1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements sparse conditional constant propagation and merging:
11 //
12 // Specifically, this:
13 // * Assumes values are constant unless proven otherwise
14 // * Assumes BasicBlocks are dead unless proven otherwise
15 // * Proves values to be constant, and replaces them with constants
16 // * Proves conditional branches to be unconditional
17 //
18 //===----------------------------------------------------------------------===//
19
20 #include "llvm/Transforms/Scalar.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/PointerIntPair.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/IR/CallSite.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/InstVisitor.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/Pass.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetLibraryInfo.h"
39 #include "llvm/Transforms/IPO.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 #include <algorithm>
42 using namespace llvm;
43
44 #define DEBUG_TYPE "sccp"
45
46 STATISTIC(NumInstRemoved, "Number of instructions removed");
47 STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
48
49 STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
50 STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
51 STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
52
53 namespace {
54 /// LatticeVal class - This class represents the different lattice values that
55 /// an LLVM value may occupy. It is a simple class with value semantics.
56 ///
57 class LatticeVal {
58 enum LatticeValueTy {
59 /// undefined - This LLVM Value has no known value yet.
60 undefined,
61
62 /// constant - This LLVM Value has a specific constant value.
63 constant,
64
65 /// forcedconstant - This LLVM Value was thought to be undef until
66 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged
67 /// with another (different) constant, it goes to overdefined, instead of
68 /// asserting.
69 forcedconstant,
70
71 /// overdefined - This instruction is not known to be constant, and we know
72 /// it has a value.
73 overdefined
74 };
75
76 /// Val: This stores the current lattice value along with the Constant* for
77 /// the constant if this is a 'constant' or 'forcedconstant' value.
78 PointerIntPair<Constant *, 2, LatticeValueTy> Val;
79
getLatticeValue() const80 LatticeValueTy getLatticeValue() const {
81 return Val.getInt();
82 }
83
84 public:
LatticeVal()85 LatticeVal() : Val(nullptr, undefined) {}
86
isUndefined() const87 bool isUndefined() const { return getLatticeValue() == undefined; }
isConstant() const88 bool isConstant() const {
89 return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
90 }
isOverdefined() const91 bool isOverdefined() const { return getLatticeValue() == overdefined; }
92
getConstant() const93 Constant *getConstant() const {
94 assert(isConstant() && "Cannot get the constant of a non-constant!");
95 return Val.getPointer();
96 }
97
98 /// markOverdefined - Return true if this is a change in status.
markOverdefined()99 bool markOverdefined() {
100 if (isOverdefined())
101 return false;
102
103 Val.setInt(overdefined);
104 return true;
105 }
106
107 /// markConstant - Return true if this is a change in status.
markConstant(Constant * V)108 bool markConstant(Constant *V) {
109 if (getLatticeValue() == constant) { // Constant but not forcedconstant.
110 assert(getConstant() == V && "Marking constant with different value");
111 return false;
112 }
113
114 if (isUndefined()) {
115 Val.setInt(constant);
116 assert(V && "Marking constant with NULL");
117 Val.setPointer(V);
118 } else {
119 assert(getLatticeValue() == forcedconstant &&
120 "Cannot move from overdefined to constant!");
121 // Stay at forcedconstant if the constant is the same.
122 if (V == getConstant()) return false;
123
124 // Otherwise, we go to overdefined. Assumptions made based on the
125 // forced value are possibly wrong. Assuming this is another constant
126 // could expose a contradiction.
127 Val.setInt(overdefined);
128 }
129 return true;
130 }
131
132 /// getConstantInt - If this is a constant with a ConstantInt value, return it
133 /// otherwise return null.
getConstantInt() const134 ConstantInt *getConstantInt() const {
135 if (isConstant())
136 return dyn_cast<ConstantInt>(getConstant());
137 return nullptr;
138 }
139
markForcedConstant(Constant * V)140 void markForcedConstant(Constant *V) {
141 assert(isUndefined() && "Can't force a defined value!");
142 Val.setInt(forcedconstant);
143 Val.setPointer(V);
144 }
145 };
146 } // end anonymous namespace.
147
148
149 namespace {
150
151 //===----------------------------------------------------------------------===//
152 //
153 /// SCCPSolver - This class is a general purpose solver for Sparse Conditional
154 /// Constant Propagation.
155 ///
156 class SCCPSolver : public InstVisitor<SCCPSolver> {
157 const DataLayout *DL;
158 const TargetLibraryInfo *TLI;
159 SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable.
160 DenseMap<Value*, LatticeVal> ValueState; // The state each value is in.
161
162 /// StructValueState - This maintains ValueState for values that have
163 /// StructType, for example for formal arguments, calls, insertelement, etc.
164 ///
165 DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState;
166
167 /// GlobalValue - If we are tracking any values for the contents of a global
168 /// variable, we keep a mapping from the constant accessor to the element of
169 /// the global, to the currently known value. If the value becomes
170 /// overdefined, it's entry is simply removed from this map.
171 DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
172
173 /// TrackedRetVals - If we are tracking arguments into and the return
174 /// value out of a function, it will have an entry in this map, indicating
175 /// what the known return value for the function is.
176 DenseMap<Function*, LatticeVal> TrackedRetVals;
177
178 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
179 /// that return multiple values.
180 DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
181
182 /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
183 /// represented here for efficient lookup.
184 SmallPtrSet<Function*, 16> MRVFunctionsTracked;
185
186 /// TrackingIncomingArguments - This is the set of functions for whose
187 /// arguments we make optimistic assumptions about and try to prove as
188 /// constants.
189 SmallPtrSet<Function*, 16> TrackingIncomingArguments;
190
191 /// The reason for two worklists is that overdefined is the lowest state
192 /// on the lattice, and moving things to overdefined as fast as possible
193 /// makes SCCP converge much faster.
194 ///
195 /// By having a separate worklist, we accomplish this because everything
196 /// possibly overdefined will become overdefined at the soonest possible
197 /// point.
198 SmallVector<Value*, 64> OverdefinedInstWorkList;
199 SmallVector<Value*, 64> InstWorkList;
200
201
202 SmallVector<BasicBlock*, 64> BBWorkList; // The BasicBlock work list
203
204 /// KnownFeasibleEdges - Entries in this set are edges which have already had
205 /// PHI nodes retriggered.
206 typedef std::pair<BasicBlock*, BasicBlock*> Edge;
207 DenseSet<Edge> KnownFeasibleEdges;
208 public:
SCCPSolver(const DataLayout * DL,const TargetLibraryInfo * tli)209 SCCPSolver(const DataLayout *DL, const TargetLibraryInfo *tli)
210 : DL(DL), TLI(tli) {}
211
212 /// MarkBlockExecutable - This method can be used by clients to mark all of
213 /// the blocks that are known to be intrinsically live in the processed unit.
214 ///
215 /// This returns true if the block was not considered live before.
MarkBlockExecutable(BasicBlock * BB)216 bool MarkBlockExecutable(BasicBlock *BB) {
217 if (!BBExecutable.insert(BB)) return false;
218 DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
219 BBWorkList.push_back(BB); // Add the block to the work list!
220 return true;
221 }
222
223 /// TrackValueOfGlobalVariable - Clients can use this method to
224 /// inform the SCCPSolver that it should track loads and stores to the
225 /// specified global variable if it can. This is only legal to call if
226 /// performing Interprocedural SCCP.
TrackValueOfGlobalVariable(GlobalVariable * GV)227 void TrackValueOfGlobalVariable(GlobalVariable *GV) {
228 // We only track the contents of scalar globals.
229 if (GV->getType()->getElementType()->isSingleValueType()) {
230 LatticeVal &IV = TrackedGlobals[GV];
231 if (!isa<UndefValue>(GV->getInitializer()))
232 IV.markConstant(GV->getInitializer());
233 }
234 }
235
236 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
237 /// and out of the specified function (which cannot have its address taken),
238 /// this method must be called.
AddTrackedFunction(Function * F)239 void AddTrackedFunction(Function *F) {
240 // Add an entry, F -> undef.
241 if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
242 MRVFunctionsTracked.insert(F);
243 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
244 TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
245 LatticeVal()));
246 } else
247 TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
248 }
249
AddArgumentTrackedFunction(Function * F)250 void AddArgumentTrackedFunction(Function *F) {
251 TrackingIncomingArguments.insert(F);
252 }
253
254 /// Solve - Solve for constants and executable blocks.
255 ///
256 void Solve();
257
258 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
259 /// that branches on undef values cannot reach any of their successors.
260 /// However, this is not a safe assumption. After we solve dataflow, this
261 /// method should be use to handle this. If this returns true, the solver
262 /// should be rerun.
263 bool ResolvedUndefsIn(Function &F);
264
isBlockExecutable(BasicBlock * BB) const265 bool isBlockExecutable(BasicBlock *BB) const {
266 return BBExecutable.count(BB);
267 }
268
getLatticeValueFor(Value * V) const269 LatticeVal getLatticeValueFor(Value *V) const {
270 DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V);
271 assert(I != ValueState.end() && "V is not in valuemap!");
272 return I->second;
273 }
274
275 /// getTrackedRetVals - Get the inferred return value map.
