1 #include "llvm/Analysis/Passes.h"
2 #include "llvm/ExecutionEngine/ExecutionEngine.h"
3 #include "llvm/ExecutionEngine/JIT.h"
4 #include "llvm/IR/DataLayout.h"
5 #include "llvm/IR/DerivedTypes.h"
6 #include "llvm/IR/IRBuilder.h"
7 #include "llvm/IR/LLVMContext.h"
8 #include "llvm/IR/Module.h"
9 #include "llvm/IR/Verifier.h"
10 #include "llvm/PassManager.h"
11 #include "llvm/Support/TargetSelect.h"
12 #include "llvm/Transforms/Scalar.h"
13 #include <cctype>
14 #include <cstdio>
15 #include <map>
16 #include <string>
17 #include <vector>
18 using namespace llvm;
19
20 //===----------------------------------------------------------------------===//
21 // Lexer
22 //===----------------------------------------------------------------------===//
23
24 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
25 // of these for known things.
26 enum Token {
27 tok_eof = -1,
28
29 // commands
30 tok_def = -2, tok_extern = -3,
31
32 // primary
33 tok_identifier = -4, tok_number = -5,
34
35 // control
36 tok_if = -6, tok_then = -7, tok_else = -8,
37 tok_for = -9, tok_in = -10,
38
39 // operators
40 tok_binary = -11, tok_unary = -12,
41
42 // var definition
43 tok_var = -13
44 };
45
46 static std::string IdentifierStr; // Filled in if tok_identifier
47 static double NumVal; // Filled in if tok_number
48
49 /// gettok - Return the next token from standard input.
gettok()50 static int gettok() {
51 static int LastChar = ' ';
52
53 // Skip any whitespace.
54 while (isspace(LastChar))
55 LastChar = getchar();
56
57 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
58 IdentifierStr = LastChar;
59 while (isalnum((LastChar = getchar())))
60 IdentifierStr += LastChar;
61
62 if (IdentifierStr == "def") return tok_def;
63 if (IdentifierStr == "extern") return tok_extern;
64 if (IdentifierStr == "if") return tok_if;
65 if (IdentifierStr == "then") return tok_then;
66 if (IdentifierStr == "else") return tok_else;
67 if (IdentifierStr == "for") return tok_for;
68 if (IdentifierStr == "in") return tok_in;
69 if (IdentifierStr == "binary") return tok_binary;
70 if (IdentifierStr == "unary") return tok_unary;
71 if (IdentifierStr == "var") return tok_var;
72 return tok_identifier;
73 }
74
75 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
76 std::string NumStr;
77 do {
78 NumStr += LastChar;
79 LastChar = getchar();
80 } while (isdigit(LastChar) || LastChar == '.');
81
82 NumVal = strtod(NumStr.c_str(), 0);
83 return tok_number;
84 }
85
86 if (LastChar == '#') {
87 // Comment until end of line.
88 do LastChar = getchar();
89 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
90
91 if (LastChar != EOF)
92 return gettok();
93 }
94
95 // Check for end of file. Don't eat the EOF.
96 if (LastChar == EOF)
97 return tok_eof;
98
99 // Otherwise, just return the character as its ascii value.
100 int ThisChar = LastChar;
101 LastChar = getchar();
102 return ThisChar;
103 }
104
105 //===----------------------------------------------------------------------===//
106 // Abstract Syntax Tree (aka Parse Tree)
107 //===----------------------------------------------------------------------===//
108 namespace {
109 /// ExprAST - Base class for all expression nodes.
110 class ExprAST {
111 public:
~ExprAST()112 virtual ~ExprAST() {}
113 virtual Value *Codegen() = 0;
114 };
115
116 /// NumberExprAST - Expression class for numeric literals like "1.0".
117 class NumberExprAST : public ExprAST {
118 double Val;
119 public:
NumberExprAST(double val)120 NumberExprAST(double val) : Val(val) {}
121 virtual Value *Codegen();
122 };
123
124 /// VariableExprAST - Expression class for referencing a variable, like "a".
125 class VariableExprAST : public ExprAST {
126 std::string Name;
127 public:
VariableExprAST(const std::string & name)128 VariableExprAST(const std::string &name) : Name(name) {}
getName() const129 const std::string &getName() const { return Name; }
130 virtual Value *Codegen();
131 };
132
133 /// UnaryExprAST - Expression class for a unary operator.
134 class UnaryExprAST : public ExprAST {
135 char Opcode;
136 ExprAST *Operand;
137 public:
UnaryExprAST(char opcode,ExprAST * operand)138 UnaryExprAST(char opcode, ExprAST *operand)
139 : Opcode(opcode), Operand(operand) {}
140 virtual Value *Codegen();
141 };
142
143 /// BinaryExprAST - Expression class for a binary operator.
