1 //===-- X86JITInfo.cpp - Implement the JIT interfaces for the X86 target --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the JIT interfaces for the X86 target.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "X86JITInfo.h"
15 #include "X86Relocations.h"
16 #include "X86Subtarget.h"
17 #include "X86TargetMachine.h"
18 #include "llvm/IR/Function.h"
19 #include "llvm/Support/Compiler.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/Valgrind.h"
22 #include <cstdlib>
23 #include <cstring>
24 using namespace llvm;
25
26 #define DEBUG_TYPE "jit"
27
28 // Determine the platform we're running on
29 #if defined (__x86_64__) || defined (_M_AMD64) || defined (_M_X64)
30 # define X86_64_JIT
31 #elif defined(__i386__) || defined(i386) || defined(_M_IX86)
32 # define X86_32_JIT
33 #endif
34
replaceMachineCodeForFunction(void * Old,void * New)35 void X86JITInfo::replaceMachineCodeForFunction(void *Old, void *New) {
36 unsigned char *OldByte = (unsigned char *)Old;
37 *OldByte++ = 0xE9; // Emit JMP opcode.
38 unsigned *OldWord = (unsigned *)OldByte;
39 unsigned NewAddr = (intptr_t)New;
40 unsigned OldAddr = (intptr_t)OldWord;
41 *OldWord = NewAddr - OldAddr - 4; // Emit PC-relative addr of New code.
42
43 // X86 doesn't need to invalidate the processor cache, so just invalidate
44 // Valgrind's cache directly.
45 sys::ValgrindDiscardTranslations(Old, 5);
46 }
47
48
49 /// JITCompilerFunction - This contains the address of the JIT function used to
50 /// compile a function lazily.
51 static TargetJITInfo::JITCompilerFn JITCompilerFunction;
52
53 // Get the ASMPREFIX for the current host. This is often '_'.
54 #ifndef __USER_LABEL_PREFIX__
55 #define __USER_LABEL_PREFIX__
56 #endif
57 #define GETASMPREFIX2(X) #X
58 #define GETASMPREFIX(X) GETASMPREFIX2(X)
59 #define ASMPREFIX GETASMPREFIX(__USER_LABEL_PREFIX__)
60
61 // For ELF targets, use a .size and .type directive, to let tools
62 // know the extent of functions defined in assembler.
63 #if defined(__ELF__)
64 # define SIZE(sym) ".size " #sym ", . - " #sym "\n"
65 # define TYPE_FUNCTION(sym) ".type " #sym ", @function\n"
66 #else
67 # define SIZE(sym)
68 # define TYPE_FUNCTION(sym)
69 #endif
70
71 // Provide a convenient way for disabling usage of CFI directives.
72 // This is needed for old/broken assemblers (for example, gas on
73 // Darwin is pretty old and doesn't support these directives)
74 #if defined(__APPLE__)
75 # define CFI(x)
76 #else
77 // FIXME: Disable this until we really want to use it. Also, we will
78 // need to add some workarounds for compilers, which support
79 // only subset of these directives.
80 # define CFI(x)
81 #endif
82
83 // Provide a wrapper for LLVMX86CompilationCallback2 that saves non-traditional
84 // callee saved registers, for the fastcc calling convention.
85 extern "C" {
86 #if defined(X86_64_JIT)
87 # ifndef _MSC_VER
88 // No need to save EAX/EDX for X86-64.
