• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                        Intel License Agreement
11 //
12 // Copyright (C) 2000, Intel Corporation, all rights reserved.
13 // Third party copyrights are property of their respective owners.
14 //
15 // Redistribution and use in source and binary forms, with or without modification,
16 // are permitted provided that the following conditions are met:
17 //
18 //   * Redistribution's of source code must retain the above copyright notice,
19 //     this list of conditions and the following disclaimer.
20 //
21 //   * Redistribution's in binary form must reproduce the above copyright notice,
22 //     this list of conditions and the following disclaimer in the documentation
23 //     and/or other materials provided with the distribution.
24 //
25 //   * The name of Intel Corporation may not be used to endorse or promote products
26 //     derived from this software without specific prior written permission.
27 //
28 // This software is provided by the copyright holders and contributors "as is" and
29 // any express or implied warranties, including, but not limited to, the implied
30 // warranties of merchantability and fitness for a particular purpose are disclaimed.
31 // In no event shall the Intel Corporation or contributors be liable for any direct,
32 // indirect, incidental, special, exemplary, or consequential damages
33 // (including, but not limited to, procurement of substitute goods or services;
34 // loss of use, data, or profits; or business interruption) however caused
35 // and on any theory of liability, whether in contract, strict liability,
36 // or tort (including negligence or otherwise) arising in any way out of
37 // the use of this software, even if advised of the possibility of such damage.
38 //
39 //M*/
40 
41 
42 // This is based on the "An Improved Adaptive Background Mixture Model for
43 // Real-time Tracking with Shadow Detection" by P. KaewTraKulPong and R. Bowden
44 // http://personal.ee.surrey.ac.uk/Personal/R.Bowden/publications/avbs01/avbs01.pdf
45 //
46 // The windowing method is used, but not the shadow detection. I make some of my
47 // own modifications which make more sense. There are some errors in some of their
48 // equations.
49 //
50 //IplImage values of image that are useful
51 //int  nSize;         /* sizeof(IplImage) */
52 //int  depth;         /* pixel depth in bits: IPL_DEPTH_8U ...*/
53 //int  nChannels;     /* OpenCV functions support 1,2,3 or 4 channels */
54 //int  width;         /* image width in pixels */
55 //int  height;        /* image height in pixels */
56 //int  imageSize;     /* image data size in bytes in case of interleaved data)*/
57 //char *imageData;    /* pointer to aligned image data */
58 //char *imageDataOrigin; /* pointer to very origin of image -deallocation */
59 //Values useful for gaussian integral
60 //0.5 - 0.19146 - 0.38292
61 //1.0 - 0.34134 - 0.68268
62 //1.5 - 0.43319 - 0.86638
63 //2.0 - 0.47725 - 0.95450
64 //2.5 - 0.49379 - 0.98758
65 //3.0 - 0.49865 - 0.99730
66 //3.5 - 0.4997674 - 0.9995348
67 //4.0 - 0.4999683 - 0.9999366
68 
69 #include "_cvaux.h"
70 
71 
72 //internal functions for gaussian background detection
73 static void icvInsertionSortGaussians( CvGaussBGPoint* g_point, double* sort_key, CvGaussBGStatModelParams *bg_model_params );
74 
75 /*
76    Test whether pixel can be explained by background model;
77    Return -1 if no match was found; otherwise the index in match[] is returned
78 
79    icvMatchTest(...) assumes what all color channels component exhibit the same variance
80    icvMatchTest2(...) accounts for different variances per color channel
81  */
82 static int icvMatchTest( double* src_pixel, int nChannels, int* match,