276 ///
getTrackedRetVals()277 const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
278 return TrackedRetVals;
279 }
280
281 /// getTrackedGlobals - Get and return the set of inferred initializers for
282 /// global variables.
getTrackedGlobals()283 const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
284 return TrackedGlobals;
285 }
286
markOverdefined(Value * V)287 void markOverdefined(Value *V) {
288 assert(!V->getType()->isStructTy() && "Should use other method");
289 markOverdefined(ValueState[V], V);
290 }
291
292 /// markAnythingOverdefined - Mark the specified value overdefined. This
293 /// works with both scalars and structs.
markAnythingOverdefined(Value * V)294 void markAnythingOverdefined(Value *V) {
295 if (StructType *STy = dyn_cast<StructType>(V->getType()))
296 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
297 markOverdefined(getStructValueState(V, i), V);
298 else
299 markOverdefined(V);
300 }
301
302 private:
303 // markConstant - Make a value be marked as "constant". If the value
304 // is not already a constant, add it to the instruction work list so that
305 // the users of the instruction are updated later.
306 //
markConstant(LatticeVal & IV,Value * V,Constant * C)307 void markConstant(LatticeVal &IV, Value *V, Constant *C) {
308 if (!IV.markConstant(C)) return;
309 DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
310 if (IV.isOverdefined())
311 OverdefinedInstWorkList.push_back(V);
312 else
313 InstWorkList.push_back(V);
314 }
315
markConstant(Value * V,Constant * C)316 void markConstant(Value *V, Constant *C) {
317 assert(!V->getType()->isStructTy() && "Should use other method");
318 markConstant(ValueState[V], V, C);
319 }
320
markForcedConstant(Value * V,Constant * C)321 void markForcedConstant(Value *V, Constant *C) {
322 assert(!V->getType()->isStructTy() && "Should use other method");
323 LatticeVal &IV = ValueState[V];
324 IV.markForcedConstant(C);
325 DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
326 if (IV.isOverdefined())
327 OverdefinedInstWorkList.push_back(V);
328 else
329 InstWorkList.push_back(V);
330 }
331
332
333 // markOverdefined - Make a value be marked as "overdefined". If the
334 // value is not already overdefined, add it to the overdefined instruction
335 // work list so that the users of the instruction are updated later.
markOverdefined(LatticeVal & IV,Value * V)336 void markOverdefined(LatticeVal &IV, Value *V) {
337 if (!IV.markOverdefined()) return;
338
339 DEBUG(dbgs() << "markOverdefined: ";
340 if (Function *F = dyn_cast<Function>(V))
341 dbgs() << "Function '" << F->getName() << "'\n";
342 else
343 dbgs() << *V << '\n');
344 // Only instructions go on the work list
345 OverdefinedInstWorkList.push_back(V);
346 }
347
mergeInValue(LatticeVal & IV,Value * V,LatticeVal MergeWithV)348 void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
349 if (IV.isOverdefined() || MergeWithV.isUndefined())
350 return; // Noop.
351 if (MergeWithV.isOverdefined())
352 markOverdefined(IV, V);
353 else if (IV.isUndefined())
354 markConstant(IV, V, MergeWithV.getConstant());
355 else if (IV.getConstant() != MergeWithV.getConstant())
356 markOverdefined(IV, V);
357 }
358
mergeInValue(Value * V,LatticeVal MergeWithV)359 void mergeInValue(Value *V, LatticeVal MergeWithV) {
360 assert(!V->getType()->isStructTy() && "Should use other method");
361 mergeInValue(ValueState[V], V, MergeWithV);
362 }
363
364
365 /// getValueState - Return the LatticeVal object that corresponds to the
366 /// value. This function handles the case when the value hasn't been seen yet
367 /// by properly seeding constants etc.
getValueState(Value * V)368 LatticeVal &getValueState(Value *V) {
369 assert(!V->getType()->isStructTy() && "Should use getStructValueState");
370
371 std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I =
372 ValueState.insert(std::make_pair(V, LatticeVal()));
373 LatticeVal &LV = I.first->second;
374
375 if (!I.second)
376 return LV; // Common case, already in the map.
377
378 if (Constant *C = dyn_cast<Constant>(V)) {
379 // Undef values remain undefined.
380 if (!isa<UndefValue>(V))
381 LV.markConstant(C); // Constants are constant
382 }
383
384 // All others are underdefined by default.
385 return LV;
386 }
387
388 /// getStructValueState - Return the LatticeVal object that corresponds to the
389 /// value/field pair. This function handles the case when the value hasn't
390 /// been seen yet by properly seeding constants etc.
getStructValueState(Value * V,unsigned i)391 LatticeVal &getStructValueState(Value *V, unsigned i) {
392 assert(V->getType()->isStructTy() && "Should use getValueState");
393 assert(i < cast<StructType>(V->getType())->getNumElements() &&
394 "Invalid element #");
395
396 std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator,
397 bool> I = StructValueState.insert(
398 std::make_pair(std::make_pair(V, i), LatticeVal()));
399 LatticeVal &LV = I.first->second;
400
401 if (!I.second)
402 return LV; // Common case, already in the map.
403
404 if (Constant *C = dyn_cast<Constant>(V)) {
405 Constant *Elt = C->getAggregateElement(i);
406
407 if (!Elt)
408 LV.markOverdefined(); // Unknown sort of constant.
409 else if (isa<UndefValue>(Elt))
410 ; // Undef values remain undefined.
411 else
412 LV.markConstant(Elt); // Constants are constant.
413 }
414
415 // All others are underdefined by default.
416 return LV;
417 }
418
419
420 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
421 /// work list if it is not already executable.
markEdgeExecutable(BasicBlock * Source,BasicBlock * Dest)422 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
423 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
424 return; // This edge is already known to be executable!
425
426 if (!MarkBlockExecutable(Dest)) {
427 // If the destination is already executable, we just made an *edge*
428 // feasible that wasn't before. Revisit the PHI nodes in the block
429 // because they have potentially new operands.
430 DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
431 << " -> " << Dest->getName() << '\n');
432
433 PHINode *PN;
434 for (BasicBlock::iterator I = Dest->begin();
435 (PN = dyn_cast<PHINode>(I)); ++I)
436 visitPHINode(*PN);
437 }
438 }
439
440 // getFeasibleSuccessors - Return a vector of booleans to indicate which
441 // successors are reachable from a given terminator instruction.
442 //
443 void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs);
444
445 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
446 // block to the 'To' basic block is currently feasible.
447 //
448 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
449
450 // OperandChangedState - This method is invoked on all of the users of an
451 // instruction that was just changed state somehow. Based on this
452 // information, we need to update the specified user of this instruction.
453 //
OperandChangedState(Instruction * I)454 void OperandChangedState(Instruction *I) {
455 if (BBExecutable.count(I->getParent())) // Inst is executable?
456 visit(*I);
457 }
458
459 private:
460 friend class InstVisitor<SCCPSolver>;
461
462 // visit implementations - Something changed in this instruction. Either an
463 // operand made a transition, or the instruction is newly executable. Change
464 // the value type of I to reflect these changes if appropriate.
465 void visitPHINode(PHINode &I);
466
467 // Terminators
468 void visitReturnInst(ReturnInst &I);
469 void visitTerminatorInst(TerminatorInst &TI);
470
471 void visitCastInst(CastInst &I);
472 void visitSelectInst(SelectInst &I);
473 void visitBinaryOperator(Instruction &I);
474 void visitCmpInst(CmpInst &I);
475 void visitExtractElementInst(ExtractElementInst &I);
476 void visitInsertElementInst(InsertElementInst &I);
477 void visitShuffleVectorInst(ShuffleVectorInst &I);
478 void visitExtractValueInst(ExtractValueInst &EVI);
479 void visitInsertValueInst(InsertValueInst &IVI);
visitLandingPadInst(LandingPadInst & I)480 void visitLandingPadInst(LandingPadInst &I) { markAnythingOverdefined(&I); }
481
482 // Instructions that cannot be folded away.
