1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is a utility pass used for testing the InstructionSimplify analysis.
11 // The analysis is applied to every instruction, and if it simplifies then the
12 // instruction is replaced by the simplification. If you are looking for a pass
13 // that performs serious instruction folding, use the instcombine pass instead.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/StringMap.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/DiagnosticInfo.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/Support/Allocator.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Target/TargetLibraryInfo.h"
33 #include "llvm/Transforms/Utils/BuildLibCalls.h"
34
35 using namespace llvm;
36
37 static cl::opt<bool>
38 ColdErrorCalls("error-reporting-is-cold", cl::init(true),
39 cl::Hidden, cl::desc("Treat error-reporting calls as cold"));
40
41 /// This class is the abstract base class for the set of optimizations that
42 /// corresponds to one library call.
43 namespace {
44 class LibCallOptimization {
45 protected:
46 Function *Caller;
47 const DataLayout *DL;
48 const TargetLibraryInfo *TLI;
49 const LibCallSimplifier *LCS;
50 LLVMContext* Context;
51 public:
LibCallOptimization()52 LibCallOptimization() { }
~LibCallOptimization()53 virtual ~LibCallOptimization() {}
54
55 /// callOptimizer - This pure virtual method is implemented by base classes to
56 /// do various optimizations. If this returns null then no transformation was
57 /// performed. If it returns CI, then it transformed the call and CI is to be
58 /// deleted. If it returns something else, replace CI with the new value and
59 /// delete CI.
60 virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B)
61 =0;
62
63 /// ignoreCallingConv - Returns false if this transformation could possibly
64 /// change the calling convention.
ignoreCallingConv()65 virtual bool ignoreCallingConv() { return false; }
66
optimizeCall(CallInst * CI,const DataLayout * DL,const TargetLibraryInfo * TLI,const LibCallSimplifier * LCS,IRBuilder<> & B)67 Value *optimizeCall(CallInst *CI, const DataLayout *DL,
68 const TargetLibraryInfo *TLI,
69 const LibCallSimplifier *LCS, IRBuilder<> &B) {
70 Caller = CI->getParent()->getParent();
71 this->DL = DL;
72 this->TLI = TLI;
73 this->LCS = LCS;
74 if (CI->getCalledFunction())
75 Context = &CI->getCalledFunction()->getContext();
76
77 // We never change the calling convention.
78 if (!ignoreCallingConv() && CI->getCallingConv() != llvm::CallingConv::C)
79 return nullptr;
80
81 return callOptimizer(CI->getCalledFunction(), CI, B);
82 }
83 };
84
85 //===----------------------------------------------------------------------===//
86 // Helper Functions
87 //===----------------------------------------------------------------------===//
88
89 /// isOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
90 /// value is equal or not-equal to zero.
isOnlyUsedInZeroEqualityComparison(Value * V)91 static bool isOnlyUsedInZeroEqualityComparison(Value *V) {
92 for (User *U : V->users()) {
93 if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
94 if (IC->isEquality())
95 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
96 if (C->isNullValue())
97 continue;
98 // Unknown instruction.
99 return false;
100 }
101 return true;
102 }
103
104 /// isOnlyUsedInEqualityComparison - Return true if it is only used in equality
105 /// comparisons with With.
isOnlyUsedInEqualityComparison(Value * V,Value * With)106 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
107 for (User *U : V->users()) {
108 if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
109 if (IC->isEquality() && IC->getOperand(1) == With)
110 continue;
111 // Unknown instruction.
112 return false;
113 }
114 return true;
115 }
116
callHasFloatingPointArgument(const CallInst * CI)117 static bool callHasFloatingPointArgument(const CallInst *CI) {
118 for (CallInst::const_op_iterator it = CI->op_begin(), e = CI->op_end();
119 it != e; ++it) {
120 if ((*it)->getType()->isFloatingPointTy())
121 return true;
122 }
123 return false;
124 }
125
126 /// \brief Check whether the overloaded unary floating point function
127 /// corresponing to \a Ty is available.
hasUnaryFloatFn(const TargetLibraryInfo * TLI,Type * Ty,LibFunc::Func DoubleFn,LibFunc::Func FloatFn,LibFunc::Func LongDoubleFn)128 static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty,
129 LibFunc::Func DoubleFn, LibFunc::Func FloatFn,
130 LibFunc::Func LongDoubleFn) {
131 switch (Ty->getTypeID()) {
132 case Type::FloatTyID:
133 return TLI->has(FloatFn);
134 case Type::DoubleTyID:
135 return TLI->has(DoubleFn);
136 default:
137 return TLI->has(LongDoubleFn);
138 }
139 }
140
141 //===----------------------------------------------------------------------===//
142 // Fortified Library Call Optimizations
143 //===----------------------------------------------------------------------===//
144
145 struct FortifiedLibCallOptimization : public LibCallOptimization {
146 protected:
147 virtual bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp,
148 bool isString) const = 0;
149 };
150
151 struct InstFortifiedLibCallOptimization : public FortifiedLibCallOptimization {
152 CallInst *CI;
153
isFoldable__anon9c5d0d470111::InstFortifiedLibCallOptimization154 bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp,
155 bool isString) const override {
156 if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp))
157 return true;
158 if (ConstantInt *SizeCI =
159 dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
160 if (SizeCI->isAllOnesValue())
161 return true;
162 if (isString) {
163 uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp));
164 // If the length is 0 we don't know how long it is and so we can't
165 // remove the check.
166 if (Len == 0) return false;
167 return SizeCI->getZExtValue() >= Len;
168 }
169 if (ConstantInt *Arg = dyn_cast<ConstantInt>(
170 CI->getArgOperand(SizeArgOp)))
171 return SizeCI->getZExtValue() >= Arg->getZExtValue();
172 }
173 return false;
174 }
175 };
176
177 struct MemCpyChkOpt : public InstFortifiedLibCallOptimization {
callOptimizer__anon9c5d0d470111::MemCpyChkOpt178 Value *callOptimizer(Function *Callee, CallInst *CI,
179 IRBuilder<> &B) override {
180 this->CI = CI;
181 FunctionType *FT = Callee->getFunctionType();
182 LLVMContext &Context = CI->getParent()->getContext();
183
184 // Check if this has the right signature.
185 if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
186 !FT->getParamType(0)->isPointerTy() ||
187 !FT->getParamType(1)->isPointerTy() ||
188 FT->getParamType(2) != DL->getIntPtrType(Context) ||
189 FT->getParamType(3) != DL->getIntPtrType(Context))
190 return nullptr;
191
192 if (isFoldable(3, 2, false)) {
193 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
194 CI->getArgOperand(2), 1);
195 return CI->getArgOperand(0);
196 }
197 return nullptr;
198 }
199 };
200
201 struct MemMoveChkOpt : public InstFortifiedLibCallOptimization {
callOptimizer__anon9c5d0d470111::MemMoveChkOpt202 Value *callOptimizer(Function *Callee, CallInst *CI,
203 IRBuilder<> &B) override {
204 this->CI = CI;
205 FunctionType *FT = Callee->getFunctionType();
206 LLVMContext &Context = CI->getParent()->getContext();
207
208 // Check if this has the right signature.
209 if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
210 !FT->getParamType(0)->isPointerTy() ||
211 !FT->getParamType(1)->isPointerTy() ||
212 FT->getParamType(2) != DL->getIntPtrType(Context) ||
213 FT->getParamType(3) != DL->getIntPtrType(Context))
214 return nullptr;
215
216 if (isFoldable(3, 2, false)) {
217 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
218 CI->getArgOperand(2), 1);
219 return CI->getArgOperand(0);
220 }
221 return nullptr;
222 }
223 };
224
225 struct MemSetChkOpt : public InstFortifiedLibCallOptimization {
callOptimizer__anon9c5d0d470111::MemSetChkOpt226 Value *callOptimizer(Function *Callee, CallInst *CI,
227 IRBuilder<> &B) override {
228 this->CI = CI;
229 FunctionType *FT = Callee->getFunctionType();
230 LLVMContext &Context = CI->getParent()->getContext();
231
232 // Check if this has the right signature.
233 if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
234 !FT->getParamType(0)->isPointerTy() ||
235 !FT->getParamType(1)->isIntegerTy() ||
236 FT->getParamType(2) != DL->getIntPtrType(Context) ||
237 FT->getParamType(3) != DL->getIntPtrType(Context))
238 return nullptr;
239
240 if (isFoldable(3, 2, false)) {
241 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(),
242 false);
243 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
244 return CI->getArgOperand(0);
245 }
246 return nullptr;
247 }
248 };
249
250 struct StrCpyChkOpt : public InstFortifiedLibCallOptimization {
callOptimizer__anon9c5d0d470111::StrCpyChkOpt251 Value *callOptimizer(Function *Callee, CallInst *CI,
252 IRBuilder<> &B) override {
253 this->CI = CI;
254 StringRef Name = Callee->getName();
255 FunctionType *FT = Callee->getFunctionType();
256 LLVMContext &Context = CI->getParent()->getContext();
257
258 // Check if this has the right signature.
259 if (FT->getNumParams() != 3 ||
260 FT->getReturnType() != FT->getParamType(0) ||
261 FT->getParamType(0) != FT->getParamType(1) ||
262 FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
263 FT->getParamType(2) != DL->getIntPtrType(Context))
264 return nullptr;
265
266 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
267 if (Dst == Src) // __strcpy_chk(x,x) -> x
268 return Src;
269
270 // If a) we don't have any length information, or b) we know this will
271 // fit then just lower to a plain strcpy. Otherwise we'll keep our
272 // strcpy_chk call which may fail at runtime if the size is too long.
273 // TODO: It might be nice to get a maximum length out of the possible
274 // string lengths for varying.
275 if (isFoldable(2, 1, true)) {
276 Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
277 return Ret;
278 } else {
279 // Maybe we can stil fold __strcpy_chk to __memcpy_chk.
280 uint64_t Len = GetStringLength(Src);
281 if (Len == 0) return nullptr;
282
283 // This optimization require DataLayout.
284 if (!DL) return nullptr;
285
286 Value *Ret =
287 EmitMemCpyChk(Dst, Src,
288 ConstantInt::get(DL->getIntPtrType(Context), Len),
289 CI->getArgOperand(2), B, DL, TLI);
290 return Ret;
291 }
292 return nullptr;
293 }
294 };
295
296 struct StpCpyChkOpt : public InstFortifiedLibCallOptimization {
callOptimizer__anon9c5d0d470111::StpCpyChkOpt297 Value *callOptimizer(Function *Callee, CallInst *CI,
298 IRBuilder<> &B) override {
299 this->CI = CI;
300 StringRef Name = Callee->getName();
301 FunctionType *FT = Callee->getFunctionType();
302 LLVMContext &Context = CI->getParent()->getContext();
303
304 // Check if this has the right signature.
305 if (FT->getNumParams() != 3 ||
306 FT->getReturnType() != FT->getParamType(0) ||
307 FT->getParamType(0) != FT->getParamType(1) ||
308 FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
309 FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0)))
310 return nullptr;
311
312 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
313 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
314 Value *StrLen = EmitStrLen(Src, B, DL, TLI);
315 return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr;
316 }
317
318 // If a) we don't have any length information, or b) we know this will
319 // fit then just lower to a plain stpcpy. Otherwise we'll keep our
320 // stpcpy_chk call which may fail at runtime if the size is too long.