83                  const CvGaussBGPoint* g_point, const CvGaussBGStatModelParams *bg_model_params );
84 /*static int icvMatchTest2( double* src_pixel, int nChannels, int* match,
85                  const CvGaussBGPoint* g_point, const CvGaussBGStatModelParams *bg_model_params );*/
86 
87 
88 /*
89    The update procedure differs between
90       * the initialization phase (named *Partial* ) and
91       * the normal phase (named *Full* )
92    The initalization phase is defined as not having processed <win_size> frames yet
93  */
94 static void icvUpdateFullWindow( double* src_pixel, int nChannels,
95                          int* match,
96                          CvGaussBGPoint* g_point,
97                          const CvGaussBGStatModelParams *bg_model_params );
98 static void icvUpdateFullNoMatch( IplImage* gm_image, int p,
99                           int* match,
100                           CvGaussBGPoint* g_point,
101                           const CvGaussBGStatModelParams *bg_model_params);
102 static void icvUpdatePartialWindow( double* src_pixel, int nChannels, int* match,
103                             CvGaussBGPoint* g_point, const CvGaussBGStatModelParams *bg_model_params );
104 static void icvUpdatePartialNoMatch( double* src_pixel, int nChannels,
105                              int* match,
106                              CvGaussBGPoint* g_point,
107                              const CvGaussBGStatModelParams *bg_model_params);
108 
109 
110 static void icvGetSortKey( const int nChannels, double* sort_key, const CvGaussBGPoint* g_point,
111                     const CvGaussBGStatModelParams *bg_model_params );
112 static void icvBackgroundTest( const int nChannels, int n, int i, int j, int *match, CvGaussBGModel* bg_model );
113 
114 static void CV_CDECL icvReleaseGaussianBGModel( CvGaussBGModel** bg_model );
115 static int CV_CDECL icvUpdateGaussianBGModel( IplImage* curr_frame, CvGaussBGModel*  bg_model );
116 
117 //#define for if(0);else for
118 
119 //g = 1 for first gaussian in list that matches else g = 0
120 //Rw is the learning rate for weight and Rg is leaning rate for mean and variance
121 //Ms is the match_sum which is the sum of matches for a particular gaussian
122 //Ms values are incremented until the sum of Ms values in the list equals window size L
123 //SMs is the sum of match_sums for gaussians in the list
124 //Rw = 1/SMs note the smallest Rw gets is 1/L
125 //Rg = g/Ms for SMs < L and Rg = g/(w*L) for SMs = L
126 //The list is maintained in sorted order using w/sqrt(variance) as a key
127 //If there is no match the last gaussian in the list is replaced by the new gaussian
128 //This will result in changes to SMs which results in changes in Rw and Rg.
129 //If a gaussian is replaced and SMs previously equaled L values of Ms are computed from w
130 //w[n+1] = w[n] + Rw*(g - w[n])   weight
131 //u[n+1] = u[n] + Rg*(x[n+1] - u[n]) mean value Sg is sum n values of g
132 //v[n+1] = v[n] + Rg*((x[n+1] - u[n])*(x[n+1] - u[n])) - v[n]) variance
133 //
134 
135 CV_IMPL CvBGStatModel*
cvCreateGaussianBGModel(IplImage * first_frame,CvGaussBGStatModelParams * parameters)136 cvCreateGaussianBGModel( IplImage* first_frame, CvGaussBGStatModelParams* parameters )
137 {
138     CvGaussBGModel* bg_model = 0;
139 
140     CV_FUNCNAME( "cvCreateGaussianBGModel" );
141 
142     __BEGIN__;
143 
144     double var_init;
145     CvGaussBGStatModelParams params;
146     int i, j, k, m, n;
147 
148     //init parameters
149     if( parameters == NULL )
150       {                        /* These constants are defined in cvaux/include/cvaux.h: */
151         params.win_size      = CV_BGFG_MOG_WINDOW_SIZE;
152         params.bg_threshold  = CV_BGFG_MOG_BACKGROUND_THRESHOLD;
