• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2010 Jerome Glisse <glisse@freedesktop.org>
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * on the rights to use, copy, modify, merge, publish, distribute, sub
8  * license, and/or sell copies of the Software, and to permit persons to whom
9  * the Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21  * USE OR OTHER DEALINGS IN THE SOFTWARE.
22  */
23 #include "r600_sq.h"
24 #include "r600_opcodes.h"
25 #include "r600_formats.h"
26 #include "r600d.h"
27 
28 #include <errno.h>
29 #include <byteswap.h>
30 #include "util/u_memory.h"
31 #include "pipe/p_shader_tokens.h"
32 
33 #define NUM_OF_CYCLES 3
34 #define NUM_OF_COMPONENTS 4
35 
r600_bytecode_get_num_operands(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)36 static inline unsigned int r600_bytecode_get_num_operands(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
37 {
38 	if(alu->is_op3)
39 		return 3;
40 
41 	switch (bc->chip_class) {
42 	case R600:
43 	case R700:
44 		switch (alu->inst) {
45 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_NOP:
46 			return 0;
47 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_ADD:
48 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_ADD_INT:
49 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SUB_INT:
50 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_AND_INT:
51 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_OR_INT:
52 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLE:
53 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGT:
54 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGE:
55 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLNE:
56 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MUL:
57 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MUL_IEEE:
58 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULHI_INT:
59 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULLO_INT:
60 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULHI_UINT:
61 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULLO_UINT:
62 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MAX:
63 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MIN:
64 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MAX_UINT:
65 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MIN_UINT:
66 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MAX_INT:
67 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MIN_INT:
68 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETE:
69 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETE_INT:
70 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETNE:
71 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETNE_INT:
72 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGT:
73 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGT_INT:
74 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGT_UINT:
75 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGE:
76 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGE_INT:
77 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGE_UINT:
78 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE:
79 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT:
80 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE:
81 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE:
82 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE_INT:
83 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE_INT:
84 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4:
85 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4_IEEE:
86 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_CUBE:
87 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_XOR_INT:
88 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LSHL_INT:
89 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LSHR_INT:
90 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_ASHR_INT:
91 			return 2;
92 
93 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOV:
94 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA:
95 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_FLOOR:
96 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_GPR_INT:
97 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_INT:
98 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FRACT:
99 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_CEIL:
100 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLOOR:
101 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_TRUNC:
102 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_EXP_IEEE:
103 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LOG_CLAMPED:
104 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LOG_IEEE:
105 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_CLAMPED:
106 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_IEEE:
107 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_INT:
108 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_UINT:
109 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIPSQRT_CLAMPED:
110 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIPSQRT_IEEE:
111 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLT_TO_INT:
112 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_INT_TO_FLT:
113 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_UINT_TO_FLT:
114 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLT_TO_UINT:
115 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SIN:
116 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_COS:
117 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RNDNE:
118 		case V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_NOT_INT:
119 			return 1;
120 		default: R600_ERR(
121 			"Need instruction operand number for 0x%x.\n", alu->inst);
122 		}
123 		break;
124 	case EVERGREEN:
125 	case CAYMAN:
126 		switch (alu->inst) {
127 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_NOP:
128 			return 0;
129 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_ADD:
130 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_ADD_INT:
131 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SUB_INT:
132 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_AND_INT:
133 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_OR_INT:
134 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLE:
135 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGT:
136 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGE:
137 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLNE:
138 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MUL:
139 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MUL_IEEE:
140 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULHI_INT:
141 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULLO_INT:
142 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULHI_UINT:
143 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULLO_UINT:
144 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MAX:
145 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MIN:
146 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MAX_UINT:
147 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MIN_UINT:
148 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MAX_INT:
149 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MIN_INT:
150 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETE:
151 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETE_INT:
152 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETNE:
153 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETNE_INT:
154 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGT:
155 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGT_INT:
156 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGT_UINT:
157 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGE:
158 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGE_INT:
159 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SETGE_UINT:
160 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE:
161 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE_INT:
162 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT:
163 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE:
164 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE:
165 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE_INT:
166 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4:
167 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4_IEEE:
168 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_CUBE:
169 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_INTERP_XY:
170 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_INTERP_ZW:
171 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_XOR_INT:
172 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LSHL_INT:
173 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LSHR_INT:
174 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_ASHR_INT:
175 			return 2;
176 
177 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOV:
178 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_INT:
179 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FRACT:
180 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_CEIL:
181 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLOOR:
182 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_TRUNC:
183 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_EXP_IEEE:
184 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LOG_CLAMPED:
185 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LOG_IEEE:
186 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_CLAMPED:
187 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_IEEE:
188 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIPSQRT_CLAMPED:
189 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIPSQRT_IEEE:
190 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLT_TO_INT:
191 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLT_TO_INT_FLOOR:
192 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_INT_TO_FLT:
193 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_UINT_TO_FLT:
194 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLT_TO_UINT:
195 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_SIN:
196 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_COS:
197 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RNDNE:
198 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_NOT_INT:
199 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_INTERP_LOAD_P0:
200 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_INT:
201 		case EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_RECIP_UINT:
202 			return 1;
203 		default: R600_ERR(
204 			"Need instruction operand number for 0x%x.\n", alu->inst);
205 		}
206 		break;
207 	}
208 
209 	return 3;
210 }
211 
212 int r700_bytecode_alu_build(struct r600_bytecode *bc, struct r600_bytecode_alu *alu, unsigned id);
213 
r600_bytecode_cf(void)214 static struct r600_bytecode_cf *r600_bytecode_cf(void)
215 {
216 	struct r600_bytecode_cf *cf = CALLOC_STRUCT(r600_bytecode_cf);
217 
218 	if (cf == NULL)
219 		return NULL;
220 	LIST_INITHEAD(&cf->list);
221 	LIST_INITHEAD(&cf->alu);
222 	LIST_INITHEAD(&cf->vtx);
223 	LIST_INITHEAD(&cf->tex);
224 	return cf;
225 }
226 
r600_bytecode_alu(void)227 static struct r600_bytecode_alu *r600_bytecode_alu(void)
228 {
229 	struct r600_bytecode_alu *alu = CALLOC_STRUCT(r600_bytecode_alu);
230 
231 	if (alu == NULL)
232 		return NULL;
233 	LIST_INITHEAD(&alu->list);
234 	return alu;
235 }
236 
r600_bytecode_vtx(void)237 static struct r600_bytecode_vtx *r600_bytecode_vtx(void)
238 {
239 	struct r600_bytecode_vtx *vtx = CALLOC_STRUCT(r600_bytecode_vtx);
240 
241 	if (vtx == NULL)
242 		return NULL;
243 	LIST_INITHEAD(&vtx->list);
244 	return vtx;
245 }
246 
r600_bytecode_tex(void)247 static struct r600_bytecode_tex *r600_bytecode_tex(void)
248 {
249 	struct r600_bytecode_tex *tex = CALLOC_STRUCT(r600_bytecode_tex);
250 
251 	if (tex == NULL)
252 		return NULL;
253 	LIST_INITHEAD(&tex->list);
254 	return tex;
255 }
256 
r600_bytecode_init(struct r600_bytecode * bc,enum chip_class chip_class,enum radeon_family family)257 void r600_bytecode_init(struct r600_bytecode *bc, enum chip_class chip_class, enum radeon_family family)
258 {
259 	if ((chip_class == R600) &&
260 	    (family != CHIP_RV670 && family != CHIP_RS780 && family != CHIP_RS880)) {
261 		bc->ar_handling = AR_HANDLE_RV6XX;
262 		bc->r6xx_nop_after_rel_dst = 1;
263 	} else {
264 		bc->ar_handling = AR_HANDLE_NORMAL;
265 		bc->r6xx_nop_after_rel_dst = 0;
266 	}
267 
268 	LIST_INITHEAD(&bc->cf);
269 	bc->chip_class = chip_class;
270 }
271 
r600_bytecode_add_cf(struct r600_bytecode * bc)272 static int r600_bytecode_add_cf(struct r600_bytecode *bc)
273 {
274 	struct r600_bytecode_cf *cf = r600_bytecode_cf();
275 
276 	if (cf == NULL)
277 		return -ENOMEM;
278 	LIST_ADDTAIL(&cf->list, &bc->cf);
279 	if (bc->cf_last) {
280 		cf->id = bc->cf_last->id + 2;
281 		if (bc->cf_last->eg_alu_extended) {
282 			/* take into account extended alu size */
283 			cf->id += 2;
284 			bc->ndw += 2;
285 		}
286 	}
287 	bc->cf_last = cf;
288 	bc->ncf++;
289 	bc->ndw += 2;
290 	bc->force_add_cf = 0;
291 	bc->ar_loaded = 0;
292 	return 0;
293 }
294 
r600_bytecode_add_output(struct r600_bytecode * bc,const struct r600_bytecode_output * output)295 int r600_bytecode_add_output(struct r600_bytecode *bc, const struct r600_bytecode_output *output)
296 {
297 	int r;
298 
299 	if (output->gpr >= bc->ngpr)
300 		bc->ngpr = output->gpr + 1;
301 
302 	if (bc->cf_last && (bc->cf_last->inst == output->inst ||
303 		(bc->cf_last->inst == BC_INST(bc, V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT) &&
304 		output->inst == BC_INST(bc, V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT_DONE))) &&
305 		output->type == bc->cf_last->output.type &&
306 		output->elem_size == bc->cf_last->output.elem_size &&
307 		output->swizzle_x == bc->cf_last->output.swizzle_x &&
308 		output->swizzle_y == bc->cf_last->output.swizzle_y &&
309 		output->swizzle_z == bc->cf_last->output.swizzle_z &&
310 		output->swizzle_w == bc->cf_last->output.swizzle_w &&
311 		(output->burst_count + bc->cf_last->output.burst_count) <= 16) {
312 
313 		if ((output->gpr + output->burst_count) == bc->cf_last->output.gpr &&
314 			(output->array_base + output->burst_count) == bc->cf_last->output.array_base) {
315 
316 			bc->cf_last->output.end_of_program |= output->end_of_program;
317 			bc->cf_last->output.inst = output->inst;
318 			bc->cf_last->output.gpr = output->gpr;
319 			bc->cf_last->output.array_base = output->array_base;
320 			bc->cf_last->output.burst_count += output->burst_count;
321 			return 0;
322 
323 		} else if (output->gpr == (bc->cf_last->output.gpr + bc->cf_last->output.burst_count) &&
324 			output->array_base == (bc->cf_last->output.array_base + bc->cf_last->output.burst_count)) {
325 
326 			bc->cf_last->output.end_of_program |= output->end_of_program;
327 			bc->cf_last->output.inst = output->inst;
328 			bc->cf_last->output.burst_count += output->burst_count;
329 			return 0;
330 		}
331 	}
332 
333 	r = r600_bytecode_add_cf(bc);
334 	if (r)
335 		return r;
336 	bc->cf_last->inst = output->inst;
337 	memcpy(&bc->cf_last->output, output, sizeof(struct r600_bytecode_output));
338 	return 0;
339 }
340 
341 /* alu instructions that can ony exits once per group */
is_alu_once_inst(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)342 static int is_alu_once_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
343 {
344 	switch (bc->chip_class) {
345 	case R600:
346 	case R700:
347 		return !alu->is_op3 && (
348 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLE ||
349 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGT ||
350 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGE ||
351 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLNE ||
352 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGT_UINT ||
353 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGE_UINT ||
354 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLE_INT ||
355 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGT_INT ||
356 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGE_INT ||
357 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLNE_INT ||
358 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT_UINT ||
359 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_UINT ||
360 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE ||
361 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT ||
362 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE ||
363 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE ||
364 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SET_INV ||
365 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SET_POP ||
366 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SET_CLR ||
367 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SET_RESTORE ||
368 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE_PUSH ||
369 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT_PUSH ||
370 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_PUSH ||
371 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE_PUSH ||
372 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE_INT ||
373 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT_INT ||
374 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_INT ||
375 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE_INT ||
376 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE_PUSH_INT ||
377 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT_PUSH_INT ||
