1 /* crypto/rand/md_rand.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ====================================================================
59 * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111
112 #define OPENSSL_FIPSEVP
113
114 #ifdef MD_RAND_DEBUG
115 # ifndef NDEBUG
116 # define NDEBUG
117 # endif
118 #endif
119
120 #include <assert.h>
121 #include <stdio.h>
122 #include <string.h>
123
124 #include "e_os.h"
125
126 #include <openssl/crypto.h>
127 #include <openssl/rand.h>
128 #include "rand_lcl.h"
129
130 #include <openssl/err.h>
131
132 #ifdef BN_DEBUG
133 # define PREDICT
134 #endif
135
136 /* #define PREDICT 1 */
137
138 #define STATE_SIZE 1023
139 static int state_num=0,state_index=0;
140 static unsigned char state[STATE_SIZE+MD_DIGEST_LENGTH];
141 static unsigned char md[MD_DIGEST_LENGTH];
142 static long md_count[2]={0,0};
143 static double entropy=0;
144 static int initialized=0;
145
146 static unsigned int crypto_lock_rand = 0; /* may be set only when a thread
147 * holds CRYPTO_LOCK_RAND
148 * (to prevent double locking) */
149 /* access to lockin_thread is synchronized by CRYPTO_LOCK_RAND2 */
150 static CRYPTO_THREADID locking_threadid; /* valid iff crypto_lock_rand is set */
151
152
153 #ifdef PREDICT
154 int rand_predictable=0;
155 #endif
156
157 const char RAND_version[]="RAND" OPENSSL_VERSION_PTEXT;
158
159 static void ssleay_rand_cleanup(void);
160 static void ssleay_rand_seed(const void *buf, int num);
161 static void ssleay_rand_add(const void *buf, int num, double add_entropy);
162 static int ssleay_rand_bytes(unsigned char *buf, int num, int pseudo);
163 static int ssleay_rand_nopseudo_bytes(unsigned char *buf, int num);
164 static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num);
165 static int ssleay_rand_status(void);
166
167 RAND_METHOD rand_ssleay_meth={
168 ssleay_rand_seed,
169 ssleay_rand_nopseudo_bytes,
170 ssleay_rand_cleanup,
171 ssleay_rand_add,
172 ssleay_rand_pseudo_bytes,
173 ssleay_rand_status
174 };
175
RAND_SSLeay(void)176 RAND_METHOD *RAND_SSLeay(void)
177 {
178 return(&rand_ssleay_meth);
179 }
180
ssleay_rand_cleanup(void)181 static void ssleay_rand_cleanup(void)
182 {
183 OPENSSL_cleanse(state,sizeof(state));
184 state_num=0;
185 state_index=0;
186 OPENSSL_cleanse(md,MD_DIGEST_LENGTH);
187 md_count[0]=0;
188 md_count[1]=0;
189 entropy=0;
190 initialized=0;
191 }
192
ssleay_rand_add(const void * buf,int num,double add)193 static void ssleay_rand_add(const void *buf, int num, double add)
194 {
195 int i,j,k,st_idx;
196 long md_c[2];
197 unsigned char local_md[MD_DIGEST_LENGTH];
198 EVP_MD_CTX m;
199 int do_not_lock;
200
201 if (!num)
202 return;
203
204 /*
205 * (Based on the rand(3) manpage)
206 *
207 * The input is chopped up into units of 20 bytes (or less for
208 * the last block). Each of these blocks is run through the hash
209 * function as follows: The data passed to the hash function
210 * is the current 'md', the same number of bytes from the 'state'
211 * (the location determined by in incremented looping index) as
212 * the current 'block', the new key data 'block', and 'count'
213 * (which is incremented after each use).
214 * The result of this is kept in 'md' and also xored into the
215 * 'state' at the same locations that were used as input into the
216 * hash function.
