1 #include "llvm/Analysis/Passes.h"
2 #include "llvm/ExecutionEngine/ExecutionEngine.h"
3 #include "llvm/ExecutionEngine/MCJIT.h"
4 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
5 #include "llvm/IR/DataLayout.h"
6 #include "llvm/IR/DerivedTypes.h"
7 #include "llvm/IR/IRBuilder.h"
8 #include "llvm/IR/LLVMContext.h"
9 #include "llvm/IR/Module.h"
10 #include "llvm/IR/Verifier.h"
11 #include "llvm/PassManager.h"
12 #include "llvm/Support/TargetSelect.h"
13 #include "llvm/Transforms/Scalar.h"
14 #include <cctype>
15 #include <cstdio>
16 #include <map>
17 #include <string>
18 #include <vector>
19 using namespace llvm;
20
21 //===----------------------------------------------------------------------===//
22 // Lexer
23 //===----------------------------------------------------------------------===//
24
25 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
26 // of these for known things.
27 enum Token {
28 tok_eof = -1,
29
30 // commands
31 tok_def = -2, tok_extern = -3,
32
33 // primary
34 tok_identifier = -4, tok_number = -5,
35
36 // control
37 tok_if = -6, tok_then = -7, tok_else = -8,
38 tok_for = -9, tok_in = -10,
39
40 // operators
41 tok_binary = -11, tok_unary = -12,
42
43 // var definition
44 tok_var = -13
45 };
46
47 static std::string IdentifierStr; // Filled in if tok_identifier
48 static double NumVal; // Filled in if tok_number
49
50 /// gettok - Return the next token from standard input.
gettok()51 static int gettok() {
52 static int LastChar = ' ';
53
54 // Skip any whitespace.
55 while (isspace(LastChar))
56 LastChar = getchar();
57
58 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
59 IdentifierStr = LastChar;
60 while (isalnum((LastChar = getchar())))
61 IdentifierStr += LastChar;
62
63 if (IdentifierStr == "def") return tok_def;
64 if (IdentifierStr == "extern") return tok_extern;
65 if (IdentifierStr == "if") return tok_if;
66 if (IdentifierStr == "then") return tok_then;
67 if (IdentifierStr == "else") return tok_else;
68 if (IdentifierStr == "for") return tok_for;
69 if (IdentifierStr == "in") return tok_in;
70 if (IdentifierStr == "binary") return tok_binary;
71 if (IdentifierStr == "unary") return tok_unary;
72 if (IdentifierStr == "var") return tok_var;
73 return tok_identifier;
74 }
75
76 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
77 std::string NumStr;
78 do {
79 NumStr += LastChar;
80 LastChar = getchar();
81 } while (isdigit(LastChar) || LastChar == '.');
82
83 NumVal = strtod(NumStr.c_str(), 0);
84 return tok_number;
85 }
86
87 if (LastChar == '#') {
88 // Comment until end of line.
89 do LastChar = getchar();
90 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
91
92 if (LastChar != EOF)
93 return gettok();
94 }
95
96 // Check for end of file. Don't eat the EOF.
97 if (LastChar == EOF)
98 return tok_eof;
99
100 // Otherwise, just return the character as its ascii value.
101 int ThisChar = LastChar;
102 LastChar = getchar();
103 return ThisChar;
104 }
105
106 //===----------------------------------------------------------------------===//
107 // Abstract Syntax Tree (aka Parse Tree)
108 //===----------------------------------------------------------------------===//
109
110 /// ExprAST - Base class for all expression nodes.
111 class ExprAST {
112 public:
~ExprAST()113 virtual ~ExprAST() {}
114 virtual Value *Codegen() = 0;
115 };
116
117 /// NumberExprAST - Expression class for numeric literals like "1.0".
118 class NumberExprAST : public ExprAST {
119 double Val;
120 public:
NumberExprAST(double val)121 NumberExprAST(double val) : Val(val) {}
122 virtual Value *Codegen();
123 };
124
125 /// VariableExprAST - Expression class for referencing a variable, like "a".
126 class VariableExprAST : public ExprAST {
127 std::string Name;
128 public:
VariableExprAST(const std::string & name)129 VariableExprAST(const std::string &name) : Name(name) {}
getName() const130 const std::string &getName() const { return Name; }
131 virtual Value *Codegen();
132 };
133
134 /// UnaryExprAST - Expression class for a unary operator.
135 class UnaryExprAST : public ExprAST {
136 char Opcode;
137 ExprAST *Operand;
138 public:
UnaryExprAST(char opcode,ExprAST * operand)139 UnaryExprAST(char opcode, ExprAST *operand)
140 : Opcode(opcode), Operand(operand) {}
141 virtual Value *Codegen();
142 };
143
144 /// BinaryExprAST - Expression class for a binary operator.
145 class BinaryExprAST : public ExprAST {
146 char Op;
147 ExprAST *LHS, *RHS;
148 public:
BinaryExprAST(char op,ExprAST * lhs,ExprAST * rhs)149 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
150 : Op(op), LHS(lhs), RHS(rhs) {}
151 virtual Value *Codegen();
152 };
153
154 /// CallExprAST - Expression class for function calls.
155 class CallExprAST : public ExprAST {
156 std::string Callee;
157 std::vector<ExprAST*> Args;
158 public:
CallExprAST(const std::string & callee,std::vector<ExprAST * > & args)159 CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
160 : Callee(callee), Args(args) {}
161 virtual Value *Codegen();
162 };
163
164 /// IfExprAST - Expression class for if/then/else.
165 class IfExprAST : public ExprAST {
166 ExprAST *Cond, *Then, *Else;
167 public:
IfExprAST(ExprAST * cond,ExprAST * then,ExprAST * _else)168 IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
169 : Cond(cond), Then(then), Else(_else) {}
170 virtual Value *Codegen();
171 };
172
173 /// ForExprAST - Expression class for for/in.