321 // TODO: It might be nice to get a maximum length out of the possible
322 // string lengths for varying.
323 if (isFoldable(2, 1, true)) {
324 Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6));
325 return Ret;
326 } else {
327 // Maybe we can stil fold __stpcpy_chk to __memcpy_chk.
328 uint64_t Len = GetStringLength(Src);
329 if (Len == 0) return nullptr;
330
331 // This optimization require DataLayout.
332 if (!DL) return nullptr;
333
334 Type *PT = FT->getParamType(0);
335 Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
336 Value *DstEnd = B.CreateGEP(Dst,
337 ConstantInt::get(DL->getIntPtrType(PT),
338 Len - 1));
339 if (!EmitMemCpyChk(Dst, Src, LenV, CI->getArgOperand(2), B, DL, TLI))
340 return nullptr;
341 return DstEnd;
342 }
343 return nullptr;
344 }
345 };
346
347 struct StrNCpyChkOpt : public InstFortifiedLibCallOptimization {
callOptimizer__anon9c5d0d470111::StrNCpyChkOpt348 Value *callOptimizer(Function *Callee, CallInst *CI,
349 IRBuilder<> &B) override {
350 this->CI = CI;
351 StringRef Name = Callee->getName();
352 FunctionType *FT = Callee->getFunctionType();
353 LLVMContext &Context = CI->getParent()->getContext();
354
355 // Check if this has the right signature.
356 if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) ||
357 FT->getParamType(0) != FT->getParamType(1) ||
358 FT->getParamType(0) != Type::getInt8PtrTy(Context) ||
359 !FT->getParamType(2)->isIntegerTy() ||
360 FT->getParamType(3) != DL->getIntPtrType(Context))
361 return nullptr;
362
363 if (isFoldable(3, 2, false)) {
364 Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
365 CI->getArgOperand(2), B, DL, TLI,
366 Name.substr(2, 7));
367 return Ret;
368 }
369 return nullptr;
370 }
371 };
372
373 //===----------------------------------------------------------------------===//
374 // String and Memory Library Call Optimizations
375 //===----------------------------------------------------------------------===//
376
377 struct StrCatOpt : public LibCallOptimization {
callOptimizer__anon9c5d0d470111::StrCatOpt378 Value *callOptimizer(Function *Callee, CallInst *CI,
379 IRBuilder<> &B) override {
380 // Verify the "strcat" function prototype.
381 FunctionType *FT = Callee->getFunctionType();
382 if (FT->getNumParams() != 2 ||
383 FT->getReturnType() != B.getInt8PtrTy() ||
384 FT->getParamType(0) != FT->getReturnType() ||
385 FT->getParamType(1) != FT->getReturnType())
386 return nullptr;
387
388 // Extract some information from the instruction
389 Value *Dst = CI->getArgOperand(0);
390 Value *Src = CI->getArgOperand(1);
391
392 // See if we can get the length of the input string.
393 uint64_t Len = GetStringLength(Src);
394 if (Len == 0) return nullptr;
395 --Len; // Unbias length.
396
397 // Handle the simple, do-nothing case: strcat(x, "") -> x
398 if (Len == 0)
399 return Dst;
400
401 // These optimizations require DataLayout.
402 if (!DL) return nullptr;
403
404 return emitStrLenMemCpy(Src, Dst, Len, B);
405 }
406
emitStrLenMemCpy__anon9c5d0d470111::StrCatOpt407 Value *emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
408 IRBuilder<> &B) {
409 // We need to find the end of the destination string. That's where the
410 // memory is to be moved to. We just generate a call to strlen.
411 Value *DstLen = EmitStrLen(Dst, B, DL, TLI);
412 if (!DstLen)
413 return nullptr;
414
415 // Now that we have the destination's length, we must index into the
416 // destination's pointer to get the actual memcpy destination (end of
417 // the string .. we're concatenating).
418 Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr");
419
420 // We have enough information to now generate the memcpy call to do the
421 // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
422 B.CreateMemCpy(CpyDst, Src,
423 ConstantInt::get(DL->getIntPtrType(*Context), Len + 1), 1);
424 return Dst;
425 }
426 };
427
428 struct StrNCatOpt : public StrCatOpt {
callOptimizer__anon9c5d0d470111::StrNCatOpt429 Value *callOptimizer(Function *Callee, CallInst *CI,
430 IRBuilder<> &B) override {
431 // Verify the "strncat" function prototype.
432 FunctionType *FT = Callee->getFunctionType();
433 if (FT->getNumParams() != 3 ||
434 FT->getReturnType() != B.getInt8PtrTy() ||
435 FT->getParamType(0) != FT->getReturnType() ||
436 FT->getParamType(1) != FT->getReturnType() ||
437 !FT->getParamType(2)->isIntegerTy())
438 return nullptr;
439
440 // Extract some information from the instruction
441 Value *Dst = CI->getArgOperand(0);
442 Value *Src = CI->getArgOperand(1);
443 uint64_t Len;
444
445 // We don't do anything if length is not constant
446 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
447 Len = LengthArg->getZExtValue();
448 else
449 return nullptr;
450
451 // See if we can get the length of the input string.
452 uint64_t SrcLen = GetStringLength(Src);
453 if (SrcLen == 0) return nullptr;
454 --SrcLen; // Unbias length.
455
456 // Handle the simple, do-nothing cases:
457 // strncat(x, "", c) -> x
458 // strncat(x, c, 0) -> x
459 if (SrcLen == 0 || Len == 0) return Dst;
460
461 // These optimizations require DataLayout.
462 if (!DL) return nullptr;
463
464 // We don't optimize this case
465 if (Len < SrcLen) return nullptr;
466
467 // strncat(x, s, c) -> strcat(x, s)
468 // s is constant so the strcat can be optimized further
469 return emitStrLenMemCpy(Src, Dst, SrcLen, B);
470 }
471 };
472
473 struct StrChrOpt : public LibCallOptimization {
callOptimizer__anon9c5d0d470111::StrChrOpt474 Value *callOptimizer(Function *Callee, CallInst *CI,
475 IRBuilder<> &B) override {
476 // Verify the "strchr" function prototype.
477 FunctionType *FT = Callee->getFunctionType();
478 if (FT->getNumParams() != 2 ||
479 FT->getReturnType() != B.getInt8PtrTy() ||
480 FT->getParamType(0) != FT->getReturnType() ||
481 !FT->getParamType(1)->isIntegerTy(32))
482 return nullptr;
483
484 Value *SrcStr = CI->getArgOperand(0);
485
486 // If the second operand is non-constant, see if we can compute the length
487 // of the input string and turn this into memchr.
488 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
489 if (!CharC) {
490 // These optimizations require DataLayout.
491 if (!DL) return nullptr;
492
493 uint64_t Len = GetStringLength(SrcStr);
494 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32))// memchr needs i32.
495 return nullptr;
496
497 return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
498 ConstantInt::get(DL->getIntPtrType(*Context), Len),
499 B, DL, TLI);
500 }
501
502 // Otherwise, the character is a constant, see if the first argument is
503 // a string literal. If so, we can constant fold.
504 StringRef Str;
505 if (!getConstantStringInfo(SrcStr, Str)) {
506 if (DL && CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
507 return B.CreateGEP(SrcStr, EmitStrLen(SrcStr, B, DL, TLI), "strchr");
508 return nullptr;
509 }
510
511 // Compute the offset, make sure to handle the case when we're searching for
512 // zero (a weird way to spell strlen).
513 size_t I = (0xFF & CharC->getSExtValue()) == 0 ?
514 Str.size() : Str.find(CharC->getSExtValue());
515 if (I == StringRef::npos) // Didn't find the char. strchr returns null.
516 return Constant::getNullValue(CI->getType());
517
518 // strchr(s+n,c) -> gep(s+n+i,c)
519 return B.CreateGEP(SrcStr, B.getInt64(I), "strchr");
520 }
521 };
522
523 struct StrRChrOpt : public LibCallOptimization {
callOptimizer__anon9c5d0d470111::StrRChrOpt524 Value *callOptimizer(Function *Callee, CallInst *CI,
525 IRBuilder<> &B) override {
526 // Verify the "strrchr" function prototype.
527 FunctionType *FT = Callee->getFunctionType();
528 if (FT->getNumParams() != 2 ||
529 FT->getReturnType() != B.getInt8PtrTy() ||
530 FT->getParamType(0) != FT->getReturnType() ||
531 !FT->getParamType(1)->isIntegerTy(32))
532 return nullptr;
533
534 Value *SrcStr = CI->getArgOperand(0);
535 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
536
537 // Cannot fold anything if we're not looking for a constant.
538 if (!CharC)
539 return nullptr;
540
541 StringRef Str;
542 if (!getConstantStringInfo(SrcStr, Str)) {
543 // strrchr(s, 0) -> strchr(s, 0)
544 if (DL && CharC->isZero())
545 return EmitStrChr(SrcStr, '\0', B, DL, TLI);
546 return nullptr;
547 }
548
549 // Compute the offset.
550 size_t I = (0xFF & CharC->getSExtValue()) == 0 ?
551 Str.size() : Str.rfind(CharC->getSExtValue());
552 if (I == StringRef::npos) // Didn't find the char. Return null.
553 return Constant::getNullValue(CI->getType());
554
555 // strrchr(s+n,c) -> gep(s+n+i,c)
556 return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr");
557 }
558 };
559
560 struct StrCmpOpt : public LibCallOptimization {
callOptimizer__anon9c5d0d470111::StrCmpOpt561 Value *callOptimizer(Function *Callee, CallInst *CI,
562 IRBuilder<> &B) override {
563 // Verify the "strcmp" function prototype.
564 FunctionType *FT = Callee->getFunctionType();
565 if (FT->getNumParams() != 2 ||
566 !FT->getReturnType()->isIntegerTy(32) ||
567 FT->getParamType(0) != FT->getParamType(1) ||
568 FT->getParamType(0) != B.getInt8PtrTy())
569 return nullptr;
570
571 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
572 if (Str1P == Str2P) // strcmp(x,x) -> 0
573 return ConstantInt::get(CI->getType(), 0);
574
575 StringRef Str1, Str2;
576 bool HasStr1 = getConstantStringInfo(Str1P, Str1);
577 bool HasStr2 = getConstantStringInfo(Str2P, Str2);
578
579 // strcmp(x, y) -> cnst (if both x and y are constant strings)
580 if (HasStr1 && HasStr2)
581 return ConstantInt::get(CI->getType(), Str1.compare(Str2));
582
583 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
584 return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
585 CI->getType()));
586
587 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
588 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
589
590 // strcmp(P, "x") -> memcmp(P, "x", 2)
591 uint64_t Len1 = GetStringLength(Str1P);
592 uint64_t Len2 = GetStringLength(Str2P);
593 if (Len1 && Len2) {
594 // These optimizations require DataLayout.