89 void X86CompilationCallback(void);
90 asm(
91 ".text\n"
92 ".align 8\n"
93 ".globl " ASMPREFIX "X86CompilationCallback\n"
94 TYPE_FUNCTION(X86CompilationCallback)
95 ASMPREFIX "X86CompilationCallback:\n"
96 CFI(".cfi_startproc\n")
97 // Save RBP
98 "pushq %rbp\n"
99 CFI(".cfi_def_cfa_offset 16\n")
100 CFI(".cfi_offset %rbp, -16\n")
101 // Save RSP
102 "movq %rsp, %rbp\n"
103 CFI(".cfi_def_cfa_register %rbp\n")
104 // Save all int arg registers
105 "pushq %rdi\n"
106 CFI(".cfi_rel_offset %rdi, 0\n")
107 "pushq %rsi\n"
108 CFI(".cfi_rel_offset %rsi, 8\n")
109 "pushq %rdx\n"
110 CFI(".cfi_rel_offset %rdx, 16\n")
111 "pushq %rcx\n"
112 CFI(".cfi_rel_offset %rcx, 24\n")
113 "pushq %r8\n"
114 CFI(".cfi_rel_offset %r8, 32\n")
115 "pushq %r9\n"
116 CFI(".cfi_rel_offset %r9, 40\n")
117 // Align stack on 16-byte boundary. ESP might not be properly aligned
118 // (8 byte) if this is called from an indirect stub.
119 "andq $-16, %rsp\n"
120 // Save all XMM arg registers
121 "subq $128, %rsp\n"
122 "movaps %xmm0, (%rsp)\n"
123 "movaps %xmm1, 16(%rsp)\n"
124 "movaps %xmm2, 32(%rsp)\n"
125 "movaps %xmm3, 48(%rsp)\n"
126 "movaps %xmm4, 64(%rsp)\n"
127 "movaps %xmm5, 80(%rsp)\n"
128 "movaps %xmm6, 96(%rsp)\n"
129 "movaps %xmm7, 112(%rsp)\n"
130 // JIT callee
131 #if defined(_WIN64) || defined(__CYGWIN__)
132 "subq $32, %rsp\n"
133 "movq %rbp, %rcx\n" // Pass prev frame and return address
134 "movq 8(%rbp), %rdx\n"
135 "call " ASMPREFIX "LLVMX86CompilationCallback2\n"
136 "addq $32, %rsp\n"
137 #else
138 "movq %rbp, %rdi\n" // Pass prev frame and return address
139 "movq 8(%rbp), %rsi\n"
140 "call " ASMPREFIX "LLVMX86CompilationCallback2\n"
141 #endif
142 // Restore all XMM arg registers
143 "movaps 112(%rsp), %xmm7\n"
144 "movaps 96(%rsp), %xmm6\n"
145 "movaps 80(%rsp), %xmm5\n"
146 "movaps 64(%rsp), %xmm4\n"
147 "movaps 48(%rsp), %xmm3\n"
148 "movaps 32(%rsp), %xmm2\n"
149 "movaps 16(%rsp), %xmm1\n"
150 "movaps (%rsp), %xmm0\n"
151 // Restore RSP
152 "movq %rbp, %rsp\n"
153 CFI(".cfi_def_cfa_register %rsp\n")
154 // Restore all int arg registers
155 "subq $48, %rsp\n"
156 CFI(".cfi_adjust_cfa_offset 48\n")
157 "popq %r9\n"
158 CFI(".cfi_adjust_cfa_offset -8\n")
159 CFI(".cfi_restore %r9\n")
160 "popq %r8\n"
161 CFI(".cfi_adjust_cfa_offset -8\n")
162 CFI(".cfi_restore %r8\n")
163 "popq %rcx\n"
164 CFI(".cfi_adjust_cfa_offset -8\n")
165 CFI(".cfi_restore %rcx\n")
166 "popq %rdx\n"
167 CFI(".cfi_adjust_cfa_offset -8\n")
168 CFI(".cfi_restore %rdx\n")
169 "popq %rsi\n"
170 CFI(".cfi_adjust_cfa_offset -8\n")
171 CFI(".cfi_restore %rsi\n")
172 "popq %rdi\n"
173 CFI(".cfi_adjust_cfa_offset -8\n")
174 CFI(".cfi_restore %rdi\n")
175 // Restore RBP
176 "popq %rbp\n"
177 CFI(".cfi_adjust_cfa_offset -8\n")
178 CFI(".cfi_restore %rbp\n")
179 "ret\n"
180 CFI(".cfi_endproc\n")
181 SIZE(X86CompilationCallback)
182 );
183 # else
184 // No inline assembler support on this platform. The routine is in external
185 // file.