174 class ForExprAST : public ExprAST {
175 std::string VarName;
176 ExprAST *Start, *End, *Step, *Body;
177 public:
ForExprAST(const std::string & varname,ExprAST * start,ExprAST * end,ExprAST * step,ExprAST * body)178 ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
179 ExprAST *step, ExprAST *body)
180 : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
181 virtual Value *Codegen();
182 };
183
184 /// VarExprAST - Expression class for var/in
185 class VarExprAST : public ExprAST {
186 std::vector<std::pair<std::string, ExprAST*> > VarNames;
187 ExprAST *Body;
188 public:
VarExprAST(const std::vector<std::pair<std::string,ExprAST * >> & varnames,ExprAST * body)189 VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
190 ExprAST *body)
191 : VarNames(varnames), Body(body) {}
192
193 virtual Value *Codegen();
194 };
195
196 /// PrototypeAST - This class represents the "prototype" for a function,
197 /// which captures its argument names as well as if it is an operator.
198 class PrototypeAST {
199 std::string Name;
200 std::vector<std::string> Args;
201 bool isOperator;
202 unsigned Precedence; // Precedence if a binary op.
203 public:
PrototypeAST(const std::string & name,const std::vector<std::string> & args,bool isoperator=false,unsigned prec=0)204 PrototypeAST(const std::string &name, const std::vector<std::string> &args,
205 bool isoperator = false, unsigned prec = 0)
206 : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
207
isUnaryOp() const208 bool isUnaryOp() const { return isOperator && Args.size() == 1; }
isBinaryOp() const209 bool isBinaryOp() const { return isOperator && Args.size() == 2; }
210
getOperatorName() const211 char getOperatorName() const {
212 assert(isUnaryOp() || isBinaryOp());
213 return Name[Name.size()-1];
214 }
215
getBinaryPrecedence() const216 unsigned getBinaryPrecedence() const { return Precedence; }
217
218 Function *Codegen();
219
220 void CreateArgumentAllocas(Function *F);
221 };
222
223 /// FunctionAST - This class represents a function definition itself.
224 class FunctionAST {
225 PrototypeAST *Proto;
226 ExprAST *Body;
227 public:
FunctionAST(PrototypeAST * proto,ExprAST * body)228 FunctionAST(PrototypeAST *proto, ExprAST *body)
229 : Proto(proto), Body(body) {}
230
231 Function *Codegen();
232 };
233
234 //===----------------------------------------------------------------------===//
235 // Parser
236 //===----------------------------------------------------------------------===//
237
238 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
239 /// token the parser is looking at. getNextToken reads another token from the
240 /// lexer and updates CurTok with its results.
241 static int CurTok;
getNextToken()242 static int getNextToken() {
243 return CurTok = gettok();
244 }
245
246 /// BinopPrecedence - This holds the precedence for each binary operator that is
247 /// defined.
248 static std::map<char, int> BinopPrecedence;
249
250 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
GetTokPrecedence()251 static int GetTokPrecedence() {
252 if (!isascii(CurTok))
253 return -1;
254
255 // Make sure it's a declared binop.
256 int TokPrec = BinopPrecedence[CurTok];
257 if (TokPrec <= 0) return -1;
258 return TokPrec;
259 }
260
261 /// Error* - These are little helper functions for error handling.
Error(const char * Str)262 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
ErrorP(const char * Str)263 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
ErrorF(const char * Str)264 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
265
266 static ExprAST *ParseExpression();
267
268 /// identifierexpr
269 /// ::= identifier
270 /// ::= identifier '(' expression* ')'
ParseIdentifierExpr()271 static ExprAST *ParseIdentifierExpr() {
272 std::string IdName = IdentifierStr;
273
274 getNextToken(); // eat identifier.
275
276 if (CurTok != '(') // Simple variable ref.
277 return new VariableExprAST(IdName);
278
279 // Call.
280 getNextToken(); // eat (
281 std::vector<ExprAST*> Args;
282 if (CurTok != ')') {
283 while (1) {
284 ExprAST *Arg = ParseExpression();
285 if (!Arg) return 0;
286 Args.push_back(Arg);
287
288 if (CurTok == ')') break;
289
290 if (CurTok != ',')
291 return Error("Expected ')' or ',' in argument list");
292 getNextToken();
293 }
294 }
295
296 // Eat the ')'.
297 getNextToken();
298
299 return new CallExprAST(IdName, Args);
300 }
301
302 /// numberexpr ::= number
ParseNumberExpr()303 static ExprAST *ParseNumberExpr() {
304 ExprAST *Result = new NumberExprAST(NumVal);
305 getNextToken(); // consume the number
306 return Result;
307 }
308
309 /// parenexpr ::= '(' expression ')'
ParseParenExpr()310 static ExprAST *ParseParenExpr() {
311 getNextToken(); // eat (.
312 ExprAST *V = ParseExpression();
313 if (!V) return 0;
314
315 if (CurTok != ')')
316 return Error("expected ')'");
317 getNextToken(); // eat ).
318 return V;
319 }
320
321 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
ParseIfExpr()322 static ExprAST *ParseIfExpr() {
323 getNextToken(); // eat the if.
324
325 // condition.
326 ExprAST *Cond = ParseExpression();
327 if (!Cond) return 0;
328
329 if (CurTok != tok_then)
330 return Error("expected then");
331 getNextToken(); // eat the then
332
333 ExprAST *Then = ParseExpression();
334 if (Then == 0) return 0;
335
336 if (CurTok != tok_else)
337 return Error("expected else");
338
339 getNextToken();
340
341 ExprAST *Else = ParseExpression();
342 if (!Else) return 0;
343
344 return new IfExprAST(Cond, Then, Else);
345 }
346
347 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
ParseForExpr()348 static ExprAST *ParseForExpr() {
349 getNextToken(); // eat the for.
