1 //===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef X86INSTRUCTIONINFO_H
15 #define X86INSTRUCTIONINFO_H
16
17 #include "MCTargetDesc/X86BaseInfo.h"
18 #include "X86RegisterInfo.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/Target/TargetInstrInfo.h"
21
22 #define GET_INSTRINFO_HEADER
23 #include "X86GenInstrInfo.inc"
24
25 namespace llvm {
26 class X86RegisterInfo;
27 class X86Subtarget;
28
29 namespace X86 {
30 // X86 specific condition code. These correspond to X86_*_COND in
31 // X86InstrInfo.td. They must be kept in synch.
32 enum CondCode {
33 COND_A = 0,
34 COND_AE = 1,
35 COND_B = 2,
36 COND_BE = 3,
37 COND_E = 4,
38 COND_G = 5,
39 COND_GE = 6,
40 COND_L = 7,
41 COND_LE = 8,
42 COND_NE = 9,
43 COND_NO = 10,
44 COND_NP = 11,
45 COND_NS = 12,
46 COND_O = 13,
47 COND_P = 14,
48 COND_S = 15,
49 LAST_VALID_COND = COND_S,
50
51 // Artificial condition codes. These are used by AnalyzeBranch
52 // to indicate a block terminated with two conditional branches to
53 // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
54 // which can't be represented on x86 with a single condition. These
55 // are never used in MachineInstrs.
56 COND_NE_OR_P,
57 COND_NP_OR_E,
58
59 COND_INVALID
60 };
61
62 // Turn condition code into conditional branch opcode.
63 unsigned GetCondBranchFromCond(CondCode CC);
64
65 /// \brief Return a set opcode for the given condition and whether it has
66 /// a memory operand.
67 unsigned getSETFromCond(CondCode CC, bool HasMemoryOperand = false);
68
69 /// \brief Return a cmov opcode for the given condition, register size in
70 /// bytes, and operand type.
71 unsigned getCMovFromCond(CondCode CC, unsigned RegBytes,
72 bool HasMemoryOperand = false);
73
74 // Turn CMov opcode into condition code.
75 CondCode getCondFromCMovOpc(unsigned Opc);
76
77 /// GetOppositeBranchCondition - Return the inverse of the specified cond,
78 /// e.g. turning COND_E to COND_NE.
79 CondCode GetOppositeBranchCondition(CondCode CC);
80 } // end namespace X86;
81
82
83 /// isGlobalStubReference - Return true if the specified TargetFlag operand is
84 /// a reference to a stub for a global, not the global itself.
isGlobalStubReference(unsigned char TargetFlag)85 inline static bool isGlobalStubReference(unsigned char TargetFlag) {
86 switch (TargetFlag) {
87 case X86II::MO_DLLIMPORT: // dllimport stub.
88 case X86II::MO_GOTPCREL: // rip-relative GOT reference.
89 case X86II::MO_GOT: // normal GOT reference.
90 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref.
91 case X86II::MO_DARWIN_NONLAZY: // Normal $non_lazy_ptr ref.
92 case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
93 return true;
94 default:
95 return false;
96 }
97 }
98
99 /// isGlobalRelativeToPICBase - Return true if the specified global value
100 /// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg). If this
101 /// is true, the addressing mode has the PIC base register added in (e.g. EBX).
isGlobalRelativeToPICBase(unsigned char TargetFlag)102 inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
103 switch (TargetFlag) {
104 case X86II::MO_GOTOFF: // isPICStyleGOT: local global.
105 case X86II::MO_GOT: // isPICStyleGOT: other global.
106 case X86II::MO_PIC_BASE_OFFSET: // Darwin local global.
107 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global.
108 case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
109 case X86II::MO_TLVP: // ??? Pretty sure..
110 return true;
111 default:
112 return false;
113 }
114 }
115
isScale(const MachineOperand & MO)116 inline static bool isScale(const MachineOperand &MO) {
117 return MO.isImm() &&
118 (MO.getImm() == 1 || MO.getImm() == 2 ||
119 MO.getImm() == 4 || MO.getImm() == 8);
120 }
121
isLeaMem(const MachineInstr * MI,unsigned Op)122 inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
123 if (MI->getOperand(Op).isFI()) return true;
124 return Op+X86::AddrSegmentReg <= MI->getNumOperands() &&
125 MI->getOperand(Op+X86::AddrBaseReg).isReg() &&
126 isScale(MI->getOperand(Op+X86::AddrScaleAmt)) &&
127 MI->getOperand(Op+X86::AddrIndexReg).isReg() &&
128 (MI->getOperand(Op+X86::AddrDisp).isImm() ||
129 MI->getOperand(Op+X86::AddrDisp).isGlobal() ||
130 MI->getOperand(Op+X86::AddrDisp).isCPI() ||
131 MI->getOperand(Op+X86::AddrDisp).isJTI());
132 }
133
isMem(const MachineInstr * MI,unsigned Op)134 inline static bool isMem(const MachineInstr *MI, unsigned Op) {
135 if (MI->getOperand(Op).isFI()) return true;
136 return Op+X86::AddrNumOperands <= MI->getNumOperands() &&
137 MI->getOperand(Op+X86::AddrSegmentReg).isReg() &&
138 isLeaMem(MI, Op);
139 }
140
141 class X86InstrInfo final : public X86GenInstrInfo {
142 X86Subtarget &Subtarget;
143 const X86RegisterInfo RI;
144
145 /// RegOp2MemOpTable3Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
146 /// RegOp2MemOpTable2, RegOp2MemOpTable3 - Load / store folding opcode maps.
