1 //===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Subclass of MipsDAGToDAGISel specialized for mips32/64.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "MipsSEISelDAGToDAG.h"
15 #include "MCTargetDesc/MipsBaseInfo.h"
16 #include "Mips.h"
17 #include "MipsAnalyzeImmediate.h"
18 #include "MipsMachineFunction.h"
19 #include "MipsRegisterInfo.h"
20 #include "llvm/CodeGen/MachineConstantPool.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SelectionDAGNodes.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetMachine.h"
35 using namespace llvm;
36
37 #define DEBUG_TYPE "mips-isel"
38
runOnMachineFunction(MachineFunction & MF)39 bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
40 if (Subtarget->inMips16Mode())
41 return false;
42 return MipsDAGToDAGISel::runOnMachineFunction(MF);
43 }
44
addDSPCtrlRegOperands(bool IsDef,MachineInstr & MI,MachineFunction & MF)45 void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef, MachineInstr &MI,
46 MachineFunction &MF) {
47 MachineInstrBuilder MIB(MF, &MI);
48 unsigned Mask = MI.getOperand(1).getImm();
49 unsigned Flag = IsDef ? RegState::ImplicitDefine : RegState::Implicit;
50
51 if (Mask & 1)
52 MIB.addReg(Mips::DSPPos, Flag);
53
54 if (Mask & 2)
55 MIB.addReg(Mips::DSPSCount, Flag);
56
57 if (Mask & 4)
58 MIB.addReg(Mips::DSPCarry, Flag);
59
60 if (Mask & 8)
61 MIB.addReg(Mips::DSPOutFlag, Flag);
62
63 if (Mask & 16)
64 MIB.addReg(Mips::DSPCCond, Flag);
65
66 if (Mask & 32)
67 MIB.addReg(Mips::DSPEFI, Flag);
68 }
69
getMSACtrlReg(const SDValue RegIdx) const70 unsigned MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx) const {
71 switch (cast<ConstantSDNode>(RegIdx)->getZExtValue()) {
72 default:
73 llvm_unreachable("Could not map int to register");
74 case 0: return Mips::MSAIR;
75 case 1: return Mips::MSACSR;
76 case 2: return Mips::MSAAccess;
77 case 3: return Mips::MSASave;
78 case 4: return Mips::MSAModify;
79 case 5: return Mips::MSARequest;
80 case 6: return Mips::MSAMap;
81 case 7: return Mips::MSAUnmap;
82 }
83 }
84
replaceUsesWithZeroReg(MachineRegisterInfo * MRI,const MachineInstr & MI)85 bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo *MRI,
86 const MachineInstr& MI) {
87 unsigned DstReg = 0, ZeroReg = 0;
88
89 // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0".
90 if ((MI.getOpcode() == Mips::ADDiu) &&
91 (MI.getOperand(1).getReg() == Mips::ZERO) &&
92 (MI.getOperand(2).getImm() == 0)) {
93 DstReg = MI.getOperand(0).getReg();
94 ZeroReg = Mips::ZERO;
95 } else if ((MI.getOpcode() == Mips::DADDiu) &&
96 (MI.getOperand(1).getReg() == Mips::ZERO_64) &&
97 (MI.getOperand(2).getImm() == 0)) {
98 DstReg = MI.getOperand(0).getReg();
99 ZeroReg = Mips::ZERO_64;
100 }
101
102 if (!DstReg)
103 return false;
104
105 // Replace uses with ZeroReg.
106 for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg),
107 E = MRI->use_end(); U != E;) {
108 MachineOperand &MO = *U;
109 unsigned OpNo = U.getOperandNo();
110 MachineInstr *MI = MO.getParent();
111 ++U;
112
113 // Do not replace if it is a phi's operand or is tied to def operand.