186 void X86CompilationCallback();
187
188 # endif
189 #elif defined (X86_32_JIT)
190 # ifndef _MSC_VER
191 void X86CompilationCallback(void);
192 asm(
193 ".text\n"
194 ".align 8\n"
195 ".globl " ASMPREFIX "X86CompilationCallback\n"
196 TYPE_FUNCTION(X86CompilationCallback)
197 ASMPREFIX "X86CompilationCallback:\n"
198 CFI(".cfi_startproc\n")
199 "pushl %ebp\n"
200 CFI(".cfi_def_cfa_offset 8\n")
201 CFI(".cfi_offset %ebp, -8\n")
202 "movl %esp, %ebp\n" // Standard prologue
203 CFI(".cfi_def_cfa_register %ebp\n")
204 "pushl %eax\n"
205 CFI(".cfi_rel_offset %eax, 0\n")
206 "pushl %edx\n" // Save EAX/EDX/ECX
207 CFI(".cfi_rel_offset %edx, 4\n")
208 "pushl %ecx\n"
209 CFI(".cfi_rel_offset %ecx, 8\n")
210 # if defined(__APPLE__)
211 "andl $-16, %esp\n" // Align ESP on 16-byte boundary
212 # endif
213 "subl $16, %esp\n"
214 "movl 4(%ebp), %eax\n" // Pass prev frame and return address
215 "movl %eax, 4(%esp)\n"
216 "movl %ebp, (%esp)\n"
217 "call " ASMPREFIX "LLVMX86CompilationCallback2\n"
218 "movl %ebp, %esp\n" // Restore ESP
219 CFI(".cfi_def_cfa_register %esp\n")
220 "subl $12, %esp\n"
221 CFI(".cfi_adjust_cfa_offset 12\n")
222 "popl %ecx\n"
223 CFI(".cfi_adjust_cfa_offset -4\n")
224 CFI(".cfi_restore %ecx\n")
225 "popl %edx\n"
226 CFI(".cfi_adjust_cfa_offset -4\n")
227 CFI(".cfi_restore %edx\n")
228 "popl %eax\n"
229 CFI(".cfi_adjust_cfa_offset -4\n")
230 CFI(".cfi_restore %eax\n")
231 "popl %ebp\n"
232 CFI(".cfi_adjust_cfa_offset -4\n")
233 CFI(".cfi_restore %ebp\n")
234 "ret\n"
235 CFI(".cfi_endproc\n")
236 SIZE(X86CompilationCallback)
237 );
238
239 // Same as X86CompilationCallback but also saves XMM argument registers.
240 void X86CompilationCallback_SSE(void);
241 asm(
242 ".text\n"
243 ".align 8\n"
244 ".globl " ASMPREFIX "X86CompilationCallback_SSE\n"
245 TYPE_FUNCTION(X86CompilationCallback_SSE)
246 ASMPREFIX "X86CompilationCallback_SSE:\n"
247 CFI(".cfi_startproc\n")
248 "pushl %ebp\n"
249 CFI(".cfi_def_cfa_offset 8\n")
250 CFI(".cfi_offset %ebp, -8\n")
251 "movl %esp, %ebp\n" // Standard prologue
252 CFI(".cfi_def_cfa_register %ebp\n")
253 "pushl %eax\n"
254 CFI(".cfi_rel_offset %eax, 0\n")
255 "pushl %edx\n" // Save EAX/EDX/ECX
256 CFI(".cfi_rel_offset %edx, 4\n")
257 "pushl %ecx\n"
258 CFI(".cfi_rel_offset %ecx, 8\n")
259 "andl $-16, %esp\n" // Align ESP on 16-byte boundary
260 // Save all XMM arg registers
261 "subl $64, %esp\n"
262 // FIXME: provide frame move information for xmm registers.
