORDER ];
62
63 silk_NLSF2A( a_fix_Q12, NLSF_Q15, LPC_order );
64
65 for( i = 0; i < LPC_order; i++ ) {
66 pAR[ i ] = ( silk_float )a_fix_Q12[ i ] * ( 1.0f / 4096.0f );
67 }
68 }
69
70 /******************************************/
71 /* Floating-point NLSF processing wrapper */
72 /******************************************/
silk_process_NLSFs_FLP(silk_encoder_state * psEncC,silk_float PredCoef[2][MAX_LPC_ORDER],opus_int16 NLSF_Q15[MAX_LPC_ORDER],const opus_int16 prev_NLSF_Q15[MAX_LPC_ORDER])73 void silk_process_NLSFs_FLP(
74 silk_encoder_state *psEncC, /* I/O Encoder state */
75 silk_float PredCoef[ 2 ][ MAX_LPC_ORDER ], /* O Prediction coefficients */
76 opus_int16 NLSF_Q15[ MAX_LPC_ORDER ], /* I/O Normalized LSFs (quant out) (0 - (2^15-1)) */
77 const opus_int16 prev_NLSF_Q15[ MAX_LPC_ORDER ] /* I Previous Normalized LSFs (0 - (2^15-1)) */
78 )
79 {
80 opus_int i, j;
81 opus_int16 PredCoef_Q12[ 2 ][ MAX_LPC_ORDER ];
82
83 silk_process_NLSFs( psEncC, PredCoef_Q12, NLSF_Q15, prev_NLSF_Q15);
84
85 for( j = 0; j < 2; j++ ) {
86 for( i = 0; i < psEncC->predictLPCOrder; i++ ) {
87 PredCoef[ j ][ i ] = ( silk_float )PredCoef_Q12[ j ][ i ] * ( 1.0f / 4096.0f );
88 }
89 }
90 }
91
92 /****************************************/
93 /* Floating-point Silk NSQ wrapper */
94 /****************************************/
silk_NSQ_wrapper_FLP(silk_encoder_state_FLP * psEnc,silk_encoder_control_FLP * psEncCtrl,SideInfoIndices * psIndices,silk_nsq_state * psNSQ,opus_int8 pulses[],const silk_float x[])95 void silk_NSQ_wrapper_FLP(
96 silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */
97 silk_encoder_control_FLP *psEncCtrl, /* I/O Encoder control FLP */
98 SideInfoIndices *psIndices, /* I/O Quantization indices */
99 silk_nsq_state *psNSQ, /* I/O Noise Shaping Quantzation state */
100 opus_int8 pulses[], /* O Quantized pulse signal */
101 const silk_float x[] /* I Prefiltered input signal */
102 )
103 {
104 opus_int i, j;
105 opus_int32 x_Q3[ MAX_FRAME_LENGTH ];
106 opus_int32 Gains_Q16[ MAX_NB_SUBFR ];
107 silk_DWORD_ALIGN opus_int16 PredCoef_Q12[ 2 ][ MAX_LPC_ORDER ];
108 opus_int16 LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ];
109 opus_int LTP_scale_Q14;
110
111 /* Noise shaping parameters */
112 opus_int16 AR2_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ];
113 opus_int32 LF_shp_Q14[ MAX_NB_SUBFR ]; /* Packs two int16 coefficients per int32 value */
114 opus_int Lambda_Q10;
115 opus_int Tilt_Q14[ MAX_NB_SUBFR ];
116 opus_int HarmShapeGain_Q14[ MAX_NB_SUBFR ];
117
118 /* Convert control struct to fix control struct */
119 /* Noise shape parameters */
120 for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
121 for( j = 0; j < psEnc->sCmn.shapingLPCOrder; j++ ) {
122 AR2_Q13[ i * MAX_SHAPE_LPC_ORDER + j ] = silk_float2int( psEncCtrl->AR2[ i * MAX_SHAPE_LPC_ORDER + j ] * 8192.0f );
123 }
124 }
125
126 for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
127 LF_shp_Q14[ i ] = silk_LSHIFT32( silk_float2int( psEncCtrl->LF_AR_shp[ i ] * 16384.0f ), 16 ) |
128 (opus_uint16)silk_float2int( psEncCtrl->LF_MA_shp[ i ] * 16384.0f );
129 Tilt_Q14[ i ] = (opus_int)silk_float2int( psEncCtrl->Tilt[ i ] * 16384.0f );
130 HarmShapeGain_Q14[ i ] = (opus_int)silk_float2int( psEncCtrl->HarmShapeGain[ i ] * 16384.0f );