114 if (MI->isPHI() || MI->isRegTiedToDefOperand(OpNo) || MI->isPseudo())
115 continue;
116
117 MO.setReg(ZeroReg);
118 }
119
120 return true;
121 }
122
initGlobalBaseReg(MachineFunction & MF)123 void MipsSEDAGToDAGISel::initGlobalBaseReg(MachineFunction &MF) {
124 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
125
126 if (!MipsFI->globalBaseRegSet())
127 return;
128
129 MachineBasicBlock &MBB = MF.front();
130 MachineBasicBlock::iterator I = MBB.begin();
131 MachineRegisterInfo &RegInfo = MF.getRegInfo();
132 const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
133 DebugLoc DL = I != MBB.end() ? I->getDebugLoc() : DebugLoc();
134 unsigned V0, V1, GlobalBaseReg = MipsFI->getGlobalBaseReg();
135 const TargetRegisterClass *RC;
136
137 if (Subtarget->isABI_N64())
138 RC = (const TargetRegisterClass*)&Mips::GPR64RegClass;
139 else
140 RC = (const TargetRegisterClass*)&Mips::GPR32RegClass;
141
142 V0 = RegInfo.createVirtualRegister(RC);
143 V1 = RegInfo.createVirtualRegister(RC);
144
145 if (Subtarget->isABI_N64()) {
146 MF.getRegInfo().addLiveIn(Mips::T9_64);
147 MBB.addLiveIn(Mips::T9_64);
148
149 // lui $v0, %hi(%neg(%gp_rel(fname)))
150 // daddu $v1, $v0, $t9
151 // daddiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname)))
152 const GlobalValue *FName = MF.getFunction();
153 BuildMI(MBB, I, DL, TII.get(Mips::LUi64), V0)
154 .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI);
155 BuildMI(MBB, I, DL, TII.get(Mips::DADDu), V1).addReg(V0)
156 .addReg(Mips::T9_64);
157 BuildMI(MBB, I, DL, TII.get(Mips::DADDiu), GlobalBaseReg).addReg(V1)
158 .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO);
159 return;
160 }
161
162 if (MF.getTarget().getRelocationModel() == Reloc::Static) {
163 // Set global register to __gnu_local_gp.
164 //
165 // lui $v0, %hi(__gnu_local_gp)
166 // addiu $globalbasereg, $v0, %lo(__gnu_local_gp)
167 BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0)
168 .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_HI);
169 BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V0)
170 .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_LO);
171 return;
172 }
173
174 MF.getRegInfo().addLiveIn(Mips::T9);
175 MBB.addLiveIn(Mips::T9);
176
177 if (Subtarget->isABI_N32()) {
178 // lui $v0, %hi(%neg(%gp_rel(fname)))
179 // addu $v1, $v0, $t9
180 // addiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname)))
181 const GlobalValue *FName = MF.getFunction();
182 BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0)
183 .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI);
184 BuildMI(MBB, I, DL, TII.get(Mips::ADDu), V1).addReg(V0).addReg(Mips::T9);
185 BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V1)
186 .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO);
187 return;
188 }
189
190 assert(Subtarget->isABI_O32());
191
192 // For O32 ABI, the following instruction sequence is emitted to initialize
193 // the global base register:
194 //
195 // 0. lui $2, %hi(_gp_disp)
196 // 1. addiu $2, $2, %lo(_gp_disp)
197 // 2. addu $globalbasereg, $2, $t9
198 //
199 // We emit only the last instruction here.
200 //
201 // GNU linker requires that the first two instructions appear at the beginning
202 // of a function and no instructions be inserted before or between them.
203 // The two instructions are emitted during lowering to MC layer in order to
204 // avoid any reordering.
205 //
206 // Register $2 (Mips::V0) is added to the list of live-in registers to ensure
207 // the value instruction 1 (addiu) defines is valid when instruction 2 (addu)
208 // reads it.