144 class BinaryExprAST : public ExprAST {
145 char Op;
146 ExprAST *LHS, *RHS;
147 public:
BinaryExprAST(char op,ExprAST * lhs,ExprAST * rhs)148 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
149 : Op(op), LHS(lhs), RHS(rhs) {}
150 virtual Value *Codegen();
151 };
152
153 /// CallExprAST - Expression class for function calls.
154 class CallExprAST : public ExprAST {
155 std::string Callee;
156 std::vector<ExprAST*> Args;
157 public:
CallExprAST(const std::string & callee,std::vector<ExprAST * > & args)158 CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
159 : Callee(callee), Args(args) {}
160 virtual Value *Codegen();
161 };
162
163 /// IfExprAST - Expression class for if/then/else.
164 class IfExprAST : public ExprAST {
165 ExprAST *Cond, *Then, *Else;
166 public:
IfExprAST(ExprAST * cond,ExprAST * then,ExprAST * _else)167 IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
168 : Cond(cond), Then(then), Else(_else) {}
169 virtual Value *Codegen();
170 };
171
172 /// ForExprAST - Expression class for for/in.
173 class ForExprAST : public ExprAST {
174 std::string VarName;
175 ExprAST *Start, *End, *Step, *Body;
176 public:
ForExprAST(const std::string & varname,ExprAST * start,ExprAST * end,ExprAST * step,ExprAST * body)177 ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
178 ExprAST *step, ExprAST *body)
179 : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
180 virtual Value *Codegen();
181 };
182
183 /// VarExprAST - Expression class for var/in
184 class VarExprAST : public ExprAST {
185 std::vector<std::pair<std::string, ExprAST*> > VarNames;
186 ExprAST *Body;
187 public:
VarExprAST(const std::vector<std::pair<std::string,ExprAST * >> & varnames,ExprAST * body)188 VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
189 ExprAST *body)
190 : VarNames(varnames), Body(body) {}
191
192 virtual Value *Codegen();
193 };
194
195 /// PrototypeAST - This class represents the "prototype" for a function,
196 /// which captures its argument names as well as if it is an operator.
197 class PrototypeAST {
198 std::string Name;
199 std::vector<std::string> Args;
200 bool isOperator;
201 unsigned Precedence; // Precedence if a binary op.
202 public:
PrototypeAST(const std::string & name,const std::vector<std::string> & args,bool isoperator=false,unsigned prec=0)203 PrototypeAST(const std::string &name, const std::vector<std::string> &args,
204 bool isoperator = false, unsigned prec = 0)
205 : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
206
isUnaryOp() const207 bool isUnaryOp() const { return isOperator && Args.size() == 1; }
isBinaryOp() const208 bool isBinaryOp() const { return isOperator && Args.size() == 2; }
209
getOperatorName() const210 char getOperatorName() const {
211 assert(isUnaryOp() || isBinaryOp());
212 return Name[Name.size()-1];
213 }
214
getBinaryPrecedence() const215 unsigned getBinaryPrecedence() const { return Precedence; }
216
217 Function *Codegen();
218
219 void CreateArgumentAllocas(Function *F);
220 };
221
222 /// FunctionAST - This class represents a function definition itself.
223 class FunctionAST {
224 PrototypeAST *Proto;
225 ExprAST *Body;
226 public:
FunctionAST(PrototypeAST * proto,ExprAST * body)227 FunctionAST(PrototypeAST *proto, ExprAST *body)
228 : Proto(proto), Body(body) {}
229
230 Function *Codegen();
231 };
232 } // end anonymous namespace
233
234 //===----------------------------------------------------------------------===//
235 // Parser
236 //===----------------------------------------------------------------------===//
237
238 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
239 /// token the parser is looking at. getNextToken reads another token from the
240 /// lexer and updates CurTok with its results.
241 static int CurTok;
getNextToken()242 static int getNextToken() {
243 return CurTok = gettok();
244 }
245
246 /// BinopPrecedence - This holds the precedence for each binary operator that is
247 /// defined.
248 static std::map<char, int> BinopPrecedence;
249
250 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
GetTokPrecedence()251 static int GetTokPrecedence() {
252 if (!isascii(CurTok))
253 return -1;
254
255 // Make sure it's a declared binop.
256 int TokPrec = BinopPrecedence[CurTok];
257 if (TokPrec <= 0) return -1;
258 return TokPrec;
259 }
260
261 /// Error* - These are little helper functions for error handling.
