• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- BasicTargetTransformInfo.cpp - Basic target-independent TTI impl ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file provides the implementation of a basic TargetTransformInfo pass
11 /// predicated on the target abstractions present in the target independent
12 /// code generator. It uses these (primarily TargetLowering) to model as much
13 /// of the TTI query interface as possible. It is included by most targets so
14 /// that they can specialize only a small subset of the query space.
15 ///
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/CodeGen/Passes.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Support/CommandLine.h"
22 #include "llvm/Target/TargetLowering.h"
23 #include "llvm/Target/TargetSubtargetInfo.h"
24 #include <utility>
25 using namespace llvm;
26 
27 static cl::opt<unsigned>
28 PartialUnrollingThreshold("partial-unrolling-threshold", cl::init(0),
29   cl::desc("Threshold for partial unrolling"), cl::Hidden);
30 
31 #define DEBUG_TYPE "basictti"
32 
33 namespace {
34 
35 class BasicTTI final : public ImmutablePass, public TargetTransformInfo {
36   const TargetMachine *TM;
37 
38   /// Estimate the overhead of scalarizing an instruction. Insert and Extract
39   /// are set if the result needs to be inserted and/or extracted from vectors.
40   unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
41 
42   /// Estimate the cost overhead of SK_Alternate shuffle.
43   unsigned getAltShuffleOverhead(Type *Ty) const;
44 
getTLI() const45   const TargetLoweringBase *getTLI() const { return TM->getTargetLowering(); }
46 
47 public:
BasicTTI()48   BasicTTI() : ImmutablePass(ID), TM(nullptr) {
49     llvm_unreachable("This pass cannot be directly constructed");
50   }
51 
BasicTTI(const TargetMachine * TM)52   BasicTTI(const TargetMachine *TM) : ImmutablePass(ID), TM(TM) {
53     initializeBasicTTIPass(*PassRegistry::getPassRegistry());
54   }
55 
initializePass()56   void initializePass() override {
57     pushTTIStack(this);
58   }
59 
getAnalysisUsage(AnalysisUsage & AU) const60   void getAnalysisUsage(AnalysisUsage &AU) const override {
61     TargetTransformInfo::getAnalysisUsage(AU);
62   }
63 
64   /// Pass identification.
65   static char ID;
66 
67   /// Provide necessary pointer adjustments for the two base classes.
getAdjustedAnalysisPointer(const void * ID)68   void *getAdjustedAnalysisPointer(const void *ID) override {
69     if (ID == &TargetTransformInfo::ID)
70       return (TargetTransformInfo*)this;
71     return this;
72   }
73 
74   bool hasBranchDivergence() const override;
75 
76   /// \name Scalar TTI Implementations
77   /// @{
78 
79   bool isLegalAddImmediate(int64_t imm) const override;
80   bool isLegalICmpImmediate(int64_t imm) const override;
81   bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
82                              int64_t BaseOffset, bool HasBaseReg,
83                              int64_t Scale) const override;
84   int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
85                            int64_t BaseOffset, bool HasBaseReg,
86                            int64_t Scale) const override;
87   bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
88   bool isTypeLegal(Type *Ty) const override;
89   unsigned getJumpBufAlignment() const override;
90   unsigned getJumpBufSize() const override;
91   bool shouldBuildLookupTables() const override;
92   bool haveFastSqrt(Type *Ty) const override;
93   void getUnrollingPreferences(Loop *L,
94                                UnrollingPreferences &UP) const override;
95 
96   /// @}
97 
98   /// \name Vector TTI Implementations
99   /// @{
100 
101   unsigned getNumberOfRegisters(bool Vector) const override;
102   unsigned getMaximumUnrollFactor() const override;
103   unsigned getRegisterBitWidth(bool Vector) const override;
104   unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind,
105                                   OperandValueKind) const override;
106   unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
107                           int Index, Type *SubTp) const override;
108   unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
109                             Type *Src) const override;
110   unsigned getCFInstrCost(unsigned Opcode) const override;
111   unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