209 MF.getRegInfo().addLiveIn(Mips::V0);
210 MBB.addLiveIn(Mips::V0);
211 BuildMI(MBB, I, DL, TII.get(Mips::ADDu), GlobalBaseReg)
212 .addReg(Mips::V0).addReg(Mips::T9);
213 }
214
processFunctionAfterISel(MachineFunction & MF)215 void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction &MF) {
216 initGlobalBaseReg(MF);
217
218 MachineRegisterInfo *MRI = &MF.getRegInfo();
219
220 for (MachineFunction::iterator MFI = MF.begin(), MFE = MF.end(); MFI != MFE;
221 ++MFI)
222 for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I) {
223 if (I->getOpcode() == Mips::RDDSP)
224 addDSPCtrlRegOperands(false, *I, MF);
225 else if (I->getOpcode() == Mips::WRDSP)
226 addDSPCtrlRegOperands(true, *I, MF);
227 else
228 replaceUsesWithZeroReg(MRI, *I);
229 }
230 }
231
selectAddESubE(unsigned MOp,SDValue InFlag,SDValue CmpLHS,SDLoc DL,SDNode * Node) const232 SDNode *MipsSEDAGToDAGISel::selectAddESubE(unsigned MOp, SDValue InFlag,
233 SDValue CmpLHS, SDLoc DL,
234 SDNode *Node) const {
235 unsigned Opc = InFlag.getOpcode(); (void)Opc;
236
237 assert(((Opc == ISD::ADDC || Opc == ISD::ADDE) ||
238 (Opc == ISD::SUBC || Opc == ISD::SUBE)) &&
239 "(ADD|SUB)E flag operand must come from (ADD|SUB)C/E insn");
240
241 SDValue Ops[] = { CmpLHS, InFlag.getOperand(1) };
242 SDValue LHS = Node->getOperand(0), RHS = Node->getOperand(1);
243 EVT VT = LHS.getValueType();
244
245 SDNode *Carry = CurDAG->getMachineNode(Mips::SLTu, DL, VT, Ops);
246 SDNode *AddCarry = CurDAG->getMachineNode(Mips::ADDu, DL, VT,
247 SDValue(Carry, 0), RHS);
248 return CurDAG->SelectNodeTo(Node, MOp, VT, MVT::Glue, LHS,
249 SDValue(AddCarry, 0));
250 }
251
252 /// Match frameindex
selectAddrFrameIndex(SDValue Addr,SDValue & Base,SDValue & Offset) const253 bool MipsSEDAGToDAGISel::selectAddrFrameIndex(SDValue Addr, SDValue &Base,
254 SDValue &Offset) const {
255 if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
256 EVT ValTy = Addr.getValueType();
257
258 Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
259 Offset = CurDAG->getTargetConstant(0, ValTy);
260 return true;
261 }
262 return false;
263 }
264
265 /// Match frameindex+offset and frameindex|offset
selectAddrFrameIndexOffset(SDValue Addr,SDValue & Base,SDValue & Offset,unsigned OffsetBits) const266 bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset(SDValue Addr, SDValue &Base,
267 SDValue &Offset,
268 unsigned OffsetBits) const {
269 if (CurDAG->isBaseWithConstantOffset(Addr)) {
270 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1));
271 if (isIntN(OffsetBits, CN->getSExtValue())) {
272 EVT ValTy = Addr.getValueType();
273
274 // If the first operand is a FI, get the TargetFI Node
275 if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>
276 (Addr.getOperand(0)))
277 Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
278 else
279 Base = Addr.getOperand(0);
280
281 Offset = CurDAG->getTargetConstant(CN->getZExtValue(), ValTy);
282 return true;
283 }
284 }
285 return false;
286 }
287
288 /// ComplexPattern used on MipsInstrInfo
289 /// Used on Mips Load/Store instructions
selectAddrRegImm(SDValue Addr,SDValue & Base,SDValue & Offset) const290 bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr, SDValue &Base,
291 SDValue &Offset) const {
292 // if Address is FI, get the TargetFrameIndex.
293 if (selectAddrFrameIndex(Addr, Base, Offset))
294 return true;
295
296 // on PIC code Load GA
297 if (Addr.getOpcode() == MipsISD::Wrapper) {
298 Base = Addr.getOperand(0);
299 Offset = Addr.getOperand(1);
300 return true;
301 }
302
303 if (TM.getRelocationModel() != Reloc::PIC_) {
304 if ((Addr.getOpcode() == ISD::TargetExternalSymbol ||
305 Addr.getOpcode() == ISD::TargetGlobalAddress))
306 return false;
307 }
308
309 // Addresses of the form FI+const or FI|const
310 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
311 return true;
312
313 // Operand is a result from an ADD.