350
351 if (CurTok != tok_identifier)
352 return Error("expected identifier after for");
353
354 std::string IdName = IdentifierStr;
355 getNextToken(); // eat identifier.
356
357 if (CurTok != '=')
358 return Error("expected '=' after for");
359 getNextToken(); // eat '='.
360
361
362 ExprAST *Start = ParseExpression();
363 if (Start == 0) return 0;
364 if (CurTok != ',')
365 return Error("expected ',' after for start value");
366 getNextToken();
367
368 ExprAST *End = ParseExpression();
369 if (End == 0) return 0;
370
371 // The step value is optional.
372 ExprAST *Step = 0;
373 if (CurTok == ',') {
374 getNextToken();
375 Step = ParseExpression();
376 if (Step == 0) return 0;
377 }
378
379 if (CurTok != tok_in)
380 return Error("expected 'in' after for");
381 getNextToken(); // eat 'in'.
382
383 ExprAST *Body = ParseExpression();
384 if (Body == 0) return 0;
385
386 return new ForExprAST(IdName, Start, End, Step, Body);
387 }
388
389 /// varexpr ::= 'var' identifier ('=' expression)?
390 // (',' identifier ('=' expression)?)* 'in' expression
ParseVarExpr()391 static ExprAST *ParseVarExpr() {
392 getNextToken(); // eat the var.
393
394 std::vector<std::pair<std::string, ExprAST*> > VarNames;
395
396 // At least one variable name is required.
397 if (CurTok != tok_identifier)
398 return Error("expected identifier after var");
399
400 while (1) {
401 std::string Name = IdentifierStr;
402 getNextToken(); // eat identifier.
403
404 // Read the optional initializer.
405 ExprAST *Init = 0;
406 if (CurTok == '=') {
407 getNextToken(); // eat the '='.
408
409 Init = ParseExpression();
410 if (Init == 0) return 0;
411 }
412
413 VarNames.push_back(std::make_pair(Name, Init));
414
415 // End of var list, exit loop.
416 if (CurTok != ',') break;
417 getNextToken(); // eat the ','.
418
419 if (CurTok != tok_identifier)
420 return Error("expected identifier list after var");
421 }
422
423 // At this point, we have to have 'in'.
424 if (CurTok != tok_in)
425 return Error("expected 'in' keyword after 'var'");
426 getNextToken(); // eat 'in'.
427
428 ExprAST *Body = ParseExpression();
429 if (Body == 0) return 0;
430
431 return new VarExprAST(VarNames, Body);
432 }
433
434 /// primary
435 /// ::= identifierexpr
436 /// ::= numberexpr
437 /// ::= parenexpr
438 /// ::= ifexpr
439 /// ::= forexpr
440 /// ::= varexpr
ParsePrimary()441 static ExprAST *ParsePrimary() {
442 switch (CurTok) {
443 default: return Error("unknown token when expecting an expression");
444 case tok_identifier: return ParseIdentifierExpr();
445 case tok_number: return ParseNumberExpr();
446 case '(': return ParseParenExpr();
447 case tok_if: return ParseIfExpr();
448 case tok_for: return ParseForExpr();
449 case tok_var: return ParseVarExpr();
450 }
451 }
452
453 /// unary
454 /// ::= primary
455 /// ::= '!' unary
ParseUnary()456 static ExprAST *ParseUnary() {
457 // If the current token is not an operator, it must be a primary expr.
458 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
459 return ParsePrimary();
460
461 // If this is a unary operator, read it.
462 int Opc = CurTok;
463 getNextToken();
464 if (ExprAST *Operand = ParseUnary())
465 return new UnaryExprAST(Opc, Operand);
466 return 0;
467 }
468
469 /// binoprhs
470 /// ::= ('+' unary)*
ParseBinOpRHS(int ExprPrec,ExprAST * LHS)471 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
472 // If this is a binop, find its precedence.
473 while (1) {
474 int TokPrec = GetTokPrecedence();
475
476 // If this is a binop that binds at least as tightly as the current binop,
477 // consume it, otherwise we are done.
478 if (TokPrec < ExprPrec)
479 return LHS;
480
481 // Okay, we know this is a binop.
482 int BinOp = CurTok;
483 getNextToken(); // eat binop
484
485 // Parse the unary expression after the binary operator.
486 ExprAST *RHS = ParseUnary();
487 if (!RHS) return 0;
488
489 // If BinOp binds less tightly with RHS than the operator after RHS, let
490 // the pending operator take RHS as its LHS.
491 int NextPrec = GetTokPrecedence();
492 if (TokPrec < NextPrec) {
493 RHS = ParseBinOpRHS(TokPrec+1, RHS);
494 if (RHS == 0) return 0;
495 }
496
497 // Merge LHS/RHS.
498 LHS = new BinaryExprAST(BinOp, LHS, RHS);
499 }
500 }
501
502 /// expression
503 /// ::= unary binoprhs
504 ///
ParseExpression()505 static ExprAST *ParseExpression() {
506 ExprAST *LHS = ParseUnary();
507 if (!LHS) return 0;
508
509 return ParseBinOpRHS(0, LHS);
510 }
511
512 /// prototype
513 /// ::= id '(' id* ')'
514 /// ::= binary LETTER number? (id, id)
515 /// ::= unary LETTER (id)
ParsePrototype()516 static PrototypeAST *ParsePrototype() {
517 std::string FnName;
518
519 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
520 unsigned BinaryPrecedence = 30;
521
522 switch (CurTok) {
523 default:
524 return ErrorP("Expected function name in prototype");
525 case tok_identifier:
526 FnName = IdentifierStr;
527 Kind = 0;
528 getNextToken();
529 break;
530 case tok_unary:
531 getNextToken();
532 if (!isascii(CurTok))
533 return ErrorP("Expected unary operator");
534 FnName = "unary";
535 FnName += (char)CurTok;
536 Kind = 1;
537 getNextToken();
538 break;
539 case tok_binary:
540 getNextToken();
541 if (!isascii(CurTok))
542 return ErrorP("Expected binary operator");
543 FnName = "binary";
544 FnName += (char)CurTok;
545 Kind = 2;
546 getNextToken();
547
548 // Read the precedence if present.