263 // This can be tricky, because CFA register is ebp (unaligned)
264 // and we need to produce offsets relative to it.
265 "movaps %xmm0, (%esp)\n"
266 "movaps %xmm1, 16(%esp)\n"
267 "movaps %xmm2, 32(%esp)\n"
268 "movaps %xmm3, 48(%esp)\n"
269 "subl $16, %esp\n"
270 "movl 4(%ebp), %eax\n" // Pass prev frame and return address
271 "movl %eax, 4(%esp)\n"
272 "movl %ebp, (%esp)\n"
273 "call " ASMPREFIX "LLVMX86CompilationCallback2\n"
274 "addl $16, %esp\n"
275 "movaps 48(%esp), %xmm3\n"
276 CFI(".cfi_restore %xmm3\n")
277 "movaps 32(%esp), %xmm2\n"
278 CFI(".cfi_restore %xmm2\n")
279 "movaps 16(%esp), %xmm1\n"
280 CFI(".cfi_restore %xmm1\n")
281 "movaps (%esp), %xmm0\n"
282 CFI(".cfi_restore %xmm0\n")
283 "movl %ebp, %esp\n" // Restore ESP
284 CFI(".cfi_def_cfa_register esp\n")
285 "subl $12, %esp\n"
286 CFI(".cfi_adjust_cfa_offset 12\n")
287 "popl %ecx\n"
288 CFI(".cfi_adjust_cfa_offset -4\n")
289 CFI(".cfi_restore %ecx\n")
290 "popl %edx\n"
291 CFI(".cfi_adjust_cfa_offset -4\n")
292 CFI(".cfi_restore %edx\n")
293 "popl %eax\n"
294 CFI(".cfi_adjust_cfa_offset -4\n")
295 CFI(".cfi_restore %eax\n")
296 "popl %ebp\n"
297 CFI(".cfi_adjust_cfa_offset -4\n")
298 CFI(".cfi_restore %ebp\n")
299 "ret\n"
300 CFI(".cfi_endproc\n")
301 SIZE(X86CompilationCallback_SSE)
302 );
303 # else
304 void LLVMX86CompilationCallback2(intptr_t *StackPtr, intptr_t RetAddr);
305
306 _declspec(naked) void X86CompilationCallback(void) {
307 __asm {
308 push ebp
309 mov ebp, esp
310 push eax
311 push edx
312 push ecx
313 and esp, -16
314 sub esp, 16
315 mov eax, dword ptr [ebp+4]
316 mov dword ptr [esp+4], eax
317 mov dword ptr [esp], ebp
318 call LLVMX86CompilationCallback2
319 mov esp, ebp
320 sub esp, 12
321 pop ecx
322 pop edx
323 pop eax
324 pop ebp
325 ret
326 }
327 }
328
329 # endif // _MSC_VER
330
331 #else // Not an i386 host
332 void X86CompilationCallback() {
333 llvm_unreachable("Cannot call X86CompilationCallback() on a non-x86 arch!");
334 }
335 #endif
336 }
337
338 /// This is the target-specific function invoked by the
339 /// function stub when we did not know the real target of a call. This function
340 /// must locate the start of the stub or call site and pass it into the JIT
341 /// compiler function.
342 extern "C" {
343 LLVM_ATTRIBUTE_USED // Referenced from inline asm.
LLVMX86CompilationCallback2(intptr_t * StackPtr,intptr_t RetAddr)344 LLVM_LIBRARY_VISIBILITY void LLVMX86CompilationCallback2(intptr_t *StackPtr,
345 intptr_t RetAddr) {
346 intptr_t *RetAddrLoc = &StackPtr[1];
347 // We are reading raw stack data here. Tell MemorySanitizer that it is
348 // sufficiently initialized.