595 if (!DL) return nullptr;
596
597 return EmitMemCmp(Str1P, Str2P,
598 ConstantInt::get(DL->getIntPtrType(*Context),
599 std::min(Len1, Len2)), B, DL, TLI);
600 }
601
602 return nullptr;
603 }
604 };
605
606 struct StrNCmpOpt : public LibCallOptimization {
callOptimizer__anon9c5d0d470111::StrNCmpOpt607 Value *callOptimizer(Function *Callee, CallInst *CI,
608 IRBuilder<> &B) override {
609 // Verify the "strncmp" function prototype.
610 FunctionType *FT = Callee->getFunctionType();
611 if (FT->getNumParams() != 3 ||
612 !FT->getReturnType()->isIntegerTy(32) ||
613 FT->getParamType(0) != FT->getParamType(1) ||
614 FT->getParamType(0) != B.getInt8PtrTy() ||
615 !FT->getParamType(2)->isIntegerTy())
616 return nullptr;
617
618 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
619 if (Str1P == Str2P) // strncmp(x,x,n) -> 0
620 return ConstantInt::get(CI->getType(), 0);
621
622 // Get the length argument if it is constant.
623 uint64_t Length;
624 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
625 Length = LengthArg->getZExtValue();
626 else
627 return nullptr;
628
629 if (Length == 0) // strncmp(x,y,0) -> 0
630 return ConstantInt::get(CI->getType(), 0);
631
632 if (DL && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
633 return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
634
635 StringRef Str1, Str2;
636 bool HasStr1 = getConstantStringInfo(Str1P, Str1);
637 bool HasStr2 = getConstantStringInfo(Str2P, Str2);
638
639 // strncmp(x, y) -> cnst (if both x and y are constant strings)
640 if (HasStr1 && HasStr2) {
641 StringRef SubStr1 = Str1.substr(0, Length);
642 StringRef SubStr2 = Str2.substr(0, Length);
643 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
644 }
645
646 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
647 return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"),
648 CI->getType()));
649
650 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
651 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
652
653 return nullptr;
654 }
655 };
656
657 struct StrCpyOpt : public LibCallOptimization {
callOptimizer__anon9c5d0d470111::StrCpyOpt658 Value *callOptimizer(Function *Callee, CallInst *CI,
659 IRBuilder<> &B) override {
660 // Verify the "strcpy" function prototype.
661 FunctionType *FT = Callee->getFunctionType();
662 if (FT->getNumParams() != 2 ||
663 FT->getReturnType() != FT->getParamType(0) ||
664 FT->getParamType(0) != FT->getParamType(1) ||
665 FT->getParamType(0) != B.getInt8PtrTy())
666 return nullptr;
667
668 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
669 if (Dst == Src) // strcpy(x,x) -> x
670 return Src;
671
672 // These optimizations require DataLayout.
673 if (!DL) return nullptr;
674
675 // See if we can get the length of the input string.
676 uint64_t Len = GetStringLength(Src);
677 if (Len == 0) return nullptr;
678
679 // We have enough information to now generate the memcpy call to do the
680 // copy for us. Make a memcpy to copy the nul byte with align = 1.
681 B.CreateMemCpy(Dst, Src,
682 ConstantInt::get(DL->getIntPtrType(*Context), Len), 1);
683 return Dst;
684 }
685 };
686
687 struct StpCpyOpt: public LibCallOptimization {
callOptimizer__anon9c5d0d470111::StpCpyOpt688 Value *callOptimizer(Function *Callee, CallInst *CI,
689 IRBuilder<> &B) override {
690 // Verify the "stpcpy" function prototype.
691 FunctionType *FT = Callee->getFunctionType();
692 if (FT->getNumParams() != 2 ||
693 FT->getReturnType() != FT->getParamType(0) ||
694 FT->getParamType(0) != FT->getParamType(1) ||
695 FT->getParamType(0) != B.getInt8PtrTy())
696 return nullptr;
697
698 // These optimizations require DataLayout.
699 if (!DL) return nullptr;
700
701 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
702 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
703 Value *StrLen = EmitStrLen(Src, B, DL, TLI);
704 return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr;
705 }
706
707 // See if we can get the length of the input string.
708 uint64_t Len = GetStringLength(Src);
709 if (Len == 0) return nullptr;
710
711 Type *PT = FT->getParamType(0);
712 Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len);
713 Value *DstEnd = B.CreateGEP(Dst,
714 ConstantInt::get(DL->getIntPtrType(PT),
715 Len - 1));
716
717 // We have enough information to now generate the memcpy call to do the
718 // copy for us. Make a memcpy to copy the nul byte with align = 1.
719 B.CreateMemCpy(Dst, Src, LenV, 1);
720 return DstEnd;
721 }
722 };
723
724 struct StrNCpyOpt : public LibCallOptimization {
callOptimizer__anon9c5d0d470111::StrNCpyOpt725 Value *callOptimizer(Function *Callee, CallInst *CI,
726 IRBuilder<> &B) override {
727 FunctionType *FT = Callee->getFunctionType();
728 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
729 FT->getParamType(0) != FT->getParamType(1) ||
730 FT->getParamType(0) != B.getInt8PtrTy() ||
731 !FT->getParamType(2)->isIntegerTy())
732 return nullptr;
733
734 Value *Dst = CI->getArgOperand(0);
735 Value *Src = CI->getArgOperand(1);
736 Value *LenOp = CI->getArgOperand(2);
737
738 // See if we can get the length of the input string.
739 uint64_t SrcLen = GetStringLength(Src);
740 if (SrcLen == 0) return nullptr;
741 --SrcLen;
742
743 if (SrcLen == 0) {
744 // strncpy(x, "", y) -> memset(x, '\0', y, 1)
745 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
746 return Dst;
747 }
748
749 uint64_t Len;
750 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
751 Len = LengthArg->getZExtValue();
752 else
753 return nullptr;
754
755 if (Len == 0) return Dst; // strncpy(x, y, 0) -> x
756
757 // These optimizations require DataLayout.
758 if (!DL) return nullptr;
759
760 // Let strncpy handle the zero padding
761 if (Len > SrcLen+1) return nullptr;
762
763 Type *PT = FT->getParamType(0);
764 // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
765 B.CreateMemCpy(Dst, Src,
766 ConstantInt::get(DL->getIntPtrType(PT), Len), 1);
767
768 return Dst;
769 }
770 };
771
772 struct StrLenOpt : public LibCallOptimization {
ignoreCallingConv__anon9c5d0d470111::StrLenOpt773 bool ignoreCallingConv() override { return true; }
callOptimizer__anon9c5d0d470111::StrLenOpt774 Value *callOptimizer(Function *Callee, CallInst *CI,
775 IRBuilder<> &B) override {
776 FunctionType *FT = Callee->getFunctionType();
777 if (FT->getNumParams() != 1 ||
778 FT->getParamType(0) != B.getInt8PtrTy() ||
779 !FT->getReturnType()->isIntegerTy())
780 return nullptr;
781
782 Value *Src = CI->getArgOperand(0);
783
784 // Constant folding: strlen("xyz") -> 3
785 if (uint64_t Len = GetStringLength(Src))
786 return ConstantInt::get(CI->getType(), Len-1);
787
788 // strlen(x?"foo":"bars") --> x ? 3 : 4
789 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
790 uint64_t LenTrue = GetStringLength(SI->getTrueValue());
791 uint64_t LenFalse = GetStringLength(SI->getFalseValue());
792 if (LenTrue && LenFalse) {
793 emitOptimizationRemark(*Context, "simplify-libcalls", *Caller,
794 SI->getDebugLoc(),
795 "folded strlen(select) to select of constants");
796 return B.CreateSelect(SI->getCondition(),
797 ConstantInt::get(CI->getType(), LenTrue-1),
798 ConstantInt::get(CI->getType(), LenFalse-1));
799 }
800 }
801
802 // strlen(x) != 0 --> *x != 0
803 // strlen(x) == 0 --> *x == 0
804 if (isOnlyUsedInZeroEqualityComparison(CI))
805 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
806
807 return nullptr;
808 }
809 };
810
811 struct StrPBrkOpt : public LibCallOptimization {
callOptimizer__anon9c5d0d470111::StrPBrkOpt812 Value *callOptimizer(Function *Callee, CallInst *CI,
813 IRBuilder<> &B) override {
814 FunctionType *FT = Callee->getFunctionType();
815 if (FT->getNumParams() != 2 ||
816 FT->getParamType(0) != B.getInt8PtrTy() ||
817 FT->getParamType(1) != FT->getParamType(0) ||
818 FT->getReturnType() != FT->getParamType(0))
819 return nullptr;
820
821 StringRef S1, S2;
822 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
823 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
824
825 // strpbrk(s, "") -> NULL
826 // strpbrk("", s) -> NULL
827 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
828 return Constant::getNullValue(CI->getType());
829
830 // Constant folding.
831 if (HasS1 && HasS2) {
832 size_t I = S1.find_first_of(S2);
833 if (I == StringRef::npos) // No match.
834 return Constant::getNullValue(CI->getType());
835
836 return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk");
837 }
838
839 // strpbrk(s, "a") -> strchr(s, 'a')
840 if (DL && HasS2 && S2.size() == 1)
841 return EmitStrChr(CI->getArgOperand(0), S2[0], B, DL, TLI);
842
843 return nullptr;
844 }
845 };
846
847 struct StrToOpt : public LibCallOptimization {
callOptimizer__anon9c5d0d470111::StrToOpt848 Value *callOptimizer(Function *Callee, CallInst *CI,
849 IRBuilder<> &B) override {
850 FunctionType *FT = Callee->getFunctionType();
851 if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
852 !FT->getParamType(0)->isPointerTy() ||
853 !FT->getParamType(1)->isPointerTy())
854 return nullptr;
855
856 Value *EndPtr = CI->getArgOperand(1);
857 if (isa<ConstantPointerNull>(EndPtr)) {
858 // With a null EndPtr, this function won't capture the main argument.
859 // It would be readonly too, except that it still may write to errno.
860 CI->addAttribute(1, Attribute::NoCapture);
861 }
862
863 return nullptr;
864 }
865 };
866
867 struct StrSpnOpt : public LibCallOptimization {
callOptimizer__anon9c5d0d470111::StrSpnOpt868 Value *callOptimizer(Function *Callee, CallInst *CI,
869 IRBuilder<> &B) override {
870 FunctionType *FT = Callee->getFunctionType();
871 if (FT->getNumParams() != 2 ||
872 FT->getParamType(0) != B.getInt8PtrTy() ||
873 FT->getParamType(1) != FT->getParamType(0) ||
874 !FT->getReturnType()->isIntegerTy())
875 return nullptr;
876
877 StringRef S1, S2;
878 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
879 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
880
881 // strspn(s, "") -> 0
882 // strspn("", s) -> 0
883 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
884 return Constant::getNullValue(CI->getType());
885
886 // Constant folding.
887 if (HasS1 && HasS2) {
888 size_t Pos = S1.find_first_not_of(S2);
889 if (Pos == StringRef::npos) Pos = S1.size();
890 return ConstantInt::get(CI->getType(), Pos);
891 }
892
893 return nullptr;
894 }
895 };
896
897 struct StrCSpnOpt : public LibCallOptimization {
callOptimizer__anon9c5d0d470111::StrCSpnOpt898 Value *callOptimizer(Function *Callee, CallInst *CI,
899 IRBuilder<> &B) override {
900 FunctionType *FT = Callee->getFunctionType();
901 if (FT->getNumParams() != 2 ||
902 FT->getParamType(0) != B.getInt8PtrTy() ||
903 FT->getParamType(1) != FT->getParamType(0) ||
904 !FT->getReturnType()->isIntegerTy())
905 return nullptr;
906
907 StringRef S1, S2;
908 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
909 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
910
911 // strcspn("", s) -> 0
912 if (HasS1 && S1.empty())
913 return Constant::getNullValue(CI->getType());
914
915 // Constant folding.