549 if (CurTok == tok_number) {
550 if (NumVal < 1 || NumVal > 100)
551 return ErrorP("Invalid precedecnce: must be 1..100");
552 BinaryPrecedence = (unsigned)NumVal;
553 getNextToken();
554 }
555 break;
556 }
557
558 if (CurTok != '(')
559 return ErrorP("Expected '(' in prototype");
560
561 std::vector<std::string> ArgNames;
562 while (getNextToken() == tok_identifier)
563 ArgNames.push_back(IdentifierStr);
564 if (CurTok != ')')
565 return ErrorP("Expected ')' in prototype");
566
567 // success.
568 getNextToken(); // eat ')'.
569
570 // Verify right number of names for operator.
571 if (Kind && ArgNames.size() != Kind)
572 return ErrorP("Invalid number of operands for operator");
573
574 return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
575 }
576
577 /// definition ::= 'def' prototype expression
ParseDefinition()578 static FunctionAST *ParseDefinition() {
579 getNextToken(); // eat def.
580 PrototypeAST *Proto = ParsePrototype();
581 if (Proto == 0) return 0;
582
583 if (ExprAST *E = ParseExpression())
584 return new FunctionAST(Proto, E);
585 return 0;
586 }
587
588 /// toplevelexpr ::= expression
ParseTopLevelExpr()589 static FunctionAST *ParseTopLevelExpr() {
590 if (ExprAST *E = ParseExpression()) {
591 // Make an anonymous proto.
592 PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
593 return new FunctionAST(Proto, E);
594 }
595 return 0;
596 }
597
598 /// external ::= 'extern' prototype
ParseExtern()599 static PrototypeAST *ParseExtern() {
600 getNextToken(); // eat extern.
601 return ParsePrototype();
602 }
603
604 //===----------------------------------------------------------------------===//
605 // Quick and dirty hack
606 //===----------------------------------------------------------------------===//
607
608 // FIXME: Obviously we can do better than this
GenerateUniqueName(const char * root)609 std::string GenerateUniqueName(const char *root)
610 {
611 static int i = 0;
612 char s[16];
613 sprintf(s, "%s%d", root, i++);
614 std::string S = s;
615 return S;
616 }
617
MakeLegalFunctionName(std::string Name)618 std::string MakeLegalFunctionName(std::string Name)
619 {
620 std::string NewName;
621 if (!Name.length())
622 return GenerateUniqueName("anon_func_");
623
624 // Start with what we have
625 NewName = Name;
626
627 // Look for a numberic first character
628 if (NewName.find_first_of("0123456789") == 0) {
629 NewName.insert(0, 1, 'n');
630 }
631
632 // Replace illegal characters with their ASCII equivalent
633 std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
634 size_t pos;
635 while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) {
636 char old_c = NewName.at(pos);
637 char new_str[16];
638 sprintf(new_str, "%d", (int)old_c);
639 NewName = NewName.replace(pos, 1, new_str);
640 }
641
642 return NewName;
643 }
644
645 //===----------------------------------------------------------------------===//
646 // MCJIT helper class
647 //===----------------------------------------------------------------------===//
648
649 class MCJITHelper
650 {
651 public:
MCJITHelper(LLVMContext & C)652 MCJITHelper(LLVMContext& C) : Context(C), OpenModule(NULL) {}
653 ~MCJITHelper();
654
655 Function *getFunction(const std::string FnName);
656 Module *getModuleForNewFunction();
657 void *getPointerToFunction(Function* F);
658 void *getPointerToNamedFunction(const std::string &Name);
659 void dump();
660
661 private:
662 typedef std::vector<Module*> ModuleVector;
663 typedef std::vector<ExecutionEngine*> EngineVector;
664
665 LLVMContext &Context;
666 Module *OpenModule;
667 ModuleVector Modules;
668 EngineVector Engines;
669 };
670
671 class HelpingMemoryManager : public SectionMemoryManager
672 {
673 HelpingMemoryManager(const HelpingMemoryManager&) LLVM_DELETED_FUNCTION;
674 void operator=(const HelpingMemoryManager&) LLVM_DELETED_FUNCTION;
675
676 public:
HelpingMemoryManager(MCJITHelper * Helper)677 HelpingMemoryManager(MCJITHelper *Helper) : MasterHelper(Helper) {}
~HelpingMemoryManager()678 virtual ~HelpingMemoryManager() {}
679
680 /// This method returns the address of the specified function.
681 /// Our implementation will attempt to find functions in other
682 /// modules associated with the MCJITHelper to cross link functions
683 /// from one generated module to another.
684 ///
685 /// If \p AbortOnFailure is false and no function with the given name is
686 /// found, this function returns a null pointer. Otherwise, it prints a
687 /// message to stderr and aborts.
688 virtual void *getPointerToNamedFunction(const std::string &Name,
689 bool AbortOnFailure = true);
690 private:
691 MCJITHelper *MasterHelper;
692 };
693
getPointerToNamedFunction(const std::string & Name,bool AbortOnFailure)694 void *HelpingMemoryManager::getPointerToNamedFunction(const std::string &Name,
695 bool AbortOnFailure)
696 {
697 // Try the standard symbol resolution first, but ask it not to abort.