483 void visitStoreInst (StoreInst &I);
484 void visitLoadInst (LoadInst &I);
485 void visitGetElementPtrInst(GetElementPtrInst &I);
visitCallInst(CallInst & I)486 void visitCallInst (CallInst &I) {
487 visitCallSite(&I);
488 }
visitInvokeInst(InvokeInst & II)489 void visitInvokeInst (InvokeInst &II) {
490 visitCallSite(&II);
491 visitTerminatorInst(II);
492 }
493 void visitCallSite (CallSite CS);
visitResumeInst(TerminatorInst & I)494 void visitResumeInst (TerminatorInst &I) { /*returns void*/ }
visitUnreachableInst(TerminatorInst & I)495 void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
visitFenceInst(FenceInst & I)496 void visitFenceInst (FenceInst &I) { /*returns void*/ }
visitAtomicCmpXchgInst(AtomicCmpXchgInst & I)497 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
498 markAnythingOverdefined(&I);
499 }
visitAtomicRMWInst(AtomicRMWInst & I)500 void visitAtomicRMWInst (AtomicRMWInst &I) { markOverdefined(&I); }
visitAllocaInst(Instruction & I)501 void visitAllocaInst (Instruction &I) { markOverdefined(&I); }
visitVAArgInst(Instruction & I)502 void visitVAArgInst (Instruction &I) { markAnythingOverdefined(&I); }
503
visitInstruction(Instruction & I)504 void visitInstruction(Instruction &I) {
505 // If a new instruction is added to LLVM that we don't handle.
506 dbgs() << "SCCP: Don't know how to handle: " << I << '\n';
507 markAnythingOverdefined(&I); // Just in case
508 }
509 };
510
511 } // end anonymous namespace
512
513
514 // getFeasibleSuccessors - Return a vector of booleans to indicate which
515 // successors are reachable from a given terminator instruction.
516 //
getFeasibleSuccessors(TerminatorInst & TI,SmallVectorImpl<bool> & Succs)517 void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
518 SmallVectorImpl<bool> &Succs) {
519 Succs.resize(TI.getNumSuccessors());
520 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
521 if (BI->isUnconditional()) {
522 Succs[0] = true;
523 return;
524 }
525
526 LatticeVal BCValue = getValueState(BI->getCondition());
527 ConstantInt *CI = BCValue.getConstantInt();
528 if (!CI) {
529 // Overdefined condition variables, and branches on unfoldable constant
530 // conditions, mean the branch could go either way.
531 if (!BCValue.isUndefined())
532 Succs[0] = Succs[1] = true;
533 return;
534 }
535
536 // Constant condition variables mean the branch can only go a single way.
537 Succs[CI->isZero()] = true;
538 return;
539 }
540
541 if (isa<InvokeInst>(TI)) {
542 // Invoke instructions successors are always executable.
543 Succs[0] = Succs[1] = true;
544 return;
545 }
546
547 if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
548 if (!SI->getNumCases()) {
549 Succs[0] = true;
550 return;
551 }
552 LatticeVal SCValue = getValueState(SI->getCondition());
553 ConstantInt *CI = SCValue.getConstantInt();
554
555 if (!CI) { // Overdefined or undefined condition?
556 // All destinations are executable!
557 if (!SCValue.isUndefined())
558 Succs.assign(TI.getNumSuccessors(), true);
559 return;
560 }
561
562 Succs[SI->findCaseValue(CI).getSuccessorIndex()] = true;
563 return;
564 }
565
566 // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
567 if (isa<IndirectBrInst>(&TI)) {
568 // Just mark all destinations executable!
569 Succs.assign(TI.getNumSuccessors(), true);
570 return;
571 }
572
573 #ifndef NDEBUG
574 dbgs() << "Unknown terminator instruction: " << TI << '\n';
575 #endif
576 llvm_unreachable("SCCP: Don't know how to handle this terminator!");
577 }
578
579
580 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
581 // block to the 'To' basic block is currently feasible.
582 //
isEdgeFeasible(BasicBlock * From,BasicBlock * To)583 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
584 assert(BBExecutable.count(To) && "Dest should always be alive!");
585
586 // Make sure the source basic block is executable!!
587 if (!BBExecutable.count(From)) return false;
588
589 // Check to make sure this edge itself is actually feasible now.
590 TerminatorInst *TI = From->getTerminator();
591 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
592 if (BI->isUnconditional())
593 return true;
594
595 LatticeVal BCValue = getValueState(BI->getCondition());
596
597 // Overdefined condition variables mean the branch could go either way,
598 // undef conditions mean that neither edge is feasible yet.
599 ConstantInt *CI = BCValue.getConstantInt();
600 if (!CI)
601 return !BCValue.isUndefined();
602
603 // Constant condition variables mean the branch can only go a single way.
604 return BI->getSuccessor(CI->isZero()) == To;
605 }
606
607 // Invoke instructions successors are always executable.
608 if (isa<InvokeInst>(TI))
609 return true;
610
611 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
612 if (SI->getNumCases() < 1)
613 return true;
614
615 LatticeVal SCValue = getValueState(SI->getCondition());
616 ConstantInt *CI = SCValue.getConstantInt();
617
618 if (!CI)
619 return !SCValue.isUndefined();
620
621 return SI->findCaseValue(CI).getCaseSuccessor() == To;
622 }
623
624 // Just mark all destinations executable!
625 // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
626 if (isa<IndirectBrInst>(TI))
627 return true;
628
629 #ifndef NDEBUG
630 dbgs() << "Unknown terminator instruction: " << *TI << '\n';
631 #endif
632 llvm_unreachable(nullptr);
633 }
634
635 // visit Implementations - Something changed in this instruction, either an
636 // operand made a transition, or the instruction is newly executable. Change
637 // the value type of I to reflect these changes if appropriate. This method
638 // makes sure to do the following actions:
639 //
640 // 1. If a phi node merges two constants in, and has conflicting value coming
641 // from different branches, or if the PHI node merges in an overdefined
642 // value, then the PHI node becomes overdefined.
643 // 2. If a phi node merges only constants in, and they all agree on value, the
644 // PHI node becomes a constant value equal to that.
645 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
646 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
647 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
648 // 6. If a conditional branch has a value that is constant, make the selected
649 // destination executable
650 // 7. If a conditional branch has a value that is overdefined, make all
651 // successors executable.
652 //
visitPHINode(PHINode & PN)653 void SCCPSolver::visitPHINode(PHINode &PN) {
654 // If this PN returns a struct, just mark the result overdefined.
655 // TODO: We could do a lot better than this if code actually uses this.
656 if (PN.getType()->isStructTy())
657 return markAnythingOverdefined(&PN);
658
659 if (getValueState(&PN).isOverdefined())
660 return; // Quick exit
661
662 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
663 // and slow us down a lot. Just mark them overdefined.
664 if (PN.getNumIncomingValues() > 64)
665 return markOverdefined(&PN);
666
667 // Look at all of the executable operands of the PHI node. If any of them
668 // are overdefined, the PHI becomes overdefined as well. If they are all
669 // constant, and they agree with each other, the PHI becomes the identical
670 // constant. If they are constant and don't agree, the PHI is overdefined.
671 // If there are no executable operands, the PHI remains undefined.
672 //
673 Constant *OperandVal = nullptr;
674 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
675 LatticeVal IV = getValueState(PN.getIncomingValue(i));
676 if (IV.isUndefined()) continue; // Doesn't influence PHI node.
677
678 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
679 continue;
680
681 if (IV.isOverdefined()) // PHI node becomes overdefined!
682 return markOverdefined(&PN);
683
684 if (!OperandVal) { // Grab the first value.
685 OperandVal = IV.getConstant();
686 continue;
687 }
688
689 // There is already a reachable operand. If we conflict with it,
690 // then the PHI node becomes overdefined. If we agree with it, we
691 // can continue on.
692
693 // Check to see if there are two different constants merging, if so, the PHI
694 // node is overdefined.
695 if (IV.getConstant() != OperandVal)
696 return markOverdefined(&PN);
697 }
698
699 // If we exited the loop, this means that the PHI node only has constant
700 // arguments that agree with each other(and OperandVal is the constant) or
701 // OperandVal is null because there are no defined incoming arguments. If
702 // this is the case, the PHI remains undefined.
703 //
704 if (OperandVal)
705 markConstant(&PN, OperandVal); // Acquire operand value
706 }
707
visitReturnInst(ReturnInst & I)708 void SCCPSolver::visitReturnInst(ReturnInst &I) {
709 if (I.getNumOperands() == 0) return; // ret void
710
711 Function *F = I.getParent()->getParent();
712 Value *ResultOp = I.getOperand(0);
713
714 // If we are tracking the return value of this function, merge it in.
715 if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
716 DenseMap<Function*, LatticeVal>::iterator TFRVI =
717 TrackedRetVals.find(F);
718 if (TFRVI != TrackedRetVals.end()) {
719 mergeInValue(TFRVI->second, F, getValueState(ResultOp));
720 return;
721 }
722 }
723
724 // Handle functions that return multiple values.
725 if (!TrackedMultipleRetVals.empty()) {
726 if (StructType *STy = dyn_cast<StructType>(ResultOp->getType()))
727 if (MRVFunctionsTracked.count(F))
728 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
729 mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
730 getStructValueState(ResultOp, i));
731
732 }
733 }
734
visitTerminatorInst(TerminatorInst & TI)735 void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
736 SmallVector<bool, 16> SuccFeasible;
737 getFeasibleSuccessors(TI, SuccFeasible);
738
739 BasicBlock *BB = TI.getParent();
740
741 // Mark all feasible successors executable.