349 __msan_unpoison(RetAddrLoc, sizeof(*RetAddrLoc));
350 assert(*RetAddrLoc == RetAddr &&
351 "Could not find return address on the stack!");
352
353 // It's a stub if there is an interrupt marker after the call.
354 bool isStub = ((unsigned char*)RetAddr)[0] == 0xCE;
355
356 // The call instruction should have pushed the return value onto the stack...
357 #if defined (X86_64_JIT)
358 RetAddr--; // Backtrack to the reference itself...
359 #else
360 RetAddr -= 4; // Backtrack to the reference itself...
361 #endif
362
363 #if 0
364 DEBUG(dbgs() << "In callback! Addr=" << (void*)RetAddr
365 << " ESP=" << (void*)StackPtr
366 << ": Resolving call to function: "
367 << TheVM->getFunctionReferencedName((void*)RetAddr) << "\n");
368 #endif
369
370 // Sanity check to make sure this really is a call instruction.
371 #if defined (X86_64_JIT)
372 assert(((unsigned char*)RetAddr)[-2] == 0x41 &&"Not a call instr!");
373 assert(((unsigned char*)RetAddr)[-1] == 0xFF &&"Not a call instr!");
374 #else
375 assert(((unsigned char*)RetAddr)[-1] == 0xE8 &&"Not a call instr!");
376 #endif
377
378 intptr_t NewVal = (intptr_t)JITCompilerFunction((void*)RetAddr);
379
380 // Rewrite the call target... so that we don't end up here every time we
381 // execute the call.
382 #if defined (X86_64_JIT)
383 assert(isStub &&
384 "X86-64 doesn't support rewriting non-stub lazy compilation calls:"
385 " the call instruction varies too much.");
386 #else
387 *(intptr_t *)RetAddr = (intptr_t)(NewVal-RetAddr-4);
388 #endif
389
390 if (isStub) {
391 // If this is a stub, rewrite the call into an unconditional branch
392 // instruction so that two return addresses are not pushed onto the stack
393 // when the requested function finally gets called. This also makes the
394 // 0xCE byte (interrupt) dead, so the marker doesn't effect anything.
395 #if defined (X86_64_JIT)
396 // If the target address is within 32-bit range of the stub, use a
397 // PC-relative branch instead of loading the actual address. (This is
398 // considerably shorter than the 64-bit immediate load already there.)
399 // We assume here intptr_t is 64 bits.
400 intptr_t diff = NewVal-RetAddr+7;
401 if (diff >= -2147483648LL && diff <= 2147483647LL) {
402 *(unsigned char*)(RetAddr-0xc) = 0xE9;
403 *(intptr_t *)(RetAddr-0xb) = diff & 0xffffffff;
404 } else {
405 *(intptr_t *)(RetAddr - 0xa) = NewVal;
406 ((unsigned char*)RetAddr)[0] = (2 | (4 << 3) | (3 << 6));
407 }
408 sys::ValgrindDiscardTranslations((void*)(RetAddr-0xc), 0xd);
409 #else
410 ((unsigned char*)RetAddr)[-1] = 0xE9;
411 sys::ValgrindDiscardTranslations((void*)(RetAddr-1), 5);
412 #endif
413 }
414
415 // Change the return address to reexecute the call instruction...
416 #if defined (X86_64_JIT)
417 *RetAddrLoc -= 0xd;
418 #else
419 *RetAddrLoc -= 5;
420 #endif
421 }
422 }
423
424 TargetJITInfo::LazyResolverFn
getLazyResolverFunction(JITCompilerFn F)425 X86JITInfo::getLazyResolverFunction(JITCompilerFn F) {
426 TsanIgnoreWritesBegin();
427 JITCompilerFunction = F;
428 TsanIgnoreWritesEnd();
429
430 #if defined (X86_32_JIT) && !defined (_MSC_VER)
431 #if defined(__SSE__)
432 // SSE Callback should be called for SSE-enabled LLVM.