698 void *pfn = SectionMemoryManager::getPointerToNamedFunction(Name, false);
699 if (pfn)
700 return pfn;
701
702 pfn = MasterHelper->getPointerToNamedFunction(Name);
703 if (!pfn && AbortOnFailure)
704 report_fatal_error("Program used external function '" + Name +
705 "' which could not be resolved!");
706 return pfn;
707 }
708
~MCJITHelper()709 MCJITHelper::~MCJITHelper()
710 {
711 if (OpenModule)
712 delete OpenModule;
713 EngineVector::iterator begin = Engines.begin();
714 EngineVector::iterator end = Engines.end();
715 EngineVector::iterator it;
716 for (it = begin; it != end; ++it)
717 delete *it;
718 }
719
getFunction(const std::string FnName)720 Function *MCJITHelper::getFunction(const std::string FnName) {
721 ModuleVector::iterator begin = Modules.begin();
722 ModuleVector::iterator end = Modules.end();
723 ModuleVector::iterator it;
724 for (it = begin; it != end; ++it) {
725 Function *F = (*it)->getFunction(FnName);
726 if (F) {
727 if (*it == OpenModule)
728 return F;
729
730 assert(OpenModule != NULL);
731
732 // This function is in a module that has already been JITed.
733 // We need to generate a new prototype for external linkage.
734 Function *PF = OpenModule->getFunction(FnName);
735 if (PF && !PF->empty()) {
736 ErrorF("redefinition of function across modules");
737 return 0;
738 }
739
740 // If we don't have a prototype yet, create one.
741 if (!PF)
742 PF = Function::Create(F->getFunctionType(),
743 Function::ExternalLinkage,
744 FnName,
745 OpenModule);
746 return PF;
747 }
748 }
749 return NULL;
750 }
751
getModuleForNewFunction()752 Module *MCJITHelper::getModuleForNewFunction() {
753 // If we have a Module that hasn't been JITed, use that.
754 if (OpenModule)
755 return OpenModule;
756
757 // Otherwise create a new Module.
758 std::string ModName = GenerateUniqueName("mcjit_module_");
759 Module *M = new Module(ModName, Context);
760 Modules.push_back(M);
761 OpenModule = M;
762 return M;
763 }
764
getPointerToFunction(Function * F)765 void *MCJITHelper::getPointerToFunction(Function* F) {
766 // See if an existing instance of MCJIT has this function.
767 EngineVector::iterator begin = Engines.begin();
768 EngineVector::iterator end = Engines.end();
769 EngineVector::iterator it;
770 for (it = begin; it != end; ++it) {
771 void *P = (*it)->getPointerToFunction(F);
772 if (P)
773 return P;
774 }
775
776 // If we didn't find the function, see if we can generate it.
777 if (OpenModule) {
778 std::string ErrStr;
779 ExecutionEngine *NewEngine = EngineBuilder(OpenModule)
780 .setErrorStr(&ErrStr)
781 .setUseMCJIT(true)
782 .setMCJITMemoryManager(new HelpingMemoryManager(this))
783 .create();
784 if (!NewEngine) {
785 fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
786 exit(1);
787 }
788
789 // Create a function pass manager for this engine
790 FunctionPassManager *FPM = new FunctionPassManager(OpenModule);
791
792 // Set up the optimizer pipeline. Start with registering info about how the
793 // target lays out data structures.
794 FPM->add(new DataLayout(*NewEngine->getDataLayout()));
795 // Provide basic AliasAnalysis support for GVN.
796 FPM->add(createBasicAliasAnalysisPass());
797 // Promote allocas to registers.
798 FPM->add(createPromoteMemoryToRegisterPass());
799 // Do simple "peephole" optimizations and bit-twiddling optzns.
800 FPM->add(createInstructionCombiningPass());
801 // Reassociate expressions.
802 FPM->add(createReassociatePass());
803 // Eliminate Common SubExpressions.
804 FPM->add(createGVNPass());
805 // Simplify the control flow graph (deleting unreachable blocks, etc).
806 FPM->add(createCFGSimplificationPass());
807 FPM->doInitialization();
808
809 // For each function in the module
810 Module::iterator it;
811 Module::iterator end = OpenModule->end();
812 for (it = OpenModule->begin(); it != end; ++it) {
813 // Run the FPM on this function
814 FPM->run(*it);
815 }
816
817 // We don't need this anymore
818 delete FPM;
819
820 OpenModule = NULL;
821 Engines.push_back(NewEngine);
822 NewEngine->finalizeObject();
823 return NewEngine->getPointerToFunction(F);
824 }
825 return NULL;
826 }
827
getPointerToNamedFunction(const std::string & Name)828 void *MCJITHelper::getPointerToNamedFunction(const std::string &Name)
829 {
830 // Look for the function in each of our execution engines.
831 EngineVector::iterator begin = Engines.begin();
832 EngineVector::iterator end = Engines.end();
833 EngineVector::iterator it;
834 for (it = begin; it != end; ++it) {
835 if (Function *F = (*it)->FindFunctionNamed(Name.c_str()))
836 return (*it)->getPointerToFunction(F);
837 }
838
839 return NULL;
840 }
841
dump()842 void MCJITHelper::dump()
843 {
844 ModuleVector::iterator begin = Modules.begin();
845 ModuleVector::iterator end = Modules.end();
846 ModuleVector::iterator it;
847 for (it = begin; it != end; ++it)
848 (*it)->dump();
849 }
850
851 //===----------------------------------------------------------------------===//
852 // Code Generation
853 //===----------------------------------------------------------------------===//
854
855 static MCJITHelper *TheHelper;
856 static IRBuilder<> Builder(getGlobalContext());
857 static std::map<std::string, AllocaInst*> NamedValues;
858
ErrorV(const char * Str)859 Value *ErrorV(const char *Str) { Error(Str); return 0; }
860
861 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
862 /// the function. This is used for mutable variables etc.