742 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
743 if (SuccFeasible[i])
744 markEdgeExecutable(BB, TI.getSuccessor(i));
745 }
746
visitCastInst(CastInst & I)747 void SCCPSolver::visitCastInst(CastInst &I) {
748 LatticeVal OpSt = getValueState(I.getOperand(0));
749 if (OpSt.isOverdefined()) // Inherit overdefinedness of operand
750 markOverdefined(&I);
751 else if (OpSt.isConstant()) // Propagate constant value
752 markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
753 OpSt.getConstant(), I.getType()));
754 }
755
756
visitExtractValueInst(ExtractValueInst & EVI)757 void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
758 // If this returns a struct, mark all elements over defined, we don't track
759 // structs in structs.
760 if (EVI.getType()->isStructTy())
761 return markAnythingOverdefined(&EVI);
762
763 // If this is extracting from more than one level of struct, we don't know.
764 if (EVI.getNumIndices() != 1)
765 return markOverdefined(&EVI);
766
767 Value *AggVal = EVI.getAggregateOperand();
768 if (AggVal->getType()->isStructTy()) {
769 unsigned i = *EVI.idx_begin();
770 LatticeVal EltVal = getStructValueState(AggVal, i);
771 mergeInValue(getValueState(&EVI), &EVI, EltVal);
772 } else {
773 // Otherwise, must be extracting from an array.
774 return markOverdefined(&EVI);
775 }
776 }
777
visitInsertValueInst(InsertValueInst & IVI)778 void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
779 StructType *STy = dyn_cast<StructType>(IVI.getType());
780 if (!STy)
781 return markOverdefined(&IVI);
782
783 // If this has more than one index, we can't handle it, drive all results to
784 // undef.
785 if (IVI.getNumIndices() != 1)
786 return markAnythingOverdefined(&IVI);
787
788 Value *Aggr = IVI.getAggregateOperand();
789 unsigned Idx = *IVI.idx_begin();
790
791 // Compute the result based on what we're inserting.
792 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
793 // This passes through all values that aren't the inserted element.
794 if (i != Idx) {
795 LatticeVal EltVal = getStructValueState(Aggr, i);
796 mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
797 continue;
798 }
799
800 Value *Val = IVI.getInsertedValueOperand();
801 if (Val->getType()->isStructTy())
802 // We don't track structs in structs.
803 markOverdefined(getStructValueState(&IVI, i), &IVI);
804 else {
805 LatticeVal InVal = getValueState(Val);
806 mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
807 }
808 }
809 }
810
visitSelectInst(SelectInst & I)811 void SCCPSolver::visitSelectInst(SelectInst &I) {
812 // If this select returns a struct, just mark the result overdefined.
813 // TODO: We could do a lot better than this if code actually uses this.
814 if (I.getType()->isStructTy())
815 return markAnythingOverdefined(&I);
816
817 LatticeVal CondValue = getValueState(I.getCondition());
818 if (CondValue.isUndefined())
819 return;
820
821 if (ConstantInt *CondCB = CondValue.getConstantInt()) {
822 Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
823 mergeInValue(&I, getValueState(OpVal));
824 return;
825 }
826
827 // Otherwise, the condition is overdefined or a constant we can't evaluate.
828 // See if we can produce something better than overdefined based on the T/F
829 // value.
830 LatticeVal TVal = getValueState(I.getTrueValue());
831 LatticeVal FVal = getValueState(I.getFalseValue());
832
833 // select ?, C, C -> C.
834 if (TVal.isConstant() && FVal.isConstant() &&
835 TVal.getConstant() == FVal.getConstant())
836 return markConstant(&I, FVal.getConstant());
837
838 if (TVal.isUndefined()) // select ?, undef, X -> X.
839 return mergeInValue(&I, FVal);
840 if (FVal.isUndefined()) // select ?, X, undef -> X.
841 return mergeInValue(&I, TVal);
842 markOverdefined(&I);
843 }
844
845 // Handle Binary Operators.
visitBinaryOperator(Instruction & I)846 void SCCPSolver::visitBinaryOperator(Instruction &I) {
847 LatticeVal V1State = getValueState(I.getOperand(0));
848 LatticeVal V2State = getValueState(I.getOperand(1));
849
850 LatticeVal &IV = ValueState[&I];
851 if (IV.isOverdefined()) return;
852
853 if (V1State.isConstant() && V2State.isConstant())
854 return markConstant(IV, &I,
855 ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
856 V2State.getConstant()));
857
858 // If something is undef, wait for it to resolve.
859 if (!V1State.isOverdefined() && !V2State.isOverdefined())
860 return;
861
862 // Otherwise, one of our operands is overdefined. Try to produce something
863 // better than overdefined with some tricks.
864
865 // If this is an AND or OR with 0 or -1, it doesn't matter that the other
866 // operand is overdefined.
867 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
868 LatticeVal *NonOverdefVal = nullptr;
869 if (!V1State.isOverdefined())
870 NonOverdefVal = &V1State;
871 else if (!V2State.isOverdefined())
872 NonOverdefVal = &V2State;
873
874 if (NonOverdefVal) {
875 if (NonOverdefVal->isUndefined()) {
876 // Could annihilate value.
877 if (I.getOpcode() == Instruction::And)
878 markConstant(IV, &I, Constant::getNullValue(I.getType()));
879 else if (VectorType *PT = dyn_cast<VectorType>(I.getType()))
880 markConstant(IV, &I, Constant::getAllOnesValue(PT));
881 else
882 markConstant(IV, &I,
883 Constant::getAllOnesValue(I.getType()));
884 return;
885 }
886
887 if (I.getOpcode() == Instruction::And) {
888 // X and 0 = 0
889 if (NonOverdefVal->getConstant()->isNullValue())
890 return markConstant(IV, &I, NonOverdefVal->getConstant());
891 } else {
892 if (ConstantInt *CI = NonOverdefVal->getConstantInt())
893 if (CI->isAllOnesValue()) // X or -1 = -1
894 return markConstant(IV, &I, NonOverdefVal->getConstant());
895 }
896 }
897 }
898
899
900 markOverdefined(&I);
901 }
902
903 // Handle ICmpInst instruction.
visitCmpInst(CmpInst & I)904 void SCCPSolver::visitCmpInst(CmpInst &I) {
905 LatticeVal V1State = getValueState(I.getOperand(0));
906 LatticeVal V2State = getValueState(I.getOperand(1));
907
908 LatticeVal &IV = ValueState[&I];
909 if (IV.isOverdefined()) return;
910
911 if (V1State.isConstant() && V2State.isConstant())
912 return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
913 V1State.getConstant(),
914 V2State.getConstant()));
915
916 // If operands are still undefined, wait for it to resolve.
917 if (!V1State.isOverdefined() && !V2State.isOverdefined())
918 return;
919
920 markOverdefined(&I);
921 }
922
visitExtractElementInst(ExtractElementInst & I)923 void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
924 // TODO : SCCP does not handle vectors properly.
925 return markOverdefined(&I);
926
927 #if 0
928 LatticeVal &ValState = getValueState(I.getOperand(0));
929 LatticeVal &IdxState = getValueState(I.getOperand(1));
930
931 if (ValState.isOverdefined() || IdxState.isOverdefined())
932 markOverdefined(&I);
933 else if(ValState.isConstant() && IdxState.isConstant())
934 markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
935 IdxState.getConstant()));
936 #endif
937 }
938
visitInsertElementInst(InsertElementInst & I)939 void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
940 // TODO : SCCP does not handle vectors properly.
941 return markOverdefined(&I);
942 #if 0
943 LatticeVal &ValState = getValueState(I.getOperand(0));
944 LatticeVal &EltState = getValueState(I.getOperand(1));
945 LatticeVal &IdxState = getValueState(I.getOperand(2));
946
947 if (ValState.isOverdefined() || EltState.isOverdefined() ||
948 IdxState.isOverdefined())
949 markOverdefined(&I);
950 else if(ValState.isConstant() && EltState.isConstant() &&
951 IdxState.isConstant())
952 markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
953 EltState.getConstant(),
954 IdxState.getConstant()));
955 else if (ValState.isUndefined() && EltState.isConstant() &&
956 IdxState.isConstant())
957 markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
958 EltState.getConstant(),
959 IdxState.getConstant()));
960 #endif
961 }
962
visitShuffleVectorInst(ShuffleVectorInst & I)963 void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
964 // TODO : SCCP does not handle vectors properly.
965 return markOverdefined(&I);
966 #if 0
967 LatticeVal &V1State = getValueState(I.getOperand(0));
968 LatticeVal &V2State = getValueState(I.getOperand(1));
969 LatticeVal &MaskState = getValueState(I.getOperand(2));
970
971 if (MaskState.isUndefined() ||
972 (V1State.isUndefined() && V2State.isUndefined()))
973 return; // Undefined output if mask or both inputs undefined.