153 
154         params.std_threshold = CV_BGFG_MOG_STD_THRESHOLD;
155         params.weight_init   = CV_BGFG_MOG_WEIGHT_INIT;
156 
157         params.variance_init = CV_BGFG_MOG_SIGMA_INIT*CV_BGFG_MOG_SIGMA_INIT;
158         params.minArea       = CV_BGFG_MOG_MINAREA;
159         params.n_gauss       = CV_BGFG_MOG_NGAUSSIANS;
160     }
161     else
162     {
163         params = *parameters;
164     }
165 
166     if( !CV_IS_IMAGE(first_frame) )
167         CV_ERROR( CV_StsBadArg, "Invalid or NULL first_frame parameter" );
168 
169     CV_CALL( bg_model = (CvGaussBGModel*)cvAlloc( sizeof(*bg_model) ));
170     memset( bg_model, 0, sizeof(*bg_model) );
171     bg_model->type = CV_BG_MODEL_MOG;
172     bg_model->release = (CvReleaseBGStatModel)icvReleaseGaussianBGModel;
173     bg_model->update = (CvUpdateBGStatModel)icvUpdateGaussianBGModel;
174 
175     bg_model->params = params;
176 
177     //prepare storages
178     CV_CALL( bg_model->g_point = (CvGaussBGPoint*)cvAlloc(sizeof(CvGaussBGPoint)*
179         ((first_frame->width*first_frame->height) + 256)));
180 
181     CV_CALL( bg_model->background = cvCreateImage(cvSize(first_frame->width,
182         first_frame->height), IPL_DEPTH_8U, first_frame->nChannels));
183     CV_CALL( bg_model->foreground = cvCreateImage(cvSize(first_frame->width,
184         first_frame->height), IPL_DEPTH_8U, 1));
185 
186     CV_CALL( bg_model->storage = cvCreateMemStorage());
187 
188     //initializing
189     var_init = 2 * params.std_threshold * params.std_threshold;
190     CV_CALL( bg_model->g_point[0].g_values =
191         (CvGaussBGValues*)cvAlloc( sizeof(CvGaussBGValues)*params.n_gauss*
192         (first_frame->width*first_frame->height + 128)));
193 
194     for( i = 0, n = 0; i < first_frame->height; i++ )
195     {
196         for( j = 0; j < first_frame->width; j++, n++ )
197         {
198             const int p = i*first_frame->widthStep+j*first_frame->nChannels;
199 
200             bg_model->g_point[n].g_values =
201                 bg_model->g_point[0].g_values + n*params.n_gauss;
202             bg_model->g_point[n].g_values[0].weight = 1;    //the first value seen has weight one
203             bg_model->g_point[n].g_values[0].match_sum = 1;
204             for( m = 0; m < first_frame->nChannels; m++)
205             {
206                 bg_model->g_point[n].g_values[0].variance[m] = var_init;
207                 bg_model->g_point[n].g_values[0].mean[m] = (unsigned char)first_frame->imageData[p + m];
208             }
209             for( k = 1; k < params.n_gauss; k++)
210             {
211                 bg_model->g_point[n].g_values[k].weight = 0;
212                 bg_model->g_point[n].g_values[k].match_sum = 0;
213                 for( m = 0; m < first_frame->nChannels; m++){
214                     bg_model->g_point[n].g_values[k].variance[m] = var_init;
215                     bg_model->g_point[n].g_values[k].mean[m] = 0;
216                 }
217             }
218         }
219     }
220 
221     bg_model->countFrames = 0;
222 
223     __END__;
224 
225     if( cvGetErrStatus() < 0 )
226     {
227         CvBGStatModel* base_ptr = (CvBGStatModel*)bg_model;
228 
229         if( bg_model && bg_model->release )
230             bg_model->release( &base_ptr );
231         else
232             cvFree( &bg_model );
233         bg_model = 0;
234     }
235 
236     return (CvBGStatModel*)bg_model;
237 }
238 
239 
240 static void CV_CDECL
icvReleaseGaussianBGModel(CvGaussBGModel ** _bg_model)241 icvReleaseGaussianBGModel( CvGaussBGModel** _bg_model )
242 {
243     CV_FUNCNAME( "icvReleaseGaussianBGModel" );
244 
245     __BEGIN__;
246 
247     if( !_bg_model )
248         CV_ERROR( CV_StsNullPtr, "" );