433 return X86CompilationCallback_SSE;
434 #else
435 if (useSSE)
436 return X86CompilationCallback_SSE;
437 #endif
438 #endif
439
440 return X86CompilationCallback;
441 }
442
X86JITInfo(bool UseSSE)443 X86JITInfo::X86JITInfo(bool UseSSE) {
444 useSSE = UseSSE;
445 useGOT = 0;
446 TLSOffset = nullptr;
447 }
448
emitGlobalValueIndirectSym(const GlobalValue * GV,void * ptr,JITCodeEmitter & JCE)449 void *X86JITInfo::emitGlobalValueIndirectSym(const GlobalValue* GV, void *ptr,
450 JITCodeEmitter &JCE) {
451 #if defined (X86_64_JIT)
452 const unsigned Alignment = 8;
453 uint8_t Buffer[8];
454 uint8_t *Cur = Buffer;
455 MachineCodeEmitter::emitWordLEInto(Cur, (unsigned)(intptr_t)ptr);
456 MachineCodeEmitter::emitWordLEInto(Cur, (unsigned)(((intptr_t)ptr) >> 32));
457 #else
458 const unsigned Alignment = 4;
459 uint8_t Buffer[4];
460 uint8_t *Cur = Buffer;
461 MachineCodeEmitter::emitWordLEInto(Cur, (intptr_t)ptr);
462 #endif
463 return JCE.allocIndirectGV(GV, Buffer, sizeof(Buffer), Alignment);
464 }
465
getStubLayout()466 TargetJITInfo::StubLayout X86JITInfo::getStubLayout() {
467 // The 64-bit stub contains:
468 // movabs r10 <- 8-byte-target-address # 10 bytes
469 // call|jmp *r10 # 3 bytes
470 // The 32-bit stub contains a 5-byte call|jmp.
471 // If the stub is a call to the compilation callback, an extra byte is added
472 // to mark it as a stub.
473 StubLayout Result = {14, 4};
474 return Result;
475 }
476
emitFunctionStub(const Function * F,void * Target,JITCodeEmitter & JCE)477 void *X86JITInfo::emitFunctionStub(const Function* F, void *Target,
478 JITCodeEmitter &JCE) {
479 // Note, we cast to intptr_t here to silence a -pedantic warning that
480 // complains about casting a function pointer to a normal pointer.
481 #if defined (X86_32_JIT) && !defined (_MSC_VER)
482 bool NotCC = (Target != (void*)(intptr_t)X86CompilationCallback &&
483 Target != (void*)(intptr_t)X86CompilationCallback_SSE);
484 #else
485 bool NotCC = Target != (void*)(intptr_t)X86CompilationCallback;
486 #endif
487 JCE.emitAlignment(4);
488 void *Result = (void*)JCE.getCurrentPCValue();
489 if (NotCC) {
490 #if defined (X86_64_JIT)
491 JCE.emitByte(0x49); // REX prefix
492 JCE.emitByte(0xB8+2); // movabsq r10
493 JCE.emitWordLE((unsigned)(intptr_t)Target);
494 JCE.emitWordLE((unsigned)(((intptr_t)Target) >> 32));
495 JCE.emitByte(0x41); // REX prefix
496 JCE.emitByte(0xFF); // jmpq *r10
497 JCE.emitByte(2 | (4 << 3) | (3 << 6));
498 #else
499 JCE.emitByte(0xE9);
500 JCE.emitWordLE((intptr_t)Target-JCE.getCurrentPCValue()-4);
501 #endif
502 return Result;
503 }
504
505 #if defined (X86_64_JIT)