974
975 if (V1State.isOverdefined() || V2State.isOverdefined() ||
976 MaskState.isOverdefined()) {
977 markOverdefined(&I);
978 } else {
979 // A mix of constant/undef inputs.
980 Constant *V1 = V1State.isConstant() ?
981 V1State.getConstant() : UndefValue::get(I.getType());
982 Constant *V2 = V2State.isConstant() ?
983 V2State.getConstant() : UndefValue::get(I.getType());
984 Constant *Mask = MaskState.isConstant() ?
985 MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
986 markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
987 }
988 #endif
989 }
990
991 // Handle getelementptr instructions. If all operands are constants then we
992 // can turn this into a getelementptr ConstantExpr.
993 //
visitGetElementPtrInst(GetElementPtrInst & I)994 void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
995 if (ValueState[&I].isOverdefined()) return;
996
997 SmallVector<Constant*, 8> Operands;
998 Operands.reserve(I.getNumOperands());
999
1000 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1001 LatticeVal State = getValueState(I.getOperand(i));
1002 if (State.isUndefined())
1003 return; // Operands are not resolved yet.
1004
1005 if (State.isOverdefined())
1006 return markOverdefined(&I);
1007
1008 assert(State.isConstant() && "Unknown state!");
1009 Operands.push_back(State.getConstant());
1010 }
1011
1012 Constant *Ptr = Operands[0];
1013 ArrayRef<Constant *> Indices(Operands.begin() + 1, Operands.end());
1014 markConstant(&I, ConstantExpr::getGetElementPtr(Ptr, Indices));
1015 }
1016
visitStoreInst(StoreInst & SI)1017 void SCCPSolver::visitStoreInst(StoreInst &SI) {
1018 // If this store is of a struct, ignore it.
1019 if (SI.getOperand(0)->getType()->isStructTy())
1020 return;
1021
1022 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1023 return;
1024
1025 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1026 DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1027 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1028
1029 // Get the value we are storing into the global, then merge it.
1030 mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
1031 if (I->second.isOverdefined())
1032 TrackedGlobals.erase(I); // No need to keep tracking this!
1033 }
1034
1035
1036 // Handle load instructions. If the operand is a constant pointer to a constant
1037 // global, we can replace the load with the loaded constant value!
visitLoadInst(LoadInst & I)1038 void SCCPSolver::visitLoadInst(LoadInst &I) {
1039 // If this load is of a struct, just mark the result overdefined.
1040 if (I.getType()->isStructTy())
1041 return markAnythingOverdefined(&I);
1042
1043 LatticeVal PtrVal = getValueState(I.getOperand(0));
1044 if (PtrVal.isUndefined()) return; // The pointer is not resolved yet!
1045
1046 LatticeVal &IV = ValueState[&I];
1047 if (IV.isOverdefined()) return;
1048
1049 if (!PtrVal.isConstant() || I.isVolatile())
1050 return markOverdefined(IV, &I);
1051
1052 Constant *Ptr = PtrVal.getConstant();
1053
1054 // load null -> null
1055 if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0)
1056 return markConstant(IV, &I, Constant::getNullValue(I.getType()));
1057
1058 // Transform load (constant global) into the value loaded.
1059 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
1060 if (!TrackedGlobals.empty()) {
1061 // If we are tracking this global, merge in the known value for it.
1062 DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1063 TrackedGlobals.find(GV);
1064 if (It != TrackedGlobals.end()) {
1065 mergeInValue(IV, &I, It->second);
1066 return;
1067 }
1068 }
1069 }
1070
1071 // Transform load from a constant into a constant if possible.
1072 if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, DL))
1073 return markConstant(IV, &I, C);
1074
1075 // Otherwise we cannot say for certain what value this load will produce.
1076 // Bail out.
1077 markOverdefined(IV, &I);
1078 }
1079
visitCallSite(CallSite CS)1080 void SCCPSolver::visitCallSite(CallSite CS) {
1081 Function *F = CS.getCalledFunction();
1082 Instruction *I = CS.getInstruction();
1083
1084 // The common case is that we aren't tracking the callee, either because we
1085 // are not doing interprocedural analysis or the callee is indirect, or is
1086 // external. Handle these cases first.
1087 if (!F || F->isDeclaration()) {
1088 CallOverdefined:
1089 // Void return and not tracking callee, just bail.
1090 if (I->getType()->isVoidTy()) return;
1091
1092 // Otherwise, if we have a single return value case, and if the function is
1093 // a declaration, maybe we can constant fold it.
1094 if (F && F->isDeclaration() && !I->getType()->isStructTy() &&
1095 canConstantFoldCallTo(F)) {
1096
1097 SmallVector<Constant*, 8> Operands;
1098 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1099 AI != E; ++AI) {
1100 LatticeVal State = getValueState(*AI);
1101
1102 if (State.isUndefined())
1103 return; // Operands are not resolved yet.
1104 if (State.isOverdefined())
1105 return markOverdefined(I);
1106 assert(State.isConstant() && "Unknown state!");
1107 Operands.push_back(State.getConstant());
1108 }
1109
1110 // If we can constant fold this, mark the result of the call as a
1111 // constant.
1112 if (Constant *C = ConstantFoldCall(F, Operands, TLI))
1113 return markConstant(I, C);
1114 }
1115
1116 // Otherwise, we don't know anything about this call, mark it overdefined.
1117 return markAnythingOverdefined(I);
1118 }
1119
1120 // If this is a local function that doesn't have its address taken, mark its
1121 // entry block executable and merge in the actual arguments to the call into
1122 // the formal arguments of the function.
1123 if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){
1124 MarkBlockExecutable(F->begin());
1125
1126 // Propagate information from this call site into the callee.
1127 CallSite::arg_iterator CAI = CS.arg_begin();
1128 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1129 AI != E; ++AI, ++CAI) {
1130 // If this argument is byval, and if the function is not readonly, there
1131 // will be an implicit copy formed of the input aggregate.
1132 if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1133 markOverdefined(AI);
1134 continue;
1135 }
1136
1137 if (StructType *STy = dyn_cast<StructType>(AI->getType())) {
1138 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1139 LatticeVal CallArg = getStructValueState(*CAI, i);
1140 mergeInValue(getStructValueState(AI, i), AI, CallArg);
1141 }
1142 } else {
1143 mergeInValue(AI, getValueState(*CAI));
1144 }
1145 }
1146 }
1147
1148 // If this is a single/zero retval case, see if we're tracking the function.
1149 if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
1150 if (!MRVFunctionsTracked.count(F))
1151 goto CallOverdefined; // Not tracking this callee.
1152
1153 // If we are tracking this callee, propagate the result of the function
1154 // into this call site.
1155 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1156 mergeInValue(getStructValueState(I, i), I,
1157 TrackedMultipleRetVals[std::make_pair(F, i)]);
1158 } else {
1159 DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1160 if (TFRVI == TrackedRetVals.end())
1161 goto CallOverdefined; // Not tracking this callee.
1162
1163 // If so, propagate the return value of the callee into this call result.
1164 mergeInValue(I, TFRVI->second);
1165 }
1166 }
1167
Solve()1168 void SCCPSolver::Solve() {
1169 // Process the work lists until they are empty!
1170 while (!BBWorkList.empty() || !InstWorkList.empty() ||
1171 !OverdefinedInstWorkList.empty()) {
1172 // Process the overdefined instruction's work list first, which drives other
1173 // things to overdefined more quickly.
1174 while (!OverdefinedInstWorkList.empty()) {
1175 Value *I = OverdefinedInstWorkList.pop_back_val();
1176
1177 DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
1178
1179 // "I" got into the work list because it either made the transition from
1180 // bottom to constant, or to overdefined.
1181 //
1182 // Anything on this worklist that is overdefined need not be visited
1183 // since all of its users will have already been marked as overdefined
1184 // Update all of the users of this instruction's value.
1185 //
1186 for (User *U : I->users())
1187 if (Instruction *UI = dyn_cast<Instruction>(U))
1188 OperandChangedState(UI);
1189 }
1190
1191 // Process the instruction work list.
1192 while (!InstWorkList.empty()) {
1193 Value *I = InstWorkList.pop_back_val();
1194
1195 DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
1196
1197 // "I" got into the work list because it made the transition from undef to
1198 // constant.
1199 //
1200 // Anything on this worklist that is overdefined need not be visited
1201 // since all of its users will have already been marked as overdefined.
1202 // Update all of the users of this instruction's value.
1203 //
1204 if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
1205 for (User *U : I->users())
1206 if (Instruction *UI = dyn_cast<Instruction>(U))
1207 OperandChangedState(UI);
1208 }
1209
1210 // Process the basic block work list.
1211 while (!BBWorkList.empty()) {
1212 BasicBlock *BB = BBWorkList.back();
1213 BBWorkList.pop_back();
1214
1215 DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
1216
1217 // Notify all instructions in this basic block that they are newly
1218 // executable.