378 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_PUSH_INT ||
379 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE_PUSH_INT ||
380 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETLT_PUSH_INT ||
381 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETLE_PUSH_INT);
382 	case EVERGREEN:
383 	case CAYMAN:
384 	default:
385 		return !alu->is_op3 && (
386 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLE ||
387 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGT ||
388 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGE ||
389 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLNE ||
390 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGT_UINT ||
391 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGE_UINT ||
392 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLE_INT ||
393 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGT_INT ||
394 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLGE_INT ||
395 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_KILLNE_INT ||
396 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT_UINT ||
397 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_UINT ||
398 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE ||
399 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT ||
400 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE ||
401 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE ||
402 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SET_INV ||
403 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SET_POP ||
404 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SET_CLR ||
405 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SET_RESTORE ||
406 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE_PUSH ||
407 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT_PUSH ||
408 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_PUSH ||
409 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE_PUSH ||
410 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE_INT ||
411 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT_INT ||
412 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_INT ||
413 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE_INT ||
414 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETE_PUSH_INT ||
415 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGT_PUSH_INT ||
416 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_PUSH_INT ||
417 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETNE_PUSH_INT ||
418 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETLT_PUSH_INT ||
419 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETLE_PUSH_INT);
420 	}
421 }
422 
is_alu_reduction_inst(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)423 static int is_alu_reduction_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
424 {
425 	switch (bc->chip_class) {
426 	case R600:
427 	case R700:
428 		return !alu->is_op3 && (
429 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_CUBE ||
430 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4 ||
431 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4_IEEE ||
432 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MAX4);
433 	case EVERGREEN:
434 	case CAYMAN:
435 	default:
436 		return !alu->is_op3 && (
437 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_CUBE ||
438 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4 ||
439 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4_IEEE ||
440 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MAX4);
441 	}
442 }
443 
is_alu_cube_inst(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)444 static int is_alu_cube_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
445 {
446 	switch (bc->chip_class) {
447 	case R600:
448 	case R700:
449 		return !alu->is_op3 &&
450 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_CUBE;
451 	case EVERGREEN:
452 	case CAYMAN:
453 	default:
454 		return !alu->is_op3 &&
455 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_CUBE;
456 	}
457 }
458 
is_alu_mova_inst(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)459 static int is_alu_mova_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
460 {
461 	switch (bc->chip_class) {
462 	case R600:
463 	case R700:
464 		return !alu->is_op3 && (
465 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA ||
466 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_FLOOR ||
467 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_INT ||
468 			alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_GPR_INT);
469 	case EVERGREEN:
470 	case CAYMAN:
471 	default:
472 		return !alu->is_op3 && (
473 			alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_INT);
474 	}
475 }
476 
is_opcode_in_range(unsigned opcode,unsigned min,unsigned max)477 static int is_opcode_in_range(unsigned opcode, unsigned min, unsigned max)
478 {
479 	return min <= opcode && opcode <= max;
480 }
481 
482 /* ALU instructions that can only execute on the vector unit:
483  *
484  * opcode ranges:
485  * R6xx/R7xx:
486  *   op3 : [0x08 - 0x0B]
487  *   op2 : 0x07, [0x15 - 0x18], [0x1B - 0x1D], [0x50 - 0x53], [0x7A - 0x7E]
488  *
489  * EVERGREEN:
490  *   op3: [0x04 - 0x11]
491  *   op2: [0xA0 - 0xE2]
492  */
is_alu_vec_unit_inst(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)493 static int is_alu_vec_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
494 {
495 	switch (bc->chip_class) {
496 	case R600:
497 	case R700:
498 		if (alu->is_op3)
499 			return is_opcode_in_range(alu->inst,
500 					V_SQ_ALU_WORD1_OP3_SQ_OP3_INST_MULADD_64,
501 					V_SQ_ALU_WORD1_OP3_SQ_OP3_INST_MULADD_64_D2);
502 		else
503 			return (alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FREXP_64) ||
504 					is_opcode_in_range(alu->inst,
505 						V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA,
506 						V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_INT) ||
507 					is_opcode_in_range(alu->inst,
508 						V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MUL_64,
509 						V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLT32_TO_FLT64) ||
510 					is_opcode_in_range(alu->inst,
511 						V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_DOT4,
512 						V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MAX4) ||
513 					is_opcode_in_range(alu->inst,
514 						V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_LDEXP_64,
515 						V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_PRED_SETGE_64);
516 
517 	case EVERGREEN:
518 		if (alu->is_op3)
519 			return is_opcode_in_range(alu->inst,
520 					EG_V_SQ_ALU_WORD1_OP3_SQ_OP3_INST_BFE_UINT,
521 					EG_V_SQ_ALU_WORD1_OP3_SQ_OP3_INST_LDS_IDX_OP);
522 		else
523 			return is_opcode_in_range(alu->inst,
524 					EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_BFM_INT,
525 					EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_INTERP_LOAD_P20);
526 	case CAYMAN:
527 	default:
528 		assert(0);
529 		return 0;
530 	}
531 }
532 
533 /* ALU instructions that can only execute on the trans unit:
534  *
535  * opcode ranges:
536  * R600:
537  *   op3: 0x0C
538  *   op2: [0x60 - 0x79]
539  *
540  * R700:
541  *   op3: 0x0C
542  *   op2: [0x60 - 0x6F], [0x73 - 0x79]
543  *
544  * EVERGREEN:
545  *   op3: 0x1F
546  *   op2: [0x81 - 0x9C]
547  */
is_alu_trans_unit_inst(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)548 static int is_alu_trans_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
549 {
550 
551 	switch (bc->chip_class) {
552 	case R600:
553 		if (alu->is_op3)
554 			return alu->inst == V_SQ_ALU_WORD1_OP3_SQ_OP3_INST_MUL_LIT;
555 		else
556 			return is_opcode_in_range(alu->inst,
557 					V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_GPR_INT,
558 					V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLT_TO_UINT);
559 	case R700:
560 		if (alu->is_op3)
561 			return alu->inst == V_SQ_ALU_WORD1_OP3_SQ_OP3_INST_MUL_LIT;
562 		else
563 			return is_opcode_in_range(alu->inst,
564 						V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_GPR_INT,
565 						V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_COS) ||
566 					is_opcode_in_range(alu->inst,
567 							V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULLO_INT,
568 							V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_FLT_TO_UINT);
569 	case EVERGREEN:
570 		if (alu->is_op3)
571 			return alu->inst == EG_V_SQ_ALU_WORD1_OP3_SQ_OP3_INST_MUL_LIT;
572 		else
573 			return is_opcode_in_range(alu->inst,
574 					EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_EXP_IEEE,
575 					EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_UINT_TO_FLT);
576 	case CAYMAN:
577 	default:
578 		assert(0);
579 		return 0;
580 	}
581 }
582 
583 /* alu instructions that can execute on any unit */
is_alu_any_unit_inst(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)584 static int is_alu_any_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
585 {
586 	return !is_alu_vec_unit_inst(bc, alu) &&
587 		!is_alu_trans_unit_inst(bc, alu);
588 }
589 
is_nop_inst(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)590 static int is_nop_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
591 {
592 	switch (bc->chip_class) {
593 	case R600:
594 	case R700:
595 		return (!alu->is_op3 && alu->inst == V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_NOP);
596 	case EVERGREEN:
597 	case CAYMAN:
598 	default:
599 		return (!alu->is_op3 && alu->inst == EG_V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_NOP);
600 	}
601 }
602 
assign_alu_units(struct r600_bytecode * bc,struct r600_bytecode_alu * alu_first,struct r600_bytecode_alu * assignment[5])603 static int assign_alu_units(struct r600_bytecode *bc, struct r600_bytecode_alu *alu_first,
604 			    struct r600_bytecode_alu *assignment[5])
605 {
606 	struct r600_bytecode_alu *alu;
607 	unsigned i, chan, trans;
608 	int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
609 
610 	for (i = 0; i < max_slots; i++)
611 		assignment[i] = NULL;
612 
613 	for (alu = alu_first; alu; alu = LIST_ENTRY(struct r600_bytecode_alu, alu->list.next, list)) {
614 		chan = alu->dst.chan;
615 		if (max_slots == 4)
616 			trans = 0;
617 		else if (is_alu_trans_unit_inst(bc, alu))
618 			trans = 1;
619 		else if (is_alu_vec_unit_inst(bc, alu))
620 			trans = 0;
621 		else if (assignment[chan])
622 			trans = 1; /* Assume ALU_INST_PREFER_VECTOR. */
623 		else
624 			trans = 0;
625 
626 		if (trans) {
627 			if (assignment[4]) {
628 				assert(0); /* ALU.Trans has already been allocated. */
629 				return -1;
630 			}
631 			assignment[4] = alu;
632 		} else {
633 			if (assignment[chan]) {
634 				assert(0); /* ALU.chan has already been allocated. */
635 				return -1;
636 			}
637 			assignment[chan] = alu;
638 		}
639 
640 		if (alu->last)
641 			break;
642 	}
643 	return 0;
644 }
645 
646 struct alu_bank_swizzle {
647 	int	hw_gpr[NUM_OF_CYCLES][NUM_OF_COMPONENTS];
648 	int	hw_cfile_addr[4];
649 	int	hw_cfile_elem[4];
650 };
651 
652 static const unsigned cycle_for_bank_swizzle_vec[][3] = {
653 	[SQ_ALU_VEC_012] = { 0, 1, 2 },
654 	[SQ_ALU_VEC_021] = { 0, 2, 1 },
655 	[SQ_ALU_VEC_120] = { 1, 2, 0 },
656 	[SQ_ALU_VEC_102] = { 1, 0, 2 },
657 	[SQ_ALU_VEC_201] = { 2, 0, 1 },
658 	[SQ_ALU_VEC_210] = { 2, 1, 0 }
659 };
660 
661 static const unsigned cycle_for_bank_swizzle_scl[][3] = {
662 	[SQ_ALU_SCL_210] = { 2, 1, 0 },
663 	[SQ_ALU_SCL_122] = { 1, 2, 2 },
664 	[SQ_ALU_SCL_212] = { 2, 1, 2 },
665 	[SQ_ALU_SCL_221] = { 2, 2, 1 }
666 };
667 
init_bank_swizzle(struct alu_bank_swizzle * bs)668 static void init_bank_swizzle(struct alu_bank_swizzle *bs)
669 {
670 	int i, cycle, component;
671 	/* set up gpr use */
672 	for (cycle = 0; cycle < NUM_OF_CYCLES; cycle++)
673 		for (component = 0; component < NUM_OF_COMPONENTS; component++)
674 			 bs->hw_gpr[cycle][component] = -1;
675 	for (i = 0; i < 4; i++)
676 		bs->hw_cfile_addr[i] = -1;
677 	for (i = 0; i < 4; i++)
678 		bs->hw_cfile_elem[i] = -1;
679 }
680 
reserve_gpr(struct alu_bank_swizzle * bs,unsigned sel,unsigned chan,unsigned cycle)681 static int reserve_gpr(struct alu_bank_swizzle *bs, unsigned sel, unsigned chan, unsigned cycle)
682 {
683 	if (bs->hw_gpr[cycle][chan] == -1)
684 		bs->hw_gpr[cycle][chan] = sel;
685 	else if (bs->hw_gpr[cycle][chan] != (int)sel) {
686 		/* Another scalar operation has already used the GPR read port for the channel. */
687 		return -1;
688 	}
689 	return 0;
690 }
691 
reserve_cfile(struct r600_bytecode * bc,struct alu_bank_swizzle * bs,unsigned sel,unsigned chan)692 static int reserve_cfile(struct r600_bytecode *bc, struct alu_bank_swizzle *bs, unsigned sel, unsigned chan)
693 {
694 	int res, num_res = 4;
695 	if (bc->chip_class >= R700) {
696 		num_res = 2;
697 		chan /= 2;
698 	}
699 	for (res = 0; res < num_res; ++res) {
700 		if (bs->hw_cfile_addr[res] == -1) {
701 			bs->hw_cfile_addr[res] = sel;
702 			bs->hw_cfile_elem[res] = chan;
703 			return 0;
704 		} else if (bs->hw_cfile_addr[res] == sel &&
705 			bs->hw_cfile_elem[res] == chan)
706 			return 0; /* Read for this scalar element already reserved, nothing to do here. */
707 	}
708 	/* All cfile read ports are used, cannot reference vector element. */
709 	return -1;
710 }
711 
is_gpr(unsigned sel)712 static int is_gpr(unsigned sel)
713 {
714 	return (sel >= 0 && sel <= 127);
715 }
716 
717 /* CB constants start at 512, and get translated to a kcache index when ALU
718  * clauses are constructed. Note that we handle kcache constants the same way
719  * as (the now gone) cfile constants, is that really required? */
is_cfile(unsigned sel)720 static int is_cfile(unsigned sel)
721 {
722 	return (sel > 255 && sel < 512) ||
723 		(sel > 511 && sel < 4607) || /* Kcache before translation. */
724 		(sel > 127 && sel < 192); /* Kcache after translation. */
725 }
726 
is_const(int sel)727 static int is_const(int sel)
728 {
729 	return is_cfile(sel) ||
730 		(sel >= V_SQ_ALU_SRC_0 &&
731 		sel <= V_SQ_ALU_SRC_LITERAL);
732 }
733 
check_vector(struct r600_bytecode * bc,struct r600_bytecode_alu * alu,struct alu_bank_swizzle * bs,int bank_swizzle)734 static int check_vector(struct r600_bytecode *bc, struct r600_bytecode_alu *alu,
735 			struct alu_bank_swizzle *bs, int bank_swizzle)
736 {
737 	int r, src, num_src, sel, elem, cycle;
738 
739 	num_src = r600_bytecode_get_num_operands(bc, alu);
740 	for (src = 0; src < num_src; src++) {
741 		sel = alu->src[src].sel;
742 		elem = alu->src[src].chan;
743 		if (is_gpr(sel)) {
744 			cycle = cycle_for_bank_swizzle_vec[bank_swizzle][src];
745 			if (src == 1 && sel == alu->src[0].sel && elem == alu->src[0].chan)
746 				/* Nothing to do; special-case optimization,
747 				 * second source uses first source’s reservation. */
748 				continue;
749 			else {
750 				r = reserve_gpr(bs, sel, elem, cycle);
751 				if (r)
752 					return r;
753 			}
754 		} else if (is_cfile(sel)) {
755 			r = reserve_cfile(bc, bs, (alu->src[src].kc_bank<<16) + sel, elem);
756 			if (r)
757 				return r;
758 		}
759 		/* No restrictions on PV, PS, literal or special constants. */
760 	}
761 	return 0;
762 }
763 
check_scalar(struct r600_bytecode * bc,struct r600_bytecode_alu * alu,struct alu_bank_swizzle * bs,int bank_swizzle)764 static int check_scalar(struct r600_bytecode *bc, struct r600_bytecode_alu *alu,
765 			struct alu_bank_swizzle *bs, int bank_swizzle)
766 {
767 	int r, src, num_src, const_count, sel, elem, cycle;
768 
769 	num_src = r600_bytecode_get_num_operands(bc, alu);
770 	for (const_count = 0, src = 0; src < num_src; ++src) {
771 		sel = alu->src[src].sel;
772 		elem = alu->src[src].chan;
773 		if (is_const(sel)) { /* Any constant, including literal and inline constants. */
774 			if (const_count >= 2)
775 				/* More than two references to a constant in
776 				 * transcendental operation. */
777 				return -1;
778 			else
779 				const_count++;
780 		}
781 		if (is_cfile(sel)) {
782 			r = reserve_cfile(bc, bs, (alu->src[src].kc_bank<<16) + sel, elem);
783 			if (r)
784 				return r;
785 		}
786 	}
787 	for (src = 0; src < num_src; ++src) {
788 		sel = alu->src[src].sel;
789 		elem = alu->src[src].chan;
790 		if (is_gpr(sel)) {
791 			cycle = cycle_for_bank_swizzle_scl[bank_swizzle][src];
792 			if (cycle < const_count)
793 				/* Cycle for GPR load conflicts with
794 				 * constant load in transcendental operation. */
795 				return -1;
796 			r = reserve_gpr(bs, sel, elem, cycle);
797 			if (r)
798 				return r;
799 		}
800 		/* PV PS restrictions */
801 		if (const_count && (sel == 254 || sel == 255)) {
802 			cycle = cycle_for_bank_swizzle_scl[bank_swizzle][src];
803 			if (cycle < const_count)
804 				return -1;
805 		}
806 	}
807 	return 0;
808 }
809 
check_and_set_bank_swizzle(struct r600_bytecode * bc,struct r600_bytecode_alu * slots[5])810 static int check_and_set_bank_swizzle(struct r600_bytecode *bc,
811 				      struct r600_bytecode_alu *slots[5])
812 {
813 	struct alu_bank_swizzle bs;
814 	int bank_swizzle[5];
815 	int i, r = 0, forced = 1;
816 	boolean scalar_only = bc->chip_class == CAYMAN ? false : true;
817 	int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
818 
819 	for (i = 0; i < max_slots; i++) {
820 		if (slots[i]) {
821 			if (slots[i]->bank_swizzle_force) {
822 				slots[i]->bank_swizzle = slots[i]->bank_swizzle_force;
823 			} else {
824 				forced = 0;
825 			}
826 		}
827 
828 		if (i < 4 && slots[i])
829 			scalar_only = false;
830 	}
831 	if (forced)
832 		return 0;
833 
834 	/* Just check every possible combination of bank swizzle.