CreateEntryBlockAlloca(Function * TheFunction,const std::string & VarName)863 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
864 const std::string &VarName) {
865 IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
866 TheFunction->getEntryBlock().begin());
867 return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
868 VarName.c_str());
869 }
870
Codegen()871 Value *NumberExprAST::Codegen() {
872 return ConstantFP::get(getGlobalContext(), APFloat(Val));
873 }
874
Codegen()875 Value *VariableExprAST::Codegen() {
876 // Look this variable up in the function.
877 Value *V = NamedValues[Name];
878 char ErrStr[256];
879 sprintf(ErrStr, "Unknown variable name %s", Name.c_str());
880 if (V == 0) return ErrorV(ErrStr);
881
882 // Load the value.
883 return Builder.CreateLoad(V, Name.c_str());
884 }
885
Codegen()886 Value *UnaryExprAST::Codegen() {
887 Value *OperandV = Operand->Codegen();
888 if (OperandV == 0) return 0;
889
890 Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode));
891 if (F == 0)
892 return ErrorV("Unknown unary operator");
893
894 return Builder.CreateCall(F, OperandV, "unop");
895 }
896
Codegen()897 Value *BinaryExprAST::Codegen() {
898 // Special case '=' because we don't want to emit the LHS as an expression.
899 if (Op == '=') {
900 // Assignment requires the LHS to be an identifier.
901 VariableExprAST *LHSE = reinterpret_cast<VariableExprAST*>(LHS);
902 if (!LHSE)
903 return ErrorV("destination of '=' must be a variable");
904 // Codegen the RHS.
905 Value *Val = RHS->Codegen();
906 if (Val == 0) return 0;
907
908 // Look up the name.
909 Value *Variable = NamedValues[LHSE->getName()];
910 if (Variable == 0) return ErrorV("Unknown variable name");
911
912 Builder.CreateStore(Val, Variable);
913 return Val;
914 }
915
916 Value *L = LHS->Codegen();
917 Value *R = RHS->Codegen();
918 if (L == 0 || R == 0) return 0;
919
920 switch (Op) {
921 case '+': return Builder.CreateFAdd(L, R, "addtmp");
922 case '-': return Builder.CreateFSub(L, R, "subtmp");
923 case '*': return Builder.CreateFMul(L, R, "multmp");
924 case '/': return Builder.CreateFDiv(L, R, "divtmp");
925 case '<':
926 L = Builder.CreateFCmpULT(L, R, "cmptmp");
927 // Convert bool 0/1 to double 0.0 or 1.0
928 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
929 "booltmp");
930 default: break;
931 }
932
933 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
934 // a call to it.
935 Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("binary")+Op));
936 assert(F && "binary operator not found!");
937
938 Value *Ops[] = { L, R };
939 return Builder.CreateCall(F, Ops, "binop");
940 }
941
Codegen()942 Value *CallExprAST::Codegen() {
943 // Look up the name in the global module table.
944 Function *CalleeF = TheHelper->getFunction(Callee);
945 if (CalleeF == 0)
946 return ErrorV("Unknown function referenced");
947
948 // If argument mismatch error.
949 if (CalleeF->arg_size() != Args.size())
950 return ErrorV("Incorrect # arguments passed");
951
952 std::vector<Value*> ArgsV;
953 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
954 ArgsV.push_back(Args[i]->Codegen());
955 if (ArgsV.back() == 0) return 0;
956 }
957
958 return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
959 }
960
Codegen()961 Value *IfExprAST::Codegen() {
962 Value *CondV = Cond->Codegen();
963 if (CondV == 0) return 0;
964
965 // Convert condition to a bool by comparing equal to 0.0.
966 CondV = Builder.CreateFCmpONE(CondV,
967 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
968 "ifcond");
969
970 Function *TheFunction = Builder.GetInsertBlock()->getParent();
971
972 // Create blocks for the then and else cases. Insert the 'then' block at the
973 // end of the function.
974 BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
975 BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
976 BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
977
978 Builder.CreateCondBr(CondV, ThenBB, ElseBB);
979
980 // Emit then value.
981 Builder.SetInsertPoint(ThenBB);
982
983 Value *ThenV = Then->Codegen();
984 if (ThenV == 0) return 0;
985
986 Builder.CreateBr(MergeBB);
987 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
988 ThenBB = Builder.GetInsertBlock();
989
990 // Emit else block.
991 TheFunction->getBasicBlockList().push_back(ElseBB);
992 Builder.SetInsertPoint(ElseBB);
993
994 Value *ElseV = Else->Codegen();
995 if (ElseV == 0) return 0;
996
997 Builder.CreateBr(MergeBB);
998 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
999 ElseBB = Builder.GetInsertBlock();
1000
1001 // Emit merge block.
1002 TheFunction->getBasicBlockList().push_back(MergeBB);
1003 Builder.SetInsertPoint(MergeBB);
1004 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
1005 "iftmp");
1006
1007 PN->addIncoming(ThenV, ThenBB);
1008 PN->addIncoming(ElseV, ElseBB);
1009 return PN;
1010 }
1011
Codegen()1012 Value *ForExprAST::Codegen() {
1013 // Output this as:
1014 // var = alloca double
1015 // ...
1016 // start = startexpr
1017 // store start -> var
1018 // goto loop
1019 // loop:
1020 // ...
1021 // bodyexpr
1022 // ...
1023 // loopend:
1024 // step = stepexpr
1025 // endcond = endexpr
1026 //
1027 // curvar = load var
1028 // nextvar = curvar + step
1029 // store nextvar -> var
1030 // br endcond, loop, endloop
1031 // outloop:
1032
1033 Function *TheFunction = Builder.GetInsertBlock()->getParent();
1034
1035 // Create an alloca for the variable in the entry block.
1036 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1037
1038 // Emit the start code first, without 'variable' in scope.