147 ///
148 typedef DenseMap<unsigned,
149 std::pair<unsigned, unsigned> > RegOp2MemOpTableType;
150 RegOp2MemOpTableType RegOp2MemOpTable2Addr;
151 RegOp2MemOpTableType RegOp2MemOpTable0;
152 RegOp2MemOpTableType RegOp2MemOpTable1;
153 RegOp2MemOpTableType RegOp2MemOpTable2;
154 RegOp2MemOpTableType RegOp2MemOpTable3;
155
156 /// MemOp2RegOpTable - Load / store unfolding opcode map.
157 ///
158 typedef DenseMap<unsigned,
159 std::pair<unsigned, unsigned> > MemOp2RegOpTableType;
160 MemOp2RegOpTableType MemOp2RegOpTable;
161
162 static void AddTableEntry(RegOp2MemOpTableType &R2MTable,
163 MemOp2RegOpTableType &M2RTable,
164 unsigned RegOp, unsigned MemOp, unsigned Flags);
165
166 virtual void anchor();
167
168 public:
169 explicit X86InstrInfo(X86Subtarget &STI);
170
171 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
172 /// such, whenever a client has an instance of instruction info, it should
173 /// always be able to get register info as well (through this method).
174 ///
getRegisterInfo()175 const X86RegisterInfo &getRegisterInfo() const { return RI; }
176
177 /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
178 /// extension instruction. That is, it's like a copy where it's legal for the
179 /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
180 /// true, then it's expected the pre-extension value is available as a subreg
181 /// of the result register. This also returns the sub-register index in
182 /// SubIdx.
183 bool isCoalescableExtInstr(const MachineInstr &MI,
184 unsigned &SrcReg, unsigned &DstReg,
185 unsigned &SubIdx) const override;
186
187 unsigned isLoadFromStackSlot(const MachineInstr *MI,
188 int &FrameIndex) const override;
189 /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
190 /// stack locations as well. This uses a heuristic so it isn't
191 /// reliable for correctness.
192 unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
193 int &FrameIndex) const override;
194
195 unsigned isStoreToStackSlot(const MachineInstr *MI,
196 int &FrameIndex) const override;
197 /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
198 /// stack locations as well. This uses a heuristic so it isn't
199 /// reliable for correctness.
200 unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
201 int &FrameIndex) const override;
202
203 bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
204 AliasAnalysis *AA) const override;
205 void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
206 unsigned DestReg, unsigned SubIdx,
207 const MachineInstr *Orig,
208 const TargetRegisterInfo &TRI) const override;
209
210 /// Given an operand within a MachineInstr, insert preceding code to put it
211 /// into the right format for a particular kind of LEA instruction. This may
212 /// involve using an appropriate super-register instead (with an implicit use
213 /// of the original) or creating a new virtual register and inserting COPY
214 /// instructions to get the data into the right class.
215 ///
216 /// Reference parameters are set to indicate how caller should add this
217 /// operand to the LEA instruction.
218 bool classifyLEAReg(MachineInstr *MI, const MachineOperand &Src,
219 unsigned LEAOpcode, bool AllowSP,
220 unsigned &NewSrc, bool &isKill,
221 bool &isUndef, MachineOperand &ImplicitOp) const;
222
223 /// convertToThreeAddress - This method must be implemented by targets that
224 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
225 /// may be able to convert a two-address instruction into a true
226 /// three-address instruction on demand. This allows the X86 target (for
227 /// example) to convert ADD and SHL instructions into LEA instructions if they
228 /// would require register copies due to two-addressness.
229 ///
230 /// This method returns a null pointer if the transformation cannot be
231 /// performed, otherwise it returns the new instruction.
