1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SampleProfileLoader transformation. This pass
11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
13 // profile information in the given profile.
14 //
15 // This pass generates branch weight annotations on the IR:
16 //
17 // - prof: Represents branch weights. This annotation is added to branches
18 // to indicate the weights of each edge coming out of the branch.
19 // The weight of each edge is the weight of the target block for
20 // that edge. The weight of a block B is computed as the maximum
21 // number of samples found in B.
22 //
23 //===----------------------------------------------------------------------===//
24
25 #include "llvm/Transforms/Scalar.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/StringMap.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/PostDominators.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DebugInfo.h"
35 #include "llvm/IR/DiagnosticInfo.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/InstIterator.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/LineIterator.h"
48 #include "llvm/Support/MemoryBuffer.h"
49 #include "llvm/Support/Regex.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include <cctype>
52
53 using namespace llvm;
54
55 #define DEBUG_TYPE "sample-profile"
56
57 // Command line option to specify the file to read samples from. This is
58 // mainly used for debugging.
59 static cl::opt<std::string> SampleProfileFile(
60 "sample-profile-file", cl::init(""), cl::value_desc("filename"),
61 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
62 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
63 "sample-profile-max-propagate-iterations", cl::init(100),
64 cl::desc("Maximum number of iterations to go through when propagating "
65 "sample block/edge weights through the CFG."));
66
67 namespace {
68 /// \brief Represents the relative location of an instruction.
69 ///
70 /// Instruction locations are specified by the line offset from the
71 /// beginning of the function (marked by the line where the function
72 /// header is) and the discriminator value within that line.
73 ///
74 /// The discriminator value is useful to distinguish instructions
75 /// that are on the same line but belong to different basic blocks
76 /// (e.g., the two post-increment instructions in "if (p) x++; else y++;").
77 struct InstructionLocation {
InstructionLocation__anon83e6a26c0111::InstructionLocation78 InstructionLocation(int L, unsigned D) : LineOffset(L), Discriminator(D) {}
79 int LineOffset;
80 unsigned Discriminator;
81 };
82 }
83
84 namespace llvm {
85 template <> struct DenseMapInfo<InstructionLocation> {
86 typedef DenseMapInfo<int> OffsetInfo;
87 typedef DenseMapInfo<unsigned> DiscriminatorInfo;
getEmptyKeyllvm::DenseMapInfo88 static inline InstructionLocation getEmptyKey() {
89 return InstructionLocation(OffsetInfo::getEmptyKey(),
90 DiscriminatorInfo::getEmptyKey());
91 }
getTombstoneKeyllvm::DenseMapInfo92 static inline InstructionLocation getTombstoneKey() {
93 return InstructionLocation(OffsetInfo::getTombstoneKey(),
94 DiscriminatorInfo::getTombstoneKey());
95 }
getHashValuellvm::DenseMapInfo96 static inline unsigned getHashValue(InstructionLocation Val) {
97 return DenseMapInfo<std::pair<int, unsigned>>::getHashValue(
98 std::pair<int, unsigned>(Val.LineOffset, Val.Discriminator));
99 }
isEqualllvm::DenseMapInfo100 static inline bool isEqual(InstructionLocation LHS, InstructionLocation RHS) {
101 return LHS.LineOffset == RHS.LineOffset &&
102 LHS.Discriminator == RHS.Discriminator;
103 }
104 };
105 }
106
107 namespace {
108 typedef DenseMap<InstructionLocation, unsigned> BodySampleMap;
109 typedef DenseMap<BasicBlock *, unsigned> BlockWeightMap;
110 typedef DenseMap<BasicBlock *, BasicBlock *> EquivalenceClassMap;
111 typedef std::pair<BasicBlock *, BasicBlock *> Edge;
112 typedef DenseMap<Edge, unsigned> EdgeWeightMap;
113 typedef DenseMap<BasicBlock *, SmallVector<BasicBlock *, 8>> BlockEdgeMap;
114
115 /// \brief Representation of the runtime profile for a function.
116 ///
117 /// This data structure contains the runtime profile for a given
118 /// function. It contains the total number of samples collected
119 /// in the function and a map of samples collected in every statement.
120 class SampleFunctionProfile {
121 public:
SampleFunctionProfile()122 SampleFunctionProfile()
123 : TotalSamples(0), TotalHeadSamples(0), HeaderLineno(0), DT(nullptr),
124 PDT(nullptr), LI(nullptr), Ctx(nullptr) {}
125
126 unsigned getFunctionLoc(Function &F);
127 bool emitAnnotations(Function &F, DominatorTree *DomTree,
128 PostDominatorTree *PostDomTree, LoopInfo *Loops);
129 unsigned getInstWeight(Instruction &I);
130 unsigned getBlockWeight(BasicBlock *B);
addTotalSamples(unsigned Num)131 void addTotalSamples(unsigned Num) { TotalSamples += Num; }
addHeadSamples(unsigned Num)132 void addHeadSamples(unsigned Num) { TotalHeadSamples += Num; }
addBodySamples(int LineOffset,unsigned Discriminator,unsigned Num)133 void addBodySamples(int LineOffset, unsigned Discriminator, unsigned Num) {
134 assert(LineOffset >= 0);
135 BodySamples[InstructionLocation(LineOffset, Discriminator)] += Num;
136 }
137 void print(raw_ostream &OS);
138 void printEdgeWeight(raw_ostream &OS, Edge E);
139 void printBlockWeight(raw_ostream &OS, BasicBlock *BB);
140 void printBlockEquivalence(raw_ostream &OS, BasicBlock *BB);
141 bool computeBlockWeights(Function &F);
142 void findEquivalenceClasses(Function &F);
143 void findEquivalencesFor(BasicBlock *BB1,
144 SmallVector<BasicBlock *, 8> Descendants,
145 DominatorTreeBase<BasicBlock> *DomTree);
146 void propagateWeights(Function &F);
147 unsigned visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
148 void buildEdges(Function &F);
149 bool propagateThroughEdges(Function &F);
empty()150 bool empty() { return BodySamples.empty(); }
151
152 protected:
153 /// \brief Total number of samples collected inside this function.