314 if (Addr.getOpcode() == ISD::ADD) {
315 // When loading from constant pools, load the lower address part in
316 // the instruction itself. Example, instead of:
317 // lui $2, %hi($CPI1_0)
318 // addiu $2, $2, %lo($CPI1_0)
319 // lwc1 $f0, 0($2)
320 // Generate:
321 // lui $2, %hi($CPI1_0)
322 // lwc1 $f0, %lo($CPI1_0)($2)
323 if (Addr.getOperand(1).getOpcode() == MipsISD::Lo ||
324 Addr.getOperand(1).getOpcode() == MipsISD::GPRel) {
325 SDValue Opnd0 = Addr.getOperand(1).getOperand(0);
326 if (isa<ConstantPoolSDNode>(Opnd0) || isa<GlobalAddressSDNode>(Opnd0) ||
327 isa<JumpTableSDNode>(Opnd0)) {
328 Base = Addr.getOperand(0);
329 Offset = Opnd0;
330 return true;
331 }
332 }
333 }
334
335 return false;
336 }
337
338 /// ComplexPattern used on MipsInstrInfo
339 /// Used on Mips Load/Store instructions
selectAddrRegReg(SDValue Addr,SDValue & Base,SDValue & Offset) const340 bool MipsSEDAGToDAGISel::selectAddrRegReg(SDValue Addr, SDValue &Base,
341 SDValue &Offset) const {
342 // Operand is a result from an ADD.
343 if (Addr.getOpcode() == ISD::ADD) {
344 Base = Addr.getOperand(0);
345 Offset = Addr.getOperand(1);
346 return true;
347 }
348
349 return false;
350 }
351
selectAddrDefault(SDValue Addr,SDValue & Base,SDValue & Offset) const352 bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr, SDValue &Base,
353 SDValue &Offset) const {
354 Base = Addr;
355 Offset = CurDAG->getTargetConstant(0, Addr.getValueType());
356 return true;
357 }
358
selectIntAddr(SDValue Addr,SDValue & Base,SDValue & Offset) const359 bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr, SDValue &Base,
360 SDValue &Offset) const {
361 return selectAddrRegImm(Addr, Base, Offset) ||
362 selectAddrDefault(Addr, Base, Offset);
363 }
364
selectAddrRegImm10(SDValue Addr,SDValue & Base,SDValue & Offset) const365 bool MipsSEDAGToDAGISel::selectAddrRegImm10(SDValue Addr, SDValue &Base,
366 SDValue &Offset) const {
367 if (selectAddrFrameIndex(Addr, Base, Offset))
368 return true;
369
370 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10))
371 return true;
372
373 return false;
374 }
375
376 /// Used on microMIPS Load/Store unaligned instructions (12-bit offset)
selectAddrRegImm12(SDValue Addr,SDValue & Base,SDValue & Offset) const377 bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr, SDValue &Base,
378 SDValue &Offset) const {
379 if (selectAddrFrameIndex(Addr, Base, Offset))
380 return true;
381
382 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 12))
383 return true;
384
385 return false;
386 }
387
selectIntAddrMM(SDValue Addr,SDValue & Base,SDValue & Offset) const388 bool MipsSEDAGToDAGISel::selectIntAddrMM(SDValue Addr, SDValue &Base,
389 SDValue &Offset) const {
390 return selectAddrRegImm12(Addr, Base, Offset) ||
391 selectAddrDefault(Addr, Base, Offset);
392 }
393
selectIntAddrMSA(SDValue Addr,SDValue & Base,SDValue & Offset) const394 bool MipsSEDAGToDAGISel::selectIntAddrMSA(SDValue Addr, SDValue &Base,
395 SDValue &Offset) const {
396 if (selectAddrRegImm10(Addr, Base, Offset))
397 return true;
398
399 if (selectAddrDefault(Addr, Base, Offset))
400 return true;
401
402 return false;
403 }
404
405 // Select constant vector splats.
406 //
407 // Returns true and sets Imm if:
408 // * MSA is enabled
409 // * N is a ISD::BUILD_VECTOR representing a constant splat
selectVSplat(SDNode * N,APInt & Imm) const410 bool MipsSEDAGToDAGISel::selectVSplat(SDNode *N, APInt &Imm) const {
411 if (!Subtarget->hasMSA())
412 return false;
413
414 BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N);
415
416 if (!Node)
417 return false;
418
419 APInt SplatValue, SplatUndef;
420 unsigned SplatBitSize;
421 bool HasAnyUndefs;
422
423 if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
424 HasAnyUndefs, 8,
425 !Subtarget->isLittle()))
426 return false;
427
428 Imm = SplatValue;
429
430 return true;
431 }
432
433 // Select constant vector splats.