1219 visit(BB);
1220 }
1221 }
1222 }
1223
1224 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1225 /// that branches on undef values cannot reach any of their successors.
1226 /// However, this is not a safe assumption. After we solve dataflow, this
1227 /// method should be use to handle this. If this returns true, the solver
1228 /// should be rerun.
1229 ///
1230 /// This method handles this by finding an unresolved branch and marking it one
1231 /// of the edges from the block as being feasible, even though the condition
1232 /// doesn't say it would otherwise be. This allows SCCP to find the rest of the
1233 /// CFG and only slightly pessimizes the analysis results (by marking one,
1234 /// potentially infeasible, edge feasible). This cannot usefully modify the
1235 /// constraints on the condition of the branch, as that would impact other users
1236 /// of the value.
1237 ///
1238 /// This scan also checks for values that use undefs, whose results are actually
1239 /// defined. For example, 'zext i8 undef to i32' should produce all zeros
1240 /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1241 /// even if X isn't defined.
ResolvedUndefsIn(Function & F)1242 bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1243 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1244 if (!BBExecutable.count(BB))
1245 continue;
1246
1247 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1248 // Look for instructions which produce undef values.
1249 if (I->getType()->isVoidTy()) continue;
1250
1251 if (StructType *STy = dyn_cast<StructType>(I->getType())) {
1252 // Only a few things that can be structs matter for undef.
1253
1254 // Tracked calls must never be marked overdefined in ResolvedUndefsIn.
1255 if (CallSite CS = CallSite(I))
1256 if (Function *F = CS.getCalledFunction())
1257 if (MRVFunctionsTracked.count(F))
1258 continue;
1259
1260 // extractvalue and insertvalue don't need to be marked; they are
1261 // tracked as precisely as their operands.
1262 if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
1263 continue;
1264
1265 // Send the results of everything else to overdefined. We could be
1266 // more precise than this but it isn't worth bothering.
1267 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1268 LatticeVal &LV = getStructValueState(I, i);
1269 if (LV.isUndefined())
1270 markOverdefined(LV, I);
1271 }
1272 continue;
1273 }
1274
1275 LatticeVal &LV = getValueState(I);
1276 if (!LV.isUndefined()) continue;
1277
1278 // extractvalue is safe; check here because the argument is a struct.
1279 if (isa<ExtractValueInst>(I))
1280 continue;
1281
1282 // Compute the operand LatticeVals, for convenience below.
1283 // Anything taking a struct is conservatively assumed to require
1284 // overdefined markings.
1285 if (I->getOperand(0)->getType()->isStructTy()) {
1286 markOverdefined(I);
1287 return true;
1288 }
1289 LatticeVal Op0LV = getValueState(I->getOperand(0));
1290 LatticeVal Op1LV;
1291 if (I->getNumOperands() == 2) {
1292 if (I->getOperand(1)->getType()->isStructTy()) {
1293 markOverdefined(I);
1294 return true;
1295 }
1296
1297 Op1LV = getValueState(I->getOperand(1));
1298 }
1299 // If this is an instructions whose result is defined even if the input is
1300 // not fully defined, propagate the information.
1301 Type *ITy = I->getType();
1302 switch (I->getOpcode()) {
1303 case Instruction::Add:
1304 case Instruction::Sub:
1305 case Instruction::Trunc:
1306 case Instruction::FPTrunc:
1307 case Instruction::BitCast:
1308 break; // Any undef -> undef
1309 case Instruction::FSub:
1310 case Instruction::FAdd:
1311 case Instruction::FMul:
1312 case Instruction::FDiv:
1313 case Instruction::FRem:
1314 // Floating-point binary operation: be conservative.
1315 if (Op0LV.isUndefined() && Op1LV.isUndefined())
1316 markForcedConstant(I, Constant::getNullValue(ITy));
1317 else
1318 markOverdefined(I);
1319 return true;
1320 case Instruction::ZExt:
1321 case Instruction::SExt:
1322 case Instruction::FPToUI:
1323 case Instruction::FPToSI:
1324 case Instruction::FPExt:
1325 case Instruction::PtrToInt:
1326 case Instruction::IntToPtr:
1327 case Instruction::SIToFP:
1328 case Instruction::UIToFP:
1329 // undef -> 0; some outputs are impossible
1330 markForcedConstant(I, Constant::getNullValue(ITy));
1331 return true;
1332 case Instruction::Mul:
1333 case Instruction::And:
1334 // Both operands undef -> undef
1335 if (Op0LV.isUndefined() && Op1LV.isUndefined())
1336 break;
1337 // undef * X -> 0. X could be zero.
1338 // undef & X -> 0. X could be zero.
1339 markForcedConstant(I, Constant::getNullValue(ITy));
1340 return true;
1341
1342 case Instruction::Or:
1343 // Both operands undef -> undef
1344 if (Op0LV.isUndefined() && Op1LV.isUndefined())
1345 break;
1346 // undef | X -> -1. X could be -1.
1347 markForcedConstant(I, Constant::getAllOnesValue(ITy));
1348 return true;
1349
1350 case Instruction::Xor:
1351 // undef ^ undef -> 0; strictly speaking, this is not strictly
1352 // necessary, but we try to be nice to people who expect this
1353 // behavior in simple cases
1354 if (Op0LV.isUndefined() && Op1LV.isUndefined()) {
1355 markForcedConstant(I, Constant::getNullValue(ITy));
1356 return true;
1357 }
1358 // undef ^ X -> undef
1359 break;
1360
1361 case Instruction::SDiv:
1362 case Instruction::UDiv:
1363 case Instruction::SRem:
1364 case Instruction::URem:
1365 // X / undef -> undef. No change.
1366 // X % undef -> undef. No change.
1367 if (Op1LV.isUndefined()) break;
1368
1369 // undef / X -> 0. X could be maxint.
1370 // undef % X -> 0. X could be 1.
1371 markForcedConstant(I, Constant::getNullValue(ITy));
1372 return true;
1373
1374 case Instruction::AShr:
1375 // X >>a undef -> undef.
1376 if (Op1LV.isUndefined()) break;
1377
1378 // undef >>a X -> all ones
1379 markForcedConstant(I, Constant::getAllOnesValue(ITy));
1380 return true;
1381 case Instruction::LShr:
1382 case Instruction::Shl:
1383 // X << undef -> undef.
1384 // X >> undef -> undef.
1385 if (Op1LV.isUndefined()) break;
1386
1387 // undef << X -> 0
1388 // undef >> X -> 0
1389 markForcedConstant(I, Constant::getNullValue(ITy));
1390 return true;
1391 case Instruction::Select:
1392 Op1LV = getValueState(I->getOperand(1));
1393 // undef ? X : Y -> X or Y. There could be commonality between X/Y.
1394 if (Op0LV.isUndefined()) {
1395 if (!Op1LV.isConstant()) // Pick the constant one if there is any.
1396 Op1LV = getValueState(I->getOperand(2));
1397 } else if (Op1LV.isUndefined()) {
1398 // c ? undef : undef -> undef. No change.
1399 Op1LV = getValueState(I->getOperand(2));
1400 if (Op1LV.isUndefined())
1401 break;
1402 // Otherwise, c ? undef : x -> x.
1403 } else {
1404 // Leave Op1LV as Operand(1)'s LatticeValue.
1405 }
1406
1407 if (Op1LV.isConstant())
1408 markForcedConstant(I, Op1LV.getConstant());
1409 else
1410 markOverdefined(I);
1411 return true;
1412 case Instruction::Load:
1413 // A load here means one of two things: a load of undef from a global,
1414 // a load from an unknown pointer. Either way, having it return undef
1415 // is okay.
1416 break;
1417 case Instruction::ICmp:
1418 // X == undef -> undef. Other comparisons get more complicated.
1419 if (cast<ICmpInst>(I)->isEquality())
1420 break;
1421 markOverdefined(I);
1422 return true;
1423 case Instruction::Call:
1424 case Instruction::Invoke: {
1425 // There are two reasons a call can have an undef result
1426 // 1. It could be tracked.
1427 // 2. It could be constant-foldable.
1428 // Because of the way we solve return values, tracked calls must
1429 // never be marked overdefined in ResolvedUndefsIn.
1430 if (Function *F = CallSite(I).getCalledFunction())
1431 if (TrackedRetVals.count(F))
1432 break;
1433
1434 // If the call is constant-foldable, we mark it overdefined because
1435 // we do not know what return values are valid.
1436 markOverdefined(I);
1437 return true;
1438 }
1439 default:
1440 // If we don't know what should happen here, conservatively mark it
1441 // overdefined.
1442 markOverdefined(I);
1443 return true;
1444 }
1445 }
1446
1447 // Check to see if we have a branch or switch on an undefined value. If so
1448 // we force the branch to go one way or the other to make the successor
1449 // values live. It doesn't really matter which way we force it.