Error(const char * Str)262 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
ErrorP(const char * Str)263 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
ErrorF(const char * Str)264 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
265
266 static ExprAST *ParseExpression();
267
268 /// identifierexpr
269 /// ::= identifier
270 /// ::= identifier '(' expression* ')'
ParseIdentifierExpr()271 static ExprAST *ParseIdentifierExpr() {
272 std::string IdName = IdentifierStr;
273
274 getNextToken(); // eat identifier.
275
276 if (CurTok != '(') // Simple variable ref.
277 return new VariableExprAST(IdName);
278
279 // Call.
280 getNextToken(); // eat (
281 std::vector<ExprAST*> Args;
282 if (CurTok != ')') {
283 while (1) {
284 ExprAST *Arg = ParseExpression();
285 if (!Arg) return 0;
286 Args.push_back(Arg);
287
288 if (CurTok == ')') break;
289
290 if (CurTok != ',')
291 return Error("Expected ')' or ',' in argument list");
292 getNextToken();
293 }
294 }
295
296 // Eat the ')'.
297 getNextToken();
298
299 return new CallExprAST(IdName, Args);
300 }
301
302 /// numberexpr ::= number
ParseNumberExpr()303 static ExprAST *ParseNumberExpr() {
304 ExprAST *Result = new NumberExprAST(NumVal);
305 getNextToken(); // consume the number
306 return Result;
307 }
308
309 /// parenexpr ::= '(' expression ')'
ParseParenExpr()310 static ExprAST *ParseParenExpr() {
311 getNextToken(); // eat (.
312 ExprAST *V = ParseExpression();
313 if (!V) return 0;
314
315 if (CurTok != ')')
316 return Error("expected ')'");
317 getNextToken(); // eat ).
318 return V;
319 }
320
321 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
ParseIfExpr()322 static ExprAST *ParseIfExpr() {
323 getNextToken(); // eat the if.
324
325 // condition.
326 ExprAST *Cond = ParseExpression();
327 if (!Cond) return 0;
328
329 if (CurTok != tok_then)
330 return Error("expected then");
331 getNextToken(); // eat the then
332
333 ExprAST *Then = ParseExpression();
334 if (Then == 0) return 0;
335
336 if (CurTok != tok_else)
337 return Error("expected else");
338
339 getNextToken();
340
341 ExprAST *Else = ParseExpression();
342 if (!Else) return 0;
343
344 return new IfExprAST(Cond, Then, Else);
345 }
346
347 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
ParseForExpr()348 static ExprAST *ParseForExpr() {
349 getNextToken(); // eat the for.
350
351 if (CurTok != tok_identifier)
352 return Error("expected identifier after for");
353
354 std::string IdName = IdentifierStr;
355 getNextToken(); // eat identifier.
356
357 if (CurTok != '=')
358 return Error("expected '=' after for");
359 getNextToken(); // eat '='.
360
361
362 ExprAST *Start = ParseExpression();
363 if (Start == 0) return 0;
364 if (CurTok != ',')
365 return Error("expected ',' after for start value");
366 getNextToken();
367
368 ExprAST *End = ParseExpression();
369 if (End == 0) return 0;
370
371 // The step value is optional.
372 ExprAST *Step = 0;
373 if (CurTok == ',') {
374 getNextToken();
375 Step = ParseExpression();
376 if (Step == 0) return 0;
377 }
378
379 if (CurTok != tok_in)
380 return Error("expected 'in' after for");
381 getNextToken(); // eat 'in'.
382
383 ExprAST *Body = ParseExpression();
384 if (Body == 0) return 0;
385
386 return new ForExprAST(IdName, Start, End, Step, Body);
387 }
388
389 /// varexpr ::= 'var' identifier ('=' expression)?
390 // (',' identifier ('=' expression)?)* 'in' expression
ParseVarExpr()391 static ExprAST *ParseVarExpr() {
392 getNextToken(); // eat the var.
393
394 std::vector<std::pair<std::string, ExprAST*> > VarNames;
395
396 // At least one variable name is required.
397 if (CurTok != tok_identifier)
398 return Error("expected identifier after var");
399
400 while (1) {
401 std::string Name = IdentifierStr;
402 getNextToken(); // eat identifier.
403
404 // Read the optional initializer.
405 ExprAST *Init = 0;
406 if (CurTok == '=') {
407 getNextToken(); // eat the '='.
408
409 Init = ParseExpression();
410 if (Init == 0) return 0;
411 }
412
413 VarNames.push_back(std::make_pair(Name, Init));
414
415 // End of var list, exit loop.
416 if (CurTok != ',') break;
417 getNextToken(); // eat the ','.
418
419 if (CurTok != tok_identifier)
420 return Error("expected identifier list after var");
421 }
422
423 // At this point, we have to have 'in'.