154 ///
155 /// Samples are cumulative, they include all the samples collected
156 /// inside this function and all its inlined callees.
157 unsigned TotalSamples;
158
159 /// \brief Total number of samples collected at the head of the function.
160 /// FIXME: Use head samples to estimate a cold/hot attribute for the function.
161 unsigned TotalHeadSamples;
162
163 /// \brief Line number for the function header. Used to compute relative
164 /// line numbers from the absolute line LOCs found in instruction locations.
165 /// The relative line numbers are needed to address the samples from the
166 /// profile file.
167 unsigned HeaderLineno;
168
169 /// \brief Map line offsets to collected samples.
170 ///
171 /// Each entry in this map contains the number of samples
172 /// collected at the corresponding line offset. All line locations
173 /// are an offset from the start of the function.
174 BodySampleMap BodySamples;
175
176 /// \brief Map basic blocks to their computed weights.
177 ///
178 /// The weight of a basic block is defined to be the maximum
179 /// of all the instruction weights in that block.
180 BlockWeightMap BlockWeights;
181
182 /// \brief Map edges to their computed weights.
183 ///
184 /// Edge weights are computed by propagating basic block weights in
185 /// SampleProfile::propagateWeights.
186 EdgeWeightMap EdgeWeights;
187
188 /// \brief Set of visited blocks during propagation.
189 SmallPtrSet<BasicBlock *, 128> VisitedBlocks;
190
191 /// \brief Set of visited edges during propagation.
192 SmallSet<Edge, 128> VisitedEdges;
193
194 /// \brief Equivalence classes for block weights.
195 ///
196 /// Two blocks BB1 and BB2 are in the same equivalence class if they
197 /// dominate and post-dominate each other, and they are in the same loop
198 /// nest. When this happens, the two blocks are guaranteed to execute
199 /// the same number of times.
200 EquivalenceClassMap EquivalenceClass;
201
202 /// \brief Dominance, post-dominance and loop information.
203 DominatorTree *DT;
204 PostDominatorTree *PDT;
205 LoopInfo *LI;
206
207 /// \brief Predecessors for each basic block in the CFG.
208 BlockEdgeMap Predecessors;
209
210 /// \brief Successors for each basic block in the CFG.
211 BlockEdgeMap Successors;
212
213 /// \brief LLVM context holding the debug data we need.
214 LLVMContext *Ctx;
215 };
216
217 /// \brief Sample-based profile reader.
218 ///
219 /// Each profile contains sample counts for all the functions
220 /// executed. Inside each function, statements are annotated with the
221 /// collected samples on all the instructions associated with that
222 /// statement.
223 ///
224 /// For this to produce meaningful data, the program needs to be
225 /// compiled with some debug information (at minimum, line numbers:
226 /// -gline-tables-only). Otherwise, it will be impossible to match IR
227 /// instructions to the line numbers collected by the profiler.
228 ///
229 /// From the profile file, we are interested in collecting the
230 /// following information:
231 ///
232 /// * A list of functions included in the profile (mangled names).
233 ///
234 /// * For each function F:
235 /// 1. The total number of samples collected in F.
236 ///
237 /// 2. The samples collected at each line in F. To provide some
238 /// protection against source code shuffling, line numbers should
239 /// be relative to the start of the function.
240 class SampleModuleProfile {
241 public:
SampleModuleProfile(const Module & M,StringRef F)242 SampleModuleProfile(const Module &M, StringRef F)
243 : Profiles(0), Filename(F), M(M) {}
244
245 void dump();
246 bool loadText();
loadNative()247 void loadNative() { llvm_unreachable("not implemented"); }
248 void printFunctionProfile(raw_ostream &OS, StringRef FName);
249 void dumpFunctionProfile(StringRef FName);
getProfile(const Function & F)250 SampleFunctionProfile &getProfile(const Function &F) {
251 return Profiles[F.getName()];
252 }
253
254 /// \brief Report a parse error message.
reportParseError(int64_t LineNumber,Twine Msg) const255 void reportParseError(int64_t LineNumber, Twine Msg) const {
256 DiagnosticInfoSampleProfile Diag(Filename.data(), LineNumber, Msg);
257 M.getContext().diagnose(Diag);
258 }
259
260 protected:
261 /// \brief Map every function to its associated profile.
262 ///
263 /// The profile of every function executed at runtime is collected
264 /// in the structure SampleFunctionProfile. This maps function objects
265 /// to their corresponding profiles.
266 StringMap<SampleFunctionProfile> Profiles;
267
268 /// \brief Path name to the file holding the profile data.
269 ///
270 /// The format of this file is defined by each profiler
271 /// independently. If possible, the profiler should have a text
272 /// version of the profile format to be used in constructing test
273 /// cases and debugging.
274 StringRef Filename;
275
276 /// \brief Module being compiled. Used mainly to access the current
277 /// LLVM context for diagnostics.
278 const Module &M;
279 };
280
281 /// \brief Sample profile pass.
282 ///
283 /// This pass reads profile data from the file specified by
284 /// -sample-profile-file and annotates every affected function with the
285 /// profile information found in that file.