112                               Type *CondTy) const override;
113   unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
114                               unsigned Index) const override;
115   unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
116                            unsigned AddressSpace) const override;
117   unsigned getIntrinsicInstrCost(Intrinsic::ID, Type *RetTy,
118                                  ArrayRef<Type*> Tys) const override;
119   unsigned getNumberOfParts(Type *Tp) const override;
120   unsigned getAddressComputationCost( Type *Ty, bool IsComplex) const override;
121   unsigned getReductionCost(unsigned Opcode, Type *Ty,
122                             bool IsPairwise) const override;
123 
124   /// @}
125 };
126 
127 }
128 
129 INITIALIZE_AG_PASS(BasicTTI, TargetTransformInfo, "basictti",
130                    "Target independent code generator's TTI", true, true, false)
131 char BasicTTI::ID = 0;
132 
133 ImmutablePass *
createBasicTargetTransformInfoPass(const TargetMachine * TM)134 llvm::createBasicTargetTransformInfoPass(const TargetMachine *TM) {
135   return new BasicTTI(TM);
136 }
137 
hasBranchDivergence() const138 bool BasicTTI::hasBranchDivergence() const { return false; }
139 
isLegalAddImmediate(int64_t imm) const140 bool BasicTTI::isLegalAddImmediate(int64_t imm) const {
141   return getTLI()->isLegalAddImmediate(imm);
142 }
143 
isLegalICmpImmediate(int64_t imm) const144 bool BasicTTI::isLegalICmpImmediate(int64_t imm) const {
145   return getTLI()->isLegalICmpImmediate(imm);
146 }
147 
isLegalAddressingMode(Type * Ty,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale) const148 bool BasicTTI::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
149                                      int64_t BaseOffset, bool HasBaseReg,
150                                      int64_t Scale) const {
151   TargetLoweringBase::AddrMode AM;
152   AM.BaseGV = BaseGV;
153   AM.BaseOffs = BaseOffset;
154   AM.HasBaseReg = HasBaseReg;
155   AM.Scale = Scale;
156   return getTLI()->isLegalAddressingMode(AM, Ty);
157 }
158 
getScalingFactorCost(Type * Ty,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale) const159 int BasicTTI::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
160                                    int64_t BaseOffset, bool HasBaseReg,
161                                    int64_t Scale) const {
162   TargetLoweringBase::AddrMode AM;
163   AM.BaseGV = BaseGV;
164   AM.BaseOffs = BaseOffset;
165   AM.HasBaseReg = HasBaseReg;
166   AM.Scale = Scale;
167   return getTLI()->getScalingFactorCost(AM, Ty);
168 }
169 
isTruncateFree(Type * Ty1,Type * Ty2) const170 bool BasicTTI::isTruncateFree(Type *Ty1, Type *Ty2) const {
171   return getTLI()->isTruncateFree(Ty1, Ty2);
172 }
173 
isTypeLegal(Type * Ty) const174 bool BasicTTI::isTypeLegal(Type *Ty) const {
175   EVT T = getTLI()->getValueType(Ty);
176   return getTLI()->isTypeLegal(T);
177 }
178 
getJumpBufAlignment() const179 unsigned BasicTTI::getJumpBufAlignment() const {
180   return getTLI()->getJumpBufAlignment();
181 }
182 
getJumpBufSize() const183 unsigned BasicTTI::getJumpBufSize() const {
184   return getTLI()->getJumpBufSize();
185 }
186 
shouldBuildLookupTables() const187 bool BasicTTI::shouldBuildLookupTables() const {
188   const TargetLoweringBase *TLI = getTLI();
189   return TLI->supportJumpTables() &&
190       (TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
191        TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
192 }
193 
haveFastSqrt(Type * Ty) const194 bool BasicTTI::haveFastSqrt(Type *Ty) const {
195   const TargetLoweringBase *TLI = getTLI();
196   EVT VT = TLI->getValueType(Ty);
197   return TLI->isTypeLegal(VT) && TLI->isOperationLegalOrCustom(ISD::FSQRT, VT);
198 }
199 
getUnrollingPreferences(Loop * L,UnrollingPreferences & UP) const200 void BasicTTI::getUnrollingPreferences(Loop *L,
201                                        UnrollingPreferences &UP) const {
202   // This unrolling functionality is target independent, but to provide some
203   // motivation for its intended use, for x86:
204 
205   // According to the Intel 64 and IA-32 Architectures Optimization Reference
206   // Manual, Intel Core models and later have a loop stream detector
207   // (and associated uop queue) that can benefit from partial unrolling.