424 if (CurTok != tok_in)
425 return Error("expected 'in' keyword after 'var'");
426 getNextToken(); // eat 'in'.
427
428 ExprAST *Body = ParseExpression();
429 if (Body == 0) return 0;
430
431 return new VarExprAST(VarNames, Body);
432 }
433
434 /// primary
435 /// ::= identifierexpr
436 /// ::= numberexpr
437 /// ::= parenexpr
438 /// ::= ifexpr
439 /// ::= forexpr
440 /// ::= varexpr
ParsePrimary()441 static ExprAST *ParsePrimary() {
442 switch (CurTok) {
443 default: return Error("unknown token when expecting an expression");
444 case tok_identifier: return ParseIdentifierExpr();
445 case tok_number: return ParseNumberExpr();
446 case '(': return ParseParenExpr();
447 case tok_if: return ParseIfExpr();
448 case tok_for: return ParseForExpr();
449 case tok_var: return ParseVarExpr();
450 }
451 }
452
453 /// unary
454 /// ::= primary
455 /// ::= '!' unary
ParseUnary()456 static ExprAST *ParseUnary() {
457 // If the current token is not an operator, it must be a primary expr.
458 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
459 return ParsePrimary();
460
461 // If this is a unary operator, read it.
462 int Opc = CurTok;
463 getNextToken();
464 if (ExprAST *Operand = ParseUnary())
465 return new UnaryExprAST(Opc, Operand);
466 return 0;
467 }
468
469 /// binoprhs
470 /// ::= ('+' unary)*
ParseBinOpRHS(int ExprPrec,ExprAST * LHS)471 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
472 // If this is a binop, find its precedence.
473 while (1) {
474 int TokPrec = GetTokPrecedence();
475
476 // If this is a binop that binds at least as tightly as the current binop,
477 // consume it, otherwise we are done.
478 if (TokPrec < ExprPrec)
479 return LHS;
480
481 // Okay, we know this is a binop.
482 int BinOp = CurTok;
483 getNextToken(); // eat binop
484
485 // Parse the unary expression after the binary operator.
486 ExprAST *RHS = ParseUnary();
487 if (!RHS) return 0;
488
489 // If BinOp binds less tightly with RHS than the operator after RHS, let
490 // the pending operator take RHS as its LHS.
491 int NextPrec = GetTokPrecedence();
492 if (TokPrec < NextPrec) {
493 RHS = ParseBinOpRHS(TokPrec+1, RHS);
494 if (RHS == 0) return 0;
495 }
496
497 // Merge LHS/RHS.
498 LHS = new BinaryExprAST(BinOp, LHS, RHS);
499 }
500 }
501
502 /// expression
503 /// ::= unary binoprhs
504 ///
ParseExpression()505 static ExprAST *ParseExpression() {
506 ExprAST *LHS = ParseUnary();
507 if (!LHS) return 0;
508
509 return ParseBinOpRHS(0, LHS);
510 }
511
512 /// prototype
513 /// ::= id '(' id* ')'
514 /// ::= binary LETTER number? (id, id)
515 /// ::= unary LETTER (id)
ParsePrototype()516 static PrototypeAST *ParsePrototype() {
517 std::string FnName;
518
519 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
520 unsigned BinaryPrecedence = 30;
521
522 switch (CurTok) {
523 default:
524 return ErrorP("Expected function name in prototype");
525 case tok_identifier:
526 FnName = IdentifierStr;
527 Kind = 0;
528 getNextToken();
529 break;
530 case tok_unary:
531 getNextToken();
532 if (!isascii(CurTok))
533 return ErrorP("Expected unary operator");
534 FnName = "unary";
535 FnName += (char)CurTok;
536 Kind = 1;
537 getNextToken();
538 break;
539 case tok_binary:
540 getNextToken();
541 if (!isascii(CurTok))
542 return ErrorP("Expected binary operator");
543 FnName = "binary";
544 FnName += (char)CurTok;
545 Kind = 2;
546 getNextToken();
547
548 // Read the precedence if present.
549 if (CurTok == tok_number) {
550 if (NumVal < 1 || NumVal > 100)
551 return ErrorP("Invalid precedecnce: must be 1..100");
552 BinaryPrecedence = (unsigned)NumVal;
553 getNextToken();
554 }
555 break;
556 }
557
558 if (CurTok != '(')
559 return ErrorP("Expected '(' in prototype");
560
561 std::vector<std::string> ArgNames;
562 while (getNextToken() == tok_identifier)
563 ArgNames.push_back(IdentifierStr);
564 if (CurTok != ')')
565 return ErrorP("Expected ')' in prototype");
566
567 // success.
568 getNextToken(); // eat ')'.
569
570 // Verify right number of names for operator.