286 class SampleProfileLoader : public FunctionPass {
287 public:
288 // Class identification, replacement for typeinfo
289 static char ID;
290
SampleProfileLoader(StringRef Name=SampleProfileFile)291 SampleProfileLoader(StringRef Name = SampleProfileFile)
292 : FunctionPass(ID), Profiler(), Filename(Name), ProfileIsValid(false) {
293 initializeSampleProfileLoaderPass(*PassRegistry::getPassRegistry());
294 }
295
296 bool doInitialization(Module &M) override;
297
dump()298 void dump() { Profiler->dump(); }
299
getPassName() const300 const char *getPassName() const override { return "Sample profile pass"; }
301
302 bool runOnFunction(Function &F) override;
303
getAnalysisUsage(AnalysisUsage & AU) const304 void getAnalysisUsage(AnalysisUsage &AU) const override {
305 AU.setPreservesCFG();
306 AU.addRequired<LoopInfo>();
307 AU.addRequired<DominatorTreeWrapperPass>();
308 AU.addRequired<PostDominatorTree>();
309 }
310
311 protected:
312 /// \brief Profile reader object.
313 std::unique_ptr<SampleModuleProfile> Profiler;
314
315 /// \brief Name of the profile file to load.
316 StringRef Filename;
317
318 /// \brief Flag indicating whether the profile input loaded successfully.
319 bool ProfileIsValid;
320 };
321 }
322
323 /// \brief Print this function profile on stream \p OS.
324 ///
325 /// \param OS Stream to emit the output to.
print(raw_ostream & OS)326 void SampleFunctionProfile::print(raw_ostream &OS) {
327 OS << TotalSamples << ", " << TotalHeadSamples << ", " << BodySamples.size()
328 << " sampled lines\n";
329 for (BodySampleMap::const_iterator SI = BodySamples.begin(),
330 SE = BodySamples.end();
331 SI != SE; ++SI)
332 OS << "\tline offset: " << SI->first.LineOffset
333 << ", discriminator: " << SI->first.Discriminator
334 << ", number of samples: " << SI->second << "\n";
335 OS << "\n";
336 }
337
338 /// \brief Print the weight of edge \p E on stream \p OS.
339 ///
340 /// \param OS Stream to emit the output to.
341 /// \param E Edge to print.
printEdgeWeight(raw_ostream & OS,Edge E)342 void SampleFunctionProfile::printEdgeWeight(raw_ostream &OS, Edge E) {
343 OS << "weight[" << E.first->getName() << "->" << E.second->getName()
344 << "]: " << EdgeWeights[E] << "\n";
345 }
346
347 /// \brief Print the equivalence class of block \p BB on stream \p OS.
348 ///
349 /// \param OS Stream to emit the output to.
350 /// \param BB Block to print.
printBlockEquivalence(raw_ostream & OS,BasicBlock * BB)351 void SampleFunctionProfile::printBlockEquivalence(raw_ostream &OS,
352 BasicBlock *BB) {
353 BasicBlock *Equiv = EquivalenceClass[BB];
354 OS << "equivalence[" << BB->getName()
355 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
356 }
357
358 /// \brief Print the weight of block \p BB on stream \p OS.
359 ///
360 /// \param OS Stream to emit the output to.
361 /// \param BB Block to print.
printBlockWeight(raw_ostream & OS,BasicBlock * BB)362 void SampleFunctionProfile::printBlockWeight(raw_ostream &OS, BasicBlock *BB) {
363 OS << "weight[" << BB->getName() << "]: " << BlockWeights[BB] << "\n";
364 }
365
366 /// \brief Print the function profile for \p FName on stream \p OS.
367 ///
368 /// \param OS Stream to emit the output to.
369 /// \param FName Name of the function to print.
printFunctionProfile(raw_ostream & OS,StringRef FName)370 void SampleModuleProfile::printFunctionProfile(raw_ostream &OS,
371 StringRef FName) {
372 OS << "Function: " << FName << ":\n";
373 Profiles[FName].print(OS);
374 }
375
376 /// \brief Dump the function profile for \p FName.
377 ///
378 /// \param FName Name of the function to print.
dumpFunctionProfile(StringRef FName)379 void SampleModuleProfile::dumpFunctionProfile(StringRef FName) {
380 printFunctionProfile(dbgs(), FName);
381 }
382
383 /// \brief Dump all the function profiles found.
dump()384 void SampleModuleProfile::dump() {
385 for (StringMap<SampleFunctionProfile>::const_iterator I = Profiles.begin(),
386 E = Profiles.end();
387 I != E; ++I)
388 dumpFunctionProfile(I->getKey());
389 }
390
391 /// \brief Load samples from a text file.
392 ///
393 /// The file contains a list of samples for every function executed at
394 /// runtime. Each function profile has the following format:
395 ///
396 /// function1:total_samples:total_head_samples
397 /// offset1[.discriminator]: number_of_samples [fn1:num fn2:num ... ]
398 /// offset2[.discriminator]: number_of_samples [fn3:num fn4:num ... ]
399 /// ...
400 /// offsetN[.discriminator]: number_of_samples [fn5:num fn6:num ... ]
401 ///
402 /// Function names must be mangled in order for the profile loader to
403 /// match them in the current translation unit. The two numbers in the
404 /// function header specify how many total samples were accumulated in
405 /// the function (first number), and the total number of samples accumulated
406 /// at the prologue of the function (second number). This head sample
407 /// count provides an indicator of how frequent is the function invoked.
408 ///
409 /// Each sampled line may contain several items. Some are optional
410 /// (marked below):
411 ///
412 /// a- Source line offset. This number represents the line number
413 /// in the function where the sample was collected. The line number
414 /// is always relative to the line where symbol of the function
415 /// is defined. So, if the function has its header at line 280,
416 /// the offset 13 is at line 293 in the file.
417 ///
418 /// b- [OPTIONAL] Discriminator. This is used if the sampled program
419 /// was compiled with DWARF discriminator support
420 /// (http://wiki.dwarfstd.org/index.php?title=Path_Discriminators)
421 ///
422 /// c- Number of samples. This is the number of samples collected by
423 /// the profiler at this source location.