208   // The relevant requirements are:
209   //  - The loop must have no more than 4 (8 for Nehalem and later) branches
210   //    taken, and none of them may be calls.
211   //  - The loop can have no more than 18 (28 for Nehalem and later) uops.
212 
213   // According to the Software Optimization Guide for AMD Family 15h Processors,
214   // models 30h-4fh (Steamroller and later) have a loop predictor and loop
215   // buffer which can benefit from partial unrolling.
216   // The relevant requirements are:
217   //  - The loop must have fewer than 16 branches
218   //  - The loop must have less than 40 uops in all executed loop branches
219 
220   // The number of taken branches in a loop is hard to estimate here, and
221   // benchmarking has revealed that it is better not to be conservative when
222   // estimating the branch count. As a result, we'll ignore the branch limits
223   // until someone finds a case where it matters in practice.
224 
225   unsigned MaxOps;
226   const TargetSubtargetInfo *ST = &TM->getSubtarget<TargetSubtargetInfo>();
227   if (PartialUnrollingThreshold.getNumOccurrences() > 0)
228     MaxOps = PartialUnrollingThreshold;
229   else if (ST->getSchedModel()->LoopMicroOpBufferSize > 0)
230     MaxOps = ST->getSchedModel()->LoopMicroOpBufferSize;
231   else
232     return;
233 
234   // Scan the loop: don't unroll loops with calls.
235   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
236        I != E; ++I) {
237     BasicBlock *BB = *I;
238 
239     for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); J != JE; ++J)
240       if (isa<CallInst>(J) || isa<InvokeInst>(J)) {
241         ImmutableCallSite CS(J);
242         if (const Function *F = CS.getCalledFunction()) {
243           if (!TopTTI->isLoweredToCall(F))
244             continue;
245         }
246 
247         return;
248       }
249   }
250 
251   // Enable runtime and partial unrolling up to the specified size.
252   UP.Partial = UP.Runtime = true;
253   UP.PartialThreshold = UP.PartialOptSizeThreshold = MaxOps;
254 }
255 
256 //===----------------------------------------------------------------------===//
257 //
258 // Calls used by the vectorizers.
259 //
260 //===----------------------------------------------------------------------===//
261 
getScalarizationOverhead(Type * Ty,bool Insert,bool Extract) const262 unsigned BasicTTI::getScalarizationOverhead(Type *Ty, bool Insert,
263                                             bool Extract) const {
264   assert (Ty->isVectorTy() && "Can only scalarize vectors");
265   unsigned Cost = 0;
266 
267   for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
268     if (Insert)
269       Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
270     if (Extract)
271       Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
272   }
273 
274   return Cost;
275 }
276 
getNumberOfRegisters(bool Vector) const277 unsigned BasicTTI::getNumberOfRegisters(bool Vector) const {
278   return 1;
279 }
280 
getRegisterBitWidth(bool Vector) const281 unsigned BasicTTI::getRegisterBitWidth(bool Vector) const {
282   return 32;
283 }
284 
getMaximumUnrollFactor() const285 unsigned BasicTTI::getMaximumUnrollFactor() const {
286   return 1;
287 }
288 
getArithmeticInstrCost(unsigned Opcode,Type * Ty,OperandValueKind,OperandValueKind) const289 unsigned BasicTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
290                                           OperandValueKind,
291                                           OperandValueKind) const {
292   // Check if any of the operands are vector operands.