249 
250     if( *_bg_model )
251     {
252         CvGaussBGModel* bg_model = *_bg_model;
253         if( bg_model->g_point )
254         {
255             cvFree( &bg_model->g_point[0].g_values );
256             cvFree( &bg_model->g_point );
257         }
258 
259         cvReleaseImage( &bg_model->background );
260         cvReleaseImage( &bg_model->foreground );
261         cvReleaseMemStorage(&bg_model->storage);
262         memset( bg_model, 0, sizeof(*bg_model) );
263         cvFree( _bg_model );
264     }
265 
266     __END__;
267 }
268 
269 
270 static int CV_CDECL
icvUpdateGaussianBGModel(IplImage * curr_frame,CvGaussBGModel * bg_model)271 icvUpdateGaussianBGModel( IplImage* curr_frame, CvGaussBGModel*  bg_model )
272 {
273     int i, j, k, n;
274     int region_count = 0;
275     CvSeq *first_seq = NULL, *prev_seq = NULL, *seq = NULL;
276 
277     bg_model->countFrames++;
278 
279     for( i = 0, n = 0; i < curr_frame->height; i++ )
280     {
281         for( j = 0; j < curr_frame->width; j++, n++ )
282         {
283             int match[CV_BGFG_MOG_MAX_NGAUSSIANS];
284             double sort_key[CV_BGFG_MOG_MAX_NGAUSSIANS];
285             const int nChannels = curr_frame->nChannels;
286             const int p = curr_frame->widthStep*i+j*nChannels;
287 
288             // A few short cuts
289             CvGaussBGPoint* g_point = &bg_model->g_point[n];
290             const CvGaussBGStatModelParams bg_model_params = bg_model->params;
291             double pixel[4];
292             int no_match;
293 
294             for( k = 0; k < nChannels; k++ )
295                 pixel[k] = (uchar)curr_frame->imageData[p+k];
296 
297             no_match = icvMatchTest( pixel, nChannels, match, g_point, &bg_model_params );
298             if( bg_model->countFrames >= bg_model->params.win_size )
299             {
300                 icvUpdateFullWindow( pixel, nChannels, match, g_point, &bg_model->params );
301                 if( no_match == -1)
302                     icvUpdateFullNoMatch( curr_frame, p, match, g_point, &bg_model_params );
303             }
304             else
305             {
306                 icvUpdatePartialWindow( pixel, nChannels, match, g_point, &bg_model_params );
307                 if( no_match == -1)
308                     icvUpdatePartialNoMatch( pixel, nChannels, match, g_point, &bg_model_params );
309             }
310             icvGetSortKey( nChannels, sort_key, g_point, &bg_model_params );
311             icvInsertionSortGaussians( g_point, sort_key, (CvGaussBGStatModelParams *)&bg_model_params );
312             icvBackgroundTest( nChannels, n, i, j, match, bg_model );
313         }
314     }
315 
316     //foreground filtering
317 
318     //filter small regions
319     cvClearMemStorage(bg_model->storage);
320 
321     //cvMorphologyEx( bg_model->foreground, bg_model->foreground, 0, 0, CV_MOP_OPEN, 1 );
322     //cvMorphologyEx( bg_model->foreground, bg_model->foreground, 0, 0, CV_MOP_CLOSE, 1 );
323 
324     cvFindContours( bg_model->foreground, bg_model->storage, &first_seq, sizeof(CvContour), CV_RETR_LIST );
325     for( seq = first_seq; seq; seq = seq->h_next )
326     {
327         CvContour* cnt = (CvContour*)seq;
328         if( cnt->rect.width * cnt->rect.height < bg_model->params.minArea )
329         {
330             //delete small contour
331             prev_seq = seq->h_prev;
332             if( prev_seq )
333             {
334                 prev_seq->h_next = seq->h_next;
335                 if( seq->h_next ) seq->h_next->h_prev = prev_seq;
336             }
337             else
338             {
339                 first_seq = seq->h_next;
340                 if( seq->h_next ) seq->h_next->h_prev = NULL;