424 ///
425 /// d- [OPTIONAL] Potential call targets and samples. If present, this
426 /// line contains a call instruction. This models both direct and
427 /// indirect calls. Each called target is listed together with the
428 /// number of samples. For example,
429 ///
430 /// 130: 7 foo:3 bar:2 baz:7
431 ///
432 /// The above means that at relative line offset 130 there is a
433 /// call instruction that calls one of foo(), bar() and baz(). With
434 /// baz() being the relatively more frequent call target.
435 ///
436 /// FIXME: This is currently unhandled, but it has a lot of
437 /// potential for aiding the inliner.
438 ///
439 ///
440 /// Since this is a flat profile, a function that shows up more than
441 /// once gets all its samples aggregated across all its instances.
442 ///
443 /// FIXME: flat profiles are too imprecise to provide good optimization
444 /// opportunities. Convert them to context-sensitive profile.
445 ///
446 /// This textual representation is useful to generate unit tests and
447 /// for debugging purposes, but it should not be used to generate
448 /// profiles for large programs, as the representation is extremely
449 /// inefficient.
450 ///
451 /// \returns true if the file was loaded successfully, false otherwise.
loadText()452 bool SampleModuleProfile::loadText() {
453 ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
454 MemoryBuffer::getFile(Filename);
455 if (std::error_code EC = BufferOrErr.getError()) {
456 std::string Msg(EC.message());
457 M.getContext().diagnose(DiagnosticInfoSampleProfile(Filename.data(), Msg));
458 return false;
459 }
460 std::unique_ptr<MemoryBuffer> Buffer = std::move(BufferOrErr.get());
461 line_iterator LineIt(*Buffer, '#');
462
463 // Read the profile of each function. Since each function may be
464 // mentioned more than once, and we are collecting flat profiles,
465 // accumulate samples as we parse them.
466 Regex HeadRE("^([^0-9].*):([0-9]+):([0-9]+)$");
467 Regex LineSample("^([0-9]+)\\.?([0-9]+)?: ([0-9]+)(.*)$");
468 while (!LineIt.is_at_eof()) {
469 // Read the header of each function.
470 //
471 // Note that for function identifiers we are actually expecting
472 // mangled names, but we may not always get them. This happens when
473 // the compiler decides not to emit the function (e.g., it was inlined
474 // and removed). In this case, the binary will not have the linkage
475 // name for the function, so the profiler will emit the function's
476 // unmangled name, which may contain characters like ':' and '>' in its
477 // name (member functions, templates, etc).
478 //
479 // The only requirement we place on the identifier, then, is that it
480 // should not begin with a number.
481 SmallVector<StringRef, 3> Matches;
482 if (!HeadRE.match(*LineIt, &Matches)) {
483 reportParseError(LineIt.line_number(),
484 "Expected 'mangled_name:NUM:NUM', found " + *LineIt);
485 return false;
486 }
487 assert(Matches.size() == 4);
488 StringRef FName = Matches[1];
489 unsigned NumSamples, NumHeadSamples;
490 Matches[2].getAsInteger(10, NumSamples);
491 Matches[3].getAsInteger(10, NumHeadSamples);
492 Profiles[FName] = SampleFunctionProfile();
493 SampleFunctionProfile &FProfile = Profiles[FName];
494 FProfile.addTotalSamples(NumSamples);
495 FProfile.addHeadSamples(NumHeadSamples);
496 ++LineIt;
497
498 // Now read the body. The body of the function ends when we reach
499 // EOF or when we see the start of the next function.
500 while (!LineIt.is_at_eof() && isdigit((*LineIt)[0])) {
501 if (!LineSample.match(*LineIt, &Matches)) {
502 reportParseError(
503 LineIt.line_number(),
504 "Expected 'NUM[.NUM]: NUM[ mangled_name:NUM]*', found " + *LineIt);
505 return false;
506 }
507 assert(Matches.size() == 5);
508 unsigned LineOffset, NumSamples, Discriminator = 0;
509 Matches[1].getAsInteger(10, LineOffset);
510 if (Matches[2] != "")
511 Matches[2].getAsInteger(10, Discriminator);
512 Matches[3].getAsInteger(10, NumSamples);
513
514 // FIXME: Handle called targets (in Matches[4]).
515
516 // When dealing with instruction weights, we use the value
517 // zero to indicate the absence of a sample. If we read an
518 // actual zero from the profile file, return it as 1 to
519 // avoid the confusion later on.
520 if (NumSamples == 0)
521 NumSamples = 1;
522 FProfile.addBodySamples(LineOffset, Discriminator, NumSamples);
523 ++LineIt;
524 }
525 }
526
527 return true;
528 }
529
530 /// \brief Get the weight for an instruction.
531 ///
532 /// The "weight" of an instruction \p Inst is the number of samples
533 /// collected on that instruction at runtime. To retrieve it, we
534 /// need to compute the line number of \p Inst relative to the start of its
535 /// function. We use HeaderLineno to compute the offset. We then
536 /// look up the samples collected for \p Inst using BodySamples.
537 ///
538 /// \param Inst Instruction to query.
539 ///
540 /// \returns The profiled weight of I.
getInstWeight(Instruction & Inst)541 unsigned SampleFunctionProfile::getInstWeight(Instruction &Inst) {
542 DebugLoc DLoc = Inst.getDebugLoc();
543 unsigned Lineno = DLoc.getLine();
544 if (Lineno < HeaderLineno)
545 return 0;
546
547 DILocation DIL(DLoc.getAsMDNode(*Ctx));
548 int LOffset = Lineno - HeaderLineno;
549 unsigned Discriminator = DIL.getDiscriminator();
550 unsigned Weight =
551 BodySamples.lookup(InstructionLocation(LOffset, Discriminator));
552 DEBUG(dbgs() << " " << Lineno << "." << Discriminator << ":" << Inst
553 << " (line offset: " << LOffset << "." << Discriminator
554 << " - weight: " << Weight << ")\n");
555 return Weight;
556 }
557
558 /// \brief Compute the weight of a basic block.