434 //
435 // In addition to the requirements of selectVSplat(), this function returns
436 // true and sets Imm if:
437 // * The splat value is the same width as the elements of the vector
438 // * The splat value fits in an integer with the specified signed-ness and
439 // width.
440 //
441 // This function looks through ISD::BITCAST nodes.
442 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
443 // sometimes a shuffle in big-endian mode.
444 //
445 // It's worth noting that this function is not used as part of the selection
446 // of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd]
447 // instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in
448 // MipsSEDAGToDAGISel::selectNode.
449 bool MipsSEDAGToDAGISel::
selectVSplatCommon(SDValue N,SDValue & Imm,bool Signed,unsigned ImmBitSize) const450 selectVSplatCommon(SDValue N, SDValue &Imm, bool Signed,
451 unsigned ImmBitSize) const {
452 APInt ImmValue;
453 EVT EltTy = N->getValueType(0).getVectorElementType();
454
455 if (N->getOpcode() == ISD::BITCAST)
456 N = N->getOperand(0);
457
458 if (selectVSplat (N.getNode(), ImmValue) &&
459 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
460 if (( Signed && ImmValue.isSignedIntN(ImmBitSize)) ||
461 (!Signed && ImmValue.isIntN(ImmBitSize))) {
462 Imm = CurDAG->getTargetConstant(ImmValue, EltTy);
463 return true;
464 }
465 }
466
467 return false;
468 }
469
470 // Select constant vector splats.
471 bool MipsSEDAGToDAGISel::
selectVSplatUimm1(SDValue N,SDValue & Imm) const472 selectVSplatUimm1(SDValue N, SDValue &Imm) const {
473 return selectVSplatCommon(N, Imm, false, 1);
474 }
475
476 bool MipsSEDAGToDAGISel::
selectVSplatUimm2(SDValue N,SDValue & Imm) const477 selectVSplatUimm2(SDValue N, SDValue &Imm) const {
478 return selectVSplatCommon(N, Imm, false, 2);
479 }
480
481 bool MipsSEDAGToDAGISel::
selectVSplatUimm3(SDValue N,SDValue & Imm) const482 selectVSplatUimm3(SDValue N, SDValue &Imm) const {
483 return selectVSplatCommon(N, Imm, false, 3);
484 }
485
486 // Select constant vector splats.
487 bool MipsSEDAGToDAGISel::
selectVSplatUimm4(SDValue N,SDValue & Imm) const488 selectVSplatUimm4(SDValue N, SDValue &Imm) const {
489 return selectVSplatCommon(N, Imm, false, 4);
490 }
491
492 // Select constant vector splats.
493 bool MipsSEDAGToDAGISel::
selectVSplatUimm5(SDValue N,SDValue & Imm) const494 selectVSplatUimm5(SDValue N, SDValue &Imm) const {
495 return selectVSplatCommon(N, Imm, false, 5);
496 }
497
498 // Select constant vector splats.
499 bool MipsSEDAGToDAGISel::
selectVSplatUimm6(SDValue N,SDValue & Imm) const500 selectVSplatUimm6(SDValue N, SDValue &Imm) const {
501 return selectVSplatCommon(N, Imm, false, 6);
502 }
503
504 // Select constant vector splats.
505 bool MipsSEDAGToDAGISel::
selectVSplatUimm8(SDValue N,SDValue & Imm) const506 selectVSplatUimm8(SDValue N, SDValue &Imm) const {
507 return selectVSplatCommon(N, Imm, false, 8);
508 }
509
510 // Select constant vector splats.
511 bool MipsSEDAGToDAGISel::
selectVSplatSimm5(SDValue N,SDValue & Imm) const512 selectVSplatSimm5(SDValue N, SDValue &Imm) const {
513 return selectVSplatCommon(N, Imm, true, 5);
514 }
515
516 // Select constant vector splats whose value is a power of 2.
517 //
518 // In addition to the requirements of selectVSplat(), this function returns
519 // true and sets Imm if:
520 // * The splat value is the same width as the elements of the vector
521 // * The splat value is a power of two.
522 //
523 // This function looks through ISD::BITCAST nodes.