341             }
342         }
343         else
344         {
345             region_count++;
346         }
347     }
348     bg_model->foreground_regions = first_seq;
349     cvZero(bg_model->foreground);
350     cvDrawContours(bg_model->foreground, first_seq, CV_RGB(0, 0, 255), CV_RGB(0, 0, 255), 10, -1);
351 
352     return region_count;
353 }
354 
icvInsertionSortGaussians(CvGaussBGPoint * g_point,double * sort_key,CvGaussBGStatModelParams * bg_model_params)355 static void icvInsertionSortGaussians( CvGaussBGPoint* g_point, double* sort_key, CvGaussBGStatModelParams *bg_model_params )
356 {
357     int i, j;
358     for( i = 1; i < bg_model_params->n_gauss; i++ )
359     {
360         double index = sort_key[i];
361         for( j = i; j > 0 && sort_key[j-1] < index; j-- ) //sort decending order
362         {
363             double temp_sort_key = sort_key[j];
364             sort_key[j] = sort_key[j-1];
365             sort_key[j-1] = temp_sort_key;
366 
367             CvGaussBGValues temp_gauss_values = g_point->g_values[j];
368             g_point->g_values[j] = g_point->g_values[j-1];
369             g_point->g_values[j-1] = temp_gauss_values;
370         }
371 //        sort_key[j] = index;
372     }
373 }
374 
375 
icvMatchTest(double * src_pixel,int nChannels,int * match,const CvGaussBGPoint * g_point,const CvGaussBGStatModelParams * bg_model_params)376 static int icvMatchTest( double* src_pixel, int nChannels, int* match,
377                          const CvGaussBGPoint* g_point,
378                          const CvGaussBGStatModelParams *bg_model_params )
379 {
380     int k;
381     int matchPosition=-1;
382     for ( k = 0; k < bg_model_params->n_gauss; k++) match[k]=0;
383 
384     for ( k = 0; k < bg_model_params->n_gauss; k++) {
385         double sum_d2 = 0.0;
386         double var_threshold = 0.0;
387         for(int m = 0; m < nChannels; m++){
388             double d = g_point->g_values[k].mean[m]- src_pixel[m];
389             sum_d2 += (d*d);
390             var_threshold += g_point->g_values[k].variance[m];
391         }  //difference < STD_LIMIT*STD_LIMIT or difference**2 < STD_LIMIT*STD_LIMIT*VAR
392         var_threshold = bg_model_params->std_threshold*bg_model_params->std_threshold*var_threshold;
393         if(sum_d2 < var_threshold){
394             match[k] = 1;
395             matchPosition = k;
396             break;
397         }
398     }
399 
400     return matchPosition;
401 }
402 
403 /*
404 static int icvMatchTest2( double* src_pixel, int nChannels, int* match,
405                           const CvGaussBGPoint* g_point,
406                           const CvGaussBGStatModelParams *bg_model_params )
407 {
408     int k, m;
409     int matchPosition=-1;
410 
411     for( k = 0; k < bg_model_params->n_gauss; k++ )
412         match[k] = 0;
413 
414     for( k = 0; k < bg_model_params->n_gauss; k++ )
415     {
416         double sum_d2 = 0.0, var_threshold;
417         for( m = 0; m < nChannels; m++ )
418         {
419             double d = g_point->g_values[k].mean[m]- src_pixel[m];
420             sum_d2 += (d*d) / (g_point->g_values[k].variance[m] * g_point->g_values[k].variance[m]);
421         }  //difference < STD_LIMIT*STD_LIMIT or difference**2 < STD_LIMIT*STD_LIMIT*VAR
422 
423         var_threshold = bg_model_params->std_threshold*bg_model_params->std_threshold;
424         if( sum_d2 < var_threshold )
425         {
426             match[k] = 1;
427             matchPosition = k;
428             break;
429         }
430     }
431 
432     return matchPosition;
433 }
434 */
435 
icvUpdateFullWindow(double * src_pixel,int nChannels,int * match,CvGaussBGPoint * g_point,const CvGaussBGStatModelParams * bg_model_params)436 static void icvUpdateFullWindow( double* src_pixel, int nChannels, int* match,