559 ///
560 /// The weight of basic block \p B is the maximum weight of all the
561 /// instructions in B. The weight of \p B is computed and cached in
562 /// the BlockWeights map.
563 ///
564 /// \param B The basic block to query.
565 ///
566 /// \returns The computed weight of B.
getBlockWeight(BasicBlock * B)567 unsigned SampleFunctionProfile::getBlockWeight(BasicBlock *B) {
568 // If we've computed B's weight before, return it.
569 std::pair<BlockWeightMap::iterator, bool> Entry =
570 BlockWeights.insert(std::make_pair(B, 0));
571 if (!Entry.second)
572 return Entry.first->second;
573
574 // Otherwise, compute and cache B's weight.
575 unsigned Weight = 0;
576 for (BasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) {
577 unsigned InstWeight = getInstWeight(*I);
578 if (InstWeight > Weight)
579 Weight = InstWeight;
580 }
581 Entry.first->second = Weight;
582 return Weight;
583 }
584
585 /// \brief Compute and store the weights of every basic block.
586 ///
587 /// This populates the BlockWeights map by computing
588 /// the weights of every basic block in the CFG.
589 ///
590 /// \param F The function to query.
computeBlockWeights(Function & F)591 bool SampleFunctionProfile::computeBlockWeights(Function &F) {
592 bool Changed = false;
593 DEBUG(dbgs() << "Block weights\n");
594 for (Function::iterator B = F.begin(), E = F.end(); B != E; ++B) {
595 unsigned Weight = getBlockWeight(B);
596 Changed |= (Weight > 0);
597 DEBUG(printBlockWeight(dbgs(), B));
598 }
599
600 return Changed;
601 }
602
603 /// \brief Find equivalence classes for the given block.
604 ///
605 /// This finds all the blocks that are guaranteed to execute the same
606 /// number of times as \p BB1. To do this, it traverses all the the
607 /// descendants of \p BB1 in the dominator or post-dominator tree.
608 ///
609 /// A block BB2 will be in the same equivalence class as \p BB1 if
610 /// the following holds:
611 ///
612 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
613 /// is a descendant of \p BB1 in the dominator tree, then BB2 should
614 /// dominate BB1 in the post-dominator tree.
615 ///
616 /// 2- Both BB2 and \p BB1 must be in the same loop.
617 ///
618 /// For every block BB2 that meets those two requirements, we set BB2's
619 /// equivalence class to \p BB1.
620 ///
621 /// \param BB1 Block to check.
622 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree.
623 /// \param DomTree Opposite dominator tree. If \p Descendants is filled
624 /// with blocks from \p BB1's dominator tree, then
625 /// this is the post-dominator tree, and vice versa.
findEquivalencesFor(BasicBlock * BB1,SmallVector<BasicBlock *,8> Descendants,DominatorTreeBase<BasicBlock> * DomTree)626 void SampleFunctionProfile::findEquivalencesFor(
627 BasicBlock *BB1, SmallVector<BasicBlock *, 8> Descendants,
628 DominatorTreeBase<BasicBlock> *DomTree) {
629 for (SmallVectorImpl<BasicBlock *>::iterator I = Descendants.begin(),
630 E = Descendants.end();
631 I != E; ++I) {
632 BasicBlock *BB2 = *I;
633 bool IsDomParent = DomTree->dominates(BB2, BB1);
634 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
635 if (BB1 != BB2 && VisitedBlocks.insert(BB2) && IsDomParent &&
636 IsInSameLoop) {
637 EquivalenceClass[BB2] = BB1;
638
639 // If BB2 is heavier than BB1, make BB2 have the same weight
640 // as BB1.
641 //
642 // Note that we don't worry about the opposite situation here
643 // (when BB2 is lighter than BB1). We will deal with this
644 // during the propagation phase. Right now, we just want to
645 // make sure that BB1 has the largest weight of all the
646 // members of its equivalence set.
647 unsigned &BB1Weight = BlockWeights[BB1];
648 unsigned &BB2Weight = BlockWeights[BB2];
649 BB1Weight = std::max(BB1Weight, BB2Weight);
650 }
651 }
652 }
653
654 /// \brief Find equivalence classes.
655 ///
656 /// Since samples may be missing from blocks, we can fill in the gaps by setting
657 /// the weights of all the blocks in the same equivalence class to the same
658 /// weight. To compute the concept of equivalence, we use dominance and loop
659 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
660 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
661 ///
662 /// \param F The function to query.
findEquivalenceClasses(Function & F)663 void SampleFunctionProfile::findEquivalenceClasses(Function &F) {
664 SmallVector<BasicBlock *, 8> DominatedBBs;
665 DEBUG(dbgs() << "\nBlock equivalence classes\n");
666 // Find equivalence sets based on dominance and post-dominance information.
667 for (Function::iterator B = F.begin(), E = F.end(); B != E; ++B) {
668 BasicBlock *BB1 = B;
669
670 // Compute BB1's equivalence class once.
671 if (EquivalenceClass.count(BB1)) {
672 DEBUG(printBlockEquivalence(dbgs(), BB1));
673 continue;
674 }
675
676 // By default, blocks are in their own equivalence class.
677 EquivalenceClass[BB1] = BB1;
678
679 // Traverse all the blocks dominated by BB1. We are looking for
680 // every basic block BB2 such that:
681 //
682 // 1- BB1 dominates BB2.
683 // 2- BB2 post-dominates BB1.
684 // 3- BB1 and BB2 are in the same loop nest.