524 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
525 // sometimes a shuffle in big-endian mode.
selectVSplatUimmPow2(SDValue N,SDValue & Imm) const526 bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N, SDValue &Imm) const {
527 APInt ImmValue;
528 EVT EltTy = N->getValueType(0).getVectorElementType();
529
530 if (N->getOpcode() == ISD::BITCAST)
531 N = N->getOperand(0);
532
533 if (selectVSplat (N.getNode(), ImmValue) &&
534 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
535 int32_t Log2 = ImmValue.exactLogBase2();
536
537 if (Log2 != -1) {
538 Imm = CurDAG->getTargetConstant(Log2, EltTy);
539 return true;
540 }
541 }
542
543 return false;
544 }
545
546 // Select constant vector splats whose value only has a consecutive sequence
547 // of left-most bits set (e.g. 0b11...1100...00).
548 //
549 // In addition to the requirements of selectVSplat(), this function returns
550 // true and sets Imm if:
551 // * The splat value is the same width as the elements of the vector
552 // * The splat value is a consecutive sequence of left-most bits.
553 //
554 // This function looks through ISD::BITCAST nodes.
555 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
556 // sometimes a shuffle in big-endian mode.
selectVSplatMaskL(SDValue N,SDValue & Imm) const557 bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N, SDValue &Imm) const {
558 APInt ImmValue;
559 EVT EltTy = N->getValueType(0).getVectorElementType();
560
561 if (N->getOpcode() == ISD::BITCAST)
562 N = N->getOperand(0);
563
564 if (selectVSplat(N.getNode(), ImmValue) &&
565 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
566 // Extract the run of set bits starting with bit zero from the bitwise
567 // inverse of ImmValue, and test that the inverse of this is the same
568 // as the original value.
569 if (ImmValue == ~(~ImmValue & ~(~ImmValue + 1))) {
570
571 Imm = CurDAG->getTargetConstant(ImmValue.countPopulation(), EltTy);
572 return true;
573 }
574 }
575
576 return false;
577 }
578
579 // Select constant vector splats whose value only has a consecutive sequence
580 // of right-most bits set (e.g. 0b00...0011...11).
581 //
582 // In addition to the requirements of selectVSplat(), this function returns
583 // true and sets Imm if:
584 // * The splat value is the same width as the elements of the vector
585 // * The splat value is a consecutive sequence of right-most bits.
586 //
587 // This function looks through ISD::BITCAST nodes.
588 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
589 // sometimes a shuffle in big-endian mode.
selectVSplatMaskR(SDValue N,SDValue & Imm) const590 bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N, SDValue &Imm) const {
591 APInt ImmValue;
592 EVT EltTy = N->getValueType(0).getVectorElementType();
593
594 if (N->getOpcode() == ISD::BITCAST)
595 N = N->getOperand(0);
596
597 if (selectVSplat(N.getNode(), ImmValue) &&
598 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
599 // Extract the run of set bits starting with bit zero, and test that the
600 // result is the same as the original value
601 if (ImmValue == (ImmValue & ~(ImmValue + 1))) {
602 Imm = CurDAG->getTargetConstant(ImmValue.countPopulation(), EltTy);
603 return true;
604 }
605 }
606
607 return false;
608 }
609
selectVSplatUimmInvPow2(SDValue N,SDValue & Imm) const610 bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N,
611 SDValue &Imm) const {
612 APInt ImmValue;
613 EVT EltTy = N->getValueType(0).getVectorElementType();
614
615 if (N->getOpcode() == ISD::BITCAST)
616 N = N->getOperand(0);
617
618 if (selectVSplat(N.getNode(), ImmValue) &&
619 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
620 int32_t Log2 = (~ImmValue).exactLogBase2();
621
622 if (Log2 != -1) {
623 Imm = CurDAG->getTargetConstant(Log2, EltTy);
624 return true;
625 }
626 }
627
628 return false;
629 }
630
selectNode(SDNode * Node)631 std::pair<bool, SDNode*> MipsSEDAGToDAGISel::selectNode(SDNode *Node) {
632 unsigned Opcode = Node->getOpcode();
633 SDLoc DL(Node);
634
635 ///
636 // Instruction Selection not handled by the auto-generated
637 // tablegen selection should be handled here.