835 	 * Not very efficent, but works on the first try in most of the cases. */
836 	for (i = 0; i < 4; i++)
837 		if (!slots[i] || !slots[i]->bank_swizzle_force)
838 			bank_swizzle[i] = SQ_ALU_VEC_012;
839 		else
840 			bank_swizzle[i] = slots[i]->bank_swizzle;
841 
842 	bank_swizzle[4] = SQ_ALU_SCL_210;
843 	while(bank_swizzle[4] <= SQ_ALU_SCL_221) {
844 
845 		if (max_slots == 4) {
846 			for (i = 0; i < max_slots; i++) {
847 				if (bank_swizzle[i] == SQ_ALU_VEC_210)
848 				  return -1;
849 			}
850 		}
851 		init_bank_swizzle(&bs);
852 		if (scalar_only == false) {
853 			for (i = 0; i < 4; i++) {
854 				if (slots[i]) {
855 					r = check_vector(bc, slots[i], &bs, bank_swizzle[i]);
856 					if (r)
857 						break;
858 				}
859 			}
860 		} else
861 			r = 0;
862 
863 		if (!r && slots[4] && max_slots == 5) {
864 			r = check_scalar(bc, slots[4], &bs, bank_swizzle[4]);
865 		}
866 		if (!r) {
867 			for (i = 0; i < max_slots; i++) {
868 				if (slots[i])
869 					slots[i]->bank_swizzle = bank_swizzle[i];
870 			}
871 			return 0;
872 		}
873 
874 		if (scalar_only) {
875 			bank_swizzle[4]++;
876 		} else {
877 			for (i = 0; i < max_slots; i++) {
878 				if (!slots[i] || !slots[i]->bank_swizzle_force) {
879 					bank_swizzle[i]++;
880 					if (bank_swizzle[i] <= SQ_ALU_VEC_210)
881 						break;
882 					else
883 						bank_swizzle[i] = SQ_ALU_VEC_012;
884 				}
885 			}
886 		}
887 	}
888 
889 	/* Couldn't find a working swizzle. */
890 	return -1;
891 }
892 
replace_gpr_with_pv_ps(struct r600_bytecode * bc,struct r600_bytecode_alu * slots[5],struct r600_bytecode_alu * alu_prev)893 static int replace_gpr_with_pv_ps(struct r600_bytecode *bc,
894 				  struct r600_bytecode_alu *slots[5], struct r600_bytecode_alu *alu_prev)
895 {
896 	struct r600_bytecode_alu *prev[5];
897 	int gpr[5], chan[5];
898 	int i, j, r, src, num_src;
899 	int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
900 
901 	r = assign_alu_units(bc, alu_prev, prev);
902 	if (r)
903 		return r;
904 
905 	for (i = 0; i < max_slots; ++i) {
906 		if (prev[i] && (prev[i]->dst.write || prev[i]->is_op3) && !prev[i]->dst.rel) {
907 			gpr[i] = prev[i]->dst.sel;
908 			/* cube writes more than PV.X */
909 			if (!is_alu_cube_inst(bc, prev[i]) && is_alu_reduction_inst(bc, prev[i]))
910 				chan[i] = 0;
911 			else
912 				chan[i] = prev[i]->dst.chan;
913 		} else
914 			gpr[i] = -1;
915 	}
916 
917 	for (i = 0; i < max_slots; ++i) {
918 		struct r600_bytecode_alu *alu = slots[i];
919 		if(!alu)
920 			continue;
921 
922 		num_src = r600_bytecode_get_num_operands(bc, alu);
923 		for (src = 0; src < num_src; ++src) {
924 			if (!is_gpr(alu->src[src].sel) || alu->src[src].rel)
925 				continue;
926 
927 			if (bc->chip_class < CAYMAN) {
928 				if (alu->src[src].sel == gpr[4] &&
929 				    alu->src[src].chan == chan[4] &&
930 				    alu_prev->pred_sel == alu->pred_sel) {
931 					alu->src[src].sel = V_SQ_ALU_SRC_PS;
932 					alu->src[src].chan = 0;
933 					continue;
934 				}
935 			}
936 
937 			for (j = 0; j < 4; ++j) {
938 				if (alu->src[src].sel == gpr[j] &&
939 					alu->src[src].chan == j &&
940 				      alu_prev->pred_sel == alu->pred_sel) {
941 					alu->src[src].sel = V_SQ_ALU_SRC_PV;
942 					alu->src[src].chan = chan[j];
943 					break;
944 				}
945 			}
946 		}
947 	}
948 
949 	return 0;
950 }
951 
r600_bytecode_special_constants(uint32_t value,unsigned * sel,unsigned * neg)952 void r600_bytecode_special_constants(uint32_t value, unsigned *sel, unsigned *neg)
953 {
954 	switch(value) {
955 	case 0:
956 		*sel = V_SQ_ALU_SRC_0;
957 		break;
958 	case 1:
959 		*sel = V_SQ_ALU_SRC_1_INT;
960 		break;
961 	case -1:
962 		*sel = V_SQ_ALU_SRC_M_1_INT;
963 		break;
964 	case 0x3F800000: /* 1.0f */
965 		*sel = V_SQ_ALU_SRC_1;
966 		break;
967 	case 0x3F000000: /* 0.5f */
968 		*sel = V_SQ_ALU_SRC_0_5;
969 		break;
970 	case 0xBF800000: /* -1.0f */
971 		*sel = V_SQ_ALU_SRC_1;
972 		*neg ^= 1;
973 		break;
974 	case 0xBF000000: /* -0.5f */
975 		*sel = V_SQ_ALU_SRC_0_5;
976 		*neg ^= 1;
977 		break;
978 	default:
979 		*sel = V_SQ_ALU_SRC_LITERAL;
980 		break;
981 	}
982 }
983 
984 /* compute how many literal are needed */
r600_bytecode_alu_nliterals(struct r600_bytecode * bc,struct r600_bytecode_alu * alu,uint32_t literal[4],unsigned * nliteral)985 static int r600_bytecode_alu_nliterals(struct r600_bytecode *bc, struct r600_bytecode_alu *alu,
986 				 uint32_t literal[4], unsigned *nliteral)
987 {
988 	unsigned num_src = r600_bytecode_get_num_operands(bc, alu);
989 	unsigned i, j;
990 
991 	for (i = 0; i < num_src; ++i) {
992 		if (alu->src[i].sel == V_SQ_ALU_SRC_LITERAL) {
993 			uint32_t value = alu->src[i].value;
994 			unsigned found = 0;
995 			for (j = 0; j < *nliteral; ++j) {
996 				if (literal[j] == value) {
997 					found = 1;
998 					break;
999 				}
1000 			}
1001 			if (!found) {
1002 				if (*nliteral >= 4)
1003 					return -EINVAL;
1004 				literal[(*nliteral)++] = value;
1005 			}
1006 		}
1007 	}
1008 	return 0;
1009 }
1010 
r600_bytecode_alu_adjust_literals(struct r600_bytecode * bc,struct r600_bytecode_alu * alu,uint32_t literal[4],unsigned nliteral)1011 static void r600_bytecode_alu_adjust_literals(struct r600_bytecode *bc,
1012 					struct r600_bytecode_alu *alu,
1013 					uint32_t literal[4], unsigned nliteral)
1014 {
1015 	unsigned num_src = r600_bytecode_get_num_operands(bc, alu);
1016 	unsigned i, j;
1017 
1018 	for (i = 0; i < num_src; ++i) {
1019 		if (alu->src[i].sel == V_SQ_ALU_SRC_LITERAL) {
1020 			uint32_t value = alu->src[i].value;
1021 			for (j = 0; j < nliteral; ++j) {
1022 				if (literal[j] == value) {
1023 					alu->src[i].chan = j;
1024 					break;
1025 				}
1026 			}
1027 		}
1028 	}
1029 }
1030 
merge_inst_groups(struct r600_bytecode * bc,struct r600_bytecode_alu * slots[5],struct r600_bytecode_alu * alu_prev)1031 static int merge_inst_groups(struct r600_bytecode *bc, struct r600_bytecode_alu *slots[5],
1032 			     struct r600_bytecode_alu *alu_prev)
1033 {
1034 	struct r600_bytecode_alu *prev[5];
1035 	struct r600_bytecode_alu *result[5] = { NULL };
1036 
1037 	uint32_t literal[4], prev_literal[4];
1038 	unsigned nliteral = 0, prev_nliteral = 0;
1039 
1040 	int i, j, r, src, num_src;
1041 	int num_once_inst = 0;
1042 	int have_mova = 0, have_rel = 0;
1043 	int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
1044 
1045 	r = assign_alu_units(bc, alu_prev, prev);
1046 	if (r)
1047 		return r;
1048 
1049 	for (i = 0; i < max_slots; ++i) {
1050 		if (prev[i]) {
1051 		      if (prev[i]->pred_sel)
1052 			      return 0;
1053 		      if (is_alu_once_inst(bc, prev[i]))
1054 			      return 0;
1055 		}
1056 		if (slots[i]) {
1057 			if (slots[i]->pred_sel)
1058 				return 0;
1059 			if (is_alu_once_inst(bc, slots[i]))
1060 				return 0;
1061 		}
1062 	}
1063 
1064 	for (i = 0; i < max_slots; ++i) {
1065 		struct r600_bytecode_alu *alu;
1066 
1067 		if (num_once_inst > 0)
1068 		   return 0;
1069 
1070 		/* check number of literals */
1071 		if (prev[i]) {
1072 			if (r600_bytecode_alu_nliterals(bc, prev[i], literal, &nliteral))
1073 				return 0;
1074 			if (r600_bytecode_alu_nliterals(bc, prev[i], prev_literal, &prev_nliteral))
1075 				return 0;
1076 			if (is_alu_mova_inst(bc, prev[i])) {
1077 				if (have_rel)
1078 					return 0;
1079 				have_mova = 1;
1080 			}
1081 			num_once_inst += is_alu_once_inst(bc, prev[i]);
1082 		}
1083 		if (slots[i] && r600_bytecode_alu_nliterals(bc, slots[i], literal, &nliteral))
1084 			return 0;
1085 
1086 		/* Let's check used slots. */
1087 		if (prev[i] && !slots[i]) {
1088 			result[i] = prev[i];
1089 			continue;
1090 		} else if (prev[i] && slots[i]) {
1091 			if (max_slots == 5 && result[4] == NULL && prev[4] == NULL && slots[4] == NULL) {
1092 				/* Trans unit is still free try to use it. */
1093 				if (is_alu_any_unit_inst(bc, slots[i])) {
1094 					result[i] = prev[i];
1095 					result[4] = slots[i];
1096 				} else if (is_alu_any_unit_inst(bc, prev[i])) {
1097 					if (slots[i]->dst.sel == prev[i]->dst.sel &&
1098 						(slots[i]->dst.write == 1 || slots[i]->is_op3) &&
1099 						(prev[i]->dst.write == 1 || prev[i]->is_op3))
1100 						return 0;
1101 
1102 					result[i] = slots[i];
1103 					result[4] = prev[i];
1104 				} else
1105 					return 0;
1106 			} else
1107 				return 0;
1108 		} else if(!slots[i]) {
1109 			continue;
1110 		} else {
1111 			if (max_slots == 5 && slots[i] && prev[4] &&
1112 					slots[i]->dst.sel == prev[4]->dst.sel &&
1113 					slots[i]->dst.chan == prev[4]->dst.chan &&
1114 					(slots[i]->dst.write == 1 || slots[i]->is_op3) &&
1115 					(prev[4]->dst.write == 1 || prev[4]->is_op3))
1116 				return 0;
1117 
1118 			result[i] = slots[i];
1119 		}
1120 
1121 		alu = slots[i];
1122 		num_once_inst += is_alu_once_inst(bc, alu);
1123 
1124 		/* don't reschedule NOPs */
1125 		if (is_nop_inst(bc, alu))
1126 			return 0;
1127 
1128 		/* Let's check dst gpr. */
1129 		if (alu->dst.rel) {
1130 			if (have_mova)
1131 				return 0;
1132 			have_rel = 1;
1133 		}
1134 
1135 		/* Let's check source gprs */
1136 		num_src = r600_bytecode_get_num_operands(bc, alu);
1137 		for (src = 0; src < num_src; ++src) {
1138 			if (alu->src[src].rel) {
1139 				if (have_mova)
1140 					return 0;
1141 				have_rel = 1;
1142 			}
1143 
1144 			/* Constants don't matter. */
1145 			if (!is_gpr(alu->src[src].sel))
1146 				continue;
1147 
1148 			for (j = 0; j < max_slots; ++j) {
1149 				if (!prev[j] || !(prev[j]->dst.write || prev[j]->is_op3))
1150 					continue;
1151 
1152 				/* If it's relative then we can't determin which gpr is really used. */
1153 				if (prev[j]->dst.chan == alu->src[src].chan &&
1154 					(prev[j]->dst.sel == alu->src[src].sel ||
1155 					prev[j]->dst.rel || alu->src[src].rel))
1156 					return 0;
1157 			}
1158 		}
1159 	}
1160 
1161 	/* more than one PRED_ or KILL_ ? */
1162 	if (num_once_inst > 1)
1163 		return 0;
1164 
1165 	/* check if the result can still be swizzlet */
1166 	r = check_and_set_bank_swizzle(bc, result);
1167 	if (r)
1168 		return 0;
1169 
1170 	/* looks like everything worked out right, apply the changes */
1171 
1172 	/* undo adding previus literals */
1173 	bc->cf_last->ndw -= align(prev_nliteral, 2);
1174 
1175 	/* sort instructions */
1176 	for (i = 0; i < max_slots; ++i) {
1177 		slots[i] = result[i];
1178 		if (result[i]) {
1179 			LIST_DEL(&result[i]->list);
1180 			result[i]->last = 0;
1181 			LIST_ADDTAIL(&result[i]->list, &bc->cf_last->alu);
1182 		}
1183 	}
1184 
1185 	/* determine new last instruction */
1186 	LIST_ENTRY(struct r600_bytecode_alu, bc->cf_last->alu.prev, list)->last = 1;
1187 
1188 	/* determine new first instruction */
1189 	for (i = 0; i < max_slots; ++i) {
1190 		if (result[i]) {
1191 			bc->cf_last->curr_bs_head = result[i];
1192 			break;
1193 		}
1194 	}
1195 
1196 	bc->cf_last->prev_bs_head = bc->cf_last->prev2_bs_head;
1197 	bc->cf_last->prev2_bs_head = NULL;
1198 
1199 	return 0;
1200 }
1201 
1202 /* we'll keep kcache sets sorted by bank & addr */
r600_bytecode_alloc_kcache_line(struct r600_bytecode * bc,struct r600_bytecode_kcache * kcache,unsigned bank,unsigned line)1203 static int r600_bytecode_alloc_kcache_line(struct r600_bytecode *bc,
1204 		struct r600_bytecode_kcache *kcache,
1205 		unsigned bank, unsigned line)
1206 {
1207 	int i, kcache_banks = bc->chip_class >= EVERGREEN ? 4 : 2;
1208 
1209 	for (i = 0; i < kcache_banks; i++) {
1210 		if (kcache[i].mode) {
1211 			int d;
1212 
1213 			if (kcache[i].bank < bank)
1214 				continue;
1215 
1216 			if ((kcache[i].bank == bank && kcache[i].addr > line+1) ||
1217 					kcache[i].bank > bank) {
1218 				/* try to insert new line */
1219 				if (kcache[kcache_banks-1].mode) {
1220 					/* all sets are in use */
1221 					return -ENOMEM;
1222 				}
1223 
1224 				memmove(&kcache[i+1],&kcache[i], (kcache_banks-i-1)*sizeof(struct r600_bytecode_kcache));
1225 				kcache[i].mode = V_SQ_CF_KCACHE_LOCK_1;
1226 				kcache[i].bank = bank;
1227 				kcache[i].addr = line;
1228 				return 0;
1229 			}
1230 
1231 			d = line - kcache[i].addr;
1232 
1233 			if (d == -1) {
1234 				kcache[i].addr--;
1235 				if (kcache[i].mode == V_SQ_CF_KCACHE_LOCK_2) {
1236 					/* we are prepending the line to the current set,
1237 					 * discarding the existing second line,
1238 					 * so we'll have to insert line+2 after it */
1239 					line += 2;
1240 					continue;
1241 				} else if (kcache[i].mode == V_SQ_CF_KCACHE_LOCK_1) {
1242 					kcache[i].mode = V_SQ_CF_KCACHE_LOCK_2;
1243 					return 0;
1244 				} else {
1245 					/* V_SQ_CF_KCACHE_LOCK_LOOP_INDEX is not supported */
1246 					return -ENOMEM;
1247 				}
1248 			} else if (d == 1) {
1249 				kcache[i].mode = V_SQ_CF_KCACHE_LOCK_2;
1250 				return 0;
1251 			} else if (d == 0)
1252 				return 0;
1253 		} else { /* free kcache set - use it */
1254 			kcache[i].mode = V_SQ_CF_KCACHE_LOCK_1;
1255 			kcache[i].bank = bank;
1256 			kcache[i].addr = line;
1257 			return 0;
1258 		}
1259 	}
1260 	return -ENOMEM;
1261 }
1262 
r600_bytecode_alloc_inst_kcache_lines(struct r600_bytecode * bc,struct r600_bytecode_kcache * kcache,struct r600_bytecode_alu * alu)1263 static int r600_bytecode_alloc_inst_kcache_lines(struct r600_bytecode *bc,