685 //
686 // If all those conditions hold, it means that BB2 is executed
687 // as many times as BB1, so they are placed in the same equivalence
688 // class by making BB2's equivalence class be BB1.
689 DominatedBBs.clear();
690 DT->getDescendants(BB1, DominatedBBs);
691 findEquivalencesFor(BB1, DominatedBBs, PDT->DT);
692
693 // Repeat the same logic for all the blocks post-dominated by BB1.
694 // We are looking for every basic block BB2 such that:
695 //
696 // 1- BB1 post-dominates BB2.
697 // 2- BB2 dominates BB1.
698 // 3- BB1 and BB2 are in the same loop nest.
699 //
700 // If all those conditions hold, BB2's equivalence class is BB1.
701 DominatedBBs.clear();
702 PDT->getDescendants(BB1, DominatedBBs);
703 findEquivalencesFor(BB1, DominatedBBs, DT);
704
705 DEBUG(printBlockEquivalence(dbgs(), BB1));
706 }
707
708 // Assign weights to equivalence classes.
709 //
710 // All the basic blocks in the same equivalence class will execute
711 // the same number of times. Since we know that the head block in
712 // each equivalence class has the largest weight, assign that weight
713 // to all the blocks in that equivalence class.
714 DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n");
715 for (Function::iterator B = F.begin(), E = F.end(); B != E; ++B) {
716 BasicBlock *BB = B;
717 BasicBlock *EquivBB = EquivalenceClass[BB];
718 if (BB != EquivBB)
719 BlockWeights[BB] = BlockWeights[EquivBB];
720 DEBUG(printBlockWeight(dbgs(), BB));
721 }
722 }
723
724 /// \brief Visit the given edge to decide if it has a valid weight.
725 ///
726 /// If \p E has not been visited before, we copy to \p UnknownEdge
727 /// and increment the count of unknown edges.
728 ///
729 /// \param E Edge to visit.
730 /// \param NumUnknownEdges Current number of unknown edges.
731 /// \param UnknownEdge Set if E has not been visited before.
732 ///
733 /// \returns E's weight, if known. Otherwise, return 0.
visitEdge(Edge E,unsigned * NumUnknownEdges,Edge * UnknownEdge)734 unsigned SampleFunctionProfile::visitEdge(Edge E, unsigned *NumUnknownEdges,
735 Edge *UnknownEdge) {
736 if (!VisitedEdges.count(E)) {
737 (*NumUnknownEdges)++;
738 *UnknownEdge = E;
739 return 0;
740 }
741
742 return EdgeWeights[E];
743 }
744
745 /// \brief Propagate weights through incoming/outgoing edges.
746 ///
747 /// If the weight of a basic block is known, and there is only one edge
748 /// with an unknown weight, we can calculate the weight of that edge.
749 ///
750 /// Similarly, if all the edges have a known count, we can calculate the
751 /// count of the basic block, if needed.
752 ///
753 /// \param F Function to process.
754 ///
755 /// \returns True if new weights were assigned to edges or blocks.
propagateThroughEdges(Function & F)756 bool SampleFunctionProfile::propagateThroughEdges(Function &F) {
757 bool Changed = false;
758 DEBUG(dbgs() << "\nPropagation through edges\n");
759 for (Function::iterator BI = F.begin(), EI = F.end(); BI != EI; ++BI) {
760 BasicBlock *BB = BI;
761
762 // Visit all the predecessor and successor edges to determine
763 // which ones have a weight assigned already. Note that it doesn't
764 // matter that we only keep track of a single unknown edge. The
765 // only case we are interested in handling is when only a single
766 // edge is unknown (see setEdgeOrBlockWeight).
767 for (unsigned i = 0; i < 2; i++) {
768 unsigned TotalWeight = 0;
769 unsigned NumUnknownEdges = 0;
770 Edge UnknownEdge, SelfReferentialEdge;
771
772 if (i == 0) {
773 // First, visit all predecessor edges.
774 for (size_t I = 0; I < Predecessors[BB].size(); I++) {
775 Edge E = std::make_pair(Predecessors[BB][I], BB);
776 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
777 if (E.first == E.second)
778 SelfReferentialEdge = E;
779 }
780 } else {
781 // On the second round, visit all successor edges.
782 for (size_t I = 0; I < Successors[BB].size(); I++) {
783 Edge E = std::make_pair(BB, Successors[BB][I]);
784 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
785 }
786 }
787
788 // After visiting all the edges, there are three cases that we
789 // can handle immediately:
790 //
791 // - All the edge weights are known (i.e., NumUnknownEdges == 0).
792 // In this case, we simply check that the sum of all the edges
793 // is the same as BB's weight. If not, we change BB's weight
794 // to match. Additionally, if BB had not been visited before,
795 // we mark it visited.
796 //
797 // - Only one edge is unknown and BB has already been visited.
798 // In this case, we can compute the weight of the edge by
799 // subtracting the total block weight from all the known
800 // edge weights. If the edges weight more than BB, then the
801 // edge of the last remaining edge is set to zero.
802 //
803 // - There exists a self-referential edge and the weight of BB is
804 // known. In this case, this edge can be based on BB's weight.
805 // We add up all the other known edges and set the weight on
806 // the self-referential edge as we did in the previous case.
807 //
808 // In any other case, we must continue iterating. Eventually,
809 // all edges will get a weight, or iteration will stop when
810 // it reaches SampleProfileMaxPropagateIterations.
811 if (NumUnknownEdges <= 1) {
812 unsigned &BBWeight = BlockWeights[BB];
813 if (NumUnknownEdges == 0) {
814 // If we already know the weight of all edges, the weight of the
815 // basic block can be computed. It should be no larger than the sum
816 // of all edge weights.