293   const TargetLoweringBase *TLI = getTLI();
294   int ISD = TLI->InstructionOpcodeToISD(Opcode);
295   assert(ISD && "Invalid opcode");
296 
297   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
298 
299   bool IsFloat = Ty->getScalarType()->isFloatingPointTy();
300   // Assume that floating point arithmetic operations cost twice as much as
301   // integer operations.
302   unsigned OpCost = (IsFloat ? 2 : 1);
303 
304   if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
305     // The operation is legal. Assume it costs 1.
306     // If the type is split to multiple registers, assume that there is some
307     // overhead to this.
308     // TODO: Once we have extract/insert subvector cost we need to use them.
309     if (LT.first > 1)
310       return LT.first * 2 * OpCost;
311     return LT.first * 1 * OpCost;
312   }
313 
314   if (!TLI->isOperationExpand(ISD, LT.second)) {
315     // If the operation is custom lowered then assume
316     // thare the code is twice as expensive.
317     return LT.first * 2 * OpCost;
318   }
319 
320   // Else, assume that we need to scalarize this op.
321   if (Ty->isVectorTy()) {
322     unsigned Num = Ty->getVectorNumElements();
323     unsigned Cost = TopTTI->getArithmeticInstrCost(Opcode, Ty->getScalarType());
324     // return the cost of multiple scalar invocation plus the cost of inserting
325     // and extracting the values.
326     return getScalarizationOverhead(Ty, true, true) + Num * Cost;
327   }
328 
329   // We don't know anything about this scalar instruction.
330   return OpCost;
331 }
332 
getAltShuffleOverhead(Type * Ty) const333 unsigned BasicTTI::getAltShuffleOverhead(Type *Ty) const {
334   assert(Ty->isVectorTy() && "Can only shuffle vectors");
335   unsigned Cost = 0;
336   // Shuffle cost is equal to the cost of extracting element from its argument
337   // plus the cost of inserting them onto the result vector.
338 
339   // e.g. <4 x float> has a mask of <0,5,2,7> i.e we need to extract from index
340   // 0 of first vector, index 1 of second vector,index 2 of first vector and
341   // finally index 3 of second vector and insert them at index <0,1,2,3> of
342   // result vector.
343   for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
344     Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
345     Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
346   }
347   return Cost;
348 }
349 
getShuffleCost(ShuffleKind Kind,Type * Tp,int Index,Type * SubTp) const350 unsigned BasicTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
351                                   Type *SubTp) const {
352   if (Kind == SK_Alternate) {
353     return getAltShuffleOverhead(Tp);
354   }
355   return 1;
356 }
357 
getCastInstrCost(unsigned Opcode,Type * Dst,Type * Src) const358 unsigned BasicTTI::getCastInstrCost(unsigned Opcode, Type *Dst,
359                                     Type *Src) const {
360   const TargetLoweringBase *TLI = getTLI();
361   int ISD = TLI->InstructionOpcodeToISD(Opcode);
362   assert(ISD && "Invalid opcode");
363 
364   std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(Src);
365   std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(Dst);
366 
367   // Check for NOOP conversions.
368   if (SrcLT.first == DstLT.first &&
369       SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
370 
371       // Bitcast between types that are legalized to the same type are free.
372       if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc)
373         return 0;
374   }
375 
376   if (Opcode == Instruction::Trunc &&
377       TLI->isTruncateFree(SrcLT.second, DstLT.second))
378     return 0;
379 
380   if (Opcode == Instruction::ZExt &&
381       TLI->isZExtFree(SrcLT.second, DstLT.second))
382     return 0;
383 
384   // If the cast is marked as legal (or promote) then assume low cost.