571 if (Kind && ArgNames.size() != Kind)
572 return ErrorP("Invalid number of operands for operator");
573
574 return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
575 }
576
577 /// definition ::= 'def' prototype expression
ParseDefinition()578 static FunctionAST *ParseDefinition() {
579 getNextToken(); // eat def.
580 PrototypeAST *Proto = ParsePrototype();
581 if (Proto == 0) return 0;
582
583 if (ExprAST *E = ParseExpression())
584 return new FunctionAST(Proto, E);
585 return 0;
586 }
587
588 /// toplevelexpr ::= expression
ParseTopLevelExpr()589 static FunctionAST *ParseTopLevelExpr() {
590 if (ExprAST *E = ParseExpression()) {
591 // Make an anonymous proto.
592 PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
593 return new FunctionAST(Proto, E);
594 }
595 return 0;
596 }
597
598 /// external ::= 'extern' prototype
ParseExtern()599 static PrototypeAST *ParseExtern() {
600 getNextToken(); // eat extern.
601 return ParsePrototype();
602 }
603
604 //===----------------------------------------------------------------------===//
605 // Code Generation
606 //===----------------------------------------------------------------------===//
607
608 static Module *TheModule;
609 static IRBuilder<> Builder(getGlobalContext());
610 static std::map<std::string, AllocaInst*> NamedValues;
611 static FunctionPassManager *TheFPM;
612
ErrorV(const char * Str)613 Value *ErrorV(const char *Str) { Error(Str); return 0; }
614
615 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
616 /// the function. This is used for mutable variables etc.
CreateEntryBlockAlloca(Function * TheFunction,const std::string & VarName)617 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
618 const std::string &VarName) {
619 IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
620 TheFunction->getEntryBlock().begin());
621 return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
622 VarName.c_str());
623 }
624
Codegen()625 Value *NumberExprAST::Codegen() {
626 return ConstantFP::get(getGlobalContext(), APFloat(Val));
627 }
628
Codegen()629 Value *VariableExprAST::Codegen() {
630 // Look this variable up in the function.
631 Value *V = NamedValues[Name];
632 if (V == 0) return ErrorV("Unknown variable name");
633
634 // Load the value.
635 return Builder.CreateLoad(V, Name.c_str());
636 }
637
Codegen()638 Value *UnaryExprAST::Codegen() {
639 Value *OperandV = Operand->Codegen();
640 if (OperandV == 0) return 0;
641
642 Function *F = TheModule->getFunction(std::string("unary")+Opcode);
643 if (F == 0)
644 return ErrorV("Unknown unary operator");
645
646 return Builder.CreateCall(F, OperandV, "unop");
647 }
648
Codegen()649 Value *BinaryExprAST::Codegen() {
650 // Special case '=' because we don't want to emit the LHS as an expression.
651 if (Op == '=') {
652 // Assignment requires the LHS to be an identifier.
653 VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS);
654 if (!LHSE)
655 return ErrorV("destination of '=' must be a variable");
656 // Codegen the RHS.
657 Value *Val = RHS->Codegen();
658 if (Val == 0) return 0;
659
660 // Look up the name.
661 Value *Variable = NamedValues[LHSE->getName()];
662 if (Variable == 0) return ErrorV("Unknown variable name");
663
664 Builder.CreateStore(Val, Variable);
665 return Val;
666 }
667
668 Value *L = LHS->Codegen();
669 Value *R = RHS->Codegen();
670 if (L == 0 || R == 0) return 0;
671
672 switch (Op) {
673 case '+': return Builder.CreateFAdd(L, R, "addtmp");
674 case '-': return Builder.CreateFSub(L, R, "subtmp");
675 case '*': return Builder.CreateFMul(L, R, "multmp");
676 case '<':
677 L = Builder.CreateFCmpULT(L, R, "cmptmp");
678 // Convert bool 0/1 to double 0.0 or 1.0
679 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
680 "booltmp");
681 default: break;
682 }
683
684 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
685 // a call to it.
686 Function *F = TheModule->getFunction(std::string("binary")+Op);
687 assert(F && "binary operator not found!");
688
689 Value *Ops[] = { L, R };
690 return Builder.CreateCall(F, Ops, "binop");
691 }
692
Codegen()693 Value *CallExprAST::Codegen() {
694 // Look up the name in the global module table.
695 Function *CalleeF = TheModule->getFunction(Callee);
696 if (CalleeF == 0)
697 return ErrorV("Unknown function referenced");
698
699 // If argument mismatch error.