1264 		struct r600_bytecode_kcache *kcache,
1265 		struct r600_bytecode_alu *alu)
1266 {
1267 	int i, r;
1268 
1269 	for (i = 0; i < 3; i++) {
1270 		unsigned bank, line, sel = alu->src[i].sel;
1271 
1272 		if (sel < 512)
1273 			continue;
1274 
1275 		bank = alu->src[i].kc_bank;
1276 		line = (sel-512)>>4;
1277 
1278 		if ((r = r600_bytecode_alloc_kcache_line(bc, kcache, bank, line)))
1279 			return r;
1280 	}
1281 	return 0;
1282 }
1283 
r600_bytecode_assign_kcache_banks(struct r600_bytecode * bc,struct r600_bytecode_alu * alu,struct r600_bytecode_kcache * kcache)1284 static int r600_bytecode_assign_kcache_banks(struct r600_bytecode *bc,
1285 		struct r600_bytecode_alu *alu,
1286 		struct r600_bytecode_kcache * kcache)
1287 {
1288 	int i, j;
1289 
1290 	/* Alter the src operands to refer to the kcache. */
1291 	for (i = 0; i < 3; ++i) {
1292 		static const unsigned int base[] = {128, 160, 256, 288};
1293 		unsigned int line, sel = alu->src[i].sel, found = 0;
1294 
1295 		if (sel < 512)
1296 			continue;
1297 
1298 		sel -= 512;
1299 		line = sel>>4;
1300 
1301 		for (j = 0; j < 4 && !found; ++j) {
1302 			switch (kcache[j].mode) {
1303 			case V_SQ_CF_KCACHE_NOP:
1304 			case V_SQ_CF_KCACHE_LOCK_LOOP_INDEX:
1305 				R600_ERR("unexpected kcache line mode\n");
1306 				return -ENOMEM;
1307 			default:
1308 				if (kcache[j].bank == alu->src[i].kc_bank &&
1309 						kcache[j].addr <= line &&
1310 						line < kcache[j].addr + kcache[j].mode) {
1311 					alu->src[i].sel = sel - (kcache[j].addr<<4);
1312 					alu->src[i].sel += base[j];
1313 					found=1;
1314 			    }
1315 			}
1316 		}
1317 	}
1318 	return 0;
1319 }
1320 
r600_bytecode_alloc_kcache_lines(struct r600_bytecode * bc,struct r600_bytecode_alu * alu,int type)1321 static int r600_bytecode_alloc_kcache_lines(struct r600_bytecode *bc, struct r600_bytecode_alu *alu, int type)
1322 {
1323 	struct r600_bytecode_kcache kcache_sets[4];
1324 	struct r600_bytecode_kcache *kcache = kcache_sets;
1325 	int r;
1326 
1327 	memcpy(kcache, bc->cf_last->kcache, 4 * sizeof(struct r600_bytecode_kcache));
1328 
1329 	if ((r = r600_bytecode_alloc_inst_kcache_lines(bc, kcache, alu))) {
1330 		/* can't alloc, need to start new clause */
1331 		if ((r = r600_bytecode_add_cf(bc))) {
1332 			return r;
1333 		}
1334 		bc->cf_last->inst = type;
1335 
1336 		/* retry with the new clause */
1337 		kcache = bc->cf_last->kcache;
1338 		if ((r = r600_bytecode_alloc_inst_kcache_lines(bc, kcache, alu))) {
1339 			/* can't alloc again- should never happen */
1340 			return r;
1341 		}
1342 	} else {
1343 		/* update kcache sets */
1344 		memcpy(bc->cf_last->kcache, kcache, 4 * sizeof(struct r600_bytecode_kcache));
1345 	}
1346 
1347 	/* if we actually used more than 2 kcache sets - use ALU_EXTENDED on eg+ */
1348 	if (kcache[2].mode != V_SQ_CF_KCACHE_NOP) {
1349 		if (bc->chip_class < EVERGREEN)
1350 			return -ENOMEM;
1351 		bc->cf_last->eg_alu_extended = 1;
1352 	}
1353 
1354 	return 0;
1355 }
1356 
insert_nop_r6xx(struct r600_bytecode * bc)1357 static int insert_nop_r6xx(struct r600_bytecode *bc)
1358 {
1359 	struct r600_bytecode_alu alu;
1360 	int r, i;
1361 
1362 	for (i = 0; i < 4; i++) {
1363 		memset(&alu, 0, sizeof(alu));
1364 		alu.inst = V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_NOP;
1365 		alu.src[0].chan = i;
1366 		alu.dst.chan = i;
1367 		alu.last = (i == 3);
1368 		r = r600_bytecode_add_alu(bc, &alu);
1369 		if (r)
1370 			return r;
1371 	}
1372 	return 0;
1373 }
1374 
1375 /* load AR register from gpr (bc->ar_reg) with MOVA_INT */
load_ar_r6xx(struct r600_bytecode * bc)1376 static int load_ar_r6xx(struct r600_bytecode *bc)
1377 {
1378 	struct r600_bytecode_alu alu;
1379 	int r;
1380 
1381 	if (bc->ar_loaded)
1382 		return 0;
1383 
1384 	/* hack to avoid making MOVA the last instruction in the clause */
1385 	if ((bc->cf_last->ndw>>1) >= 110)
1386 		bc->force_add_cf = 1;
1387 
1388 	memset(&alu, 0, sizeof(alu));
1389 	alu.inst = V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_GPR_INT;
1390 	alu.src[0].sel = bc->ar_reg;
1391 	alu.last = 1;
1392 	alu.index_mode = INDEX_MODE_LOOP;
1393 	r = r600_bytecode_add_alu(bc, &alu);
1394 	if (r)
1395 		return r;
1396 
1397 	/* no requirement to set uses waterfall on MOVA_GPR_INT */
1398 	bc->ar_loaded = 1;
1399 	return 0;
1400 }
1401 
1402 /* load AR register from gpr (bc->ar_reg) with MOVA_INT */
load_ar(struct r600_bytecode * bc)1403 static int load_ar(struct r600_bytecode *bc)
1404 {
1405 	struct r600_bytecode_alu alu;
1406 	int r;
1407 
1408 	if (bc->ar_handling)
1409 		return load_ar_r6xx(bc);
1410 
1411 	if (bc->ar_loaded)
1412 		return 0;
1413 
1414 	/* hack to avoid making MOVA the last instruction in the clause */
1415 	if ((bc->cf_last->ndw>>1) >= 110)
1416 		bc->force_add_cf = 1;
1417 
1418 	memset(&alu, 0, sizeof(alu));
1419 	alu.inst = BC_INST(bc, V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MOVA_INT);
1420 	alu.src[0].sel = bc->ar_reg;
1421 	alu.last = 1;
1422 	r = r600_bytecode_add_alu(bc, &alu);
1423 	if (r)
1424 		return r;
1425 
1426 	bc->cf_last->r6xx_uses_waterfall = 1;
1427 	bc->ar_loaded = 1;
1428 	return 0;
1429 }
1430 
r600_bytecode_add_alu_type(struct r600_bytecode * bc,const struct r600_bytecode_alu * alu,int type)1431 int r600_bytecode_add_alu_type(struct r600_bytecode *bc, const struct r600_bytecode_alu *alu, int type)
1432 {
1433 	struct r600_bytecode_alu *nalu = r600_bytecode_alu();
1434 	struct r600_bytecode_alu *lalu;
1435 	int i, r;
1436 
1437 	if (nalu == NULL)
1438 		return -ENOMEM;
1439 	memcpy(nalu, alu, sizeof(struct r600_bytecode_alu));
1440 
1441 	if (bc->cf_last != NULL && bc->cf_last->inst != type) {
1442 		/* check if we could add it anyway */
1443 		if (bc->cf_last->inst == BC_INST(bc, V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU) &&
1444 			type == BC_INST(bc, V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_PUSH_BEFORE)) {
1445 			LIST_FOR_EACH_ENTRY(lalu, &bc->cf_last->alu, list) {
1446 				if (lalu->execute_mask) {
1447 					bc->force_add_cf = 1;
1448 					break;
1449 				}
1450 			}
1451 		} else
1452 			bc->force_add_cf = 1;
1453 	}
1454 
1455 	/* cf can contains only alu or only vtx or only tex */
1456 	if (bc->cf_last == NULL || bc->force_add_cf) {
1457 		r = r600_bytecode_add_cf(bc);
1458 		if (r) {
1459 			free(nalu);
1460 			return r;
1461 		}
1462 	}
1463 	bc->cf_last->inst = type;
1464 
1465 	/* Check AR usage and load it if required */
1466 	for (i = 0; i < 3; i++)
1467 		if (nalu->src[i].rel && !bc->ar_loaded)
1468 			load_ar(bc);
1469 
1470 	if (nalu->dst.rel && !bc->ar_loaded)
1471 		load_ar(bc);
1472 
1473 	/* Setup the kcache for this ALU instruction. This will start a new
1474 	 * ALU clause if needed. */
1475 	if ((r = r600_bytecode_alloc_kcache_lines(bc, nalu, type))) {
1476 		free(nalu);
1477 		return r;
1478 	}
1479 
1480 	if (!bc->cf_last->curr_bs_head) {
1481 		bc->cf_last->curr_bs_head = nalu;
1482 	}
1483 	/* number of gpr == the last gpr used in any alu */
1484 	for (i = 0; i < 3; i++) {
1485 		if (nalu->src[i].sel >= bc->ngpr && nalu->src[i].sel < 128) {
1486 			bc->ngpr = nalu->src[i].sel + 1;
1487 		}
1488 		if (nalu->src[i].sel == V_SQ_ALU_SRC_LITERAL)
1489 			r600_bytecode_special_constants(nalu->src[i].value,
1490 				&nalu->src[i].sel, &nalu->src[i].neg);
1491 	}
1492 	if (nalu->dst.sel >= bc->ngpr) {
1493 		bc->ngpr = nalu->dst.sel + 1;
1494 	}
1495 	LIST_ADDTAIL(&nalu->list, &bc->cf_last->alu);
1496 	/* each alu use 2 dwords */
1497 	bc->cf_last->ndw += 2;
1498 	bc->ndw += 2;
1499 
1500 	/* process cur ALU instructions for bank swizzle */
1501 	if (nalu->last) {
1502 		uint32_t literal[4];
1503 		unsigned nliteral;
1504 		struct r600_bytecode_alu *slots[5];
1505 		int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
1506 		r = assign_alu_units(bc, bc->cf_last->curr_bs_head, slots);
1507 		if (r)
1508 			return r;
1509 
1510 		if (bc->cf_last->prev_bs_head) {
1511 			r = merge_inst_groups(bc, slots, bc->cf_last->prev_bs_head);
1512 			if (r)
1513 				return r;
1514 		}
1515 
1516 		if (bc->cf_last->prev_bs_head) {
1517 			r = replace_gpr_with_pv_ps(bc, slots, bc->cf_last->prev_bs_head);
1518 			if (r)
1519 				return r;
1520 		}
1521 
1522 		r = check_and_set_bank_swizzle(bc, slots);
1523 		if (r)
1524 			return r;
1525 
1526 		for (i = 0, nliteral = 0; i < max_slots; i++) {
1527 			if (slots[i]) {
1528 				r = r600_bytecode_alu_nliterals(bc, slots[i], literal, &nliteral);
1529 				if (r)
1530 					return r;
1531 			}
1532 		}
1533 		bc->cf_last->ndw += align(nliteral, 2);
1534 
1535 		/* at most 128 slots, one add alu can add 5 slots + 4 constants(2 slots)
1536 		 * worst case */
1537 		if ((bc->cf_last->ndw >> 1) >= 120) {
1538 			bc->force_add_cf = 1;
1539 		}
1540 
1541 		bc->cf_last->prev2_bs_head = bc->cf_last->prev_bs_head;
1542 		bc->cf_last->prev_bs_head = bc->cf_last->curr_bs_head;
1543 		bc->cf_last->curr_bs_head = NULL;
1544 	}
1545 
1546 	if (nalu->dst.rel && bc->r6xx_nop_after_rel_dst)
1547 		insert_nop_r6xx(bc);
1548 
1549 	return 0;
1550 }
1551 
r600_bytecode_add_alu(struct r600_bytecode * bc,const struct r600_bytecode_alu * alu)1552 int r600_bytecode_add_alu(struct r600_bytecode *bc, const struct r600_bytecode_alu *alu)
1553 {
1554 	return r600_bytecode_add_alu_type(bc, alu, BC_INST(bc, V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU));
1555 }
1556 
r600_bytecode_num_tex_and_vtx_instructions(const struct r600_bytecode * bc)1557 static unsigned r600_bytecode_num_tex_and_vtx_instructions(const struct r600_bytecode *bc)
1558 {
1559 	switch (bc->chip_class) {
1560 	case R600:
1561 		return 8;
1562 
1563 	case R700:
1564 	case EVERGREEN:
1565 	case CAYMAN:
1566 		return 16;
1567 
1568 	default:
1569 		R600_ERR("Unknown chip class %d.\n", bc->chip_class);
1570 		return 8;
1571 	}
1572 }
1573 
last_inst_was_not_vtx_fetch(struct r600_bytecode * bc)1574 static inline boolean last_inst_was_not_vtx_fetch(struct r600_bytecode *bc)
1575 {
1576 	switch (bc->chip_class) {
1577 	case R700:
1578 	case R600:
1579 		return bc->cf_last->inst != V_SQ_CF_WORD1_SQ_CF_INST_VTX &&
1580 		       bc->cf_last->inst != V_SQ_CF_WORD1_SQ_CF_INST_VTX_TC;
1581 	case EVERGREEN:
1582 		return bc->cf_last->inst != EG_V_SQ_CF_WORD1_SQ_CF_INST_VTX;
1583 	case CAYMAN:
1584 		return bc->cf_last->inst != CM_V_SQ_CF_WORD1_SQ_CF_INST_TC;
1585 	default:
1586 		R600_ERR("Unknown chip class %d.\n", bc->chip_class);
1587 		return FALSE;
1588 	}
1589 }
1590 
r600_bytecode_add_vtx(struct r600_bytecode * bc,const struct r600_bytecode_vtx * vtx)1591 int r600_bytecode_add_vtx(struct r600_bytecode *bc, const struct r600_bytecode_vtx *vtx)
1592 {
1593 	struct r600_bytecode_vtx *nvtx = r600_bytecode_vtx();
1594 	int r;
1595 
1596 	if (nvtx == NULL)
1597 		return -ENOMEM;
1598 	memcpy(nvtx, vtx, sizeof(struct r600_bytecode_vtx));
1599 
1600 	/* cf can contains only alu or only vtx or only tex */
1601 	if (bc->cf_last == NULL ||
1602 	    last_inst_was_not_vtx_fetch(bc) ||
1603 	    bc->force_add_cf) {
1604 		r = r600_bytecode_add_cf(bc);
1605 		if (r) {
1606 			free(nvtx);
1607 			return r;
1608 		}
1609 		switch (bc->chip_class) {
1610 		case R600:
1611 		case R700:
1612 			bc->cf_last->inst = V_SQ_CF_WORD1_SQ_CF_INST_VTX;
1613 			break;
1614 		case EVERGREEN:
1615 			bc->cf_last->inst = EG_V_SQ_CF_WORD1_SQ_CF_INST_VTX;
1616 			break;
1617 		case CAYMAN:
1618 			bc->cf_last->inst = CM_V_SQ_CF_WORD1_SQ_CF_INST_TC;
1619 			break;
1620 		default:
1621 			R600_ERR("Unknown chip class %d.\n", bc->chip_class);
1622 			return -EINVAL;
1623 		}
1624 	}
1625 	LIST_ADDTAIL(&nvtx->list, &bc->cf_last->vtx);
1626 	/* each fetch use 4 dwords */
1627 	bc->cf_last->ndw += 4;
1628 	bc->ndw += 4;
1629 	if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
1630 		bc->force_add_cf = 1;
1631 
1632 	bc->ngpr = MAX2(bc->ngpr, vtx->src_gpr + 1);
1633 	bc->ngpr = MAX2(bc->ngpr, vtx->dst_gpr + 1);
1634 
1635 	return 0;
1636 }
1637 
r600_bytecode_add_tex(struct r600_bytecode * bc,const struct r600_bytecode_tex * tex)1638 int r600_bytecode_add_tex(struct r600_bytecode *bc, const struct r600_bytecode_tex *tex)
1639 {
1640 	struct r600_bytecode_tex *ntex = r600_bytecode_tex();
1641 	int r;
1642 
1643 	if (ntex == NULL)
1644 		return -ENOMEM;
1645 	memcpy(ntex, tex, sizeof(struct r600_bytecode_tex));
1646 
1647 	/* we can't fetch data und use it as texture lookup address in the same TEX clause */
1648 	if (bc->cf_last != NULL &&
1649 		bc->cf_last->inst == BC_INST(bc, V_SQ_CF_WORD1_SQ_CF_INST_TEX)) {
1650 		struct r600_bytecode_tex *ttex;
1651 		LIST_FOR_EACH_ENTRY(ttex, &bc->cf_last->tex, list) {
1652 			if (ttex->dst_gpr == ntex->src_gpr) {
1653 				bc->force_add_cf = 1;
1654 				break;
1655 			}
1656 		}
1657 		/* slight hack to make gradients always go into same cf */
1658 		if (ntex->inst == SQ_TEX_INST_SET_GRADIENTS_H)
1659 			bc->force_add_cf = 1;
1660 	}
1661 
1662 	/* cf can contains only alu or only vtx or only tex */
1663 	if (bc->cf_last == NULL ||
1664 		bc->cf_last->inst != BC_INST(bc, V_SQ_CF_WORD1_SQ_CF_INST_TEX) ||
1665 	        bc->force_add_cf) {
1666 		r = r600_bytecode_add_cf(bc);
1667 		if (r) {
1668 			free(ntex);
1669 			return r;
1670 		}