385   if (SrcLT.first == DstLT.first &&
386       TLI->isOperationLegalOrPromote(ISD, DstLT.second))
387     return 1;
388 
389   // Handle scalar conversions.
390   if (!Src->isVectorTy() && !Dst->isVectorTy()) {
391 
392     // Scalar bitcasts are usually free.
393     if (Opcode == Instruction::BitCast)
394       return 0;
395 
396     // Just check the op cost. If the operation is legal then assume it costs 1.
397     if (!TLI->isOperationExpand(ISD, DstLT.second))
398       return  1;
399 
400     // Assume that illegal scalar instruction are expensive.
401     return 4;
402   }
403 
404   // Check vector-to-vector casts.
405   if (Dst->isVectorTy() && Src->isVectorTy()) {
406 
407     // If the cast is between same-sized registers, then the check is simple.
408     if (SrcLT.first == DstLT.first &&
409         SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
410 
411       // Assume that Zext is done using AND.
412       if (Opcode == Instruction::ZExt)
413         return 1;
414 
415       // Assume that sext is done using SHL and SRA.
416       if (Opcode == Instruction::SExt)
417         return 2;
418 
419       // Just check the op cost. If the operation is legal then assume it costs
420       // 1 and multiply by the type-legalization overhead.
421       if (!TLI->isOperationExpand(ISD, DstLT.second))
422         return SrcLT.first * 1;
423     }
424 
425     // If we are converting vectors and the operation is illegal, or
426     // if the vectors are legalized to different types, estimate the
427     // scalarization costs.
428     unsigned Num = Dst->getVectorNumElements();
429     unsigned Cost = TopTTI->getCastInstrCost(Opcode, Dst->getScalarType(),
430                                              Src->getScalarType());
431 
432     // Return the cost of multiple scalar invocation plus the cost of
433     // inserting and extracting the values.
434     return getScalarizationOverhead(Dst, true, true) + Num * Cost;
435   }
436 
437   // We already handled vector-to-vector and scalar-to-scalar conversions. This
438   // is where we handle bitcast between vectors and scalars. We need to assume
439   //  that the conversion is scalarized in one way or another.
440   if (Opcode == Instruction::BitCast)
441     // Illegal bitcasts are done by storing and loading from a stack slot.
442     return (Src->isVectorTy()? getScalarizationOverhead(Src, false, true):0) +
443            (Dst->isVectorTy()? getScalarizationOverhead(Dst, true, false):0);
444 
445   llvm_unreachable("Unhandled cast");
446  }
447 
getCFInstrCost(unsigned Opcode) const448 unsigned BasicTTI::getCFInstrCost(unsigned Opcode) const {
449   // Branches are assumed to be predicted.
450   return 0;
451 }
452 
getCmpSelInstrCost(unsigned Opcode,Type * ValTy,Type * CondTy) const453 unsigned BasicTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
454                                       Type *CondTy) const {
455   const TargetLoweringBase *TLI = getTLI();
456   int ISD = TLI->InstructionOpcodeToISD(Opcode);
457   assert(ISD && "Invalid opcode");
458 
459   // Selects on vectors are actually vector selects.
460   if (ISD == ISD::SELECT) {
461     assert(CondTy && "CondTy must exist");
462     if (CondTy->isVectorTy())
463       ISD = ISD::VSELECT;
464   }
465 
466   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
467 
468   if (!TLI->isOperationExpand(ISD, LT.second)) {
469     // The operation is legal. Assume it costs 1. Multiply
470     // by the type-legalization overhead.
471     return LT.first * 1;
472   }
473 
474   // Otherwise, assume that the cast is scalarized.
475   if (ValTy->isVectorTy()) {
476     unsigned Num = ValTy->getVectorNumElements();
477     if (CondTy)
478       CondTy = CondTy->getScalarType();
479     unsigned Cost = TopTTI->getCmpSelInstrCost(Opcode, ValTy->getScalarType(),
480                                                CondTy);
481 
482     // Return the cost of multiple scalar invocation plus the cost of inserting
483     // and extracting the values.