817 if (TotalWeight > BBWeight) {
818 BBWeight = TotalWeight;
819 Changed = true;
820 DEBUG(dbgs() << "All edge weights for " << BB->getName()
821 << " known. Set weight for block: ";
822 printBlockWeight(dbgs(), BB););
823 }
824 if (VisitedBlocks.insert(BB))
825 Changed = true;
826 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(BB)) {
827 // If there is a single unknown edge and the block has been
828 // visited, then we can compute E's weight.
829 if (BBWeight >= TotalWeight)
830 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
831 else
832 EdgeWeights[UnknownEdge] = 0;
833 VisitedEdges.insert(UnknownEdge);
834 Changed = true;
835 DEBUG(dbgs() << "Set weight for edge: ";
836 printEdgeWeight(dbgs(), UnknownEdge));
837 }
838 } else if (SelfReferentialEdge.first && VisitedBlocks.count(BB)) {
839 unsigned &BBWeight = BlockWeights[BB];
840 // We have a self-referential edge and the weight of BB is known.
841 if (BBWeight >= TotalWeight)
842 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
843 else
844 EdgeWeights[SelfReferentialEdge] = 0;
845 VisitedEdges.insert(SelfReferentialEdge);
846 Changed = true;
847 DEBUG(dbgs() << "Set self-referential edge weight to: ";
848 printEdgeWeight(dbgs(), SelfReferentialEdge));
849 }
850 }
851 }
852
853 return Changed;
854 }
855
856 /// \brief Build in/out edge lists for each basic block in the CFG.
857 ///
858 /// We are interested in unique edges. If a block B1 has multiple
859 /// edges to another block B2, we only add a single B1->B2 edge.
buildEdges(Function & F)860 void SampleFunctionProfile::buildEdges(Function &F) {
861 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
862 BasicBlock *B1 = I;
863
864 // Add predecessors for B1.
865 SmallPtrSet<BasicBlock *, 16> Visited;
866 if (!Predecessors[B1].empty())
867 llvm_unreachable("Found a stale predecessors list in a basic block.");
868 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
869 BasicBlock *B2 = *PI;
870 if (Visited.insert(B2))
871 Predecessors[B1].push_back(B2);
872 }
873
874 // Add successors for B1.
875 Visited.clear();
876 if (!Successors[B1].empty())
877 llvm_unreachable("Found a stale successors list in a basic block.");
878 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
879 BasicBlock *B2 = *SI;
880 if (Visited.insert(B2))
881 Successors[B1].push_back(B2);
882 }
883 }
884 }
885
886 /// \brief Propagate weights into edges
887 ///
888 /// The following rules are applied to every block B in the CFG:
889 ///
890 /// - If B has a single predecessor/successor, then the weight
891 /// of that edge is the weight of the block.
892 ///
893 /// - If all incoming or outgoing edges are known except one, and the
894 /// weight of the block is already known, the weight of the unknown
895 /// edge will be the weight of the block minus the sum of all the known
896 /// edges. If the sum of all the known edges is larger than B's weight,
897 /// we set the unknown edge weight to zero.
898 ///
899 /// - If there is a self-referential edge, and the weight of the block is
900 /// known, the weight for that edge is set to the weight of the block
901 /// minus the weight of the other incoming edges to that block (if
902 /// known).
propagateWeights(Function & F)903 void SampleFunctionProfile::propagateWeights(Function &F) {
904 bool Changed = true;
905 unsigned i = 0;
906
907 // Before propagation starts, build, for each block, a list of
908 // unique predecessors and successors. This is necessary to handle
909 // identical edges in multiway branches. Since we visit all blocks and all
910 // edges of the CFG, it is cleaner to build these lists once at the start
911 // of the pass.
912 buildEdges(F);
913
914 // Propagate until we converge or we go past the iteration limit.
915 while (Changed && i++ < SampleProfileMaxPropagateIterations) {
916 Changed = propagateThroughEdges(F);
917 }
918
919 // Generate MD_prof metadata for every branch instruction using the
920 // edge weights computed during propagation.
921 DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
922 MDBuilder MDB(F.getContext());
923 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
924 BasicBlock *B = I;
925 TerminatorInst *TI = B->getTerminator();
926 if (TI->getNumSuccessors() == 1)
927 continue;
928 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
929 continue;
930
931 DEBUG(dbgs() << "\nGetting weights for branch at line "
932 << TI->getDebugLoc().getLine() << ".\n");
933 SmallVector<unsigned, 4> Weights;
934 bool AllWeightsZero = true;
935 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
936 BasicBlock *Succ = TI->getSuccessor(I);
937 Edge E = std::make_pair(B, Succ);
938 unsigned Weight = EdgeWeights[E];
939 DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
940 Weights.push_back(Weight);
941 if (Weight != 0)
942 AllWeightsZero = false;
943 }
944
945 // Only set weights if there is at least one non-zero weight.
946 // In any other case, let the analyzer set weights.
947 if (!AllWeightsZero) {
948 DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
949 TI->setMetadata(llvm::LLVMContext::MD_prof,
950 MDB.createBranchWeights(Weights));
951 } else {
952 DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
953 }
954 }
955 }
956
957 /// \brief Get the line number for the function header.
958 ///
959 /// This looks up function \p F in the current compilation unit and
960 /// retrieves the line number where the function is defined. This is
961 /// line 0 for all the samples read from the profile file. Every line
962 /// number is relative to this line.
963 ///
964 /// \param F Function object to query.