1671 		bc->cf_last->inst = BC_INST(bc, V_SQ_CF_WORD1_SQ_CF_INST_TEX);
1672 	}
1673 	if (ntex->src_gpr >= bc->ngpr) {
1674 		bc->ngpr = ntex->src_gpr + 1;
1675 	}
1676 	if (ntex->dst_gpr >= bc->ngpr) {
1677 		bc->ngpr = ntex->dst_gpr + 1;
1678 	}
1679 	LIST_ADDTAIL(&ntex->list, &bc->cf_last->tex);
1680 	/* each texture fetch use 4 dwords */
1681 	bc->cf_last->ndw += 4;
1682 	bc->ndw += 4;
1683 	if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
1684 		bc->force_add_cf = 1;
1685 	return 0;
1686 }
1687 
r600_bytecode_add_cfinst(struct r600_bytecode * bc,int inst)1688 int r600_bytecode_add_cfinst(struct r600_bytecode *bc, int inst)
1689 {
1690 	int r;
1691 	r = r600_bytecode_add_cf(bc);
1692 	if (r)
1693 		return r;
1694 
1695 	bc->cf_last->cond = V_SQ_CF_COND_ACTIVE;
1696 	bc->cf_last->inst = inst;
1697 	return 0;
1698 }
1699 
cm_bytecode_add_cf_end(struct r600_bytecode * bc)1700 int cm_bytecode_add_cf_end(struct r600_bytecode *bc)
1701 {
1702 	return r600_bytecode_add_cfinst(bc, CM_V_SQ_CF_WORD1_SQ_CF_INST_END);
1703 }
1704 
1705 /* common to all 3 families */
r600_bytecode_vtx_build(struct r600_bytecode * bc,struct r600_bytecode_vtx * vtx,unsigned id)1706 static int r600_bytecode_vtx_build(struct r600_bytecode *bc, struct r600_bytecode_vtx *vtx, unsigned id)
1707 {
1708 	bc->bytecode[id] = S_SQ_VTX_WORD0_BUFFER_ID(vtx->buffer_id) |
1709 			S_SQ_VTX_WORD0_FETCH_TYPE(vtx->fetch_type) |
1710 			S_SQ_VTX_WORD0_SRC_GPR(vtx->src_gpr) |
1711 			S_SQ_VTX_WORD0_SRC_SEL_X(vtx->src_sel_x);
1712 	if (bc->chip_class < CAYMAN)
1713 		bc->bytecode[id] |= S_SQ_VTX_WORD0_MEGA_FETCH_COUNT(vtx->mega_fetch_count);
1714 	id++;
1715 	bc->bytecode[id++] = S_SQ_VTX_WORD1_DST_SEL_X(vtx->dst_sel_x) |
1716 				S_SQ_VTX_WORD1_DST_SEL_Y(vtx->dst_sel_y) |
1717 				S_SQ_VTX_WORD1_DST_SEL_Z(vtx->dst_sel_z) |
1718 				S_SQ_VTX_WORD1_DST_SEL_W(vtx->dst_sel_w) |
1719 				S_SQ_VTX_WORD1_USE_CONST_FIELDS(vtx->use_const_fields) |
1720 				S_SQ_VTX_WORD1_DATA_FORMAT(vtx->data_format) |
1721 				S_SQ_VTX_WORD1_NUM_FORMAT_ALL(vtx->num_format_all) |
1722 				S_SQ_VTX_WORD1_FORMAT_COMP_ALL(vtx->format_comp_all) |
1723 				S_SQ_VTX_WORD1_SRF_MODE_ALL(vtx->srf_mode_all) |
1724 				S_SQ_VTX_WORD1_GPR_DST_GPR(vtx->dst_gpr);
1725 	bc->bytecode[id] = S_SQ_VTX_WORD2_OFFSET(vtx->offset)|
1726 				S_SQ_VTX_WORD2_ENDIAN_SWAP(vtx->endian);
1727 	if (bc->chip_class < CAYMAN)
1728 		bc->bytecode[id] |= S_SQ_VTX_WORD2_MEGA_FETCH(1);
1729 	id++;
1730 	bc->bytecode[id++] = 0;
1731 	return 0;
1732 }
1733 
1734 /* common to all 3 families */
r600_bytecode_tex_build(struct r600_bytecode * bc,struct r600_bytecode_tex * tex,unsigned id)1735 static int r600_bytecode_tex_build(struct r600_bytecode *bc, struct r600_bytecode_tex *tex, unsigned id)
1736 {
1737 	bc->bytecode[id++] = S_SQ_TEX_WORD0_TEX_INST(tex->inst) |
1738 				S_SQ_TEX_WORD0_RESOURCE_ID(tex->resource_id) |
1739 				S_SQ_TEX_WORD0_SRC_GPR(tex->src_gpr) |
1740 				S_SQ_TEX_WORD0_SRC_REL(tex->src_rel);
1741 	bc->bytecode[id++] = S_SQ_TEX_WORD1_DST_GPR(tex->dst_gpr) |
1742 				S_SQ_TEX_WORD1_DST_REL(tex->dst_rel) |
1743 				S_SQ_TEX_WORD1_DST_SEL_X(tex->dst_sel_x) |
1744 				S_SQ_TEX_WORD1_DST_SEL_Y(tex->dst_sel_y) |
1745 				S_SQ_TEX_WORD1_DST_SEL_Z(tex->dst_sel_z) |
1746 				S_SQ_TEX_WORD1_DST_SEL_W(tex->dst_sel_w) |
1747 				S_SQ_TEX_WORD1_LOD_BIAS(tex->lod_bias) |
1748 				S_SQ_TEX_WORD1_COORD_TYPE_X(tex->coord_type_x) |
1749 				S_SQ_TEX_WORD1_COORD_TYPE_Y(tex->coord_type_y) |
1750 				S_SQ_TEX_WORD1_COORD_TYPE_Z(tex->coord_type_z) |
1751 				S_SQ_TEX_WORD1_COORD_TYPE_W(tex->coord_type_w);
1752 	bc->bytecode[id++] = S_SQ_TEX_WORD2_OFFSET_X(tex->offset_x) |
1753 				S_SQ_TEX_WORD2_OFFSET_Y(tex->offset_y) |
1754 				S_SQ_TEX_WORD2_OFFSET_Z(tex->offset_z) |
1755 				S_SQ_TEX_WORD2_SAMPLER_ID(tex->sampler_id) |
1756 				S_SQ_TEX_WORD2_SRC_SEL_X(tex->src_sel_x) |
1757 				S_SQ_TEX_WORD2_SRC_SEL_Y(tex->src_sel_y) |
1758 				S_SQ_TEX_WORD2_SRC_SEL_Z(tex->src_sel_z) |
1759 				S_SQ_TEX_WORD2_SRC_SEL_W(tex->src_sel_w);
1760 	bc->bytecode[id++] = 0;
1761 	return 0;
1762 }
1763 
1764 /* r600 only, r700/eg bits in r700_asm.c */
r600_bytecode_alu_build(struct r600_bytecode * bc,struct r600_bytecode_alu * alu,unsigned id)1765 static int r600_bytecode_alu_build(struct r600_bytecode *bc, struct r600_bytecode_alu *alu, unsigned id)
1766 {
1767 	/* don't replace gpr by pv or ps for destination register */
1768 	bc->bytecode[id++] = S_SQ_ALU_WORD0_SRC0_SEL(alu->src[0].sel) |
1769 				S_SQ_ALU_WORD0_SRC0_REL(alu->src[0].rel) |
1770 				S_SQ_ALU_WORD0_SRC0_CHAN(alu->src[0].chan) |
1771 				S_SQ_ALU_WORD0_SRC0_NEG(alu->src[0].neg) |
1772 				S_SQ_ALU_WORD0_SRC1_SEL(alu->src[1].sel) |
1773 				S_SQ_ALU_WORD0_SRC1_REL(alu->src[1].rel) |
1774 				S_SQ_ALU_WORD0_SRC1_CHAN(alu->src[1].chan) |
1775 				S_SQ_ALU_WORD0_SRC1_NEG(alu->src[1].neg) |
1776 				S_SQ_ALU_WORD0_INDEX_MODE(alu->index_mode) |
1777 				S_SQ_ALU_WORD0_PRED_SEL(alu->pred_sel) |
1778 				S_SQ_ALU_WORD0_LAST(alu->last);
1779 
1780 	if (alu->is_op3) {
1781 		bc->bytecode[id++] = S_SQ_ALU_WORD1_DST_GPR(alu->dst.sel) |
1782 					S_SQ_ALU_WORD1_DST_CHAN(alu->dst.chan) |
1783 					S_SQ_ALU_WORD1_DST_REL(alu->dst.rel) |
1784 					S_SQ_ALU_WORD1_CLAMP(alu->dst.clamp) |
1785 					S_SQ_ALU_WORD1_OP3_SRC2_SEL(alu->src[2].sel) |
1786 					S_SQ_ALU_WORD1_OP3_SRC2_REL(alu->src[2].rel) |
1787 					S_SQ_ALU_WORD1_OP3_SRC2_CHAN(alu->src[2].chan) |
1788 					S_SQ_ALU_WORD1_OP3_SRC2_NEG(alu->src[2].neg) |
1789 					S_SQ_ALU_WORD1_OP3_ALU_INST(alu->inst) |
1790 					S_SQ_ALU_WORD1_BANK_SWIZZLE(alu->bank_swizzle);
1791 	} else {
1792 		bc->bytecode[id++] = S_SQ_ALU_WORD1_DST_GPR(alu->dst.sel) |
1793 					S_SQ_ALU_WORD1_DST_CHAN(alu->dst.chan) |
1794 					S_SQ_ALU_WORD1_DST_REL(alu->dst.rel) |
1795 					S_SQ_ALU_WORD1_CLAMP(alu->dst.clamp) |
1796 					S_SQ_ALU_WORD1_OP2_SRC0_ABS(alu->src[0].abs) |
1797 					S_SQ_ALU_WORD1_OP2_SRC1_ABS(alu->src[1].abs) |
1798 					S_SQ_ALU_WORD1_OP2_WRITE_MASK(alu->dst.write) |
1799 					S_SQ_ALU_WORD1_OP2_OMOD(alu->omod) |
1800 					S_SQ_ALU_WORD1_OP2_ALU_INST(alu->inst) |
1801 					S_SQ_ALU_WORD1_BANK_SWIZZLE(alu->bank_swizzle) |
1802 					S_SQ_ALU_WORD1_OP2_UPDATE_EXECUTE_MASK(alu->execute_mask) |
1803 					S_SQ_ALU_WORD1_OP2_UPDATE_PRED(alu->update_pred);
1804 	}
1805 	return 0;
1806 }
1807 
r600_bytecode_cf_vtx_build(uint32_t * bytecode,const struct r600_bytecode_cf * cf)1808 static void r600_bytecode_cf_vtx_build(uint32_t *bytecode, const struct r600_bytecode_cf *cf)
1809 {
1810 	*bytecode++ = S_SQ_CF_WORD0_ADDR(cf->addr >> 1);
1811 	*bytecode++ = cf->inst |
1812 			S_SQ_CF_WORD1_BARRIER(1) |
1813 			S_SQ_CF_WORD1_COUNT((cf->ndw / 4) - 1);
1814 }
1815 
1816 /* common for r600/r700 - eg in eg_asm.c */
r600_bytecode_cf_build(struct r600_bytecode * bc,struct r600_bytecode_cf * cf)1817 static int r600_bytecode_cf_build(struct r600_bytecode *bc, struct r600_bytecode_cf *cf)
1818 {
1819 	unsigned id = cf->id;
1820 
1821 	switch (cf->inst) {
1822 	case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU:
1823 	case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_PUSH_BEFORE:
1824 	case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP_AFTER:
1825 	case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP2_AFTER:
1826 		bc->bytecode[id++] = S_SQ_CF_ALU_WORD0_ADDR(cf->addr >> 1) |
1827 			S_SQ_CF_ALU_WORD0_KCACHE_MODE0(cf->kcache[0].mode) |
1828 			S_SQ_CF_ALU_WORD0_KCACHE_BANK0(cf->kcache[0].bank) |
1829 			S_SQ_CF_ALU_WORD0_KCACHE_BANK1(cf->kcache[1].bank);
1830 
1831 		bc->bytecode[id++] = cf->inst |
1832 			S_SQ_CF_ALU_WORD1_KCACHE_MODE1(cf->kcache[1].mode) |
1833 			S_SQ_CF_ALU_WORD1_KCACHE_ADDR0(cf->kcache[0].addr) |
1834 			S_SQ_CF_ALU_WORD1_KCACHE_ADDR1(cf->kcache[1].addr) |
1835 					S_SQ_CF_ALU_WORD1_BARRIER(1) |
1836 					S_SQ_CF_ALU_WORD1_USES_WATERFALL(bc->chip_class == R600 ? cf->r6xx_uses_waterfall : 0) |
1837 					S_SQ_CF_ALU_WORD1_COUNT((cf->ndw / 2) - 1);
1838 		break;
1839 	case V_SQ_CF_WORD1_SQ_CF_INST_TEX:
1840 	case V_SQ_CF_WORD1_SQ_CF_INST_VTX:
1841 	case V_SQ_CF_WORD1_SQ_CF_INST_VTX_TC:
1842 		if (bc->chip_class == R700)
1843 			r700_bytecode_cf_vtx_build(&bc->bytecode[id], cf);
1844 		else
1845 			r600_bytecode_cf_vtx_build(&bc->bytecode[id], cf);
1846 		break;
1847 	case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT:
1848 	case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT_DONE:
1849 		bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(cf->output.gpr) |
1850 			S_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(cf->output.elem_size) |
1851 			S_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(cf->output.array_base) |
1852 			S_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(cf->output.type);
1853 		bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(cf->output.burst_count - 1) |
1854 			S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_X(cf->output.swizzle_x) |
1855 			S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Y(cf->output.swizzle_y) |
1856 			S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Z(cf->output.swizzle_z) |
1857 			S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_W(cf->output.swizzle_w) |
1858 			S_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(cf->output.barrier) |
1859 			cf->output.inst |
1860 			S_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(cf->output.end_of_program);
1861 		break;
1862 	case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0:
1863 	case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1:
1864 	case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2:
1865 	case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3:
1866 		bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(cf->output.gpr) |
1867 			S_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(cf->output.elem_size) |
1868 			S_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(cf->output.array_base) |
1869 			S_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(cf->output.type);
1870 		bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(cf->output.burst_count - 1) |
1871 			S_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(cf->output.barrier) |
1872 			cf->output.inst |
1873 			S_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(cf->output.end_of_program) |
1874 			S_SQ_CF_ALLOC_EXPORT_WORD1_BUF_ARRAY_SIZE(cf->output.array_size) |
1875 			S_SQ_CF_ALLOC_EXPORT_WORD1_BUF_COMP_MASK(cf->output.comp_mask);
1876 		break;
1877 	case V_SQ_CF_WORD1_SQ_CF_INST_JUMP:
1878 	case V_SQ_CF_WORD1_SQ_CF_INST_ELSE:
1879 	case V_SQ_CF_WORD1_SQ_CF_INST_POP:
1880 	case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_NO_AL:
1881 	case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_DX10:
1882 	case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_END:
1883 	case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_CONTINUE:
1884 	case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_BREAK:
1885 	case V_SQ_CF_WORD1_SQ_CF_INST_CALL_FS:
1886 	case V_SQ_CF_WORD1_SQ_CF_INST_RETURN:
1887 		bc->bytecode[id++] = S_SQ_CF_WORD0_ADDR(cf->cf_addr >> 1);
1888 		bc->bytecode[id++] = cf->inst |
1889 					S_SQ_CF_WORD1_BARRIER(1) |
1890 			                S_SQ_CF_WORD1_COND(cf->cond) |
1891 			                S_SQ_CF_WORD1_POP_COUNT(cf->pop_count);
1892 
1893 		break;
1894 	default:
1895 		R600_ERR("unsupported CF instruction (0x%X)\n", cf->inst);
1896 		return -EINVAL;
1897 	}
1898 	return 0;
1899 }
1900 
r600_bytecode_build(struct r600_bytecode * bc)1901 int r600_bytecode_build(struct r600_bytecode *bc)
1902 {
1903 	struct r600_bytecode_cf *cf;
1904 	struct r600_bytecode_alu *alu;
1905 	struct r600_bytecode_vtx *vtx;
1906 	struct r600_bytecode_tex *tex;
1907 	uint32_t literal[4];
1908 	unsigned nliteral;
1909 	unsigned addr;
1910 	int i, r;
1911 
1912 	if (bc->callstack[0].max > 0)
1913 		bc->nstack = ((bc->callstack[0].max + 3) >> 2) + 2;
1914 	if (bc->type == TGSI_PROCESSOR_VERTEX && !bc->nstack) {
1915 		bc->nstack = 1;
1916 	}
1917 
1918 	/* first path compute addr of each CF block */
1919 	/* addr start after all the CF instructions */
1920 	addr = bc->cf_last->id + 2;
1921 	LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
1922 		if (bc->chip_class >= EVERGREEN) {
1923 			switch (cf->inst) {
1924 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_TEX:
1925 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_VTX:
1926 				/* fetch node need to be 16 bytes aligned*/
1927 				addr += 3;
1928 				addr &= 0xFFFFFFFCUL;
1929 				break;
1930 			case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU:
1931 			case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP_AFTER:
1932 			case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP2_AFTER:
1933 			case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_PUSH_BEFORE:
1934 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT:
1935 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT_DONE:
1936 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF0:
1937 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF1:
1938 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF2:
1939 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF3:
1940 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF0:
1941 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF1:
1942 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF2:
1943 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF3:
1944 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF0:
1945 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF1:
1946 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF2:
1947 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF3:
1948 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF0:
1949 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF1:
1950 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF2:
1951 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF3:
1952 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_JUMP:
1953 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_ELSE:
1954 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_POP:
1955 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_NO_AL:
1956 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_DX10:
1957 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_END:
1958 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_CONTINUE:
1959 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_BREAK:
1960 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_CALL_FS:
1961 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_RETURN:
1962 			case CM_V_SQ_CF_WORD1_SQ_CF_INST_END:
1963 			case CF_NATIVE:
1964 				break;
1965 			default:
1966 				R600_ERR("unsupported CF instruction (0x%X)\n", cf->inst);
1967 				return -EINVAL;
1968 			}
1969 		} else {
1970 			switch (cf->inst) {
1971 			case V_SQ_CF_WORD1_SQ_CF_INST_TEX:
1972 			case V_SQ_CF_WORD1_SQ_CF_INST_VTX:
1973 			case V_SQ_CF_WORD1_SQ_CF_INST_VTX_TC:
1974 				/* fetch node need to be 16 bytes aligned*/
1975 				addr += 3;
1976 				addr &= 0xFFFFFFFCUL;
1977 				break;
1978 			case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU:
1979 			case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP_AFTER:
1980 			case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP2_AFTER:
1981 			case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_PUSH_BEFORE:
1982 			case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT:
1983 			case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT_DONE:
1984 			case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0:
1985 			case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1:
1986 			case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2:
1987 			case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3:
1988 			case V_SQ_CF_WORD1_SQ_CF_INST_JUMP:
1989 			case V_SQ_CF_WORD1_SQ_CF_INST_ELSE:
1990 			case V_SQ_CF_WORD1_SQ_CF_INST_POP:
1991 			case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_DX10:
1992 			case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_END:
1993 			case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_CONTINUE:
1994 			case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_BREAK:
1995 			case V_SQ_CF_WORD1_SQ_CF_INST_CALL_FS:
1996 			case V_SQ_CF_WORD1_SQ_CF_INST_RETURN:
1997 				break;
1998 			default:
1999 				R600_ERR("unsupported CF instruction (0x%X)\n", cf->inst);
2000 				return -EINVAL;
2001 			}
2002 		}
2003 		cf->addr = addr;
2004 		addr += cf->ndw;
2005 		bc->ndw = cf->addr + cf->ndw;
2006 	}
2007 	free(bc->bytecode);
2008 	bc->bytecode = calloc(1, bc->ndw * 4);
2009 	if (bc->bytecode == NULL)
2010 		return -ENOMEM;
2011 	LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
2012 		addr = cf->addr;
2013 		if (bc->chip_class >= EVERGREEN) {
2014 			r = eg_bytecode_cf_build(bc, cf);
2015 			if (r)
2016 				return r;
2017 
2018 			switch (cf->inst) {
2019 			case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU:
2020 			case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP_AFTER:
2021 			case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP2_AFTER:
2022 			case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_PUSH_BEFORE:
2023 				nliteral = 0;
2024 				memset(literal, 0, sizeof(literal));
2025 				LIST_FOR_EACH_ENTRY(alu, &cf->alu, list) {
2026 					r = r600_bytecode_alu_nliterals(bc, alu, literal, &nliteral);
2027 					if (r)
2028 						return r;
2029 					r600_bytecode_alu_adjust_literals(bc, alu, literal, nliteral);
2030 					r600_bytecode_assign_kcache_banks(bc, alu, cf->kcache);
2031 
2032 					switch(bc->chip_class) {
2033 					case EVERGREEN: /* eg alu is same encoding as r700 */
2034 					case CAYMAN:
2035 						r = r700_bytecode_alu_build(bc, alu, addr);
2036 						break;
2037 					default:
2038 						R600_ERR("unknown chip class %d.\n", bc->chip_class);
2039 						return -EINVAL;
2040 					}
2041 					if (r)
2042 						return r;
2043 					addr += 2;
2044 					if (alu->last) {
2045 						for (i = 0; i < align(nliteral, 2); ++i) {
2046 							bc->bytecode[addr++] = literal[i];
2047 						}
2048 						nliteral = 0;
2049 						memset(literal, 0, sizeof(literal));
2050 					}
2051 				}
2052 				break;
2053 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_VTX:
2054 				LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
2055 					r = r600_bytecode_vtx_build(bc, vtx, addr);
2056 					if (r)
2057 						return r;
2058 					addr += 4;
2059 				}
2060 				break;
2061 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_TEX:
2062 				LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
2063 					assert(bc->chip_class >= EVERGREEN);
2064 					r = r600_bytecode_vtx_build(bc, vtx, addr);
2065 					if (r)
2066 						return r;
2067 					addr += 4;
2068 				}
2069 				LIST_FOR_EACH_ENTRY(tex, &cf->tex, list) {
2070 					r = r600_bytecode_tex_build(bc, tex, addr);
2071 					if (r)
2072 						return r;
2073 					addr += 4;
2074 				}
2075 				break;
2076 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT:
2077 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT_DONE:
2078 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF0:
2079 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF1:
2080 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF2:
2081 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF3:
2082 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF0:
2083 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF1:
2084 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF2:
2085 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF3:
2086 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF0:
2087 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF1:
2088 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF2:
2089 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF3:
2090 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF0:
2091 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF1:
2092 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF2:
2093 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF3:
2094 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_DX10:
2095 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_NO_AL:
2096 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_END:
2097 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_CONTINUE:
2098 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_BREAK:
2099 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_JUMP:
2100 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_ELSE:
2101 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_POP:
2102 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_CALL_FS:
2103 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_RETURN:
2104 			case CM_V_SQ_CF_WORD1_SQ_CF_INST_END:
2105 				break;
2106 			case CF_NATIVE:
2107 				break;
2108 			default:
2109 				R600_ERR("unsupported CF instruction (0x%X)\n", cf->inst);
2110 				return -EINVAL;
2111 			}
2112 		} else {
2113 			r = r600_bytecode_cf_build(bc, cf);
2114 			if (r)
2115 				return r;
2116 
2117 			switch (cf->inst) {
2118 			case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU:
2119 			case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP_AFTER:
2120 			case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP2_AFTER:
2121 			case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_PUSH_BEFORE:
2122 				nliteral = 0;
2123 				memset(literal, 0, sizeof(literal));
2124 				LIST_FOR_EACH_ENTRY(alu, &cf->alu, list) {
2125 					r = r600_bytecode_alu_nliterals(bc, alu, literal, &nliteral);
2126 					if (r)
2127 						return r;
2128 					r600_bytecode_alu_adjust_literals(bc, alu, literal, nliteral);
2129 					r600_bytecode_assign_kcache_banks(bc, alu, cf->kcache);
2130 
2131 					switch(bc->chip_class) {
2132 					case R600:
2133 						r = r600_bytecode_alu_build(bc, alu, addr);
2134 						break;
2135 					case R700:
2136 						r = r700_bytecode_alu_build(bc, alu, addr);
2137 						break;
2138 					default:
2139 						R600_ERR("unknown chip class %d.\n", bc->chip_class);
2140 						return -EINVAL;
2141 					}
2142 					if (r)
2143 						return r;
2144 					addr += 2;
2145 					if (alu->last) {
2146 						for (i = 0; i < align(nliteral, 2); ++i) {
2147 							bc->bytecode[addr++] = literal[i];
2148 						}
2149 						nliteral = 0;
2150 						memset(literal, 0, sizeof(literal));
2151 					}
2152 				}
2153 				break;
2154 			case V_SQ_CF_WORD1_SQ_CF_INST_VTX:
2155 			case V_SQ_CF_WORD1_SQ_CF_INST_VTX_TC:
2156 				LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
2157 					r = r600_bytecode_vtx_build(bc, vtx, addr);
2158 					if (r)
2159 						return r;
2160 					addr += 4;
2161 				}
2162 				break;
2163 			case V_SQ_CF_WORD1_SQ_CF_INST_TEX:
2164 				LIST_FOR_EACH_ENTRY(tex, &cf->tex, list) {
2165 					r = r600_bytecode_tex_build(bc, tex, addr);
2166 					if (r)
2167 						return r;
2168 					addr += 4;
2169 				}
2170 				break;
2171 			case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT:
2172 			case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT_DONE:
2173 			case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0:
2174 			case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1:
2175 			case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2:
2176 			case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3:
2177 			case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_NO_AL:
2178 			case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_DX10:
2179 			case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_END:
2180 			case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_CONTINUE:
2181 			case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_BREAK:
2182 			case V_SQ_CF_WORD1_SQ_CF_INST_JUMP:
2183 			case V_SQ_CF_WORD1_SQ_CF_INST_ELSE:
2184 			case V_SQ_CF_WORD1_SQ_CF_INST_POP:
2185 			case V_SQ_CF_WORD1_SQ_CF_INST_CALL_FS:
2186 			case V_SQ_CF_WORD1_SQ_CF_INST_RETURN:
2187 				break;
2188 			default:
2189 				R600_ERR("unsupported CF instruction (0x%X)\n", cf->inst);
2190 				return -EINVAL;
2191 			}
2192 		}
2193 	}
2194 	return 0;
2195 }
2196 
r600_bytecode_clear(struct r600_bytecode * bc)2197 void r600_bytecode_clear(struct r600_bytecode *bc)
2198 {
2199 	struct r600_bytecode_cf *cf = NULL, *next_cf;
2200 
2201 	free(bc->bytecode);
2202 	bc->bytecode = NULL;
2203 
2204 	LIST_FOR_EACH_ENTRY_SAFE(cf, next_cf, &bc->cf, list) {
2205 		struct r600_bytecode_alu *alu = NULL, *next_alu;
2206 		struct r600_bytecode_tex *tex = NULL, *next_tex;
2207 		struct r600_bytecode_tex *vtx = NULL, *next_vtx;
2208 
2209 		LIST_FOR_EACH_ENTRY_SAFE(alu, next_alu, &cf->alu, list) {
2210 			free(alu);
2211 		}
2212 
2213 		LIST_INITHEAD(&cf->alu);
2214 
2215 		LIST_FOR_EACH_ENTRY_SAFE(tex, next_tex, &cf->tex, list) {
2216 			free(tex);
2217 		}
2218 
2219 		LIST_INITHEAD(&cf->tex);
2220 
2221 		LIST_FOR_EACH_ENTRY_SAFE(vtx, next_vtx, &cf->vtx, list) {
2222 			free(vtx);
2223 		}
2224 
2225 		LIST_INITHEAD(&cf->vtx);
2226 
2227 		free(cf);
2228 	}
2229 
2230 	LIST_INITHEAD(&cf->list);
2231 }
2232 
r600_bytecode_dump(struct r600_bytecode * bc)2233 void r600_bytecode_dump(struct r600_bytecode *bc)
2234 {
2235 	struct r600_bytecode_cf *cf = NULL;
2236 	struct r600_bytecode_alu *alu = NULL;
2237 	struct r600_bytecode_vtx *vtx = NULL;
2238 	struct r600_bytecode_tex *tex = NULL;
2239 
2240 	unsigned i, id;
2241 	uint32_t literal[4];
2242 	unsigned nliteral;
2243 	char chip = '6';
2244 
2245 	switch (bc->chip_class) {
2246 	case R700:
2247 		chip = '7';
2248 		break;
2249 	case EVERGREEN:
2250 		chip = 'E';
2251 		break;
2252 	case CAYMAN:
2253 		chip = 'C';
2254 		break;
2255 	case R600:
2256 	default:
2257 		chip = '6';
2258 		break;
2259 	}
2260 	fprintf(stderr, "bytecode %d dw -- %d gprs ---------------------\n", bc->ndw, bc->ngpr);
2261 	fprintf(stderr, "     %c\n", chip);
2262 
2263 	LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
2264 		id = cf->id;
2265 
2266 		if (bc->chip_class >= EVERGREEN) {
2267 			switch (cf->inst) {
2268 			case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU:
2269 			case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP_AFTER:
2270 			case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP2_AFTER:
2271 			case EG_V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_PUSH_BEFORE:
2272 				if (cf->eg_alu_extended) {
2273 					fprintf(stderr, "%04d %08X ALU_EXT0 ", id, bc->bytecode[id]);