484     return getScalarizationOverhead(ValTy, true, false) + Num * Cost;
485   }
486 
487   // Unknown scalar opcode.
488   return 1;
489 }
490 
getVectorInstrCost(unsigned Opcode,Type * Val,unsigned Index) const491 unsigned BasicTTI::getVectorInstrCost(unsigned Opcode, Type *Val,
492                                       unsigned Index) const {
493   std::pair<unsigned, MVT> LT =  getTLI()->getTypeLegalizationCost(Val->getScalarType());
494 
495   return LT.first;
496 }
497 
getMemoryOpCost(unsigned Opcode,Type * Src,unsigned Alignment,unsigned AddressSpace) const498 unsigned BasicTTI::getMemoryOpCost(unsigned Opcode, Type *Src,
499                                    unsigned Alignment,
500                                    unsigned AddressSpace) const {
501   assert(!Src->isVoidTy() && "Invalid type");
502   std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Src);
503 
504   // Assuming that all loads of legal types cost 1.
505   unsigned Cost = LT.first;
506 
507   if (Src->isVectorTy() &&
508       Src->getPrimitiveSizeInBits() < LT.second.getSizeInBits()) {
509     // This is a vector load that legalizes to a larger type than the vector
510     // itself. Unless the corresponding extending load or truncating store is
511     // legal, then this will scalarize.
512     TargetLowering::LegalizeAction LA = TargetLowering::Expand;
513     EVT MemVT = getTLI()->getValueType(Src, true);
514     if (MemVT.isSimple() && MemVT != MVT::Other) {
515       if (Opcode == Instruction::Store)
516         LA = getTLI()->getTruncStoreAction(LT.second, MemVT.getSimpleVT());
517       else
518         LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, MemVT.getSimpleVT());
519     }
520 
521     if (LA != TargetLowering::Legal && LA != TargetLowering::Custom) {
522       // This is a vector load/store for some illegal type that is scalarized.
523       // We must account for the cost of building or decomposing the vector.
524       Cost += getScalarizationOverhead(Src, Opcode != Instruction::Store,
525                                             Opcode == Instruction::Store);
526     }
527   }
528 
529   return Cost;
530 }
531 
getIntrinsicInstrCost(Intrinsic::ID IID,Type * RetTy,ArrayRef<Type * > Tys) const532 unsigned BasicTTI::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
533                                          ArrayRef<Type *> Tys) const {
534   unsigned ISD = 0;
535   switch (IID) {
536   default: {
537     // Assume that we need to scalarize this intrinsic.
538     unsigned ScalarizationCost = 0;
539     unsigned ScalarCalls = 1;
540     if (RetTy->isVectorTy()) {
541       ScalarizationCost = getScalarizationOverhead(RetTy, true, false);
542       ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
543     }
544     for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
545       if (Tys[i]->isVectorTy()) {
546         ScalarizationCost += getScalarizationOverhead(Tys[i], false, true);
547         ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
548       }
549     }
550 
551     return ScalarCalls + ScalarizationCost;
552   }
553   // Look for intrinsics that can be lowered directly or turned into a scalar
554   // intrinsic call.