916 if (HasS1 && HasS2) {
917 size_t Pos = S1.find_first_of(S2);
918 if (Pos == StringRef::npos) Pos = S1.size();
919 return ConstantInt::get(CI->getType(), Pos);
920 }
921
922 // strcspn(s, "") -> strlen(s)
923 if (DL && HasS2 && S2.empty())
924 return EmitStrLen(CI->getArgOperand(0), B, DL, TLI);
925
926 return nullptr;
927 }
928 };
929
930 struct StrStrOpt : public LibCallOptimization {
callOptimizer__anon9c5d0d470111::StrStrOpt931 Value *callOptimizer(Function *Callee, CallInst *CI,
932 IRBuilder<> &B) override {
933 FunctionType *FT = Callee->getFunctionType();
934 if (FT->getNumParams() != 2 ||
935 !FT->getParamType(0)->isPointerTy() ||
936 !FT->getParamType(1)->isPointerTy() ||
937 !FT->getReturnType()->isPointerTy())
938 return nullptr;
939
940 // fold strstr(x, x) -> x.
941 if (CI->getArgOperand(0) == CI->getArgOperand(1))
942 return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
943
944 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
945 if (DL && isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
946 Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI);
947 if (!StrLen)
948 return nullptr;
949 Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
950 StrLen, B, DL, TLI);
951 if (!StrNCmp)
952 return nullptr;
953 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
954 ICmpInst *Old = cast<ICmpInst>(*UI++);
955 Value *Cmp = B.CreateICmp(Old->getPredicate(), StrNCmp,
956 ConstantInt::getNullValue(StrNCmp->getType()),
957 "cmp");
958 LCS->replaceAllUsesWith(Old, Cmp);
959 }
960 return CI;
961 }
962
963 // See if either input string is a constant string.
964 StringRef SearchStr, ToFindStr;
965 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
966 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
967
968 // fold strstr(x, "") -> x.
969 if (HasStr2 && ToFindStr.empty())
970 return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
971
972 // If both strings are known, constant fold it.
973 if (HasStr1 && HasStr2) {
974 size_t Offset = SearchStr.find(ToFindStr);
975
976 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
977 return Constant::getNullValue(CI->getType());
978
979 // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
980 Value *Result = CastToCStr(CI->getArgOperand(0), B);
981 Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
982 return B.CreateBitCast(Result, CI->getType());
983 }
984
985 // fold strstr(x, "y") -> strchr(x, 'y').
986 if (HasStr2 && ToFindStr.size() == 1) {
987 Value *StrChr= EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, DL, TLI);
988 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
989 }
990 return nullptr;
991 }
992 };
993
994 struct MemCmpOpt : public LibCallOptimization {
callOptimizer__anon9c5d0d470111::MemCmpOpt995 Value *callOptimizer(Function *Callee, CallInst *CI,
996 IRBuilder<> &B) override {
997 FunctionType *FT = Callee->getFunctionType();
998 if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
999 !FT->getParamType(1)->isPointerTy() ||
1000 !FT->getReturnType()->isIntegerTy(32))
1001 return nullptr;
1002
1003 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
1004
1005 if (LHS == RHS) // memcmp(s,s,x) -> 0
1006 return Constant::getNullValue(CI->getType());
1007
1008 // Make sure we have a constant length.
1009 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1010 if (!LenC) return nullptr;
1011 uint64_t Len = LenC->getZExtValue();
1012
1013 if (Len == 0) // memcmp(s1,s2,0) -> 0
1014 return Constant::getNullValue(CI->getType());
1015
1016 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
1017 if (Len == 1) {
1018 Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"),
1019 CI->getType(), "lhsv");
1020 Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"),
1021 CI->getType(), "rhsv");
1022 return B.CreateSub(LHSV, RHSV, "chardiff");
1023 }
1024
1025 // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
1026 StringRef LHSStr, RHSStr;
1027 if (getConstantStringInfo(LHS, LHSStr) &&
1028 getConstantStringInfo(RHS, RHSStr)) {
1029 // Make sure we're not reading out-of-bounds memory.
1030 if (Len > LHSStr.size() || Len > RHSStr.size())
1031 return nullptr;
1032 // Fold the memcmp and normalize the result. This way we get consistent
1033 // results across multiple platforms.
1034 uint64_t Ret = 0;
1035 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
1036 if (Cmp < 0)
1037 Ret = -1;
1038 else if (Cmp > 0)
1039 Ret = 1;
1040 return ConstantInt::get(CI->getType(), Ret);
1041 }
1042
1043 return nullptr;
1044 }
1045 };
1046
1047 struct MemCpyOpt : public LibCallOptimization {
callOptimizer__anon9c5d0d470111::MemCpyOpt1048 Value *callOptimizer(Function *Callee, CallInst *CI,
1049 IRBuilder<> &B) override {
1050 // These optimizations require DataLayout.
1051 if (!DL) return nullptr;
1052
1053 FunctionType *FT = Callee->getFunctionType();
1054 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
1055 !FT->getParamType(0)->isPointerTy() ||
1056 !FT->getParamType(1)->isPointerTy() ||
1057 FT->getParamType(2) != DL->getIntPtrType(*Context))
1058 return nullptr;
1059
1060 // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
1061 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
1062 CI->getArgOperand(2), 1);
1063 return CI->getArgOperand(0);
1064 }
1065 };
1066
1067 struct MemMoveOpt : public LibCallOptimization {
callOptimizer__anon9c5d0d470111::MemMoveOpt1068 Value *callOptimizer(Function *Callee, CallInst *CI,
1069 IRBuilder<> &B) override {
1070 // These optimizations require DataLayout.
1071 if (!DL) return nullptr;
1072
1073 FunctionType *FT = Callee->getFunctionType();
1074 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
1075 !FT->getParamType(0)->isPointerTy() ||
1076 !FT->getParamType(1)->isPointerTy() ||
1077 FT->getParamType(2) != DL->getIntPtrType(*Context))
1078 return nullptr;
1079
1080 // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
1081 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
1082 CI->getArgOperand(2), 1);
1083 return CI->getArgOperand(0);
1084 }
1085 };
1086
1087 struct MemSetOpt : public LibCallOptimization {
callOptimizer__anon9c5d0d470111::MemSetOpt1088 Value *callOptimizer(Function *Callee, CallInst *CI,
1089 IRBuilder<> &B) override {
1090 // These optimizations require DataLayout.
1091 if (!DL) return nullptr;
1092
1093 FunctionType *FT = Callee->getFunctionType();
1094 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
1095 !FT->getParamType(0)->isPointerTy() ||
1096 !FT->getParamType(1)->isIntegerTy() ||
1097 FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0)))
1098 return nullptr;
1099
1100 // memset(p, v, n) -> llvm.memset(p, v, n, 1)
1101 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1102 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
1103 return CI->getArgOperand(0);
1104 }
1105 };
1106
1107 //===----------------------------------------------------------------------===//
1108 // Math Library Optimizations
1109 //===----------------------------------------------------------------------===//
1110
1111 //===----------------------------------------------------------------------===//
1112 // Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
1113
1114 struct UnaryDoubleFPOpt : public LibCallOptimization {
1115 bool CheckRetType;
UnaryDoubleFPOpt__anon9c5d0d470111::UnaryDoubleFPOpt1116 UnaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType) {}
callOptimizer__anon9c5d0d470111::UnaryDoubleFPOpt1117 Value *callOptimizer(Function *Callee, CallInst *CI,
1118 IRBuilder<> &B) override {
1119 FunctionType *FT = Callee->getFunctionType();
1120 if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
1121 !FT->getParamType(0)->isDoubleTy())
1122 return nullptr;
1123
1124 if (CheckRetType) {
1125 // Check if all the uses for function like 'sin' are converted to float.
1126 for (User *U : CI->users()) {
1127 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1128 if (!Cast || !Cast->getType()->isFloatTy())
1129 return nullptr;
1130 }
1131 }
1132
1133 // If this is something like 'floor((double)floatval)', convert to floorf.
1134 FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0));
1135 if (!Cast || !Cast->getOperand(0)->getType()->isFloatTy())
1136 return nullptr;
1137
1138 // floor((double)floatval) -> (double)floorf(floatval)
1139 Value *V = Cast->getOperand(0);
1140 V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
1141 return B.CreateFPExt(V, B.getDoubleTy());
1142 }
1143 };
1144
1145 // Double -> Float Shrinking Optimizations for Binary Functions like 'fmin/fmax'
1146 struct BinaryDoubleFPOpt : public LibCallOptimization {
1147 bool CheckRetType;
BinaryDoubleFPOpt__anon9c5d0d470111::BinaryDoubleFPOpt1148 BinaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType) {}
callOptimizer__anon9c5d0d470111::BinaryDoubleFPOpt1149 Value *callOptimizer(Function *Callee, CallInst *CI,
1150 IRBuilder<> &B) override {
1151 FunctionType *FT = Callee->getFunctionType();
1152 // Just make sure this has 2 arguments of the same FP type, which match the
1153 // result type.
1154 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
1155 FT->getParamType(0) != FT->getParamType(1) ||
1156 !FT->getParamType(0)->isFloatingPointTy())
1157 return nullptr;
1158
1159 if (CheckRetType) {
1160 // Check if all the uses for function like 'fmin/fmax' are converted to
1161 // float.
1162 for (User *U : CI->users()) {
1163 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1164 if (!Cast || !Cast->getType()->isFloatTy())
1165 return nullptr;
1166 }
1167 }
1168
1169 // If this is something like 'fmin((double)floatval1, (double)floatval2)',
1170 // we convert it to fminf.
1171 FPExtInst *Cast1 = dyn_cast<FPExtInst>(CI->getArgOperand(0));
1172 FPExtInst *Cast2 = dyn_cast<FPExtInst>(CI->getArgOperand(1));
1173 if (!Cast1 || !Cast1->getOperand(0)->getType()->isFloatTy() ||
1174 !Cast2 || !Cast2->getOperand(0)->getType()->isFloatTy())
1175 return nullptr;
1176
1177 // fmin((double)floatval1, (double)floatval2)
1178 // -> (double)fmin(floatval1, floatval2)
1179 Value *V = nullptr;
1180 Value *V1 = Cast1->getOperand(0);
1181 Value *V2 = Cast2->getOperand(0);
1182 V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
1183 Callee->getAttributes());
1184 return B.CreateFPExt(V, B.getDoubleTy());
1185 }
1186 };
1187
1188 struct UnsafeFPLibCallOptimization : public LibCallOptimization {
1189 bool UnsafeFPShrink;
UnsafeFPLibCallOptimization__anon9c5d0d470111::UnsafeFPLibCallOptimization1190 UnsafeFPLibCallOptimization(bool UnsafeFPShrink) {
1191 this->UnsafeFPShrink = UnsafeFPShrink;
1192 }
1193 };
1194
1195 struct CosOpt : public UnsafeFPLibCallOptimization {
CosOpt__anon9c5d0d470111::CosOpt1196 CosOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
callOptimizer__anon9c5d0d470111::CosOpt1197 Value *callOptimizer(Function *Callee, CallInst *CI,
1198 IRBuilder<> &B) override {
1199 Value *Ret = nullptr;
1200 if (UnsafeFPShrink && Callee->getName() == "cos" &&
1201 TLI->has(LibFunc::cosf)) {
1202 UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
1203 Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
1204 }
1205
1206 FunctionType *FT = Callee->getFunctionType();
1207 // Just make sure this has 1 argument of FP type, which matches the
1208 // result type.