131 }
132 Lambda_Q10 = ( opus_int )silk_float2int( psEncCtrl->Lambda * 1024.0f );
133
134 /* prediction and coding parameters */
135 for( i = 0; i < psEnc->sCmn.nb_subfr * LTP_ORDER; i++ ) {
136 LTPCoef_Q14[ i ] = (opus_int16)silk_float2int( psEncCtrl->LTPCoef[ i ] * 16384.0f );
137 }
138
139 for( j = 0; j < 2; j++ ) {
140 for( i = 0; i < psEnc->sCmn.predictLPCOrder; i++ ) {
141 PredCoef_Q12[ j ][ i ] = (opus_int16)silk_float2int( psEncCtrl->PredCoef[ j ][ i ] * 4096.0f );
142 }
143 }
144
145 for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
146 Gains_Q16[ i ] = silk_float2int( psEncCtrl->Gains[ i ] * 65536.0f );
147 silk_assert( Gains_Q16[ i ] > 0 );
148 }
149
150 if( psIndices->signalType == TYPE_VOICED ) {
151 LTP_scale_Q14 = silk_LTPScales_table_Q14[ psIndices->LTP_scaleIndex ];
152 } else {
153 LTP_scale_Q14 = 0;
154 }
155
156 /* Convert input to fix */
157 for( i = 0; i < psEnc->sCmn.frame_length; i++ ) {
158 x_Q3[ i ] = silk_float2int( 8.0f * x[ i ] );
159 }
160
161 /* Call NSQ */
162 if( psEnc->sCmn.nStatesDelayedDecision > 1 || psEnc->sCmn.warping_Q16 > 0 ) {
163 silk_NSQ_del_dec( &psEnc->sCmn, psNSQ, psIndices, x_Q3, pulses, PredCoef_Q12[ 0 ], LTPCoef_Q14,
164 AR2_Q13, HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, psEncCtrl->pitchL, Lambda_Q10, LTP_scale_Q14 );
165 } else {
166 silk_NSQ( &psEnc->sCmn, psNSQ, psIndices, x_Q3, pulses, PredCoef_Q12[ 0 ], LTPCoef_Q14,
167 AR2_Q13, HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, psEncCtrl->pitchL, Lambda_Q10, LTP_scale_Q14 );
168 }
169 }
170
171 /***********************************************/
172 /* Floating-point Silk LTP quantiation wrapper */
173 /***********************************************/
silk_quant_LTP_gains_FLP(silk_float B[MAX_NB_SUBFR * LTP_ORDER],opus_int8 cbk_index[MAX_NB_SUBFR],opus_int8 * periodicity_index,opus_int32 * sum_log_gain_Q7,const silk_float W[MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER],const opus_int mu_Q10,const opus_int lowComplexity,const opus_int nb_subfr)174 void silk_quant_LTP_gains_FLP(
175 silk_float B[ MAX_NB_SUBFR * LTP_ORDER ], /* I/O (Un-)quantized LTP gains */
176 opus_int8 cbk_index[ MAX_NB_SUBFR ], /* O Codebook index */
177 opus_int8 *periodicity_index, /* O Periodicity index */
178 opus_int32 *sum_log_gain_Q7, /* I/O Cumulative max prediction gain */
179 const silk_float W[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ], /* I Error weights */
180 const opus_int mu_Q10, /* I Mu value (R/D tradeoff) */
181 const opus_int lowComplexity, /* I Flag for low complexity */
182 const opus_int nb_subfr /* I number of subframes */
183 )
184 {
185 opus_int i;
186 opus_int16 B_Q14[ MAX_NB_SUBFR * LTP_ORDER ];
187 opus_int32 W_Q18[ MAX_NB_SUBFR*LTP_ORDER*LTP_ORDER ];
188
189 for( i = 0; i < nb_subfr * LTP_ORDER; i++ ) {
190 B_Q14[ i ] = (opus_int16)silk_float2int( B[ i ] * 16384.0f );
191 }
192 for( i = 0; i < nb_subfr * LTP_ORDER * LTP_ORDER; i++ ) {
193 W_Q18[ i ] = (opus_int32)silk_float2int( W[ i ] * 262144.0f );
194 }
195
196 silk_quant_LTP_gains( B_Q14, cbk_index, periodicity_index, sum_log_gain_Q7, W_Q18, mu_Q10, lowComplexity, nb_subfr );
197
198 for( i = 0; i < nb_subfr * LTP_ORDER; i++ ) {
199 B[ i ] = (silk_float)B_Q14[ i ] * ( 1.0f / 16384.0f );
200 }
201 }
202