555   case Intrinsic::sqrt:    ISD = ISD::FSQRT;  break;
556   case Intrinsic::sin:     ISD = ISD::FSIN;   break;
557   case Intrinsic::cos:     ISD = ISD::FCOS;   break;
558   case Intrinsic::exp:     ISD = ISD::FEXP;   break;
559   case Intrinsic::exp2:    ISD = ISD::FEXP2;  break;
560   case Intrinsic::log:     ISD = ISD::FLOG;   break;
561   case Intrinsic::log10:   ISD = ISD::FLOG10; break;
562   case Intrinsic::log2:    ISD = ISD::FLOG2;  break;
563   case Intrinsic::fabs:    ISD = ISD::FABS;   break;
564   case Intrinsic::copysign: ISD = ISD::FCOPYSIGN; break;
565   case Intrinsic::floor:   ISD = ISD::FFLOOR; break;
566   case Intrinsic::ceil:    ISD = ISD::FCEIL;  break;
567   case Intrinsic::trunc:   ISD = ISD::FTRUNC; break;
568   case Intrinsic::nearbyint:
569                            ISD = ISD::FNEARBYINT; break;
570   case Intrinsic::rint:    ISD = ISD::FRINT;  break;
571   case Intrinsic::round:   ISD = ISD::FROUND; break;
572   case Intrinsic::pow:     ISD = ISD::FPOW;   break;
573   case Intrinsic::fma:     ISD = ISD::FMA;    break;
574   case Intrinsic::fmuladd: ISD = ISD::FMA;    break;
575   case Intrinsic::lifetime_start:
576   case Intrinsic::lifetime_end:
577     return 0;
578   }
579 
580   const TargetLoweringBase *TLI = getTLI();
581   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(RetTy);
582 
583   if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
584     // The operation is legal. Assume it costs 1.
585     // If the type is split to multiple registers, assume that thre is some
586     // overhead to this.
587     // TODO: Once we have extract/insert subvector cost we need to use them.
588     if (LT.first > 1)
589       return LT.first * 2;
590     return LT.first * 1;
591   }
592 
593   if (!TLI->isOperationExpand(ISD, LT.second)) {
594     // If the operation is custom lowered then assume
595     // thare the code is twice as expensive.
596     return LT.first * 2;
597   }
598 
599   // If we can't lower fmuladd into an FMA estimate the cost as a floating
600   // point mul followed by an add.
601   if (IID == Intrinsic::fmuladd)
602     return TopTTI->getArithmeticInstrCost(BinaryOperator::FMul, RetTy) +
603            TopTTI->getArithmeticInstrCost(BinaryOperator::FAdd, RetTy);
604 
605   // Else, assume that we need to scalarize this intrinsic. For math builtins
606   // this will emit a costly libcall, adding call overhead and spills. Make it
607   // very expensive.
608   if (RetTy->isVectorTy()) {
609     unsigned Num = RetTy->getVectorNumElements();
610     unsigned Cost = TopTTI->getIntrinsicInstrCost(IID, RetTy->getScalarType(),
611                                                   Tys);
612     return 10 * Cost * Num;
613   }
614 
615   // This is going to be turned into a library call, make it expensive.
616   return 10;
617 }
618 
getNumberOfParts(Type * Tp) const619 unsigned BasicTTI::getNumberOfParts(Type *Tp) const {
620   std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Tp);
621   return LT.first;
622 }
623 
getAddressComputationCost(Type * Ty,bool IsComplex) const624 unsigned BasicTTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
625   return 0;
626 }
627 
getReductionCost(unsigned Opcode,Type * Ty,bool IsPairwise) const628 unsigned BasicTTI::getReductionCost(unsigned Opcode, Type *Ty,
629                                     bool IsPairwise) const {
630   assert(Ty->isVectorTy() && "Expect a vector type");
631   unsigned NumVecElts = Ty->getVectorNumElements();
632   unsigned NumReduxLevels = Log2_32(NumVecElts);
633   unsigned ArithCost = NumReduxLevels *
634     TopTTI->getArithmeticInstrCost(Opcode, Ty);
635   // Assume the pairwise shuffles add a cost.
636   unsigned ShuffleCost =
637       NumReduxLevels * (IsPairwise + 1) *
638       TopTTI->getShuffleCost(SK_ExtractSubvector, Ty, NumVecElts / 2, Ty);
639   return ShuffleCost + ArithCost + getScalarizationOverhead(Ty, false, true);
640 }
641