232 ///
233 MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
234 MachineBasicBlock::iterator &MBBI,
235 LiveVariables *LV) const override;
236
237 /// commuteInstruction - We have a few instructions that must be hacked on to
238 /// commute them.
239 ///
240 MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const override;
241
242 bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
243 unsigned &SrcOpIdx2) const override;
244
245 // Branch analysis.
246 bool isUnpredicatedTerminator(const MachineInstr* MI) const override;
247 bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
248 MachineBasicBlock *&FBB,
249 SmallVectorImpl<MachineOperand> &Cond,
250 bool AllowModify) const override;
251 unsigned RemoveBranch(MachineBasicBlock &MBB) const override;
252 unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
253 MachineBasicBlock *FBB,
254 const SmallVectorImpl<MachineOperand> &Cond,
255 DebugLoc DL) const override;
256 bool canInsertSelect(const MachineBasicBlock&,
257 const SmallVectorImpl<MachineOperand> &Cond,
258 unsigned, unsigned, int&, int&, int&) const override;
259 void insertSelect(MachineBasicBlock &MBB,
260 MachineBasicBlock::iterator MI, DebugLoc DL,
261 unsigned DstReg,
262 const SmallVectorImpl<MachineOperand> &Cond,
263 unsigned TrueReg, unsigned FalseReg) const override;
264 void copyPhysReg(MachineBasicBlock &MBB,
265 MachineBasicBlock::iterator MI, DebugLoc DL,
266 unsigned DestReg, unsigned SrcReg,
267 bool KillSrc) const override;
268 void storeRegToStackSlot(MachineBasicBlock &MBB,
269 MachineBasicBlock::iterator MI,
270 unsigned SrcReg, bool isKill, int FrameIndex,
271 const TargetRegisterClass *RC,
272 const TargetRegisterInfo *TRI) const override;
273
274 void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
275 SmallVectorImpl<MachineOperand> &Addr,
276 const TargetRegisterClass *RC,
277 MachineInstr::mmo_iterator MMOBegin,
278 MachineInstr::mmo_iterator MMOEnd,
279 SmallVectorImpl<MachineInstr*> &NewMIs) const;
280
281 void loadRegFromStackSlot(MachineBasicBlock &MBB,
282 MachineBasicBlock::iterator MI,
283 unsigned DestReg, int FrameIndex,
284 const TargetRegisterClass *RC,
285 const TargetRegisterInfo *TRI) const override;
286
287 void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
288 SmallVectorImpl<MachineOperand> &Addr,
289 const TargetRegisterClass *RC,
290 MachineInstr::mmo_iterator MMOBegin,
291 MachineInstr::mmo_iterator MMOEnd,
292 SmallVectorImpl<MachineInstr*> &NewMIs) const;
293
294 bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const override;
295
296 /// foldMemoryOperand - If this target supports it, fold a load or store of
297 /// the specified stack slot into the specified machine instruction for the
298 /// specified operand(s). If this is possible, the target should perform the
299 /// folding and return true, otherwise it should return false. If it folds
300 /// the instruction, it is likely that the MachineInstruction the iterator
301 /// references has been changed.
302 MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
303 MachineInstr* MI,
304 const SmallVectorImpl<unsigned> &Ops,
305 int FrameIndex) const override;
306
307 /// foldMemoryOperand - Same as the previous version except it allows folding
308 /// of any load and store from / to any address, not just from a specific
309 /// stack slot.
310 MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
311 MachineInstr* MI,
312 const SmallVectorImpl<unsigned> &Ops,
313 MachineInstr* LoadMI) const override;
314
315 /// canFoldMemoryOperand - Returns true if the specified load / store is
316 /// folding is possible.
317 bool canFoldMemoryOperand(const MachineInstr*,
318 const SmallVectorImpl<unsigned> &) const override;
319
320 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
321 /// a store or a load and a store into two or more instruction. If this is
322 /// possible, returns true as well as the new instructions by reference.
323 bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
324 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
325 SmallVectorImpl<MachineInstr*> &NewMIs) const override;
326
327 bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
328 SmallVectorImpl<SDNode*> &NewNodes) const override;
329
330 /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
331 /// instruction after load / store are unfolded from an instruction of the
332 /// specified opcode. It returns zero if the specified unfolding is not
333 /// possible. If LoadRegIndex is non-null, it is filled in with the operand
334 /// index of the operand which will hold the register holding the loaded
335 /// value.
336 unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
337 bool UnfoldLoad, bool UnfoldStore,
338 unsigned *LoadRegIndex = nullptr) const override;
339
340 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
341 /// to determine if two loads are loading from the same base address. It
342 /// should only return true if the base pointers are the same and the
343 /// only differences between the two addresses are the offset. It also returns
344 /// the offsets by reference.