1450 TerminatorInst *TI = BB->getTerminator();
1451 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1452 if (!BI->isConditional()) continue;
1453 if (!getValueState(BI->getCondition()).isUndefined())
1454 continue;
1455
1456 // If the input to SCCP is actually branch on undef, fix the undef to
1457 // false.
1458 if (isa<UndefValue>(BI->getCondition())) {
1459 BI->setCondition(ConstantInt::getFalse(BI->getContext()));
1460 markEdgeExecutable(BB, TI->getSuccessor(1));
1461 return true;
1462 }
1463
1464 // Otherwise, it is a branch on a symbolic value which is currently
1465 // considered to be undef. Handle this by forcing the input value to the
1466 // branch to false.
1467 markForcedConstant(BI->getCondition(),
1468 ConstantInt::getFalse(TI->getContext()));
1469 return true;
1470 }
1471
1472 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1473 if (!SI->getNumCases())
1474 continue;
1475 if (!getValueState(SI->getCondition()).isUndefined())
1476 continue;
1477
1478 // If the input to SCCP is actually switch on undef, fix the undef to
1479 // the first constant.
1480 if (isa<UndefValue>(SI->getCondition())) {
1481 SI->setCondition(SI->case_begin().getCaseValue());
1482 markEdgeExecutable(BB, SI->case_begin().getCaseSuccessor());
1483 return true;
1484 }
1485
1486 markForcedConstant(SI->getCondition(), SI->case_begin().getCaseValue());
1487 return true;
1488 }
1489 }
1490
1491 return false;
1492 }
1493
1494
1495 namespace {
1496 //===--------------------------------------------------------------------===//
1497 //
1498 /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1499 /// Sparse Conditional Constant Propagator.
1500 ///
1501 struct SCCP : public FunctionPass {
getAnalysisUsage__anon833413620311::SCCP1502 void getAnalysisUsage(AnalysisUsage &AU) const override {
1503 AU.addRequired<TargetLibraryInfo>();
1504 }
1505 static char ID; // Pass identification, replacement for typeid
SCCP__anon833413620311::SCCP1506 SCCP() : FunctionPass(ID) {
1507 initializeSCCPPass(*PassRegistry::getPassRegistry());
1508 }
1509
1510 // runOnFunction - Run the Sparse Conditional Constant Propagation
1511 // algorithm, and return true if the function was modified.
1512 //
1513 bool runOnFunction(Function &F) override;
1514 };
1515 } // end anonymous namespace
1516
1517 char SCCP::ID = 0;
1518 INITIALIZE_PASS(SCCP, "sccp",
1519 "Sparse Conditional Constant Propagation", false, false)
1520
1521 // createSCCPPass - This is the public interface to this file.
createSCCPPass()1522 FunctionPass *llvm::createSCCPPass() {
1523 return new SCCP();
1524 }
1525
DeleteInstructionInBlock(BasicBlock * BB)1526 static void DeleteInstructionInBlock(BasicBlock *BB) {
1527 DEBUG(dbgs() << " BasicBlock Dead:" << *BB);
1528 ++NumDeadBlocks;
1529
1530 // Check to see if there are non-terminating instructions to delete.
1531 if (isa<TerminatorInst>(BB->begin()))
1532 return;
1533
1534 // Delete the instructions backwards, as it has a reduced likelihood of having
1535 // to update as many def-use and use-def chains.
1536 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1537 while (EndInst != BB->begin()) {
1538 // Delete the next to last instruction.
1539 BasicBlock::iterator I = EndInst;
1540 Instruction *Inst = --I;
1541 if (!Inst->use_empty())
1542 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1543 if (isa<LandingPadInst>(Inst)) {
1544 EndInst = Inst;
1545 continue;
1546 }
1547 BB->getInstList().erase(Inst);
1548 ++NumInstRemoved;
1549 }
1550 }
1551
1552 // runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1553 // and return true if the function was modified.
1554 //
runOnFunction(Function & F)1555 bool SCCP::runOnFunction(Function &F) {
1556 if (skipOptnoneFunction(F))
1557 return false;
1558
1559 DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
1560 const DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
1561 const DataLayout *DL = DLP ? &DLP->getDataLayout() : nullptr;
1562 const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>();
1563 SCCPSolver Solver(DL, TLI);
1564
1565 // Mark the first block of the function as being executable.
1566 Solver.MarkBlockExecutable(F.begin());
1567
1568 // Mark all arguments to the function as being overdefined.
1569 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
1570 Solver.markAnythingOverdefined(AI);
1571
1572 // Solve for constants.
1573 bool ResolvedUndefs = true;
1574 while (ResolvedUndefs) {
1575 Solver.Solve();
1576 DEBUG(dbgs() << "RESOLVING UNDEFs\n");
1577 ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1578 }
1579
1580 bool MadeChanges = false;
1581
1582 // If we decided that there are basic blocks that are dead in this function,
1583 // delete their contents now. Note that we cannot actually delete the blocks,
1584 // as we cannot modify the CFG of the function.
1585
1586 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1587 if (!Solver.isBlockExecutable(BB)) {
1588 DeleteInstructionInBlock(BB);
1589 MadeChanges = true;
1590 continue;
1591 }
1592
1593 // Iterate over all of the instructions in a function, replacing them with
1594 // constants if we have found them to be of constant values.
1595 //
1596 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1597 Instruction *Inst = BI++;
1598 if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst))
1599 continue;
1600
1601 // TODO: Reconstruct structs from their elements.
1602 if (Inst->getType()->isStructTy())
1603 continue;
1604
1605 LatticeVal IV = Solver.getLatticeValueFor(Inst);
1606 if (IV.isOverdefined())
1607 continue;
1608
1609 Constant *Const = IV.isConstant()
1610 ? IV.getConstant() : UndefValue::get(Inst->getType());
1611 DEBUG(dbgs() << " Constant: " << *Const << " = " << *Inst << '\n');
1612
1613 // Replaces all of the uses of a variable with uses of the constant.
1614 Inst->replaceAllUsesWith(Const);
1615
1616 // Delete the instruction.
1617 Inst->eraseFromParent();
1618
1619 // Hey, we just changed something!
1620 MadeChanges = true;
1621 ++NumInstRemoved;
1622 }
1623 }
1624
1625 return MadeChanges;
1626 }
1627
1628 namespace {
1629 //===--------------------------------------------------------------------===//
1630 //
1631 /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1632 /// Constant Propagation.
1633 ///
1634 struct IPSCCP : public ModulePass {
getAnalysisUsage__anon833413620411::IPSCCP1635 void getAnalysisUsage(AnalysisUsage &AU) const override {
1636 AU.addRequired<TargetLibraryInfo>();
1637 }
1638 static char ID;
IPSCCP__anon833413620411::IPSCCP1639 IPSCCP() : ModulePass(ID) {
1640 initializeIPSCCPPass(*PassRegistry::getPassRegistry());
1641 }
1642 bool runOnModule(Module &M) override;
1643 };
1644 } // end anonymous namespace
1645
1646 char IPSCCP::ID = 0;
1647 INITIALIZE_PASS_BEGIN(IPSCCP, "ipsccp",
1648 "Interprocedural Sparse Conditional Constant Propagation",
1649 false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)1650 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
1651 INITIALIZE_PASS_END(IPSCCP, "ipsccp",
1652 "Interprocedural Sparse Conditional Constant Propagation",
1653 false, false)
1654
1655 // createIPSCCPPass - This is the public interface to this file.
1656 ModulePass *llvm::createIPSCCPPass() {
1657 return new IPSCCP();
1658 }
1659
1660
AddressIsTaken(const GlobalValue * GV)1661 static bool AddressIsTaken(const GlobalValue *GV) {
1662 // Delete any dead constantexpr klingons.
1663 GV->removeDeadConstantUsers();
1664
1665 for (const Use &U : GV->uses()) {
1666 const User *UR = U.getUser();
1667 if (const StoreInst *SI = dyn_cast<StoreInst>(UR)) {
1668 if (SI->getOperand(0) == GV || SI->isVolatile())
1669 return true; // Storing addr of GV.
1670 } else if (isa<InvokeInst>(UR) || isa<CallInst>(UR)) {
1671 // Make sure we are calling the function, not passing the address.
1672 ImmutableCallSite CS(cast<Instruction>(UR));
1673 if (!CS.isCallee(&U))
1674 return true;
1675 } else if (const LoadInst *LI = dyn_cast<LoadInst>(UR)) {
1676 if (LI->isVolatile())
1677 return true;
1678 } else if (isa<BlockAddress>(UR)) {
1679 // blockaddress doesn't take the address of the function, it takes addr
1680 // of label.
1681 } else {
1682 return true;
1683 }
1684 }
1685 return false;
1686 }
1687
runOnModule(Module & M)1688 bool IPSCCP::runOnModule(Module &M) {
1689 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
1690 const DataLayout *DL = DLP ? &DLP->getDataLayout() : nullptr;
1691 const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>();
1692 SCCPSolver Solver(DL, TLI);
1693
1694 // AddressTakenFunctions - This set keeps track of the address-taken functions
1695 // that are in the input. As IPSCCP runs through and simplifies code,
1696 // functions that were address taken can end up losing their
1697 // address-taken-ness. Because of this, we keep track of their addresses from
1698 // the first pass so we can use them for the later simplification pass.