1039 Value *StartVal = Start->Codegen();
1040 if (StartVal == 0) return 0;
1041
1042 // Store the value into the alloca.
1043 Builder.CreateStore(StartVal, Alloca);
1044
1045 // Make the new basic block for the loop header, inserting after current
1046 // block.
1047 BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
1048
1049 // Insert an explicit fall through from the current block to the LoopBB.
1050 Builder.CreateBr(LoopBB);
1051
1052 // Start insertion in LoopBB.
1053 Builder.SetInsertPoint(LoopBB);
1054
1055 // Within the loop, the variable is defined equal to the PHI node. If it
1056 // shadows an existing variable, we have to restore it, so save it now.
1057 AllocaInst *OldVal = NamedValues[VarName];
1058 NamedValues[VarName] = Alloca;
1059
1060 // Emit the body of the loop. This, like any other expr, can change the
1061 // current BB. Note that we ignore the value computed by the body, but don't
1062 // allow an error.
1063 if (Body->Codegen() == 0)
1064 return 0;
1065
1066 // Emit the step value.
1067 Value *StepVal;
1068 if (Step) {
1069 StepVal = Step->Codegen();
1070 if (StepVal == 0) return 0;
1071 } else {
1072 // If not specified, use 1.0.
1073 StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
1074 }
1075
1076 // Compute the end condition.
1077 Value *EndCond = End->Codegen();
1078 if (EndCond == 0) return EndCond;
1079
1080 // Reload, increment, and restore the alloca. This handles the case where
1081 // the body of the loop mutates the variable.
1082 Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
1083 Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
1084 Builder.CreateStore(NextVar, Alloca);
1085
1086 // Convert condition to a bool by comparing equal to 0.0.
1087 EndCond = Builder.CreateFCmpONE(EndCond,
1088 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
1089 "loopcond");
1090
1091 // Create the "after loop" block and insert it.
1092 BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
1093
1094 // Insert the conditional branch into the end of LoopEndBB.
1095 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
1096
1097 // Any new code will be inserted in AfterBB.
1098 Builder.SetInsertPoint(AfterBB);
1099
1100 // Restore the unshadowed variable.
1101 if (OldVal)
1102 NamedValues[VarName] = OldVal;
1103 else
1104 NamedValues.erase(VarName);
1105
1106
1107 // for expr always returns 0.0.
1108 return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
1109 }
1110
Codegen()1111 Value *VarExprAST::Codegen() {
1112 std::vector<AllocaInst *> OldBindings;
1113
1114 Function *TheFunction = Builder.GetInsertBlock()->getParent();
1115
1116 // Register all variables and emit their initializer.
1117 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
1118 const std::string &VarName = VarNames[i].first;
1119 ExprAST *Init = VarNames[i].second;
1120
1121 // Emit the initializer before adding the variable to scope, this prevents
1122 // the initializer from referencing the variable itself, and permits stuff
1123 // like this:
1124 // var a = 1 in
1125 // var a = a in ... # refers to outer 'a'.
1126 Value *InitVal;
1127 if (Init) {
1128 InitVal = Init->Codegen();
1129 if (InitVal == 0) return 0;
1130 } else { // If not specified, use 0.0.
1131 InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
1132 }
1133
1134 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1135 Builder.CreateStore(InitVal, Alloca);
1136
1137 // Remember the old variable binding so that we can restore the binding when
1138 // we unrecurse.
1139 OldBindings.push_back(NamedValues[VarName]);
1140
1141 // Remember this binding.
1142 NamedValues[VarName] = Alloca;
1143 }
1144
1145 // Codegen the body, now that all vars are in scope.
1146 Value *BodyVal = Body->Codegen();
1147 if (BodyVal == 0) return 0;
1148
1149 // Pop all our variables from scope.
1150 for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
1151 NamedValues[VarNames[i].first] = OldBindings[i];
1152
1153 // Return the body computation.
1154 return BodyVal;
1155 }
1156
Codegen()1157 Function *PrototypeAST::Codegen() {
1158 // Make the function type: double(double,double) etc.
1159 std::vector<Type*> Doubles(Args.size(),
1160 Type::getDoubleTy(getGlobalContext()));
1161 FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
1162 Doubles, false);
1163
1164 std::string FnName = MakeLegalFunctionName(Name);
1165
1166 Module* M = TheHelper->getModuleForNewFunction();
1167
1168 Function *F = Function::Create(FT, Function::ExternalLinkage, FnName, M);
1169
1170 // If F conflicted, there was already something named 'FnName'. If it has a
1171 // body, don't allow redefinition or reextern.
1172 if (F->getName() != FnName) {
1173 // Delete the one we just made and get the existing one.
1174 F->eraseFromParent();
1175 F = M->getFunction(Name);
1176
1177 // If F already has a body, reject this.
1178 if (!F->empty()) {
1179 ErrorF("redefinition of function");
1180 return 0;
1181 }
1182
1183 // If F took a different number of args, reject.
1184 if (F->arg_size() != Args.size()) {
1185 ErrorF("redefinition of function with different # args");
1186 return 0;
1187 }
1188 }
1189
1190 // Set names for all arguments.
1191 unsigned Idx = 0;
1192 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
1193 ++AI, ++Idx)
1194 AI->setName(Args[Idx]);
1195
1196 return F;
1197 }
1198
1199 /// CreateArgumentAllocas - Create an alloca for each argument and register the
1200 /// argument in the symbol table so that references to it will succeed.
CreateArgumentAllocas(Function * F)1201 void PrototypeAST::CreateArgumentAllocas(Function *F) {
1202 Function::arg_iterator AI = F->arg_begin();
1203 for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
1204 // Create an alloca for this variable.
1205 AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
1206
1207 // Store the initial value into the alloca.