1209 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
1210 !FT->getParamType(0)->isFloatingPointTy())
1211 return Ret;
1212
1213 // cos(-x) -> cos(x)
1214 Value *Op1 = CI->getArgOperand(0);
1215 if (BinaryOperator::isFNeg(Op1)) {
1216 BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
1217 return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
1218 }
1219 return Ret;
1220 }
1221 };
1222
1223 struct PowOpt : public UnsafeFPLibCallOptimization {
PowOpt__anon9c5d0d470111::PowOpt1224 PowOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
callOptimizer__anon9c5d0d470111::PowOpt1225 Value *callOptimizer(Function *Callee, CallInst *CI,
1226 IRBuilder<> &B) override {
1227 Value *Ret = nullptr;
1228 if (UnsafeFPShrink && Callee->getName() == "pow" &&
1229 TLI->has(LibFunc::powf)) {
1230 UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
1231 Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
1232 }
1233
1234 FunctionType *FT = Callee->getFunctionType();
1235 // Just make sure this has 2 arguments of the same FP type, which match the
1236 // result type.
1237 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
1238 FT->getParamType(0) != FT->getParamType(1) ||
1239 !FT->getParamType(0)->isFloatingPointTy())
1240 return Ret;
1241
1242 Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
1243 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
1244 // pow(1.0, x) -> 1.0
1245 if (Op1C->isExactlyValue(1.0))
1246 return Op1C;
1247 // pow(2.0, x) -> exp2(x)
1248 if (Op1C->isExactlyValue(2.0) &&
1249 hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2, LibFunc::exp2f,
1250 LibFunc::exp2l))
1251 return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes());
1252 // pow(10.0, x) -> exp10(x)
1253 if (Op1C->isExactlyValue(10.0) &&
1254 hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f,
1255 LibFunc::exp10l))
1256 return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B,
1257 Callee->getAttributes());
1258 }
1259
1260 ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
1261 if (!Op2C) return Ret;
1262
1263 if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
1264 return ConstantFP::get(CI->getType(), 1.0);
1265
1266 if (Op2C->isExactlyValue(0.5) &&
1267 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf,
1268 LibFunc::sqrtl) &&
1269 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf,
1270 LibFunc::fabsl)) {
1271 // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
1272 // This is faster than calling pow, and still handles negative zero
1273 // and negative infinity correctly.
1274 // TODO: In fast-math mode, this could be just sqrt(x).
1275 // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
1276 Value *Inf = ConstantFP::getInfinity(CI->getType());
1277 Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
1278 Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B,
1279 Callee->getAttributes());
1280 Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B,
1281 Callee->getAttributes());
1282 Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
1283 Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
1284 return Sel;
1285 }
1286
1287 if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
1288 return Op1;
1289 if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
1290 return B.CreateFMul(Op1, Op1, "pow2");
1291 if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
1292 return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0),
1293 Op1, "powrecip");
1294 return nullptr;
1295 }
1296 };
1297
1298 struct Exp2Opt : public UnsafeFPLibCallOptimization {
Exp2Opt__anon9c5d0d470111::Exp2Opt1299 Exp2Opt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
callOptimizer__anon9c5d0d470111::Exp2Opt1300 Value *callOptimizer(Function *Callee, CallInst *CI,
1301 IRBuilder<> &B) override {
1302 Value *Ret = nullptr;
1303 if (UnsafeFPShrink && Callee->getName() == "exp2" &&
1304 TLI->has(LibFunc::exp2f)) {
1305 UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
1306 Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
1307 }
1308
1309 FunctionType *FT = Callee->getFunctionType();
1310 // Just make sure this has 1 argument of FP type, which matches the
1311 // result type.
1312 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
1313 !FT->getParamType(0)->isFloatingPointTy())
1314 return Ret;
1315
1316 Value *Op = CI->getArgOperand(0);
1317 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
1318 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
1319 LibFunc::Func LdExp = LibFunc::ldexpl;
1320 if (Op->getType()->isFloatTy())
1321 LdExp = LibFunc::ldexpf;
1322 else if (Op->getType()->isDoubleTy())
1323 LdExp = LibFunc::ldexp;
1324
1325 if (TLI->has(LdExp)) {
1326 Value *LdExpArg = nullptr;
1327 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
1328 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
1329 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
1330 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
1331 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
1332 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
1333 }
1334
1335 if (LdExpArg) {
1336 Constant *One = ConstantFP::get(*Context, APFloat(1.0f));
1337 if (!Op->getType()->isFloatTy())
1338 One = ConstantExpr::getFPExtend(One, Op->getType());
1339
1340 Module *M = Caller->getParent();
1341 Value *Callee =
1342 M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
1343 Op->getType(), B.getInt32Ty(), NULL);
1344 CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
1345 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
1346 CI->setCallingConv(F->getCallingConv());
1347
1348 return CI;
1349 }
1350 }
1351 return Ret;
1352 }
1353 };
1354
1355 struct SinCosPiOpt : public LibCallOptimization {
SinCosPiOpt__anon9c5d0d470111::SinCosPiOpt1356 SinCosPiOpt() {}
1357
callOptimizer__anon9c5d0d470111::SinCosPiOpt1358 Value *callOptimizer(Function *Callee, CallInst *CI,
1359 IRBuilder<> &B) override {
1360 // Make sure the prototype is as expected, otherwise the rest of the
1361 // function is probably invalid and likely to abort.
1362 if (!isTrigLibCall(CI))
1363 return nullptr;
1364
1365 Value *Arg = CI->getArgOperand(0);
1366 SmallVector<CallInst *, 1> SinCalls;
1367 SmallVector<CallInst *, 1> CosCalls;
1368 SmallVector<CallInst *, 1> SinCosCalls;
1369
1370 bool IsFloat = Arg->getType()->isFloatTy();
1371
1372 // Look for all compatible sinpi, cospi and sincospi calls with the same
1373 // argument. If there are enough (in some sense) we can make the
1374 // substitution.
1375 for (User *U : Arg->users())
1376 classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls,
1377 SinCosCalls);
1378
1379 // It's only worthwhile if both sinpi and cospi are actually used.
1380 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
1381 return nullptr;
1382
1383 Value *Sin, *Cos, *SinCos;
1384 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos,
1385 SinCos);
1386
1387 replaceTrigInsts(SinCalls, Sin);
1388 replaceTrigInsts(CosCalls, Cos);
1389 replaceTrigInsts(SinCosCalls, SinCos);
1390
1391 return nullptr;
1392 }
1393
isTrigLibCall__anon9c5d0d470111::SinCosPiOpt1394 bool isTrigLibCall(CallInst *CI) {
1395 Function *Callee = CI->getCalledFunction();
1396 FunctionType *FT = Callee->getFunctionType();
1397
1398 // We can only hope to do anything useful if we can ignore things like errno
1399 // and floating-point exceptions.
1400 bool AttributesSafe = CI->hasFnAttr(Attribute::NoUnwind) &&
1401 CI->hasFnAttr(Attribute::ReadNone);
1402
1403 // Other than that we need float(float) or double(double)
1404 return AttributesSafe && FT->getNumParams() == 1 &&
1405 FT->getReturnType() == FT->getParamType(0) &&
1406 (FT->getParamType(0)->isFloatTy() ||
1407 FT->getParamType(0)->isDoubleTy());
1408 }
1409
classifyArgUse__anon9c5d0d470111::SinCosPiOpt1410 void classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat,
1411 SmallVectorImpl<CallInst *> &SinCalls,
1412 SmallVectorImpl<CallInst *> &CosCalls,
1413 SmallVectorImpl<CallInst *> &SinCosCalls) {
1414 CallInst *CI = dyn_cast<CallInst>(Val);
1415
1416 if (!CI)
1417 return;
1418
1419 Function *Callee = CI->getCalledFunction();
1420 StringRef FuncName = Callee->getName();
1421 LibFunc::Func Func;
1422 if (!TLI->getLibFunc(FuncName, Func) || !TLI->has(Func) ||
1423 !isTrigLibCall(CI))
1424 return;
1425
1426 if (IsFloat) {
1427 if (Func == LibFunc::sinpif)
1428 SinCalls.push_back(CI);
1429 else if (Func == LibFunc::cospif)
1430 CosCalls.push_back(CI);
1431 else if (Func == LibFunc::sincospif_stret)
1432 SinCosCalls.push_back(CI);
1433 } else {
1434 if (Func == LibFunc::sinpi)
1435 SinCalls.push_back(CI);
1436 else if (Func == LibFunc::cospi)
1437 CosCalls.push_back(CI);
1438 else if (Func == LibFunc::sincospi_stret)
1439 SinCosCalls.push_back(CI);
1440 }
1441 }
1442
replaceTrigInsts__anon9c5d0d470111::SinCosPiOpt1443 void replaceTrigInsts(SmallVectorImpl<CallInst*> &Calls, Value *Res) {
1444 for (SmallVectorImpl<CallInst*>::iterator I = Calls.begin(),
1445 E = Calls.end();
1446 I != E; ++I) {
1447 LCS->replaceAllUsesWith(*I, Res);
1448 }
1449 }
1450
insertSinCosCall__anon9c5d0d470111::SinCosPiOpt1451 void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
1452 bool UseFloat, Value *&Sin, Value *&Cos,
1453 Value *&SinCos) {
1454 Type *ArgTy = Arg->getType();
1455 Type *ResTy;
1456 StringRef Name;
1457
1458 Triple T(OrigCallee->getParent()->getTargetTriple());
1459 if (UseFloat) {
1460 Name = "__sincospif_stret";
1461
1462 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
1463 // x86_64 can't use {float, float} since that would be returned in both
1464 // xmm0 and xmm1, which isn't what a real struct would do.
1465 ResTy = T.getArch() == Triple::x86_64
1466 ? static_cast<Type *>(VectorType::get(ArgTy, 2))
1467 : static_cast<Type *>(StructType::get(ArgTy, ArgTy, NULL));
1468 } else {
1469 Name = "__sincospi_stret";
1470 ResTy = StructType::get(ArgTy, ArgTy, NULL);
1471 }
1472
1473 Module *M = OrigCallee->getParent();
1474 Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
1475 ResTy, ArgTy, NULL);
1476
1477 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
1478 // If the argument is an instruction, it must dominate all uses so put our
1479 // sincos call there.
1480 BasicBlock::iterator Loc = ArgInst;
1481 B.SetInsertPoint(ArgInst->getParent(), ++Loc);
1482 } else {
1483 // Otherwise (e.g. for a constant) the beginning of the function is as
1484 // good a place as any.