1699 SmallPtrSet<Function*, 32> AddressTakenFunctions;
1700
1701 // Loop over all functions, marking arguments to those with their addresses
1702 // taken or that are external as overdefined.
1703 //
1704 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1705 if (F->isDeclaration())
1706 continue;
1707
1708 // If this is a strong or ODR definition of this function, then we can
1709 // propagate information about its result into callsites of it.
1710 if (!F->mayBeOverridden())
1711 Solver.AddTrackedFunction(F);
1712
1713 // If this function only has direct calls that we can see, we can track its
1714 // arguments and return value aggressively, and can assume it is not called
1715 // unless we see evidence to the contrary.
1716 if (F->hasLocalLinkage()) {
1717 if (AddressIsTaken(F))
1718 AddressTakenFunctions.insert(F);
1719 else {
1720 Solver.AddArgumentTrackedFunction(F);
1721 continue;
1722 }
1723 }
1724
1725 // Assume the function is called.
1726 Solver.MarkBlockExecutable(F->begin());
1727
1728 // Assume nothing about the incoming arguments.
1729 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1730 AI != E; ++AI)
1731 Solver.markAnythingOverdefined(AI);
1732 }
1733
1734 // Loop over global variables. We inform the solver about any internal global
1735 // variables that do not have their 'addresses taken'. If they don't have
1736 // their addresses taken, we can propagate constants through them.
1737 for (Module::global_iterator G = M.global_begin(), E = M.global_end();
1738 G != E; ++G)
1739 if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
1740 Solver.TrackValueOfGlobalVariable(G);
1741
1742 // Solve for constants.
1743 bool ResolvedUndefs = true;
1744 while (ResolvedUndefs) {
1745 Solver.Solve();
1746
1747 DEBUG(dbgs() << "RESOLVING UNDEFS\n");
1748 ResolvedUndefs = false;
1749 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1750 ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
1751 }
1752
1753 bool MadeChanges = false;
1754
1755 // Iterate over all of the instructions in the module, replacing them with
1756 // constants if we have found them to be of constant values.
1757 //
1758 SmallVector<BasicBlock*, 512> BlocksToErase;
1759
1760 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1761 if (Solver.isBlockExecutable(F->begin())) {
1762 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1763 AI != E; ++AI) {
1764 if (AI->use_empty() || AI->getType()->isStructTy()) continue;
1765
1766 // TODO: Could use getStructLatticeValueFor to find out if the entire
1767 // result is a constant and replace it entirely if so.
1768
1769 LatticeVal IV = Solver.getLatticeValueFor(AI);
1770 if (IV.isOverdefined()) continue;
1771
1772 Constant *CST = IV.isConstant() ?
1773 IV.getConstant() : UndefValue::get(AI->getType());
1774 DEBUG(dbgs() << "*** Arg " << *AI << " = " << *CST <<"\n");
1775
1776 // Replaces all of the uses of a variable with uses of the
1777 // constant.
1778 AI->replaceAllUsesWith(CST);
1779 ++IPNumArgsElimed;
1780 }
1781 }
1782
1783 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
1784 if (!Solver.isBlockExecutable(BB)) {
1785 DeleteInstructionInBlock(BB);
1786 MadeChanges = true;
1787
1788 TerminatorInst *TI = BB->getTerminator();
1789 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1790 BasicBlock *Succ = TI->getSuccessor(i);
1791 if (!Succ->empty() && isa<PHINode>(Succ->begin()))
1792 TI->getSuccessor(i)->removePredecessor(BB);
1793 }
1794 if (!TI->use_empty())
1795 TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
1796 TI->eraseFromParent();
1797
1798 if (&*BB != &F->front())
1799 BlocksToErase.push_back(BB);
1800 else
1801 new UnreachableInst(M.getContext(), BB);
1802 continue;
1803 }
1804
1805 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1806 Instruction *Inst = BI++;
1807 if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy())
1808 continue;
1809
1810 // TODO: Could use getStructLatticeValueFor to find out if the entire
1811 // result is a constant and replace it entirely if so.
1812
1813 LatticeVal IV = Solver.getLatticeValueFor(Inst);
1814 if (IV.isOverdefined())
1815 continue;
1816
1817 Constant *Const = IV.isConstant()
1818 ? IV.getConstant() : UndefValue::get(Inst->getType());
1819 DEBUG(dbgs() << " Constant: " << *Const << " = " << *Inst << '\n');
1820
1821 // Replaces all of the uses of a variable with uses of the
1822 // constant.
1823 Inst->replaceAllUsesWith(Const);
1824
1825 // Delete the instruction.
1826 if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
1827 Inst->eraseFromParent();
1828
1829 // Hey, we just changed something!
1830 MadeChanges = true;
1831 ++IPNumInstRemoved;
1832 }
1833 }
1834
1835 // Now that all instructions in the function are constant folded, erase dead
1836 // blocks, because we can now use ConstantFoldTerminator to get rid of
1837 // in-edges.
1838 for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1839 // If there are any PHI nodes in this successor, drop entries for BB now.
1840 BasicBlock *DeadBB = BlocksToErase[i];
1841 for (Value::user_iterator UI = DeadBB->user_begin(),
1842 UE = DeadBB->user_end();
1843 UI != UE;) {
1844 // Grab the user and then increment the iterator early, as the user
1845 // will be deleted. Step past all adjacent uses from the same user.
1846 Instruction *I = dyn_cast<Instruction>(*UI);
1847 do { ++UI; } while (UI != UE && *UI == I);
1848
1849 // Ignore blockaddress users; BasicBlock's dtor will handle them.
1850 if (!I) continue;
1851
1852 bool Folded = ConstantFoldTerminator(I->getParent());
1853 if (!Folded) {
1854 // The constant folder may not have been able to fold the terminator
1855 // if this is a branch or switch on undef. Fold it manually as a
1856 // branch to the first successor.
1857 #ifndef NDEBUG
1858 if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1859 assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1860 "Branch should be foldable!");
1861 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1862 assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1863 } else {
1864 llvm_unreachable("Didn't fold away reference to block!");
1865 }
1866 #endif
1867
1868 // Make this an uncond branch to the first successor.
1869 TerminatorInst *TI = I->getParent()->getTerminator();
1870 BranchInst::Create(TI->getSuccessor(0), TI);
1871
1872 // Remove entries in successor phi nodes to remove edges.
1873 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1874 TI->getSuccessor(i)->removePredecessor(TI->getParent());
1875
1876 // Remove the old terminator.
1877 TI->eraseFromParent();
1878 }
1879 }
1880
1881 // Finally, delete the basic block.
1882 F->getBasicBlockList().erase(DeadBB);
1883 }
1884 BlocksToErase.clear();
1885 }
1886
1887 // If we inferred constant or undef return values for a function, we replaced
1888 // all call uses with the inferred value. This means we don't need to bother
1889 // actually returning anything from the function. Replace all return
1890 // instructions with return undef.
1891 //
1892 // Do this in two stages: first identify the functions we should process, then
1893 // actually zap their returns. This is important because we can only do this
1894 // if the address of the function isn't taken. In cases where a return is the
1895 // last use of a function, the order of processing functions would affect
1896 // whether other functions are optimizable.
1897 SmallVector<ReturnInst*, 8> ReturnsToZap;
1898
1899 // TODO: Process multiple value ret instructions also.
1900 const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
1901 for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
1902 E = RV.end(); I != E; ++I) {
1903 Function *F = I->first;
1904 if (I->second.isOverdefined() || F->getReturnType()->isVoidTy())
1905 continue;
1906
1907 // We can only do this if we know that nothing else can call the function.
1908 if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F))
1909 continue;
1910
1911 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1912 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1913 if (!isa<UndefValue>(RI->getOperand(0)))
1914 ReturnsToZap.push_back(RI);
1915 }
1916
1917 // Zap all returns which we've identified as zap to change.
1918 for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
1919 Function *F = ReturnsToZap[i]->getParent()->getParent();
1920 ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
1921 }
1922
1923 // If we inferred constant or undef values for globals variables, we can
1924 // delete the global and any stores that remain to it.
1925 const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1926 for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
1927 E = TG.end(); I != E; ++I) {
1928 GlobalVariable *GV = I->first;
1929 assert(!I->second.isOverdefined() &&
1930 "Overdefined values should have been taken out of the map!");
1931 DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n");
1932 while (!GV->use_empty()) {
1933 StoreInst *SI = cast<StoreInst>(GV->user_back());
1934 SI->eraseFromParent();
1935 }
1936 M.getGlobalList().erase(GV);
1937 ++IPNumGlobalConst;
1938 }
1939
1940 return MadeChanges;
1941 }
1942