638 ///
639 SDNode *Result;
640
641 switch(Opcode) {
642 default: break;
643
644 case ISD::SUBE: {
645 SDValue InFlag = Node->getOperand(2);
646 Result = selectAddESubE(Mips::SUBu, InFlag, InFlag.getOperand(0), DL, Node);
647 return std::make_pair(true, Result);
648 }
649
650 case ISD::ADDE: {
651 if (Subtarget->hasDSP()) // Select DSP instructions, ADDSC and ADDWC.
652 break;
653 SDValue InFlag = Node->getOperand(2);
654 Result = selectAddESubE(Mips::ADDu, InFlag, InFlag.getValue(0), DL, Node);
655 return std::make_pair(true, Result);
656 }
657
658 case ISD::ConstantFP: {
659 ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(Node);
660 if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) {
661 if (Subtarget->isGP64bit()) {
662 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
663 Mips::ZERO_64, MVT::i64);
664 Result = CurDAG->getMachineNode(Mips::DMTC1, DL, MVT::f64, Zero);
665 } else if (Subtarget->isFP64bit()) {
666 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
667 Mips::ZERO, MVT::i32);
668 Result = CurDAG->getMachineNode(Mips::BuildPairF64_64, DL, MVT::f64,
669 Zero, Zero);
670 } else {
671 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
672 Mips::ZERO, MVT::i32);
673 Result = CurDAG->getMachineNode(Mips::BuildPairF64, DL, MVT::f64, Zero,
674 Zero);
675 }
676
677 return std::make_pair(true, Result);
678 }
679 break;
680 }
681
682 case ISD::Constant: {
683 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Node);
684 unsigned Size = CN->getValueSizeInBits(0);
685
686 if (Size == 32)
687 break;
688
689 MipsAnalyzeImmediate AnalyzeImm;
690 int64_t Imm = CN->getSExtValue();
691
692 const MipsAnalyzeImmediate::InstSeq &Seq =
693 AnalyzeImm.Analyze(Imm, Size, false);
694
695 MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin();
696 SDLoc DL(CN);
697 SDNode *RegOpnd;
698 SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd),
699 MVT::i64);
700
701 // The first instruction can be a LUi which is different from other
702 // instructions (ADDiu, ORI and SLL) in that it does not have a register
703 // operand.
704 if (Inst->Opc == Mips::LUi64)
705 RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd);
706 else
707 RegOpnd =
708 CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
709 CurDAG->getRegister(Mips::ZERO_64, MVT::i64),
710 ImmOpnd);
711
712 // The remaining instructions in the sequence are handled here.
713 for (++Inst; Inst != Seq.end(); ++Inst) {
714 ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd),
715 MVT::i64);
716 RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
717 SDValue(RegOpnd, 0), ImmOpnd);
718 }
719
720 return std::make_pair(true, RegOpnd);
721 }
722
723 case ISD::INTRINSIC_W_CHAIN: {
724 switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
725 default:
726 break;
727
728 case Intrinsic::mips_cfcmsa: {
729 SDValue ChainIn = Node->getOperand(0);
730 SDValue RegIdx = Node->getOperand(2);
731 SDValue Reg = CurDAG->getCopyFromReg(ChainIn, DL,
732 getMSACtrlReg(RegIdx), MVT::i32);
733 return std::make_pair(true, Reg.getNode());
734 }
735 }
736 break;
737 }
738
739 case ISD::INTRINSIC_WO_CHAIN: {
740 switch (cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue()) {
741 default:
742 break;
743
744 case Intrinsic::mips_move_v:
745 // Like an assignment but will always produce a move.v even if
746 // unnecessary.