1208 Builder.CreateStore(AI, Alloca);
1209
1210 // Add arguments to variable symbol table.
1211 NamedValues[Args[Idx]] = Alloca;
1212 }
1213 }
1214
Codegen()1215 Function *FunctionAST::Codegen() {
1216 NamedValues.clear();
1217
1218 Function *TheFunction = Proto->Codegen();
1219 if (TheFunction == 0)
1220 return 0;
1221
1222 // If this is an operator, install it.
1223 if (Proto->isBinaryOp())
1224 BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
1225
1226 // Create a new basic block to start insertion into.
1227 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
1228 Builder.SetInsertPoint(BB);
1229
1230 // Add all arguments to the symbol table and create their allocas.
1231 Proto->CreateArgumentAllocas(TheFunction);
1232
1233 if (Value *RetVal = Body->Codegen()) {
1234 // Finish off the function.
1235 Builder.CreateRet(RetVal);
1236
1237 // Validate the generated code, checking for consistency.
1238 verifyFunction(*TheFunction);
1239
1240 return TheFunction;
1241 }
1242
1243 // Error reading body, remove function.
1244 TheFunction->eraseFromParent();
1245
1246 if (Proto->isBinaryOp())
1247 BinopPrecedence.erase(Proto->getOperatorName());
1248 return 0;
1249 }
1250
1251 //===----------------------------------------------------------------------===//
1252 // Top-Level parsing and JIT Driver
1253 //===----------------------------------------------------------------------===//
1254
HandleDefinition()1255 static void HandleDefinition() {
1256 if (FunctionAST *F = ParseDefinition()) {
1257 if (Function *LF = F->Codegen()) {
1258 #ifndef MINIMAL_STDERR_OUTPUT
1259 fprintf(stderr, "Read function definition:");
1260 LF->dump();
1261 #endif
1262 }
1263 } else {
1264 // Skip token for error recovery.
1265 getNextToken();
1266 }
1267 }
1268
HandleExtern()1269 static void HandleExtern() {
1270 if (PrototypeAST *P = ParseExtern()) {
1271 if (Function *F = P->Codegen()) {
1272 #ifndef MINIMAL_STDERR_OUTPUT
1273 fprintf(stderr, "Read extern: ");
1274 F->dump();
1275 #endif
1276 }
1277 } else {
1278 // Skip token for error recovery.
1279 getNextToken();
1280 }
1281 }
1282
HandleTopLevelExpression()1283 static void HandleTopLevelExpression() {
1284 // Evaluate a top-level expression into an anonymous function.
1285 if (FunctionAST *F = ParseTopLevelExpr()) {
1286 if (Function *LF = F->Codegen()) {
1287 // JIT the function, returning a function pointer.
1288 void *FPtr = TheHelper->getPointerToFunction(LF);
1289
1290 // Cast it to the right type (takes no arguments, returns a double) so we
1291 // can call it as a native function.
1292 double (*FP)() = (double (*)())(intptr_t)FPtr;
1293 #ifdef MINIMAL_STDERR_OUTPUT
1294 FP();
1295 #else
1296 fprintf(stderr, "Evaluated to %f\n", FP());
1297 #endif
1298 }
1299 } else {
1300 // Skip token for error recovery.
1301 getNextToken();
1302 }
1303 }
1304
1305 /// top ::= definition | external | expression | ';'
MainLoop()1306 static void MainLoop() {
1307 while (1) {
1308 #ifndef MINIMAL_STDERR_OUTPUT
1309 fprintf(stderr, "ready> ");
1310 #endif
1311 switch (CurTok) {
1312 case tok_eof: return;
1313 case ';': getNextToken(); break; // ignore top-level semicolons.
1314 case tok_def: HandleDefinition(); break;
1315 case tok_extern: HandleExtern(); break;
1316 default: HandleTopLevelExpression(); break;
1317 }
1318 }
1319 }
1320
1321 //===----------------------------------------------------------------------===//
1322 // "Library" functions that can be "extern'd" from user code.
1323 //===----------------------------------------------------------------------===//
1324
1325 /// putchard - putchar that takes a double and returns 0.
1326 extern "C"
putchard(double X)1327 double putchard(double X) {
1328 putchar((char)X);
1329 return 0;
1330 }
1331
1332 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1333 extern "C"
printd(double X)1334 double printd(double X) {
1335 printf("%f", X);
1336 return 0;
1337 }
1338
1339 extern "C"
printlf()1340 double printlf() {
1341 printf("\n");
1342 return 0;
1343 }
1344
1345 //===----------------------------------------------------------------------===//
1346 // Main driver code.
1347 //===----------------------------------------------------------------------===//
1348
main()1349 int main() {
1350 InitializeNativeTarget();
1351 InitializeNativeTargetAsmPrinter();
1352 InitializeNativeTargetAsmParser();
1353 LLVMContext &Context = getGlobalContext();
1354
1355 // Install standard binary operators.
1356 // 1 is lowest precedence.
1357 BinopPrecedence['='] = 2;
1358 BinopPrecedence['<'] = 10;
1359 BinopPrecedence['+'] = 20;
1360 BinopPrecedence['-'] = 20;
1361 BinopPrecedence['/'] = 40;
1362 BinopPrecedence['*'] = 40; // highest.
1363
1364 // Prime the first token.
1365 #ifndef MINIMAL_STDERR_OUTPUT
1366 fprintf(stderr, "ready> ");
1367 #endif
1368 getNextToken();
1369
1370 // Make the helper, which holds all the code.
1371 TheHelper = new MCJITHelper(Context);
1372
1373 // Run the main "interpreter loop" now.
1374 MainLoop();
1375
1376 #ifndef MINIMAL_STDERR_OUTPUT
1377 // Print out all of the generated code.
1378 TheHelper->dump();
1379 #endif
1380
1381 return 0;
1382 }
1383