700 if (CalleeF->arg_size() != Args.size())
701 return ErrorV("Incorrect # arguments passed");
702
703 std::vector<Value*> ArgsV;
704 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
705 ArgsV.push_back(Args[i]->Codegen());
706 if (ArgsV.back() == 0) return 0;
707 }
708
709 return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
710 }
711
Codegen()712 Value *IfExprAST::Codegen() {
713 Value *CondV = Cond->Codegen();
714 if (CondV == 0) return 0;
715
716 // Convert condition to a bool by comparing equal to 0.0.
717 CondV = Builder.CreateFCmpONE(CondV,
718 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
719 "ifcond");
720
721 Function *TheFunction = Builder.GetInsertBlock()->getParent();
722
723 // Create blocks for the then and else cases. Insert the 'then' block at the
724 // end of the function.
725 BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
726 BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
727 BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
728
729 Builder.CreateCondBr(CondV, ThenBB, ElseBB);
730
731 // Emit then value.
732 Builder.SetInsertPoint(ThenBB);
733
734 Value *ThenV = Then->Codegen();
735 if (ThenV == 0) return 0;
736
737 Builder.CreateBr(MergeBB);
738 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
739 ThenBB = Builder.GetInsertBlock();
740
741 // Emit else block.
742 TheFunction->getBasicBlockList().push_back(ElseBB);
743 Builder.SetInsertPoint(ElseBB);
744
745 Value *ElseV = Else->Codegen();
746 if (ElseV == 0) return 0;
747
748 Builder.CreateBr(MergeBB);
749 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
750 ElseBB = Builder.GetInsertBlock();
751
752 // Emit merge block.
753 TheFunction->getBasicBlockList().push_back(MergeBB);
754 Builder.SetInsertPoint(MergeBB);
755 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
756 "iftmp");
757
758 PN->addIncoming(ThenV, ThenBB);
759 PN->addIncoming(ElseV, ElseBB);
760 return PN;
761 }
762
Codegen()763 Value *ForExprAST::Codegen() {
764 // Output this as:
765 // var = alloca double
766 // ...
767 // start = startexpr
768 // store start -> var
769 // goto loop
770 // loop:
771 // ...
772 // bodyexpr
773 // ...
774 // loopend:
775 // step = stepexpr
776 // endcond = endexpr
777 //
778 // curvar = load var
779 // nextvar = curvar + step
780 // store nextvar -> var
781 // br endcond, loop, endloop
782 // outloop:
783
784 Function *TheFunction = Builder.GetInsertBlock()->getParent();
785
786 // Create an alloca for the variable in the entry block.
787 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
788
789 // Emit the start code first, without 'variable' in scope.
790 Value *StartVal = Start->Codegen();
791 if (StartVal == 0) return 0;
792
793 // Store the value into the alloca.
794 Builder.CreateStore(StartVal, Alloca);
795
796 // Make the new basic block for the loop header, inserting after current
797 // block.
798 BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
799
800 // Insert an explicit fall through from the current block to the LoopBB.
801 Builder.CreateBr(LoopBB);
802
803 // Start insertion in LoopBB.
804 Builder.SetInsertPoint(LoopBB);
805
806 // Within the loop, the variable is defined equal to the PHI node. If it
807 // shadows an existing variable, we have to restore it, so save it now.
808 AllocaInst *OldVal = NamedValues[VarName];
809 NamedValues[VarName] = Alloca;
810
811 // Emit the body of the loop. This, like any other expr, can change the
812 // current BB. Note that we ignore the value computed by the body, but don't
813 // allow an error.
814 if (Body->Codegen() == 0)
815 return 0;
816
817 // Emit the step value.
818 Value *StepVal;
819 if (Step) {
820 StepVal = Step->Codegen();
821 if (StepVal == 0) return 0;
822 } else {
823 // If not specified, use 1.0.
824 StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
825 }
826
827 // Compute the end condition.
828 Value *EndCond = End->Codegen();
829 if (EndCond == 0) return EndCond;
830
831 // Reload, increment, and restore the alloca. This handles the case where
832 // the body of the loop mutates the variable.
833 Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
834 Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
835 Builder.CreateStore(NextVar, Alloca);
836
837 // Convert condition to a bool by comparing equal to 0.0.
838 EndCond = Builder.CreateFCmpONE(EndCond,
839 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
840 "loopcond");
841
842 // Create the "after loop" block and insert it.
843 BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
844
845 // Insert the conditional branch into the end of LoopEndBB.
846 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
847
848 // Any new code will be inserted in AfterBB.
849 Builder.SetInsertPoint(AfterBB);
850
851 // Restore the unshadowed variable.
852 if (OldVal)
853 NamedValues[VarName] = OldVal;
854 else
855 NamedValues.erase(VarName);
856
857
858 // for expr always returns 0.0.