747 return std::make_pair(true,
748 CurDAG->getMachineNode(Mips::MOVE_V, DL,
749 Node->getValueType(0),
750 Node->getOperand(1)));
751 }
752 break;
753 }
754
755 case ISD::INTRINSIC_VOID: {
756 switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
757 default:
758 break;
759
760 case Intrinsic::mips_ctcmsa: {
761 SDValue ChainIn = Node->getOperand(0);
762 SDValue RegIdx = Node->getOperand(2);
763 SDValue Value = Node->getOperand(3);
764 SDValue ChainOut = CurDAG->getCopyToReg(ChainIn, DL,
765 getMSACtrlReg(RegIdx), Value);
766 return std::make_pair(true, ChainOut.getNode());
767 }
768 }
769 break;
770 }
771
772 case MipsISD::ThreadPointer: {
773 EVT PtrVT = getTargetLowering()->getPointerTy();
774 unsigned RdhwrOpc, DestReg;
775
776 if (PtrVT == MVT::i32) {
777 RdhwrOpc = Mips::RDHWR;
778 DestReg = Mips::V1;
779 } else {
780 RdhwrOpc = Mips::RDHWR64;
781 DestReg = Mips::V1_64;
782 }
783
784 SDNode *Rdhwr =
785 CurDAG->getMachineNode(RdhwrOpc, SDLoc(Node),
786 Node->getValueType(0),
787 CurDAG->getRegister(Mips::HWR29, MVT::i32));
788 SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, DestReg,
789 SDValue(Rdhwr, 0));
790 SDValue ResNode = CurDAG->getCopyFromReg(Chain, DL, DestReg, PtrVT);
791 ReplaceUses(SDValue(Node, 0), ResNode);
792 return std::make_pair(true, ResNode.getNode());
793 }
794
795 case ISD::BUILD_VECTOR: {
796 // Select appropriate ldi.[bhwd] instructions for constant splats of
797 // 128-bit when MSA is enabled. Fixup any register class mismatches that
798 // occur as a result.
799 //
800 // This allows the compiler to use a wider range of immediates than would
801 // otherwise be allowed. If, for example, v4i32 could only use ldi.h then
802 // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101,
803 // 0x01010101 } without using a constant pool. This would be sub-optimal
804 // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the
805 // same set/ of registers. Similarly, ldi.h isn't capable of producing {
806 // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can.
807
808 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Node);
809 APInt SplatValue, SplatUndef;
810 unsigned SplatBitSize;
811 bool HasAnyUndefs;
812 unsigned LdiOp;
813 EVT ResVecTy = BVN->getValueType(0);
814 EVT ViaVecTy;
815
816 if (!Subtarget->hasMSA() || !BVN->getValueType(0).is128BitVector())
817 return std::make_pair(false, nullptr);
818
819 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
820 HasAnyUndefs, 8,
821 !Subtarget->isLittle()))
822 return std::make_pair(false, nullptr);
823
824 switch (SplatBitSize) {
825 default:
826 return std::make_pair(false, nullptr);
827 case 8:
828 LdiOp = Mips::LDI_B;
829 ViaVecTy = MVT::v16i8;
830 break;
831 case 16:
832 LdiOp = Mips::LDI_H;
833 ViaVecTy = MVT::v8i16;
834 break;
835 case 32:
836 LdiOp = Mips::LDI_W;
837 ViaVecTy = MVT::v4i32;
838 break;
839 case 64:
840 LdiOp = Mips::LDI_D;
841 ViaVecTy = MVT::v2i64;
842 break;
843 }
844
845 if (!SplatValue.isSignedIntN(10))
846 return std::make_pair(false, nullptr);
847
848 SDValue Imm = CurDAG->getTargetConstant(SplatValue,
849 ViaVecTy.getVectorElementType());
850
851 SDNode *Res = CurDAG->getMachineNode(LdiOp, SDLoc(Node), ViaVecTy, Imm);
852
853 if (ResVecTy != ViaVecTy) {
854 // If LdiOp is writing to a different register class to ResVecTy, then
855 // fix it up here. This COPY_TO_REGCLASS should never cause a move.v
856 // since the source and destination register sets contain the same
857 // registers.
858 const TargetLowering *TLI = getTargetLowering();
859 MVT ResVecTySimple = ResVecTy.getSimpleVT();
860 const TargetRegisterClass *RC = TLI->getRegClassFor(ResVecTySimple);
861 Res = CurDAG->getMachineNode(Mips::COPY_TO_REGCLASS, SDLoc(Node),
862 ResVecTy, SDValue(Res, 0),
863 CurDAG->getTargetConstant(RC->getID(),
864 MVT::i32));
865 }
866
867 return std::make_pair(true, Res);
868 }
869
870 }
871
872 return std::make_pair(false, nullptr);
873 }
874
createMipsSEISelDag(MipsTargetMachine & TM)875 FunctionPass *llvm::createMipsSEISelDag(MipsTargetMachine &TM) {
876 return new MipsSEDAGToDAGISel(TM);
877 }
878