965 ///
966 /// \returns the line number where \p F is defined. If it returns 0,
967 /// it means that there is no debug information available for \p F.
getFunctionLoc(Function & F)968 unsigned SampleFunctionProfile::getFunctionLoc(Function &F) {
969 NamedMDNode *CUNodes = F.getParent()->getNamedMetadata("llvm.dbg.cu");
970 if (CUNodes) {
971 for (unsigned I = 0, E1 = CUNodes->getNumOperands(); I != E1; ++I) {
972 DICompileUnit CU(CUNodes->getOperand(I));
973 DIArray Subprograms = CU.getSubprograms();
974 for (unsigned J = 0, E2 = Subprograms.getNumElements(); J != E2; ++J) {
975 DISubprogram Subprogram(Subprograms.getElement(J));
976 if (Subprogram.describes(&F))
977 return Subprogram.getLineNumber();
978 }
979 }
980 }
981
982 F.getContext().diagnose(DiagnosticInfoSampleProfile(
983 "No debug information found in function " + F.getName()));
984 return 0;
985 }
986
987 /// \brief Generate branch weight metadata for all branches in \p F.
988 ///
989 /// Branch weights are computed out of instruction samples using a
990 /// propagation heuristic. Propagation proceeds in 3 phases:
991 ///
992 /// 1- Assignment of block weights. All the basic blocks in the function
993 /// are initial assigned the same weight as their most frequently
994 /// executed instruction.
995 ///
996 /// 2- Creation of equivalence classes. Since samples may be missing from
997 /// blocks, we can fill in the gaps by setting the weights of all the
998 /// blocks in the same equivalence class to the same weight. To compute
999 /// the concept of equivalence, we use dominance and loop information.
1000 /// Two blocks B1 and B2 are in the same equivalence class if B1
1001 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
1002 ///
1003 /// 3- Propagation of block weights into edges. This uses a simple
1004 /// propagation heuristic. The following rules are applied to every
1005 /// block B in the CFG:
1006 ///
1007 /// - If B has a single predecessor/successor, then the weight
1008 /// of that edge is the weight of the block.
1009 ///
1010 /// - If all the edges are known except one, and the weight of the
1011 /// block is already known, the weight of the unknown edge will
1012 /// be the weight of the block minus the sum of all the known
1013 /// edges. If the sum of all the known edges is larger than B's weight,
1014 /// we set the unknown edge weight to zero.
1015 ///
1016 /// - If there is a self-referential edge, and the weight of the block is
1017 /// known, the weight for that edge is set to the weight of the block
1018 /// minus the weight of the other incoming edges to that block (if
1019 /// known).
1020 ///
1021 /// Since this propagation is not guaranteed to finalize for every CFG, we
1022 /// only allow it to proceed for a limited number of iterations (controlled
1023 /// by -sample-profile-max-propagate-iterations).
1024 ///
1025 /// FIXME: Try to replace this propagation heuristic with a scheme
1026 /// that is guaranteed to finalize. A work-list approach similar to
1027 /// the standard value propagation algorithm used by SSA-CCP might
1028 /// work here.
1029 ///
1030 /// Once all the branch weights are computed, we emit the MD_prof
1031 /// metadata on B using the computed values for each of its branches.
1032 ///
1033 /// \param F The function to query.
1034 ///
1035 /// \returns true if \p F was modified. Returns false, otherwise.
emitAnnotations(Function & F,DominatorTree * DomTree,PostDominatorTree * PostDomTree,LoopInfo * Loops)1036 bool SampleFunctionProfile::emitAnnotations(Function &F, DominatorTree *DomTree,
1037 PostDominatorTree *PostDomTree,
1038 LoopInfo *Loops) {
1039 bool Changed = false;
1040
1041 // Initialize invariants used during computation and propagation.
1042 HeaderLineno = getFunctionLoc(F);
1043 if (HeaderLineno == 0)
1044 return false;
1045
1046 DEBUG(dbgs() << "Line number for the first instruction in " << F.getName()
1047 << ": " << HeaderLineno << "\n");
1048 DT = DomTree;
1049 PDT = PostDomTree;
1050 LI = Loops;
1051 Ctx = &F.getParent()->getContext();
1052
1053 // Compute basic block weights.
1054 Changed |= computeBlockWeights(F);
1055
1056 if (Changed) {
1057 // Find equivalence classes.
1058 findEquivalenceClasses(F);
1059
1060 // Propagate weights to all edges.
1061 propagateWeights(F);
1062 }
1063
1064 return Changed;
1065 }
1066
1067 char SampleProfileLoader::ID = 0;
1068 INITIALIZE_PASS_BEGIN(SampleProfileLoader, "sample-profile",
1069 "Sample Profile loader", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)1070 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1071 INITIALIZE_PASS_DEPENDENCY(PostDominatorTree)
1072 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
1073 INITIALIZE_PASS_DEPENDENCY(AddDiscriminators)
1074 INITIALIZE_PASS_END(SampleProfileLoader, "sample-profile",
1075 "Sample Profile loader", false, false)
1076
1077 bool SampleProfileLoader::doInitialization(Module &M) {
1078 Profiler.reset(new SampleModuleProfile(M, Filename));
1079 ProfileIsValid = Profiler->loadText();
1080 return true;
1081 }
1082
createSampleProfileLoaderPass()1083 FunctionPass *llvm::createSampleProfileLoaderPass() {
1084 return new SampleProfileLoader(SampleProfileFile);
1085 }
1086
createSampleProfileLoaderPass(StringRef Name)1087 FunctionPass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1088 return new SampleProfileLoader(Name);
1089 }
1090
runOnFunction(Function & F)1091 bool SampleProfileLoader::runOnFunction(Function &F) {
1092 if (!ProfileIsValid)
1093 return false;
1094 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1095 PostDominatorTree *PDT = &getAnalysis<PostDominatorTree>();
1096 LoopInfo *LI = &getAnalysis<LoopInfo>();
1097 SampleFunctionProfile &FunctionProfile = Profiler->getProfile(F);
1098 if (!FunctionProfile.empty())
1099 return FunctionProfile.emitAnnotations(F, DT, PDT, LI);
1100 return false;
1101 }
1102