437                                  CvGaussBGPoint* g_point,
438                                  const CvGaussBGStatModelParams *bg_model_params )
439 {
440     const double learning_rate_weight = (1.0/(double)bg_model_params->win_size);
441     for(int k = 0; k < bg_model_params->n_gauss; k++){
442         g_point->g_values[k].weight = g_point->g_values[k].weight +
443             (learning_rate_weight*((double)match[k] -
444             g_point->g_values[k].weight));
445         if(match[k]){
446             double learning_rate_gaussian = (double)match[k]/(g_point->g_values[k].weight*
447                 (double)bg_model_params->win_size);
448             for(int m = 0; m < nChannels; m++){
449                 const double tmpDiff = src_pixel[m] - g_point->g_values[k].mean[m];
450                 g_point->g_values[k].mean[m] = g_point->g_values[k].mean[m] +
451                     (learning_rate_gaussian * tmpDiff);
452                 g_point->g_values[k].variance[m] = g_point->g_values[k].variance[m]+
453                     (learning_rate_gaussian*((tmpDiff*tmpDiff) - g_point->g_values[k].variance[m]));
454             }
455         }
456     }
457 }
458 
459 
icvUpdatePartialWindow(double * src_pixel,int nChannels,int * match,CvGaussBGPoint * g_point,const CvGaussBGStatModelParams * bg_model_params)460 static void icvUpdatePartialWindow( double* src_pixel, int nChannels, int* match, CvGaussBGPoint* g_point, const CvGaussBGStatModelParams *bg_model_params )
461 {
462     int k, m;
463     int window_current = 0;
464 
465     for( k = 0; k < bg_model_params->n_gauss; k++ )
466         window_current += g_point->g_values[k].match_sum;
467 
468     for( k = 0; k < bg_model_params->n_gauss; k++ )
469     {
470         g_point->g_values[k].match_sum += match[k];
471         double learning_rate_weight = (1.0/((double)window_current + 1.0)); //increased by one since sum
472         g_point->g_values[k].weight = g_point->g_values[k].weight +
473             (learning_rate_weight*((double)match[k] - g_point->g_values[k].weight));
474 
475         if( g_point->g_values[k].match_sum > 0 && match[k] )
476         {
477             double learning_rate_gaussian = (double)match[k]/((double)g_point->g_values[k].match_sum);
478             for( m = 0; m < nChannels; m++ )
479             {
480                 const double tmpDiff = src_pixel[m] - g_point->g_values[k].mean[m];
481                 g_point->g_values[k].mean[m] = g_point->g_values[k].mean[m] +
482                     (learning_rate_gaussian*tmpDiff);
483                 g_point->g_values[k].variance[m] = g_point->g_values[k].variance[m]+
484                     (learning_rate_gaussian*((tmpDiff*tmpDiff) - g_point->g_values[k].variance[m]));
485             }
486         }
487     }
488 }
489 
icvUpdateFullNoMatch(IplImage * gm_image,int p,int * match,CvGaussBGPoint * g_point,const CvGaussBGStatModelParams * bg_model_params)490 static void icvUpdateFullNoMatch( IplImage* gm_image, int p, int* match,
491                                   CvGaussBGPoint* g_point,
492                                   const CvGaussBGStatModelParams *bg_model_params)
493 {
494     int k, m;
495     double alpha;
496     int match_sum_total = 0;
497 
498     //new value of last one
499     g_point->g_values[bg_model_params->n_gauss - 1].match_sum = 1;
500 
501     //get sum of all but last value of match_sum
502 
503     for( k = 0; k < bg_model_params->n_gauss ; k++ )
504         match_sum_total += g_point->g_values[k].match_sum;
505 
506     g_point->g_values[bg_model_params->n_gauss - 1].weight = 1./(double)match_sum_total;
507     for( m = 0; m < gm_image->nChannels ; m++ )