859 return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
860 }
861
Codegen()862 Value *VarExprAST::Codegen() {
863 std::vector<AllocaInst *> OldBindings;
864
865 Function *TheFunction = Builder.GetInsertBlock()->getParent();
866
867 // Register all variables and emit their initializer.
868 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
869 const std::string &VarName = VarNames[i].first;
870 ExprAST *Init = VarNames[i].second;
871
872 // Emit the initializer before adding the variable to scope, this prevents
873 // the initializer from referencing the variable itself, and permits stuff
874 // like this:
875 // var a = 1 in
876 // var a = a in ... # refers to outer 'a'.
877 Value *InitVal;
878 if (Init) {
879 InitVal = Init->Codegen();
880 if (InitVal == 0) return 0;
881 } else { // If not specified, use 0.0.
882 InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
883 }
884
885 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
886 Builder.CreateStore(InitVal, Alloca);
887
888 // Remember the old variable binding so that we can restore the binding when
889 // we unrecurse.
890 OldBindings.push_back(NamedValues[VarName]);
891
892 // Remember this binding.
893 NamedValues[VarName] = Alloca;
894 }
895
896 // Codegen the body, now that all vars are in scope.
897 Value *BodyVal = Body->Codegen();
898 if (BodyVal == 0) return 0;
899
900 // Pop all our variables from scope.
901 for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
902 NamedValues[VarNames[i].first] = OldBindings[i];
903
904 // Return the body computation.
905 return BodyVal;
906 }
907
Codegen()908 Function *PrototypeAST::Codegen() {
909 // Make the function type: double(double,double) etc.
910 std::vector<Type*> Doubles(Args.size(),
911 Type::getDoubleTy(getGlobalContext()));
912 FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
913 Doubles, false);
914
915 Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
916
917 // If F conflicted, there was already something named 'Name'. If it has a
918 // body, don't allow redefinition or reextern.
919 if (F->getName() != Name) {
920 // Delete the one we just made and get the existing one.
921 F->eraseFromParent();
922 F = TheModule->getFunction(Name);
923
924 // If F already has a body, reject this.
925 if (!F->empty()) {
926 ErrorF("redefinition of function");
927 return 0;
928 }
929
930 // If F took a different number of args, reject.
931 if (F->arg_size() != Args.size()) {
932 ErrorF("redefinition of function with different # args");
933 return 0;
934 }
935 }
936
937 // Set names for all arguments.
938 unsigned Idx = 0;
939 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
940 ++AI, ++Idx)
941 AI->setName(Args[Idx]);
942
943 return F;
944 }
945
946 /// CreateArgumentAllocas - Create an alloca for each argument and register the
947 /// argument in the symbol table so that references to it will succeed.
CreateArgumentAllocas(Function * F)948 void PrototypeAST::CreateArgumentAllocas(Function *F) {
949 Function::arg_iterator AI = F->arg_begin();
950 for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
951 // Create an alloca for this variable.
952 AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
953
954 // Store the initial value into the alloca.
955 Builder.CreateStore(AI, Alloca);
956
957 // Add arguments to variable symbol table.
958 NamedValues[Args[Idx]] = Alloca;
959 }
960 }
961
Codegen()962 Function *FunctionAST::Codegen() {
963 NamedValues.clear();
964
965 Function *TheFunction = Proto->Codegen();
966 if (TheFunction == 0)
967 return 0;
968
969 // If this is an operator, install it.
970 if (Proto->isBinaryOp())
971 BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
972
973 // Create a new basic block to start insertion into.
974 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
975 Builder.SetInsertPoint(BB);
976
977 // Add all arguments to the symbol table and create their allocas.
978 Proto->CreateArgumentAllocas(TheFunction);
979
980 if (Value *RetVal = Body->Codegen()) {
981 // Finish off the function.
982 Builder.CreateRet(RetVal);
983
984 // Validate the generated code, checking for consistency.
985 verifyFunction(*TheFunction);
986
987 // Optimize the function.
988 TheFPM->run(*TheFunction);
989
990 return TheFunction;
991 }
992
993 // Error reading body, remove function.
994 TheFunction->eraseFromParent();
995
996 if (Proto->isBinaryOp())
997 BinopPrecedence.erase(Proto->getOperatorName());
998 return 0;
999 }
1000
1001 //===----------------------------------------------------------------------===//
1002 // Top-Level parsing and JIT Driver
1003 //===----------------------------------------------------------------------===//
1004
1005 static ExecutionEngine *TheExecutionEngine;
1006
HandleDefinition()1007 static void HandleDefinition() {
1008 if (FunctionAST *F = ParseDefinition()) {
1009 if (Function *LF = F->Codegen()) {
1010 fprintf(stderr, "Read function definition:");
1011 LF->dump();
1012 }
1013 } else {
1014 // Skip token for error recovery.
