1; RUN: opt < %s -loop-vectorize -mtriple=x86_64-apple-macosx10.8.0 -mcpu=corei7-avx -debug-only=loop-vectorize -stats -S 2>&1 | FileCheck %s 2; REQUIRES: asserts 3 4; CHECK: LV: Loop hints: force=enabled 5; CHECK: LV: Loop hints: force=? 6; No more loops in the module 7; CHECK-NOT: LV: Loop hints: force= 8; CHECK: 2 loop-vectorize - Number of loops analyzed for vectorization 9; CHECK: 1 loop-vectorize - Number of loops vectorized 10 11target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128" 12target triple = "x86_64-apple-macosx10.8.0" 13 14; 15; The source code for the test: 16; 17; #include <math.h> 18; void foo(float* restrict A, float * restrict B, int size) 19; { 20; for (int i = 0; i < size; ++i) A[i] = sinf(B[i]); 21; } 22; 23 24; 25; This loop will be vectorized, although the scalar cost is lower than any of vector costs, but vectorization is explicitly forced in metadata. 26; 27 28define void @vectorized(float* noalias nocapture %A, float* noalias nocapture %B, i32 %size) { 29entry: 30 %cmp6 = icmp sgt i32 %size, 0 31 br i1 %cmp6, label %for.body.preheader, label %for.end 32 33for.body.preheader: 34 br label %for.body 35 36for.body: 37 %indvars.iv = phi i64 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ] 38 %arrayidx = getelementptr inbounds float* %B, i64 %indvars.iv 39 %0 = load float* %arrayidx, align 4, !llvm.mem.parallel_loop_access !1 40 %call = tail call float @llvm.sin.f32(float %0) 41 %arrayidx2 = getelementptr inbounds float* %A, i64 %indvars.iv 42 store float %call, float* %arrayidx2, align 4, !llvm.mem.parallel_loop_access !1 43 %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1 44 %lftr.wideiv = trunc i64 %indvars.iv.next to i32 45 %exitcond = icmp eq i32 %lftr.wideiv, %size 46 br i1 %exitcond, label %for.end.loopexit, label %for.body, !llvm.loop !1 47 48for.end.loopexit: 49 br label %for.end 50 51for.end: 52 ret void 53} 54 55!1 = metadata !{metadata !1, metadata !2} 56!2 = metadata !{metadata !"llvm.loop.vectorize.enable", i1 true} 57 58; 59; This method will not be vectorized, as scalar cost is lower than any of vector costs. 60; 61 62define void @not_vectorized(float* noalias nocapture %A, float* noalias nocapture %B, i32 %size) { 63entry: 64 %cmp6 = icmp sgt i32 %size, 0 65 br i1 %cmp6, label %for.body.preheader, label %for.end 66 67for.body.preheader: 68 br label %for.body 69 70for.body: 71 %indvars.iv = phi i64 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ] 72 %arrayidx = getelementptr inbounds float* %B, i64 %indvars.iv 73 %0 = load float* %arrayidx, align 4, !llvm.mem.parallel_loop_access !3 74 %call = tail call float @llvm.sin.f32(float %0) 75 %arrayidx2 = getelementptr inbounds float* %A, i64 %indvars.iv 76 store float %call, float* %arrayidx2, align 4, !llvm.mem.parallel_loop_access !3 77 %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1 78 %lftr.wideiv = trunc i64 %indvars.iv.next to i32 79 %exitcond = icmp eq i32 %lftr.wideiv, %size 80 br i1 %exitcond, label %for.end.loopexit, label %for.body, !llvm.loop !3 81 82for.end.loopexit: 83 br label %for.end 84 85for.end: 86 ret void 87} 88 89declare float @llvm.sin.f32(float) nounwind readnone 90 91; Dummy metadata 92!3 = metadata !{metadata !3} 93 94