1485 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
1486 B.SetInsertPoint(&EntryBB, EntryBB.begin());
1487 }
1488
1489 SinCos = B.CreateCall(Callee, Arg, "sincospi");
1490
1491 if (SinCos->getType()->isStructTy()) {
1492 Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
1493 Cos = B.CreateExtractValue(SinCos, 1, "cospi");
1494 } else {
1495 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
1496 "sinpi");
1497 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
1498 "cospi");
1499 }
1500 }
1501
1502 };
1503
1504 //===----------------------------------------------------------------------===//
1505 // Integer Library Call Optimizations
1506 //===----------------------------------------------------------------------===//
1507
1508 struct FFSOpt : public LibCallOptimization {
callOptimizer__anon9c5d0d470111::FFSOpt1509 Value *callOptimizer(Function *Callee, CallInst *CI,
1510 IRBuilder<> &B) override {
1511 FunctionType *FT = Callee->getFunctionType();
1512 // Just make sure this has 2 arguments of the same FP type, which match the
1513 // result type.
1514 if (FT->getNumParams() != 1 ||
1515 !FT->getReturnType()->isIntegerTy(32) ||
1516 !FT->getParamType(0)->isIntegerTy())
1517 return nullptr;
1518
1519 Value *Op = CI->getArgOperand(0);
1520
1521 // Constant fold.
1522 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1523 if (CI->isZero()) // ffs(0) -> 0.
1524 return B.getInt32(0);
1525 // ffs(c) -> cttz(c)+1
1526 return B.getInt32(CI->getValue().countTrailingZeros() + 1);
1527 }
1528
1529 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
1530 Type *ArgType = Op->getType();
1531 Value *F = Intrinsic::getDeclaration(Callee->getParent(),
1532 Intrinsic::cttz, ArgType);
1533 Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz");
1534 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
1535 V = B.CreateIntCast(V, B.getInt32Ty(), false);
1536
1537 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
1538 return B.CreateSelect(Cond, V, B.getInt32(0));
1539 }
1540 };
1541
1542 struct AbsOpt : public LibCallOptimization {
ignoreCallingConv__anon9c5d0d470111::AbsOpt1543 bool ignoreCallingConv() override { return true; }
callOptimizer__anon9c5d0d470111::AbsOpt1544 Value *callOptimizer(Function *Callee, CallInst *CI,
1545 IRBuilder<> &B) override {
1546 FunctionType *FT = Callee->getFunctionType();
1547 // We require integer(integer) where the types agree.
1548 if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
1549 FT->getParamType(0) != FT->getReturnType())
1550 return nullptr;
1551
1552 // abs(x) -> x >s -1 ? x : -x
1553 Value *Op = CI->getArgOperand(0);
1554 Value *Pos = B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()),
1555 "ispos");
1556 Value *Neg = B.CreateNeg(Op, "neg");
1557 return B.CreateSelect(Pos, Op, Neg);
1558 }
1559 };
1560
1561 struct IsDigitOpt : public LibCallOptimization {
callOptimizer__anon9c5d0d470111::IsDigitOpt1562 Value *callOptimizer(Function *Callee, CallInst *CI,
1563 IRBuilder<> &B) override {
1564 FunctionType *FT = Callee->getFunctionType();
1565 // We require integer(i32)
1566 if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
1567 !FT->getParamType(0)->isIntegerTy(32))
1568 return nullptr;
1569
1570 // isdigit(c) -> (c-'0') <u 10
1571 Value *Op = CI->getArgOperand(0);
1572 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
1573 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
1574 return B.CreateZExt(Op, CI->getType());
1575 }
1576 };
1577
1578 struct IsAsciiOpt : public LibCallOptimization {
callOptimizer__anon9c5d0d470111::IsAsciiOpt1579 Value *callOptimizer(Function *Callee, CallInst *CI,
1580 IRBuilder<> &B) override {
1581 FunctionType *FT = Callee->getFunctionType();
1582 // We require integer(i32)
1583 if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
1584 !FT->getParamType(0)->isIntegerTy(32))
1585 return nullptr;
1586
1587 // isascii(c) -> c <u 128
1588 Value *Op = CI->getArgOperand(0);
1589 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
1590 return B.CreateZExt(Op, CI->getType());
1591 }
1592 };
1593
1594 struct ToAsciiOpt : public LibCallOptimization {
callOptimizer__anon9c5d0d470111::ToAsciiOpt1595 Value *callOptimizer(Function *Callee, CallInst *CI,
1596 IRBuilder<> &B) override {
1597 FunctionType *FT = Callee->getFunctionType();
1598 // We require i32(i32)
1599 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
1600 !FT->getParamType(0)->isIntegerTy(32))
1601 return nullptr;
1602
1603 // toascii(c) -> c & 0x7f
1604 return B.CreateAnd(CI->getArgOperand(0),
1605 ConstantInt::get(CI->getType(),0x7F));
1606 }
1607 };
1608
1609 //===----------------------------------------------------------------------===//
1610 // Formatting and IO Library Call Optimizations
1611 //===----------------------------------------------------------------------===//
1612
1613 struct ErrorReportingOpt : public LibCallOptimization {
ErrorReportingOpt__anon9c5d0d470111::ErrorReportingOpt1614 ErrorReportingOpt(int S = -1) : StreamArg(S) {}
1615
callOptimizer__anon9c5d0d470111::ErrorReportingOpt1616 Value *callOptimizer(Function *Callee, CallInst *CI,
1617 IRBuilder<> &) override {
1618 // Error reporting calls should be cold, mark them as such.
1619 // This applies even to non-builtin calls: it is only a hint and applies to
1620 // functions that the frontend might not understand as builtins.
1621
1622 // This heuristic was suggested in:
1623 // Improving Static Branch Prediction in a Compiler
1624 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
1625 // Proceedings of PACT'98, Oct. 1998, IEEE
1626
1627 if (!CI->hasFnAttr(Attribute::Cold) && isReportingError(Callee, CI)) {
1628 CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold);
1629 }
1630
1631 return nullptr;
1632 }
1633
1634 protected:
isReportingError__anon9c5d0d470111::ErrorReportingOpt1635 bool isReportingError(Function *Callee, CallInst *CI) {
1636 if (!ColdErrorCalls)
1637 return false;
1638
1639 if (!Callee || !Callee->isDeclaration())
1640 return false;
1641
1642 if (StreamArg < 0)
1643 return true;
1644
1645 // These functions might be considered cold, but only if their stream
1646 // argument is stderr.
1647
1648 if (StreamArg >= (int) CI->getNumArgOperands())
1649 return false;
1650 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
1651 if (!LI)
1652 return false;
1653 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
1654 if (!GV || !GV->isDeclaration())
1655 return false;
1656 return GV->getName() == "stderr";
1657 }
1658
1659 int StreamArg;
1660 };
1661
1662 struct PrintFOpt : public LibCallOptimization {
optimizeFixedFormatString__anon9c5d0d470111::PrintFOpt1663 Value *optimizeFixedFormatString(Function *Callee, CallInst *CI,
1664 IRBuilder<> &B) {
1665 // Check for a fixed format string.
1666 StringRef FormatStr;
1667 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
1668 return nullptr;
1669
1670 // Empty format string -> noop.
1671 if (FormatStr.empty()) // Tolerate printf's declared void.
1672 return CI->use_empty() ? (Value*)CI :
1673 ConstantInt::get(CI->getType(), 0);
1674
1675 // Do not do any of the following transformations if the printf return value
1676 // is used, in general the printf return value is not compatible with either
1677 // putchar() or puts().
1678 if (!CI->use_empty())
1679 return nullptr;
1680
1681 // printf("x") -> putchar('x'), even for '%'.
1682 if (FormatStr.size() == 1) {
1683 Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, DL, TLI);
1684 if (CI->use_empty() || !Res) return Res;
1685 return B.CreateIntCast(Res, CI->getType(), true);
1686 }
1687
1688 // printf("foo\n") --> puts("foo")
1689 if (FormatStr[FormatStr.size()-1] == '\n' &&
1690 FormatStr.find('%') == StringRef::npos) { // No format characters.
1691 // Create a string literal with no \n on it. We expect the constant merge
1692 // pass to be run after this pass, to merge duplicate strings.
1693 FormatStr = FormatStr.drop_back();
1694 Value *GV = B.CreateGlobalString(FormatStr, "str");
1695 Value *NewCI = EmitPutS(GV, B, DL, TLI);
1696 return (CI->use_empty() || !NewCI) ?
1697 NewCI :
1698 ConstantInt::get(CI->getType(), FormatStr.size()+1);
1699 }
1700
1701 // Optimize specific format strings.
1702 // printf("%c", chr) --> putchar(chr)
1703 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
1704 CI->getArgOperand(1)->getType()->isIntegerTy()) {
1705 Value *Res = EmitPutChar(CI->getArgOperand(1), B, DL, TLI);
1706
1707 if (CI->use_empty() || !Res) return Res;
1708 return B.CreateIntCast(Res, CI->getType(), true);
1709 }
1710
1711 // printf("%s\n", str) --> puts(str)
1712 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
1713 CI->getArgOperand(1)->getType()->isPointerTy()) {
1714 return EmitPutS(CI->getArgOperand(1), B, DL, TLI);
1715 }
1716 return nullptr;
1717 }
1718
callOptimizer__anon9c5d0d470111::PrintFOpt1719 Value *callOptimizer(Function *Callee, CallInst *CI,
1720 IRBuilder<> &B) override {
1721 // Require one fixed pointer argument and an integer/void result.
1722 FunctionType *FT = Callee->getFunctionType();
1723 if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
1724 !(FT->getReturnType()->isIntegerTy() ||
1725 FT->getReturnType()->isVoidTy()))
1726 return nullptr;
1727
1728 if (Value *V = optimizeFixedFormatString(Callee, CI, B)) {
1729 return V;
1730 }
1731
1732 // printf(format, ...) -> iprintf(format, ...) if no floating point
1733 // arguments.
1734 if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) {
1735 Module *M = B.GetInsertBlock()->getParent()->getParent();
1736 Constant *IPrintFFn =
1737 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
1738 CallInst *New = cast<CallInst>(CI->clone());
1739 New->setCalledFunction(IPrintFFn);
1740 B.Insert(New);
1741 return New;
1742 }
1743 return nullptr;
1744 }
1745 };
1746
1747 struct SPrintFOpt : public LibCallOptimization {
OptimizeFixedFormatString__anon9c5d0d470111::SPrintFOpt1748 Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI,
1749 IRBuilder<> &B) {
1750 // Check for a fixed format string.
1751 StringRef FormatStr;
1752 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1753 return nullptr;
1754
1755 // If we just have a format string (nothing else crazy) transform it.
1756 if (CI->getNumArgOperands() == 2) {
1757 // Make sure there's no % in the constant array. We could try to handle
1758 // %% -> % in the future if we cared.
1759 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1760 if (FormatStr[i] == '%')
1761 return nullptr; // we found a format specifier, bail out.
1762
1763 // These optimizations require DataLayout.
1764 if (!DL) return nullptr;
1765
1766 // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
1767 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
1768 ConstantInt::get(DL->getIntPtrType(*Context), // Copy the
1769 FormatStr.size() + 1), 1); // nul byte.
1770 return ConstantInt::get(CI->getType(), FormatStr.size());
1771 }
1772
1773 // The remaining optimizations require the format string to be "%s" or "%c"
1774 // and have an extra operand.