1015 getNextToken();
1016 }
1017 }
1018
HandleExtern()1019 static void HandleExtern() {
1020 if (PrototypeAST *P = ParseExtern()) {
1021 if (Function *F = P->Codegen()) {
1022 fprintf(stderr, "Read extern: ");
1023 F->dump();
1024 }
1025 } else {
1026 // Skip token for error recovery.
1027 getNextToken();
1028 }
1029 }
1030
HandleTopLevelExpression()1031 static void HandleTopLevelExpression() {
1032 // Evaluate a top-level expression into an anonymous function.
1033 if (FunctionAST *F = ParseTopLevelExpr()) {
1034 if (Function *LF = F->Codegen()) {
1035 // JIT the function, returning a function pointer.
1036 void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
1037
1038 // Cast it to the right type (takes no arguments, returns a double) so we
1039 // can call it as a native function.
1040 double (*FP)() = (double (*)())(intptr_t)FPtr;
1041 fprintf(stderr, "Evaluated to %f\n", FP());
1042 }
1043 } else {
1044 // Skip token for error recovery.
1045 getNextToken();
1046 }
1047 }
1048
1049 /// top ::= definition | external | expression | ';'
MainLoop()1050 static void MainLoop() {
1051 while (1) {
1052 fprintf(stderr, "ready> ");
1053 switch (CurTok) {
1054 case tok_eof: return;
1055 case ';': getNextToken(); break; // ignore top-level semicolons.
1056 case tok_def: HandleDefinition(); break;
1057 case tok_extern: HandleExtern(); break;
1058 default: HandleTopLevelExpression(); break;
1059 }
1060 }
1061 }
1062
1063 //===----------------------------------------------------------------------===//
1064 // "Library" functions that can be "extern'd" from user code.
1065 //===----------------------------------------------------------------------===//
1066
1067 /// putchard - putchar that takes a double and returns 0.
1068 extern "C"
putchard(double X)1069 double putchard(double X) {
1070 putchar((char)X);
1071 return 0;
1072 }
1073
1074 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1075 extern "C"
printd(double X)1076 double printd(double X) {
1077 printf("%f\n", X);
1078 return 0;
1079 }
1080
1081 //===----------------------------------------------------------------------===//
1082 // Main driver code.
1083 //===----------------------------------------------------------------------===//
1084
main()1085 int main() {
1086 InitializeNativeTarget();
1087 LLVMContext &Context = getGlobalContext();
1088
1089 // Install standard binary operators.
1090 // 1 is lowest precedence.
1091 BinopPrecedence['='] = 2;
1092 BinopPrecedence['<'] = 10;
1093 BinopPrecedence['+'] = 20;
1094 BinopPrecedence['-'] = 20;
1095 BinopPrecedence['*'] = 40; // highest.
1096
1097 // Prime the first token.
1098 fprintf(stderr, "ready> ");
1099 getNextToken();
1100
1101 // Make the module, which holds all the code.
1102 TheModule = new Module("my cool jit", Context);
1103
1104 // Create the JIT. This takes ownership of the module.
1105 std::string ErrStr;
1106 TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
1107 if (!TheExecutionEngine) {
1108 fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
1109 exit(1);
1110 }
1111
1112 FunctionPassManager OurFPM(TheModule);
1113
1114 // Set up the optimizer pipeline. Start with registering info about how the
1115 // target lays out data structures.
1116 TheModule->setDataLayout(TheExecutionEngine->getDataLayout());
1117 OurFPM.add(new DataLayoutPass(TheModule));
1118 // Provide basic AliasAnalysis support for GVN.
1119 OurFPM.add(createBasicAliasAnalysisPass());
1120 // Promote allocas to registers.
1121 OurFPM.add(createPromoteMemoryToRegisterPass());
1122 // Do simple "peephole" optimizations and bit-twiddling optzns.
1123 OurFPM.add(createInstructionCombiningPass());
1124 // Reassociate expressions.
1125 OurFPM.add(createReassociatePass());
1126 // Eliminate Common SubExpressions.
1127 OurFPM.add(createGVNPass());
1128 // Simplify the control flow graph (deleting unreachable blocks, etc).
1129 OurFPM.add(createCFGSimplificationPass());
1130
1131 OurFPM.doInitialization();
1132
1133 // Set the global so the code gen can use this.
1134 TheFPM = &OurFPM;
1135
1136 // Run the main "interpreter loop" now.
1137 MainLoop();
1138
1139 TheFPM = 0;
1140
1141 // Print out all of the generated code.
1142 TheModule->dump();
1143
1144 return 0;
1145 }
1146