508     {
509         // first pass mean is image value
510         g_point->g_values[bg_model_params->n_gauss - 1].variance[m] = bg_model_params->variance_init;
511         g_point->g_values[bg_model_params->n_gauss - 1].mean[m] = (unsigned char)gm_image->imageData[p + m];
512     }
513 
514     alpha = 1.0 - (1.0/bg_model_params->win_size);
515     for( k = 0; k < bg_model_params->n_gauss - 1; k++ )
516     {
517         g_point->g_values[k].weight *= alpha;
518         if( match[k] )
519             g_point->g_values[k].weight += alpha;
520     }
521 }
522 
523 
524 static void
icvUpdatePartialNoMatch(double * pixel,int nChannels,int *,CvGaussBGPoint * g_point,const CvGaussBGStatModelParams * bg_model_params)525 icvUpdatePartialNoMatch(double *pixel,
526                         int nChannels,
527                         int* /*match*/,
528                         CvGaussBGPoint* g_point,
529                         const CvGaussBGStatModelParams *bg_model_params)
530 {
531     int k, m;
532     //new value of last one
533     g_point->g_values[bg_model_params->n_gauss - 1].match_sum = 1;
534 
535     //get sum of all but last value of match_sum
536     int match_sum_total = 0;
537     for(k = 0; k < bg_model_params->n_gauss ; k++)
538         match_sum_total += g_point->g_values[k].match_sum;
539 
540     for(m = 0; m < nChannels; m++)
541     {
542         //first pass mean is image value
543         g_point->g_values[bg_model_params->n_gauss - 1].variance[m] = bg_model_params->variance_init;
544         g_point->g_values[bg_model_params->n_gauss - 1].mean[m] = pixel[m];
545     }
546     for(k = 0; k < bg_model_params->n_gauss; k++)
547     {
548         g_point->g_values[k].weight = (double)g_point->g_values[k].match_sum /
549             (double)match_sum_total;
550     }
551 }
552 
icvGetSortKey(const int nChannels,double * sort_key,const CvGaussBGPoint * g_point,const CvGaussBGStatModelParams * bg_model_params)553 static void icvGetSortKey( const int nChannels, double* sort_key, const CvGaussBGPoint* g_point,
554                            const CvGaussBGStatModelParams *bg_model_params )
555 {
556     int k, m;
557     for( k = 0; k < bg_model_params->n_gauss; k++ )
558     {
559         // Avoid division by zero
560         if( g_point->g_values[k].match_sum > 0 )
561         {
562             // Independence assumption between components
563             double variance_sum = 0.0;
564             for( m = 0; m < nChannels; m++ )
565                 variance_sum += g_point->g_values[k].variance[m];
566 
567             sort_key[k] = g_point->g_values[k].weight/sqrt(variance_sum);
568         }
569         else
570             sort_key[k]= 0.0;
571     }
572 }
573 
574 
icvBackgroundTest(const int nChannels,int n,int i,int j,int * match,CvGaussBGModel * bg_model)575 static void icvBackgroundTest( const int nChannels, int n, int i, int j, int *match, CvGaussBGModel* bg_model )
576 {
577     int m, b;
578     uchar pixelValue = (uchar)255; // will switch to 0 if match found
579     double weight_sum = 0.0;
580     CvGaussBGPoint* g_point = bg_model->g_point;
581 
582     for( m = 0; m < nChannels; m++)
583         bg_model->background->imageData[ bg_model->background->widthStep*i + j*nChannels + m]  = (unsigned char)(g_point[n].g_values[0].mean[m]+0.5);
584 
585     for( b = 0; b < bg_model->params.n_gauss; b++)
586     {
587         weight_sum += g_point[n].g_values[b].weight;
588         if( match[b] )
589             pixelValue = 0;
590         if( weight_sum > bg_model->params.bg_threshold )
591             break;
592     }
593 
594     bg_model->foreground->imageData[ bg_model->foreground->widthStep*i + j] = pixelValue;
595 }
596 
597 /* End of file. */
598