506 JCE.emitByte(0x49); // REX prefix
507 JCE.emitByte(0xB8+2); // movabsq r10
508 JCE.emitWordLE((unsigned)(intptr_t)Target);
509 JCE.emitWordLE((unsigned)(((intptr_t)Target) >> 32));
510 JCE.emitByte(0x41); // REX prefix
511 JCE.emitByte(0xFF); // callq *r10
512 JCE.emitByte(2 | (2 << 3) | (3 << 6));
513 #else
514 JCE.emitByte(0xE8); // Call with 32 bit pc-rel destination...
515
516 JCE.emitWordLE((intptr_t)Target-JCE.getCurrentPCValue()-4);
517 #endif
518
519 // This used to use 0xCD, but that value is used by JITMemoryManager to
520 // initialize the buffer with garbage, which means it may follow a
521 // noreturn function call, confusing LLVMX86CompilationCallback2. PR 4929.
522 JCE.emitByte(0xCE); // Interrupt - Just a marker identifying the stub!
523 return Result;
524 }
525
526 /// getPICJumpTableEntry - Returns the value of the jumptable entry for the
527 /// specific basic block.
getPICJumpTableEntry(uintptr_t BB,uintptr_t Entry)528 uintptr_t X86JITInfo::getPICJumpTableEntry(uintptr_t BB, uintptr_t Entry) {
529 #if defined(X86_64_JIT)
530 return BB - Entry;
531 #else
532 return BB - PICBase;
533 #endif
534 }
535
addUnaligned(void * Pos,T Delta)536 template<typename T> static void addUnaligned(void *Pos, T Delta) {
537 T Value;
538 std::memcpy(reinterpret_cast<char*>(&Value), reinterpret_cast<char*>(Pos),
539 sizeof(T));
540 Value += Delta;
541 std::memcpy(reinterpret_cast<char*>(Pos), reinterpret_cast<char*>(&Value),
542 sizeof(T));
543 }
544
545 /// relocate - Before the JIT can run a block of code that has been emitted,
546 /// it must rewrite the code to contain the actual addresses of any
547 /// referenced global symbols.
relocate(void * Function,MachineRelocation * MR,unsigned NumRelocs,unsigned char * GOTBase)548 void X86JITInfo::relocate(void *Function, MachineRelocation *MR,
549 unsigned NumRelocs, unsigned char* GOTBase) {
550 for (unsigned i = 0; i != NumRelocs; ++i, ++MR) {
551 void *RelocPos = (char*)Function + MR->getMachineCodeOffset();
552 intptr_t ResultPtr = (intptr_t)MR->getResultPointer();
553 switch ((X86::RelocationType)MR->getRelocationType()) {
554 case X86::reloc_pcrel_word: {
555 // PC relative relocation, add the relocated value to the value already in
556 // memory, after we adjust it for where the PC is.
557 ResultPtr = ResultPtr -(intptr_t)RelocPos - 4 - MR->getConstantVal();
558 addUnaligned<unsigned>(RelocPos, ResultPtr);
559 break;
560 }
561 case X86::reloc_picrel_word: {
562 // PIC base relative relocation, add the relocated value to the value
563 // already in memory, after we adjust it for where the PIC base is.
564 ResultPtr = ResultPtr - ((intptr_t)Function + MR->getConstantVal());
565 addUnaligned<unsigned>(RelocPos, ResultPtr);
566 break;
567 }
568 case X86::reloc_absolute_word:
569 case X86::reloc_absolute_word_sext:
570 // Absolute relocation, just add the relocated value to the value already
571 // in memory.
572 addUnaligned<unsigned>(RelocPos, ResultPtr);
573 break;
574 case X86::reloc_absolute_dword:
575 addUnaligned<intptr_t>(RelocPos, ResultPtr);
576 break;
577 }
578 }
579 }
580
allocateThreadLocalMemory(size_t size)581 char* X86JITInfo::allocateThreadLocalMemory(size_t size) {
582 #if defined(X86_32_JIT) && !defined(__APPLE__) && !defined(_MSC_VER)
583 TLSOffset -= size;
584 return TLSOffset;
585 #else
586 llvm_unreachable("Cannot allocate thread local storage on this arch!");
587 #endif
588 }
589