2274 					fprintf(stderr, "KCACHE_BANK2:%X ", cf->kcache[2].bank);
2275 					fprintf(stderr, "KCACHE_BANK3:%X ", cf->kcache[3].bank);
2276 					fprintf(stderr, "KCACHE_MODE2:%X\n", cf->kcache[2].mode);
2277 					id++;
2278 					fprintf(stderr, "%04d %08X ALU_EXT1 ", id, bc->bytecode[id]);
2279 					fprintf(stderr, "KCACHE_MODE3:%X ", cf->kcache[3].mode);
2280 					fprintf(stderr, "KCACHE_ADDR2:%X ", cf->kcache[2].addr);
2281 					fprintf(stderr, "KCACHE_ADDR3:%X\n", cf->kcache[3].addr);
2282 					id++;
2283 				}
2284 
2285 				fprintf(stderr, "%04d %08X ALU ", id, bc->bytecode[id]);
2286 				fprintf(stderr, "ADDR:%d ", cf->addr);
2287 				fprintf(stderr, "KCACHE_MODE0:%X ", cf->kcache[0].mode);
2288 				fprintf(stderr, "KCACHE_BANK0:%X ", cf->kcache[0].bank);
2289 				fprintf(stderr, "KCACHE_BANK1:%X\n", cf->kcache[1].bank);
2290 				id++;
2291 				fprintf(stderr, "%04d %08X ALU ", id, bc->bytecode[id]);
2292 				fprintf(stderr, "INST:0x%x ", EG_G_SQ_CF_ALU_WORD1_CF_INST(cf->inst));
2293 				fprintf(stderr, "KCACHE_MODE1:%X ", cf->kcache[1].mode);
2294 				fprintf(stderr, "KCACHE_ADDR0:%X ", cf->kcache[0].addr);
2295 				fprintf(stderr, "KCACHE_ADDR1:%X ", cf->kcache[1].addr);
2296 				fprintf(stderr, "COUNT:%d\n", cf->ndw / 2);
2297 				break;
2298 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_TEX:
2299 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_VTX:
2300 				fprintf(stderr, "%04d %08X TEX/VTX ", id, bc->bytecode[id]);
2301 				fprintf(stderr, "ADDR:%d\n", cf->addr);
2302 				id++;
2303 				fprintf(stderr, "%04d %08X TEX/VTX ", id, bc->bytecode[id]);
2304 				fprintf(stderr, "INST:0x%x ", EG_G_SQ_CF_WORD1_CF_INST(cf->inst));
2305 				fprintf(stderr, "COUNT:%d\n", cf->ndw / 4);
2306 				break;
2307 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT:
2308 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT_DONE:
2309 				fprintf(stderr, "%04d %08X EXPORT ", id, bc->bytecode[id]);
2310 				fprintf(stderr, "GPR:%X ", cf->output.gpr);
2311 				fprintf(stderr, "ELEM_SIZE:%X ", cf->output.elem_size);
2312 				fprintf(stderr, "ARRAY_BASE:%X ", cf->output.array_base);
2313 				fprintf(stderr, "TYPE:%X\n", cf->output.type);
2314 				id++;
2315 				fprintf(stderr, "%04d %08X EXPORT ", id, bc->bytecode[id]);
2316 				fprintf(stderr, "SWIZ_X:%X ", cf->output.swizzle_x);
2317 				fprintf(stderr, "SWIZ_Y:%X ", cf->output.swizzle_y);
2318 				fprintf(stderr, "SWIZ_Z:%X ", cf->output.swizzle_z);
2319 				fprintf(stderr, "SWIZ_W:%X ", cf->output.swizzle_w);
2320 				fprintf(stderr, "BARRIER:%X ", cf->output.barrier);
2321 				fprintf(stderr, "INST:0x%x ", EG_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(cf->output.inst));
2322 				fprintf(stderr, "BURST_COUNT:%d ", cf->output.burst_count);
2323 				fprintf(stderr, "EOP:%X\n", cf->output.end_of_program);
2324 				break;
2325 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF0:
2326 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF1:
2327 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF2:
2328 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF3:
2329 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF0:
2330 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF1:
2331 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF2:
2332 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1_BUF3:
2333 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF0:
2334 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF1:
2335 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF2:
2336 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2_BUF3:
2337 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF0:
2338 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF1:
2339 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF2:
2340 			case EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3_BUF3:
2341 				fprintf(stderr, "%04d %08X EXPORT MEM_STREAM%i_BUF%i ", id, bc->bytecode[id],
2342 					(EG_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(cf->inst) -
2343 					 EG_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF0)) / 4,
2344 					(EG_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(cf->inst) -
2345 					 EG_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF0)) % 4);
2346 				fprintf(stderr, "GPR:%X ", cf->output.gpr);
2347 				fprintf(stderr, "ELEM_SIZE:%i ", cf->output.elem_size);
2348 				fprintf(stderr, "ARRAY_BASE:%i ", cf->output.array_base);
2349 				fprintf(stderr, "TYPE:%X\n", cf->output.type);
2350 				id++;
2351 				fprintf(stderr, "%04d %08X EXPORT MEM_STREAM%i_BUF%i ", id, bc->bytecode[id],
2352 					(EG_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(cf->inst) -
2353 					 EG_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF0)) / 4,
2354 					(EG_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(cf->inst) -
2355 					 EG_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(EG_V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0_BUF0)) % 4);
2356 				fprintf(stderr, "ARRAY_SIZE:%i ", cf->output.array_size);
2357 				fprintf(stderr, "COMP_MASK:%X ", cf->output.comp_mask);
2358 				fprintf(stderr, "BARRIER:%X ", cf->output.barrier);
2359 				fprintf(stderr, "INST:%d ", cf->output.inst);
2360 				fprintf(stderr, "BURST_COUNT:%d ", cf->output.burst_count);
2361 				fprintf(stderr, "EOP:%X\n", cf->output.end_of_program);
2362 				break;
2363 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_JUMP:
2364 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_ELSE:
2365 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_POP:
2366 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_NO_AL:
2367 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_DX10:
2368 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_END:
2369 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_CONTINUE:
2370 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_LOOP_BREAK:
2371 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_CALL_FS:
2372 			case EG_V_SQ_CF_WORD1_SQ_CF_INST_RETURN:
2373 			case CM_V_SQ_CF_WORD1_SQ_CF_INST_END:
2374 				fprintf(stderr, "%04d %08X CF ", id, bc->bytecode[id]);
2375 				fprintf(stderr, "ADDR:%d\n", cf->cf_addr);
2376 				id++;
2377 				fprintf(stderr, "%04d %08X CF ", id, bc->bytecode[id]);
2378 				fprintf(stderr, "INST:0x%x ", EG_G_SQ_CF_WORD1_CF_INST(cf->inst));
2379 				fprintf(stderr, "COND:%X ", cf->cond);
2380 				fprintf(stderr, "POP_COUNT:%X\n", cf->pop_count);
2381 				break;
2382 			case CF_NATIVE:
2383 				fprintf(stderr, "%04d %08X CF NATIVE\n", id, bc->bytecode[id]);
2384 				fprintf(stderr, "%04d %08X CF NATIVE\n", id + 1, bc->bytecode[id + 1]);
2385 				break;
2386 			default:
2387 				R600_ERR("Unknown instruction %0x\n", cf->inst);
2388 			}
2389 		} else {
2390 			switch (cf->inst) {
2391 			case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU:
2392 			case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP_AFTER:
2393 			case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_POP2_AFTER:
2394 			case V_SQ_CF_ALU_WORD1_SQ_CF_INST_ALU_PUSH_BEFORE:
2395 				fprintf(stderr, "%04d %08X ALU ", id, bc->bytecode[id]);
2396 				fprintf(stderr, "ADDR:%d ", cf->addr);
2397 				fprintf(stderr, "KCACHE_MODE0:%X ", cf->kcache[0].mode);
2398 				fprintf(stderr, "KCACHE_BANK0:%X ", cf->kcache[0].bank);
2399 				fprintf(stderr, "KCACHE_BANK1:%X\n", cf->kcache[1].bank);
2400 				id++;
2401 				fprintf(stderr, "%04d %08X ALU ", id, bc->bytecode[id]);
2402 				fprintf(stderr, "INST:0x%x ", R600_G_SQ_CF_ALU_WORD1_CF_INST(cf->inst));
2403 				fprintf(stderr, "KCACHE_MODE1:%X ", cf->kcache[1].mode);
2404 				fprintf(stderr, "KCACHE_ADDR0:%X ", cf->kcache[0].addr);
2405 				fprintf(stderr, "KCACHE_ADDR1:%X ", cf->kcache[1].addr);
2406 				fprintf(stderr, "COUNT:%d\n", cf->ndw / 2);
2407 				break;
2408 			case V_SQ_CF_WORD1_SQ_CF_INST_TEX:
2409 			case V_SQ_CF_WORD1_SQ_CF_INST_VTX:
2410 			case V_SQ_CF_WORD1_SQ_CF_INST_VTX_TC:
2411 				fprintf(stderr, "%04d %08X TEX/VTX ", id, bc->bytecode[id]);
2412 				fprintf(stderr, "ADDR:%d\n", cf->addr);
2413 				id++;
2414 				fprintf(stderr, "%04d %08X TEX/VTX ", id, bc->bytecode[id]);
2415 				fprintf(stderr, "INST:0x%x ", R600_G_SQ_CF_WORD1_CF_INST(cf->inst));
2416 				fprintf(stderr, "COUNT:%d\n", cf->ndw / 4);
2417 				break;
2418 			case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT:
2419 			case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_EXPORT_DONE:
2420 				fprintf(stderr, "%04d %08X EXPORT ", id, bc->bytecode[id]);
2421 				fprintf(stderr, "GPR:%X ", cf->output.gpr);
2422 				fprintf(stderr, "ELEM_SIZE:%X ", cf->output.elem_size);
2423 				fprintf(stderr, "ARRAY_BASE:%X ", cf->output.array_base);
2424 				fprintf(stderr, "TYPE:%X\n", cf->output.type);
2425 				id++;
2426 				fprintf(stderr, "%04d %08X EXPORT ", id, bc->bytecode[id]);
2427 				fprintf(stderr, "SWIZ_X:%X ", cf->output.swizzle_x);
2428 				fprintf(stderr, "SWIZ_Y:%X ", cf->output.swizzle_y);
2429 				fprintf(stderr, "SWIZ_Z:%X ", cf->output.swizzle_z);
2430 				fprintf(stderr, "SWIZ_W:%X ", cf->output.swizzle_w);
2431 				fprintf(stderr, "BARRIER:%X ", cf->output.barrier);
2432 				fprintf(stderr, "INST:0x%x ", R600_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(cf->output.inst));
2433 				fprintf(stderr, "BURST_COUNT:%d ", cf->output.burst_count);
2434 				fprintf(stderr, "EOP:%X\n", cf->output.end_of_program);
2435 				break;
2436 			case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0:
2437 			case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM1:
2438 			case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM2:
2439 			case V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM3:
2440 				fprintf(stderr, "%04d %08X EXPORT MEM_STREAM%i ", id, bc->bytecode[id],
2441 					R600_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(cf->inst) -
2442 					R600_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0));
2443 				fprintf(stderr, "GPR:%X ", cf->output.gpr);
2444 				fprintf(stderr, "ELEM_SIZE:%i ", cf->output.elem_size);
2445 				fprintf(stderr, "ARRAY_BASE:%i ", cf->output.array_base);
2446 				fprintf(stderr, "TYPE:%X\n", cf->output.type);
2447 				id++;
2448 				fprintf(stderr, "%04d %08X EXPORT MEM_STREAM%i ", id, bc->bytecode[id],
2449 					R600_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(cf->inst) -
2450 					R600_G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(V_SQ_CF_ALLOC_EXPORT_WORD1_SQ_CF_INST_MEM_STREAM0));
2451 				fprintf(stderr, "ARRAY_SIZE:%i ", cf->output.array_size);
2452 				fprintf(stderr, "COMP_MASK:%X ", cf->output.comp_mask);
2453 				fprintf(stderr, "BARRIER:%X ", cf->output.barrier);
2454 				fprintf(stderr, "INST:%d ", cf->output.inst);
2455 				fprintf(stderr, "BURST_COUNT:%d ", cf->output.burst_count);
2456 				fprintf(stderr, "EOP:%X\n", cf->output.end_of_program);
2457 				break;
2458 			case V_SQ_CF_WORD1_SQ_CF_INST_JUMP:
2459 			case V_SQ_CF_WORD1_SQ_CF_INST_ELSE:
2460 			case V_SQ_CF_WORD1_SQ_CF_INST_POP:
2461 			case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_NO_AL:
2462 			case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_START_DX10:
2463 			case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_END:
2464 			case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_CONTINUE:
2465 			case V_SQ_CF_WORD1_SQ_CF_INST_LOOP_BREAK:
2466 			case V_SQ_CF_WORD1_SQ_CF_INST_CALL_FS:
2467 			case V_SQ_CF_WORD1_SQ_CF_INST_RETURN:
2468 				fprintf(stderr, "%04d %08X CF ", id, bc->bytecode[id]);
2469 				fprintf(stderr, "ADDR:%d\n", cf->cf_addr);
2470 				id++;
2471 				fprintf(stderr, "%04d %08X CF ", id, bc->bytecode[id]);
2472 				fprintf(stderr, "INST:0x%x ", R600_G_SQ_CF_WORD1_CF_INST(cf->inst));
2473 				fprintf(stderr, "COND:%X ", cf->cond);
2474 				fprintf(stderr, "POP_COUNT:%X\n", cf->pop_count);
2475 				break;
2476 			default:
2477 				R600_ERR("Unknown instruction %0x\n", cf->inst);
2478 			}
2479 		}
2480 
2481 		id = cf->addr;
2482 		nliteral = 0;
2483 		LIST_FOR_EACH_ENTRY(alu, &cf->alu, list) {
2484 			r600_bytecode_alu_nliterals(bc, alu, literal, &nliteral);
2485 
2486 			fprintf(stderr, "%04d %08X   ", id, bc->bytecode[id]);
2487 			fprintf(stderr, "SRC0(SEL:%d ", alu->src[0].sel);
2488 			fprintf(stderr, "REL:%d ", alu->src[0].rel);
2489 			fprintf(stderr, "CHAN:%d ", alu->src[0].chan);
2490 			fprintf(stderr, "NEG:%d) ", alu->src[0].neg);
2491 			fprintf(stderr, "SRC1(SEL:%d ", alu->src[1].sel);
2492 			fprintf(stderr, "REL:%d ", alu->src[1].rel);
2493 			fprintf(stderr, "CHAN:%d ", alu->src[1].chan);
2494 			fprintf(stderr, "NEG:%d ", alu->src[1].neg);
2495 			fprintf(stderr, "IM:%d) ", alu->index_mode);
2496 			fprintf(stderr, "PRED_SEL:%d ", alu->pred_sel);
2497 			fprintf(stderr, "LAST:%d)\n", alu->last);
2498 			id++;
2499 			fprintf(stderr, "%04d %08X %c ", id, bc->bytecode[id], alu->last ? '*' : ' ');
2500 			fprintf(stderr, "INST:0x%x ", alu->inst);
2501 			fprintf(stderr, "DST(SEL:%d ", alu->dst.sel);
2502 			fprintf(stderr, "CHAN:%d ", alu->dst.chan);
2503 			fprintf(stderr, "REL:%d ", alu->dst.rel);
2504 			fprintf(stderr, "CLAMP:%d) ", alu->dst.clamp);
2505 			fprintf(stderr, "BANK_SWIZZLE:%d ", alu->bank_swizzle);
2506 			if (alu->is_op3) {