1775 if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1776 CI->getNumArgOperands() < 3)
1777 return nullptr;
1778
1779 // Decode the second character of the format string.
1780 if (FormatStr[1] == 'c') {
1781 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
1782 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return nullptr;
1783 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
1784 Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
1785 B.CreateStore(V, Ptr);
1786 Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul");
1787 B.CreateStore(B.getInt8(0), Ptr);
1788
1789 return ConstantInt::get(CI->getType(), 1);
1790 }
1791
1792 if (FormatStr[1] == 's') {
1793 // These optimizations require DataLayout.
1794 if (!DL) return nullptr;
1795
1796 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
1797 if (!CI->getArgOperand(2)->getType()->isPointerTy()) return nullptr;
1798
1799 Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI);
1800 if (!Len)
1801 return nullptr;
1802 Value *IncLen = B.CreateAdd(Len,
1803 ConstantInt::get(Len->getType(), 1),
1804 "leninc");
1805 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
1806
1807 // The sprintf result is the unincremented number of bytes in the string.
1808 return B.CreateIntCast(Len, CI->getType(), false);
1809 }
1810 return nullptr;
1811 }
1812
callOptimizer__anon9c5d0d470111::SPrintFOpt1813 Value *callOptimizer(Function *Callee, CallInst *CI,
1814 IRBuilder<> &B) override {
1815 // Require two fixed pointer arguments and an integer result.
1816 FunctionType *FT = Callee->getFunctionType();
1817 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
1818 !FT->getParamType(1)->isPointerTy() ||
1819 !FT->getReturnType()->isIntegerTy())
1820 return nullptr;
1821
1822 if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) {
1823 return V;
1824 }
1825
1826 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
1827 // point arguments.
1828 if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) {
1829 Module *M = B.GetInsertBlock()->getParent()->getParent();
1830 Constant *SIPrintFFn =
1831 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
1832 CallInst *New = cast<CallInst>(CI->clone());
1833 New->setCalledFunction(SIPrintFFn);
1834 B.Insert(New);
1835 return New;
1836 }
1837 return nullptr;
1838 }
1839 };
1840
1841 struct FPrintFOpt : public LibCallOptimization {
optimizeFixedFormatString__anon9c5d0d470111::FPrintFOpt1842 Value *optimizeFixedFormatString(Function *Callee, CallInst *CI,
1843 IRBuilder<> &B) {
1844 ErrorReportingOpt ER(/* StreamArg = */ 0);
1845 (void) ER.callOptimizer(Callee, CI, B);
1846
1847 // All the optimizations depend on the format string.
1848 StringRef FormatStr;
1849 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1850 return nullptr;
1851
1852 // Do not do any of the following transformations if the fprintf return
1853 // value is used, in general the fprintf return value is not compatible
1854 // with fwrite(), fputc() or fputs().
1855 if (!CI->use_empty())
1856 return nullptr;
1857
1858 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
1859 if (CI->getNumArgOperands() == 2) {
1860 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1861 if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
1862 return nullptr; // We found a format specifier.
1863
1864 // These optimizations require DataLayout.
1865 if (!DL) return nullptr;
1866
1867 return EmitFWrite(CI->getArgOperand(1),
1868 ConstantInt::get(DL->getIntPtrType(*Context),
1869 FormatStr.size()),
1870 CI->getArgOperand(0), B, DL, TLI);
1871 }
1872
1873 // The remaining optimizations require the format string to be "%s" or "%c"
1874 // and have an extra operand.
1875 if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1876 CI->getNumArgOperands() < 3)
1877 return nullptr;
1878
1879 // Decode the second character of the format string.
1880 if (FormatStr[1] == 'c') {
1881 // fprintf(F, "%c", chr) --> fputc(chr, F)
1882 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return nullptr;
1883 return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI);
1884 }
1885
1886 if (FormatStr[1] == 's') {
1887 // fprintf(F, "%s", str) --> fputs(str, F)
1888 if (!CI->getArgOperand(2)->getType()->isPointerTy())
1889 return nullptr;
1890 return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI);
1891 }
1892 return nullptr;
1893 }
1894
callOptimizer__anon9c5d0d470111::FPrintFOpt1895 Value *callOptimizer(Function *Callee, CallInst *CI,
1896 IRBuilder<> &B) override {
1897 // Require two fixed paramters as pointers and integer result.
1898 FunctionType *FT = Callee->getFunctionType();
1899 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
1900 !FT->getParamType(1)->isPointerTy() ||
1901 !FT->getReturnType()->isIntegerTy())
1902 return nullptr;
1903
1904 if (Value *V = optimizeFixedFormatString(Callee, CI, B)) {
1905 return V;
1906 }
1907
1908 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
1909 // floating point arguments.
1910 if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) {
1911 Module *M = B.GetInsertBlock()->getParent()->getParent();
1912 Constant *FIPrintFFn =
1913 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
1914 CallInst *New = cast<CallInst>(CI->clone());
1915 New->setCalledFunction(FIPrintFFn);
1916 B.Insert(New);
1917 return New;
1918 }
1919 return nullptr;
1920 }
1921 };
1922
1923 struct FWriteOpt : public LibCallOptimization {
callOptimizer__anon9c5d0d470111::FWriteOpt1924 Value *callOptimizer(Function *Callee, CallInst *CI,
1925 IRBuilder<> &B) override {
1926 ErrorReportingOpt ER(/* StreamArg = */ 3);
1927 (void) ER.callOptimizer(Callee, CI, B);
1928
1929 // Require a pointer, an integer, an integer, a pointer, returning integer.
1930 FunctionType *FT = Callee->getFunctionType();
1931 if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
1932 !FT->getParamType(1)->isIntegerTy() ||
1933 !FT->getParamType(2)->isIntegerTy() ||
1934 !FT->getParamType(3)->isPointerTy() ||
1935 !FT->getReturnType()->isIntegerTy())
1936 return nullptr;
1937
1938 // Get the element size and count.
1939 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
1940 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1941 if (!SizeC || !CountC) return nullptr;
1942 uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue();
1943
1944 // If this is writing zero records, remove the call (it's a noop).
1945 if (Bytes == 0)
1946 return ConstantInt::get(CI->getType(), 0);
1947
1948 // If this is writing one byte, turn it into fputc.
1949 // This optimisation is only valid, if the return value is unused.
1950 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
1951 Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char");
1952 Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, DL, TLI);
1953 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
1954 }
1955
1956 return nullptr;
1957 }
1958 };
1959
1960 struct FPutsOpt : public LibCallOptimization {
callOptimizer__anon9c5d0d470111::FPutsOpt1961 Value *callOptimizer(Function *Callee, CallInst *CI,
1962 IRBuilder<> &B) override {
1963 ErrorReportingOpt ER(/* StreamArg = */ 1);
1964 (void) ER.callOptimizer(Callee, CI, B);
1965
1966 // These optimizations require DataLayout.
1967 if (!DL) return nullptr;
1968
1969 // Require two pointers. Also, we can't optimize if return value is used.
1970 FunctionType *FT = Callee->getFunctionType();
1971 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
1972 !FT->getParamType(1)->isPointerTy() ||
1973 !CI->use_empty())
1974 return nullptr;
1975
1976 // fputs(s,F) --> fwrite(s,1,strlen(s),F)
1977 uint64_t Len = GetStringLength(CI->getArgOperand(0));
1978 if (!Len) return nullptr;
1979 // Known to have no uses (see above).
1980 return EmitFWrite(CI->getArgOperand(0),
1981 ConstantInt::get(DL->getIntPtrType(*Context), Len-1),
1982 CI->getArgOperand(1), B, DL, TLI);
1983 }
1984 };
1985
1986 struct PutsOpt : public LibCallOptimization {
callOptimizer__anon9c5d0d470111::PutsOpt1987 Value *callOptimizer(Function *Callee, CallInst *CI,
1988 IRBuilder<> &B) override {
1989 // Require one fixed pointer argument and an integer/void result.
1990 FunctionType *FT = Callee->getFunctionType();
1991 if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
1992 !(FT->getReturnType()->isIntegerTy() ||
1993 FT->getReturnType()->isVoidTy()))
1994 return nullptr;
1995
1996 // Check for a constant string.
1997 StringRef Str;
1998 if (!getConstantStringInfo(CI->getArgOperand(0), Str))
1999 return nullptr;
2000
2001 if (Str.empty() && CI->use_empty()) {
2002 // puts("") -> putchar('\n')
2003 Value *Res = EmitPutChar(B.getInt32('\n'), B, DL, TLI);
2004 if (CI->use_empty() || !Res) return Res;
2005 return B.CreateIntCast(Res, CI->getType(), true);
2006 }
2007
2008 return nullptr;
2009 }
2010 };
2011
2012 } // End anonymous namespace.
2013
2014 namespace llvm {
2015
2016 class LibCallSimplifierImpl {
2017 const DataLayout *DL;
2018 const TargetLibraryInfo *TLI;
2019 const LibCallSimplifier *LCS;
2020 bool UnsafeFPShrink;
2021
2022 // Math library call optimizations.
2023 CosOpt Cos;
2024 PowOpt Pow;
2025 Exp2Opt Exp2;
2026 public:
LibCallSimplifierImpl(const DataLayout * DL,const TargetLibraryInfo * TLI,const LibCallSimplifier * LCS,bool UnsafeFPShrink=false)2027 LibCallSimplifierImpl(const DataLayout *DL, const TargetLibraryInfo *TLI,
2028 const LibCallSimplifier *LCS,
2029 bool UnsafeFPShrink = false)
2030 : Cos(UnsafeFPShrink), Pow(UnsafeFPShrink), Exp2(UnsafeFPShrink) {
2031 this->DL = DL;
2032 this->TLI = TLI;
2033 this->LCS = LCS;
2034 this->UnsafeFPShrink = UnsafeFPShrink;
2035 }
2036
2037 Value *optimizeCall(CallInst *CI);
2038 LibCallOptimization *lookupOptimization(CallInst *CI);
2039 bool hasFloatVersion(StringRef FuncName);
2040 };
2041
hasFloatVersion(StringRef FuncName)2042 bool LibCallSimplifierImpl::hasFloatVersion(StringRef FuncName) {
2043 LibFunc::Func Func;
2044 SmallString<20> FloatFuncName = FuncName;
2045 FloatFuncName += 'f';
2046 if (TLI->getLibFunc(FloatFuncName, Func))
2047 return TLI->has(Func);
2048 return false;
2049 }
2050
2051 // Fortified library call optimizations.
2052 static MemCpyChkOpt MemCpyChk;
2053 static MemMoveChkOpt MemMoveChk;
2054 static MemSetChkOpt MemSetChk;
2055 static StrCpyChkOpt StrCpyChk;
2056 static StpCpyChkOpt StpCpyChk;
2057 static StrNCpyChkOpt StrNCpyChk;
2058
2059 // String library call optimizations.