345 bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1,
346 int64_t &Offset2) const override;
347
348 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
349 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
350 /// be scheduled togther. On some targets if two loads are loading from
351 /// addresses in the same cache line, it's better if they are scheduled
352 /// together. This function takes two integers that represent the load offsets
353 /// from the common base address. It returns true if it decides it's desirable
354 /// to schedule the two loads together. "NumLoads" is the number of loads that
355 /// have already been scheduled after Load1.
356 bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
357 int64_t Offset1, int64_t Offset2,
358 unsigned NumLoads) const override;
359
360 bool shouldScheduleAdjacent(MachineInstr* First,
361 MachineInstr *Second) const override;
362
363 void getNoopForMachoTarget(MCInst &NopInst) const override;
364
365 bool
366 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
367
368 /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
369 /// instruction that defines the specified register class.
370 bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const override;
371
372 /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction tha
373 /// would clobber the EFLAGS condition register. Note the result may be
374 /// conservative. If it cannot definitely determine the safety after visiting
375 /// a few instructions in each direction it assumes it's not safe.
376 bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
377 MachineBasicBlock::iterator I) const;
378
isX86_64ExtendedReg(const MachineOperand & MO)379 static bool isX86_64ExtendedReg(const MachineOperand &MO) {
380 if (!MO.isReg()) return false;
381 return X86II::isX86_64ExtendedReg(MO.getReg());
382 }
383
384 /// getGlobalBaseReg - Return a virtual register initialized with the
385 /// the global base register value. Output instructions required to
386 /// initialize the register in the function entry block, if necessary.
387 ///
388 unsigned getGlobalBaseReg(MachineFunction *MF) const;
389
390 std::pair<uint16_t, uint16_t>
391 getExecutionDomain(const MachineInstr *MI) const override;
392
393 void setExecutionDomain(MachineInstr *MI, unsigned Domain) const override;
394
395 unsigned
396 getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
397 const TargetRegisterInfo *TRI) const override;
398 unsigned getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
399 const TargetRegisterInfo *TRI) const override;
400 void breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
401 const TargetRegisterInfo *TRI) const override;
402
403 MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
404 MachineInstr* MI,
405 unsigned OpNum,
406 const SmallVectorImpl<MachineOperand> &MOs,
407 unsigned Size, unsigned Alignment) const;
408
409 void
410 getUnconditionalBranch(MCInst &Branch,
411 const MCSymbolRefExpr *BranchTarget) const override;
412
413 void getTrap(MCInst &MI) const override;
414
415 bool isHighLatencyDef(int opc) const override;
416
417 bool hasHighOperandLatency(const InstrItineraryData *ItinData,
418 const MachineRegisterInfo *MRI,
419 const MachineInstr *DefMI, unsigned DefIdx,
420 const MachineInstr *UseMI,
421 unsigned UseIdx) const override;
422
423 /// analyzeCompare - For a comparison instruction, return the source registers
424 /// in SrcReg and SrcReg2 if having two register operands, and the value it
425 /// compares against in CmpValue. Return true if the comparison instruction
426 /// can be analyzed.
427 bool analyzeCompare(const MachineInstr *MI, unsigned &SrcReg,
428 unsigned &SrcReg2, int &CmpMask,
429 int &CmpValue) const override;
430
431 /// optimizeCompareInstr - Check if there exists an earlier instruction that
432 /// operates on the same source operands and sets flags in the same way as
433 /// Compare; remove Compare if possible.
434 bool optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg,
435 unsigned SrcReg2, int CmpMask, int CmpValue,
436 const MachineRegisterInfo *MRI) const override;
437
438 /// optimizeLoadInstr - Try to remove the load by folding it to a register
439 /// operand at the use. We fold the load instructions if and only if the
440 /// def and use are in the same BB. We only look at one load and see
441 /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
442 /// defined by the load we are trying to fold. DefMI returns the machine
443 /// instruction that defines FoldAsLoadDefReg, and the function returns
444 /// the machine instruction generated due to folding.
445 MachineInstr* optimizeLoadInstr(MachineInstr *MI,
446 const MachineRegisterInfo *MRI,
447 unsigned &FoldAsLoadDefReg,
448 MachineInstr *&DefMI) const override;
449
450 private:
451 MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc,
452 MachineFunction::iterator &MFI,
453 MachineBasicBlock::iterator &MBBI,
454 LiveVariables *LV) const;
455
456 /// isFrameOperand - Return true and the FrameIndex if the specified
457 /// operand and follow operands form a reference to the stack frame.
458 bool isFrameOperand(const MachineInstr *MI, unsigned int Op,
459 int &FrameIndex) const;
460 };
461
462 } // End llvm namespace
463
464 #endif
465