2507 				fprintf(stderr, "SRC2(SEL:%d ", alu->src[2].sel);
2508 				fprintf(stderr, "REL:%d ", alu->src[2].rel);
2509 				fprintf(stderr, "CHAN:%d ", alu->src[2].chan);
2510 				fprintf(stderr, "NEG:%d)\n", alu->src[2].neg);
2511 			} else {
2512 				fprintf(stderr, "SRC0_ABS:%d ", alu->src[0].abs);
2513 				fprintf(stderr, "SRC1_ABS:%d ", alu->src[1].abs);
2514 				fprintf(stderr, "WRITE_MASK:%d ", alu->dst.write);
2515 				fprintf(stderr, "OMOD:%d ", alu->omod);
2516 				fprintf(stderr, "EXECUTE_MASK:%d ", alu->execute_mask);
2517 				fprintf(stderr, "UPDATE_PRED:%d\n", alu->update_pred);
2518 			}
2519 
2520 			id++;
2521 			if (alu->last) {
2522 				for (i = 0; i < nliteral; i++, id++) {
2523 					float *f = (float*)(bc->bytecode + id);
2524 					fprintf(stderr, "%04d %08X\t%f (%d)\n", id, bc->bytecode[id], *f,
2525 							*(bc->bytecode + id));
2526 				}
2527 				id += nliteral & 1;
2528 				nliteral = 0;
2529 			}
2530 		}
2531 
2532 		LIST_FOR_EACH_ENTRY(tex, &cf->tex, list) {
2533 			fprintf(stderr, "%04d %08X   ", id, bc->bytecode[id]);
2534 			fprintf(stderr, "INST:0x%x ", tex->inst);
2535 			fprintf(stderr, "RESOURCE_ID:%d ", tex->resource_id);
2536 			fprintf(stderr, "SRC(GPR:%d ", tex->src_gpr);
2537 			fprintf(stderr, "REL:%d)\n", tex->src_rel);
2538 			id++;
2539 			fprintf(stderr, "%04d %08X   ", id, bc->bytecode[id]);
2540 			fprintf(stderr, "DST(GPR:%d ", tex->dst_gpr);
2541 			fprintf(stderr, "REL:%d ", tex->dst_rel);
2542 			fprintf(stderr, "SEL_X:%d ", tex->dst_sel_x);
2543 			fprintf(stderr, "SEL_Y:%d ", tex->dst_sel_y);
2544 			fprintf(stderr, "SEL_Z:%d ", tex->dst_sel_z);
2545 			fprintf(stderr, "SEL_W:%d) ", tex->dst_sel_w);
2546 			fprintf(stderr, "LOD_BIAS:%d ", tex->lod_bias);
2547 			fprintf(stderr, "COORD_TYPE_X:%d ", tex->coord_type_x);
2548 			fprintf(stderr, "COORD_TYPE_Y:%d ", tex->coord_type_y);
2549 			fprintf(stderr, "COORD_TYPE_Z:%d ", tex->coord_type_z);
2550 			fprintf(stderr, "COORD_TYPE_W:%d\n", tex->coord_type_w);
2551 			id++;
2552 			fprintf(stderr, "%04d %08X   ", id, bc->bytecode[id]);
2553 			fprintf(stderr, "OFFSET_X:%d ", tex->offset_x);
2554 			fprintf(stderr, "OFFSET_Y:%d ", tex->offset_y);
2555 			fprintf(stderr, "OFFSET_Z:%d ", tex->offset_z);
2556 			fprintf(stderr, "SAMPLER_ID:%d ", tex->sampler_id);
2557 			fprintf(stderr, "SRC(SEL_X:%d ", tex->src_sel_x);
2558 			fprintf(stderr, "SEL_Y:%d ", tex->src_sel_y);
2559 			fprintf(stderr, "SEL_Z:%d ", tex->src_sel_z);
2560 			fprintf(stderr, "SEL_W:%d)\n", tex->src_sel_w);
2561 			id++;
2562 			fprintf(stderr, "%04d %08X   \n", id, bc->bytecode[id]);
2563 			id++;
2564 		}
2565 
2566 		LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
2567 			fprintf(stderr, "%04d %08X   ", id, bc->bytecode[id]);
2568 			fprintf(stderr, "INST:%d ", vtx->inst);
2569 			fprintf(stderr, "FETCH_TYPE:%d ", vtx->fetch_type);
2570 			fprintf(stderr, "BUFFER_ID:%d\n", vtx->buffer_id);
2571 			id++;
2572 			/* This assumes that no semantic fetches exist */
2573 			fprintf(stderr, "%04d %08X   ", id, bc->bytecode[id]);
2574 			fprintf(stderr, "SRC(GPR:%d ", vtx->src_gpr);
2575 			fprintf(stderr, "SEL_X:%d) ", vtx->src_sel_x);
2576 			if (bc->chip_class < CAYMAN)
2577 				fprintf(stderr, "MEGA_FETCH_COUNT:%d ", vtx->mega_fetch_count);
2578 			else
2579 				fprintf(stderr, "SEL_Y:%d) ", 0);
2580 			fprintf(stderr, "DST(GPR:%d ", vtx->dst_gpr);
2581 			fprintf(stderr, "SEL_X:%d ", vtx->dst_sel_x);
2582 			fprintf(stderr, "SEL_Y:%d ", vtx->dst_sel_y);
2583 			fprintf(stderr, "SEL_Z:%d ", vtx->dst_sel_z);
2584 			fprintf(stderr, "SEL_W:%d) ", vtx->dst_sel_w);
2585 			fprintf(stderr, "USE_CONST_FIELDS:%d ", vtx->use_const_fields);
2586 			fprintf(stderr, "FORMAT(DATA:%d ", vtx->data_format);
2587 			fprintf(stderr, "NUM:%d ", vtx->num_format_all);
2588 			fprintf(stderr, "COMP:%d ", vtx->format_comp_all);
2589 			fprintf(stderr, "MODE:%d)\n", vtx->srf_mode_all);
2590 			id++;
2591 			fprintf(stderr, "%04d %08X   ", id, bc->bytecode[id]);
2592 			fprintf(stderr, "ENDIAN:%d ", vtx->endian);
2593 			fprintf(stderr, "OFFSET:%d\n", vtx->offset);
2594 			/* XXX */
2595 			id++;
2596 			fprintf(stderr, "%04d %08X   \n", id, bc->bytecode[id]);
2597 			id++;
2598 		}
2599 	}
2600 
2601 	fprintf(stderr, "--------------------------------------\n");
2602 }
2603 
r600_vertex_data_type(enum pipe_format pformat,unsigned * format,unsigned * num_format,unsigned * format_comp,unsigned * endian)2604 static void r600_vertex_data_type(enum pipe_format pformat,
2605 				  unsigned *format,
2606 				  unsigned *num_format, unsigned *format_comp, unsigned *endian)
2607 {
2608 	const struct util_format_description *desc;
2609 	unsigned i;
2610 
2611 	*format = 0;
2612 	*num_format = 0;
2613 	*format_comp = 0;
2614 	*endian = ENDIAN_NONE;
2615 
2616 	desc = util_format_description(pformat);
2617 	if (desc->layout != UTIL_FORMAT_LAYOUT_PLAIN) {
2618 		goto out_unknown;
2619 	}
2620 
2621 	/* Find the first non-VOID channel. */
2622 	for (i = 0; i < 4; i++) {
2623 		if (desc->channel[i].type != UTIL_FORMAT_TYPE_VOID) {
2624 			break;
2625 		}
2626 	}
2627 
2628 	*endian = r600_endian_swap(desc->channel[i].size);
2629 
2630 	switch (desc->channel[i].type) {
2631 	/* Half-floats, floats, ints */
2632 	case UTIL_FORMAT_TYPE_FLOAT:
2633 		switch (desc->channel[i].size) {
2634 		case 16:
2635 			switch (desc->nr_channels) {
2636 			case 1:
2637 				*format = FMT_16_FLOAT;
2638 				break;
2639 			case 2:
2640 				*format = FMT_16_16_FLOAT;
2641 				break;
2642 			case 3:
2643 			case 4:
2644 				*format = FMT_16_16_16_16_FLOAT;
2645 				break;
2646 			}
2647 			break;
2648 		case 32:
2649 			switch (desc->nr_channels) {
2650 			case 1:
2651 				*format = FMT_32_FLOAT;
2652 				break;
2653 			case 2:
2654 				*format = FMT_32_32_FLOAT;
2655 				break;
2656 			case 3:
2657 				*format = FMT_32_32_32_FLOAT;
2658 				break;
2659 			case 4:
2660 				*format = FMT_32_32_32_32_FLOAT;
2661 				break;
2662 			}
2663 			break;
2664 		default:
2665 			goto out_unknown;
2666 		}
2667 		break;
2668 		/* Unsigned ints */
2669 	case UTIL_FORMAT_TYPE_UNSIGNED:
2670 		/* Signed ints */
2671 	case UTIL_FORMAT_TYPE_SIGNED:
2672 		switch (desc->channel[i].size) {
2673 		case 8:
2674 			switch (desc->nr_channels) {
2675 			case 1:
2676 				*format = FMT_8;
2677 				break;
2678 			case 2:
2679 				*format = FMT_8_8;
2680 				break;
2681 			case 3:
2682 			case 4:
2683 				*format = FMT_8_8_8_8;
2684 				break;
2685 			}
2686 			break;
2687 		case 10:
2688 			if (desc->nr_channels != 4)
2689 				goto out_unknown;
2690 
2691 			*format = FMT_2_10_10_10;
2692 			break;
2693 		case 16:
2694 			switch (desc->nr_channels) {
2695 			case 1:
2696 				*format = FMT_16;
2697 				break;
2698 			case 2:
2699 				*format = FMT_16_16;
2700 				break;
2701 			case 3:
2702 			case 4:
2703 				*format = FMT_16_16_16_16;
2704 				break;
2705 			}
2706 			break;
2707 		case 32:
2708 			switch (desc->nr_channels) {
2709 			case 1:
2710 				*format = FMT_32;
2711 				break;
2712 			case 2:
2713 				*format = FMT_32_32;
2714 				break;
2715 			case 3:
2716 				*format = FMT_32_32_32;
2717 				break;
2718 			case 4:
2719 				*format = FMT_32_32_32_32;
2720 				break;
2721 			}
2722 			break;
2723 		default:
2724 			goto out_unknown;
2725 		}
2726 		break;
2727 	default:
2728 		goto out_unknown;
2729 	}
2730 
2731 	if (desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) {
2732 		*format_comp = 1;
2733 	}
2734 
2735 	*num_format = 0;
2736 	if (desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED ||
2737 	    desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) {
2738 		if (!desc->channel[i].normalized) {
2739 			if (desc->channel[i].pure_integer)
2740 				*num_format = 1;
2741 			else
2742 				*num_format = 2;
2743 		}
2744 	}
2745 	return;
2746 out_unknown:
2747 	R600_ERR("unsupported vertex format %s\n", util_format_name(pformat));
2748 }
2749 
r600_vertex_elements_build_fetch_shader(struct r600_context * rctx,struct r600_vertex_element * ve)2750 int r600_vertex_elements_build_fetch_shader(struct r600_context *rctx, struct r600_vertex_element *ve)
2751 {
2752 	static int dump_shaders = -1;
2753 
2754 	struct r600_bytecode bc;
2755 	struct r600_bytecode_vtx vtx;
2756 	struct pipe_vertex_element *elements = ve->elements;
2757 	const struct util_format_description *desc;
2758 	unsigned fetch_resource_start = rctx->chip_class >= EVERGREEN ? 0 : 160;
2759 	unsigned format, num_format, format_comp, endian;
2760 	uint32_t *bytecode;
2761 	int i, j, r;
2762 
2763 	memset(&bc, 0, sizeof(bc));
2764 	r600_bytecode_init(&bc, rctx->chip_class, rctx->family);
2765 
2766 	for (i = 0; i < ve->count; i++) {
2767 		if (elements[i].instance_divisor > 1) {
2768 			if (rctx->chip_class == CAYMAN) {
2769 				for (j = 0; j < 4; j++) {
2770 					struct r600_bytecode_alu alu;
2771 					memset(&alu, 0, sizeof(alu));
2772 					alu.inst = BC_INST(&bc, V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULHI_UINT);
2773 					alu.src[0].sel = 0;
2774 					alu.src[0].chan = 3;
2775 					alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
2776 					alu.src[1].value = (1ll << 32) / elements[i].instance_divisor + 1;
2777 					alu.dst.sel = i + 1;
2778 					alu.dst.chan = j;
2779 					alu.dst.write = j == 3;
2780 					alu.last = j == 3;
2781 					if ((r = r600_bytecode_add_alu(&bc, &alu))) {
2782 						r600_bytecode_clear(&bc);
2783 						return r;
2784 					}
2785 				}
2786 			} else {
2787 				struct r600_bytecode_alu alu;
2788 				memset(&alu, 0, sizeof(alu));
2789 				alu.inst = BC_INST(&bc, V_SQ_ALU_WORD1_OP2_SQ_OP2_INST_MULHI_UINT);
2790 				alu.src[0].sel = 0;
2791 				alu.src[0].chan = 3;
2792 				alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
2793 				alu.src[1].value = (1ll << 32) / elements[i].instance_divisor + 1;
2794 				alu.dst.sel = i + 1;
2795 				alu.dst.chan = 3;
2796 				alu.dst.write = 1;
2797 				alu.last = 1;
2798 				if ((r = r600_bytecode_add_alu(&bc, &alu))) {
2799 					r600_bytecode_clear(&bc);
2800 					return r;
2801 				}
2802 			}
2803 		}
2804 	}
2805 
2806 	for (i = 0; i < ve->count; i++) {
2807 		r600_vertex_data_type(ve->elements[i].src_format,
2808 				      &format, &num_format, &format_comp, &endian);
2809 
2810 		desc = util_format_description(ve->elements[i].src_format);
2811 		if (desc == NULL) {
2812 			r600_bytecode_clear(&bc);
2813 			R600_ERR("unknown format %d\n", ve->elements[i].src_format);
2814 			return -EINVAL;
2815 		}
2816 
2817 		if (elements[i].src_offset > 65535) {
2818 			r600_bytecode_clear(&bc);
2819 			R600_ERR("too big src_offset: %u\n", elements[i].src_offset);
2820 			return -EINVAL;
2821 		}
2822 
2823 		memset(&vtx, 0, sizeof(vtx));
2824 		vtx.buffer_id = elements[i].vertex_buffer_index + fetch_resource_start;
2825 		vtx.fetch_type = elements[i].instance_divisor ? 1 : 0;
2826 		vtx.src_gpr = elements[i].instance_divisor > 1 ? i + 1 : 0;
2827 		vtx.src_sel_x = elements[i].instance_divisor ? 3 : 0;
2828 		vtx.mega_fetch_count = 0x1F;
2829 		vtx.dst_gpr = i + 1;
2830 		vtx.dst_sel_x = desc->swizzle[0];
2831 		vtx.dst_sel_y = desc->swizzle[1];
2832 		vtx.dst_sel_z = desc->swizzle[2];
2833 		vtx.dst_sel_w = desc->swizzle[3];
2834 		vtx.data_format = format;
2835 		vtx.num_format_all = num_format;
2836 		vtx.format_comp_all = format_comp;
2837 		vtx.srf_mode_all = 1;
2838 		vtx.offset = elements[i].src_offset;
2839 		vtx.endian = endian;
2840 
2841 		if ((r = r600_bytecode_add_vtx(&bc, &vtx))) {
2842 			r600_bytecode_clear(&bc);
2843 			return r;
2844 		}
2845 	}
2846 
2847 	r600_bytecode_add_cfinst(&bc, BC_INST(&bc, V_SQ_CF_WORD1_SQ_CF_INST_RETURN));
2848 
2849 	if ((r = r600_bytecode_build(&bc))) {
2850 		r600_bytecode_clear(&bc);
2851 		return r;
2852 	}
2853 
2854 	if (dump_shaders == -1)
2855 		dump_shaders = debug_get_bool_option("R600_DUMP_SHADERS", FALSE);
2856 
2857 	if (dump_shaders) {
2858 		fprintf(stderr, "--------------------------------------------------------------\n");
2859 		r600_bytecode_dump(&bc);
2860 		fprintf(stderr, "______________________________________________________________\n");
2861 	}
2862 
2863 	ve->fs_size = bc.ndw*4;
2864 
2865 	ve->fetch_shader = (struct r600_resource*)
2866 			pipe_buffer_create(rctx->context.screen,
2867 					   PIPE_BIND_CUSTOM,
2868 					   PIPE_USAGE_IMMUTABLE, ve->fs_size);
2869 	if (ve->fetch_shader == NULL) {
2870 		r600_bytecode_clear(&bc);
2871 		return -ENOMEM;
2872 	}
2873 
2874 	bytecode = rctx->ws->buffer_map(ve->fetch_shader->cs_buf, rctx->cs, PIPE_TRANSFER_WRITE);
2875 	if (bytecode == NULL) {
2876 		r600_bytecode_clear(&bc);
2877 		pipe_resource_reference((struct pipe_resource**)&ve->fetch_shader, NULL);
2878 		return -ENOMEM;
2879 	}
2880 
2881 	if (R600_BIG_ENDIAN) {
2882 		for (i = 0; i < ve->fs_size / 4; ++i) {
2883 			bytecode[i] = bswap_32(bc.bytecode[i]);
2884 		}
2885 	} else {
2886 		memcpy(bytecode, bc.bytecode, ve->fs_size);
2887 	}
2888 
2889 	rctx->ws->buffer_unmap(ve->fetch_shader->cs_buf);
2890 	r600_bytecode_clear(&bc);
2891 
2892 	if (rctx->chip_class >= EVERGREEN)
2893 		evergreen_fetch_shader(&rctx->context, ve);
2894 	else
2895 		r600_fetch_shader(&rctx->context, ve);
2896 
2897 	return 0;
2898 }
2899