2060 static StrCatOpt StrCat;
2061 static StrNCatOpt StrNCat;
2062 static StrChrOpt StrChr;
2063 static StrRChrOpt StrRChr;
2064 static StrCmpOpt StrCmp;
2065 static StrNCmpOpt StrNCmp;
2066 static StrCpyOpt StrCpy;
2067 static StpCpyOpt StpCpy;
2068 static StrNCpyOpt StrNCpy;
2069 static StrLenOpt StrLen;
2070 static StrPBrkOpt StrPBrk;
2071 static StrToOpt StrTo;
2072 static StrSpnOpt StrSpn;
2073 static StrCSpnOpt StrCSpn;
2074 static StrStrOpt StrStr;
2075
2076 // Memory library call optimizations.
2077 static MemCmpOpt MemCmp;
2078 static MemCpyOpt MemCpy;
2079 static MemMoveOpt MemMove;
2080 static MemSetOpt MemSet;
2081
2082 // Math library call optimizations.
2083 static UnaryDoubleFPOpt UnaryDoubleFP(false);
2084 static BinaryDoubleFPOpt BinaryDoubleFP(false);
2085 static UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
2086 static SinCosPiOpt SinCosPi;
2087
2088 // Integer library call optimizations.
2089 static FFSOpt FFS;
2090 static AbsOpt Abs;
2091 static IsDigitOpt IsDigit;
2092 static IsAsciiOpt IsAscii;
2093 static ToAsciiOpt ToAscii;
2094
2095 // Formatting and IO library call optimizations.
2096 static ErrorReportingOpt ErrorReporting;
2097 static ErrorReportingOpt ErrorReporting0(0);
2098 static ErrorReportingOpt ErrorReporting1(1);
2099 static PrintFOpt PrintF;
2100 static SPrintFOpt SPrintF;
2101 static FPrintFOpt FPrintF;
2102 static FWriteOpt FWrite;
2103 static FPutsOpt FPuts;
2104 static PutsOpt Puts;
2105
lookupOptimization(CallInst * CI)2106 LibCallOptimization *LibCallSimplifierImpl::lookupOptimization(CallInst *CI) {
2107 LibFunc::Func Func;
2108 Function *Callee = CI->getCalledFunction();
2109 StringRef FuncName = Callee->getName();
2110
2111 // Next check for intrinsics.
2112 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
2113 switch (II->getIntrinsicID()) {
2114 case Intrinsic::pow:
2115 return &Pow;
2116 case Intrinsic::exp2:
2117 return &Exp2;
2118 default:
2119 return nullptr;
2120 }
2121 }
2122
2123 // Then check for known library functions.
2124 if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) {
2125 switch (Func) {
2126 case LibFunc::strcat:
2127 return &StrCat;
2128 case LibFunc::strncat:
2129 return &StrNCat;
2130 case LibFunc::strchr:
2131 return &StrChr;
2132 case LibFunc::strrchr:
2133 return &StrRChr;
2134 case LibFunc::strcmp:
2135 return &StrCmp;
2136 case LibFunc::strncmp:
2137 return &StrNCmp;
2138 case LibFunc::strcpy:
2139 return &StrCpy;
2140 case LibFunc::stpcpy:
2141 return &StpCpy;
2142 case LibFunc::strncpy:
2143 return &StrNCpy;
2144 case LibFunc::strlen:
2145 return &StrLen;
2146 case LibFunc::strpbrk:
2147 return &StrPBrk;
2148 case LibFunc::strtol:
2149 case LibFunc::strtod:
2150 case LibFunc::strtof:
2151 case LibFunc::strtoul:
2152 case LibFunc::strtoll:
2153 case LibFunc::strtold:
2154 case LibFunc::strtoull:
2155 return &StrTo;
2156 case LibFunc::strspn:
2157 return &StrSpn;
2158 case LibFunc::strcspn:
2159 return &StrCSpn;
2160 case LibFunc::strstr:
2161 return &StrStr;
2162 case LibFunc::memcmp:
2163 return &MemCmp;
2164 case LibFunc::memcpy:
2165 return &MemCpy;
2166 case LibFunc::memmove:
2167 return &MemMove;
2168 case LibFunc::memset:
2169 return &MemSet;
2170 case LibFunc::cosf:
2171 case LibFunc::cos:
2172 case LibFunc::cosl:
2173 return &Cos;
2174 case LibFunc::sinpif:
2175 case LibFunc::sinpi:
2176 case LibFunc::cospif:
2177 case LibFunc::cospi:
2178 return &SinCosPi;
2179 case LibFunc::powf:
2180 case LibFunc::pow:
2181 case LibFunc::powl:
2182 return &Pow;
2183 case LibFunc::exp2l:
2184 case LibFunc::exp2:
2185 case LibFunc::exp2f:
2186 return &Exp2;
2187 case LibFunc::ffs:
2188 case LibFunc::ffsl:
2189 case LibFunc::ffsll:
2190 return &FFS;
2191 case LibFunc::abs:
2192 case LibFunc::labs:
2193 case LibFunc::llabs:
2194 return &Abs;
2195 case LibFunc::isdigit:
2196 return &IsDigit;
2197 case LibFunc::isascii:
2198 return &IsAscii;
2199 case LibFunc::toascii:
2200 return &ToAscii;
2201 case LibFunc::printf:
2202 return &PrintF;
2203 case LibFunc::sprintf:
2204 return &SPrintF;
2205 case LibFunc::fprintf:
2206 return &FPrintF;
2207 case LibFunc::fwrite:
2208 return &FWrite;
2209 case LibFunc::fputs:
2210 return &FPuts;
2211 case LibFunc::puts:
2212 return &Puts;
2213 case LibFunc::perror:
2214 return &ErrorReporting;
2215 case LibFunc::vfprintf:
2216 case LibFunc::fiprintf:
2217 return &ErrorReporting0;
2218 case LibFunc::fputc:
2219 return &ErrorReporting1;
2220 case LibFunc::ceil:
2221 case LibFunc::fabs:
2222 case LibFunc::floor:
2223 case LibFunc::rint:
2224 case LibFunc::round:
2225 case LibFunc::nearbyint:
2226 case LibFunc::trunc:
2227 if (hasFloatVersion(FuncName))
2228 return &UnaryDoubleFP;
2229 return nullptr;
2230 case LibFunc::acos:
2231 case LibFunc::acosh:
2232 case LibFunc::asin:
2233 case LibFunc::asinh:
2234 case LibFunc::atan:
2235 case LibFunc::atanh:
2236 case LibFunc::cbrt:
2237 case LibFunc::cosh:
2238 case LibFunc::exp:
2239 case LibFunc::exp10:
2240 case LibFunc::expm1:
2241 case LibFunc::log:
2242 case LibFunc::log10:
2243 case LibFunc::log1p:
2244 case LibFunc::log2:
2245 case LibFunc::logb:
2246 case LibFunc::sin:
2247 case LibFunc::sinh:
2248 case LibFunc::sqrt:
2249 case LibFunc::tan:
2250 case LibFunc::tanh:
2251 if (UnsafeFPShrink && hasFloatVersion(FuncName))
2252 return &UnsafeUnaryDoubleFP;
2253 return nullptr;
2254 case LibFunc::fmin:
2255 case LibFunc::fmax:
2256 if (hasFloatVersion(FuncName))
2257 return &BinaryDoubleFP;
2258 return nullptr;
2259 case LibFunc::memcpy_chk:
2260 return &MemCpyChk;
2261 default:
2262 return nullptr;
2263 }
2264 }
2265
2266 // Finally check for fortified library calls.
2267 if (FuncName.endswith("_chk")) {
2268 if (FuncName == "__memmove_chk")
2269 return &MemMoveChk;
2270 else if (FuncName == "__memset_chk")
2271 return &MemSetChk;
2272 else if (FuncName == "__strcpy_chk")
2273 return &StrCpyChk;
2274 else if (FuncName == "__stpcpy_chk")
2275 return &StpCpyChk;
2276 else if (FuncName == "__strncpy_chk")
2277 return &StrNCpyChk;
2278 else if (FuncName == "__stpncpy_chk")
2279 return &StrNCpyChk;
2280 }
2281
2282 return nullptr;
2283
2284 }
2285
optimizeCall(CallInst * CI)2286 Value *LibCallSimplifierImpl::optimizeCall(CallInst *CI) {
2287 LibCallOptimization *LCO = lookupOptimization(CI);
2288 if (LCO) {
2289 IRBuilder<> Builder(CI);
2290 return LCO->optimizeCall(CI, DL, TLI, LCS, Builder);
2291 }
2292 return nullptr;
2293 }
2294
LibCallSimplifier(const DataLayout * DL,const TargetLibraryInfo * TLI,bool UnsafeFPShrink)2295 LibCallSimplifier::LibCallSimplifier(const DataLayout *DL,
2296 const TargetLibraryInfo *TLI,
2297 bool UnsafeFPShrink) {
2298 Impl = new LibCallSimplifierImpl(DL, TLI, this, UnsafeFPShrink);
2299 }
2300
~LibCallSimplifier()2301 LibCallSimplifier::~LibCallSimplifier() {
2302 delete Impl;
2303 }
2304
optimizeCall(CallInst * CI)2305 Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
2306 if (CI->isNoBuiltin()) return nullptr;
2307 return Impl->optimizeCall(CI);
2308 }
2309
replaceAllUsesWith(Instruction * I,Value * With) const2310 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) const {
2311 I->replaceAllUsesWith(With);
2312 I->eraseFromParent();
2313 }
2314
2315 }
2316
2317 // TODO:
2318 // Additional cases that we need to add to this file:
2319 //
2320 // cbrt:
2321 // * cbrt(expN(X)) -> expN(x/3)
2322 // * cbrt(sqrt(x)) -> pow(x,1/6)
2323 // * cbrt(sqrt(x)) -> pow(x,1/9)
2324 //
2325 // exp, expf, expl:
2326 // * exp(log(x)) -> x
2327 //
2328 // log, logf, logl:
2329 // * log(exp(x)) -> x
2330 // * log(x**y) -> y*log(x)
2331 // * log(exp(y)) -> y*log(e)
2332 // * log(exp2(y)) -> y*log(2)
2333 // * log(exp10(y)) -> y*log(10)
2334 // * log(sqrt(x)) -> 0.5*log(x)
2335 // * log(pow(x,y)) -> y*log(x)
2336 //
2337 // lround, lroundf, lroundl:
2338 // * lround(cnst) -> cnst'
2339 //
2340 // pow, powf, powl:
2341 // * pow(exp(x),y) -> exp(x*y)
2342 // * pow(sqrt(x),y) -> pow(x,y*0.5)
2343 // * pow(pow(x,y),z)-> pow(x,y*z)
2344 //
2345 // round, roundf, roundl:
2346 // * round(cnst) -> cnst'
2347 //
2348 // signbit:
2349 // * signbit(cnst) -> cnst'
2350 // * signbit(nncst) -> 0 (if pstv is a non-negative constant)
2351 //
2352 // sqrt, sqrtf, sqrtl:
2353 // * sqrt(expN(x)) -> expN(x*0.5)
2354 // * sqrt(Nroot(x)) -> pow(x,1/(2*N))
2355 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
2356 //
2357 // tan, tanf, tanl:
2358 // * tan(atan(x)) -> x
2359 //
2360 // trunc, truncf, truncl:
2361 // * trunc(cnst) -> cnst'
2362 //
2363 //
2364