217 */
218
219 /* check if we already have the lock */
220 if (crypto_lock_rand)
221 {
222 CRYPTO_THREADID cur;
223 CRYPTO_THREADID_current(&cur);
224 CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
225 do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur);
226 CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
227 }
228 else
229 do_not_lock = 0;
230
231 if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
232 st_idx=state_index;
233
234 /* use our own copies of the counters so that even
235 * if a concurrent thread seeds with exactly the
236 * same data and uses the same subarray there's _some_
237 * difference */
238 md_c[0] = md_count[0];
239 md_c[1] = md_count[1];
240
241 memcpy(local_md, md, sizeof md);
242
243 /* state_index <= state_num <= STATE_SIZE */
244 state_index += num;
245 if (state_index >= STATE_SIZE)
246 {
247 state_index%=STATE_SIZE;
248 state_num=STATE_SIZE;
249 }
250 else if (state_num < STATE_SIZE)
251 {
252 if (state_index > state_num)
253 state_num=state_index;
254 }
255 /* state_index <= state_num <= STATE_SIZE */
256
257 /* state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE]
258 * are what we will use now, but other threads may use them
259 * as well */
260
261 md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0);
262
263 if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
264
265 EVP_MD_CTX_init(&m);
266 for (i=0; i<num; i+=MD_DIGEST_LENGTH)
267 {
268 j=(num-i);
269 j=(j > MD_DIGEST_LENGTH)?MD_DIGEST_LENGTH:j;
270
271 MD_Init(&m);
272 MD_Update(&m,local_md,MD_DIGEST_LENGTH);
273 k=(st_idx+j)-STATE_SIZE;
274 if (k > 0)
275 {
276 MD_Update(&m,&(state[st_idx]),j-k);
277 MD_Update(&m,&(state[0]),k);
278 }
279 else
280 MD_Update(&m,&(state[st_idx]),j);
281
282 /* DO NOT REMOVE THE FOLLOWING CALL TO MD_Update()! */
283 MD_Update(&m,buf,j);
284 /* We know that line may cause programs such as
285 purify and valgrind to complain about use of
286 uninitialized data. The problem is not, it's
287 with the caller. Removing that line will make
288 sure you get really bad randomness and thereby
289 other problems such as very insecure keys. */
290
291 MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
292 MD_Final(&m,local_md);
293 md_c[1]++;
294
295 buf=(const char *)buf + j;
296
297 for (k=0; k<j; k++)
298 {
299 /* Parallel threads may interfere with this,
300 * but always each byte of the new state is
301 * the XOR of some previous value of its
302 * and local_md (itermediate values may be lost).
303 * Alway using locking could hurt performance more
304 * than necessary given that conflicts occur only
305 * when the total seeding is longer than the random
306 * state. */
307 state[st_idx++]^=local_md[k];
308 if (st_idx >= STATE_SIZE)
309 st_idx=0;
310 }
311 }
312 EVP_MD_CTX_cleanup(&m);
313
314 if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
315 /* Don't just copy back local_md into md -- this could mean that
316 * other thread's seeding remains without effect (except for
317 * the incremented counter). By XORing it we keep at least as
318 * much entropy as fits into md. */
319 for (k = 0; k < (int)sizeof(md); k++)
320 {
321 md[k] ^= local_md[k];
322 }
323 if (entropy < ENTROPY_NEEDED) /* stop counting when we have enough */
324 entropy += add;
325 if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
326
327 #if !defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32)
328 assert(md_c[1] == md_count[1]);
329 #endif
330 }
331
ssleay_rand_seed(const void * buf,int num)332 static void ssleay_rand_seed(const void *buf, int num)
333 {
334 ssleay_rand_add(buf, num, (double)num);
335 }
336
ssleay_rand_bytes(unsigned char * buf,int num,int pseudo)337 static int ssleay_rand_bytes(unsigned char *buf, int num, int pseudo)
338 {
339 static volatile int stirred_pool = 0;
340 int i,j,k,st_num,st_idx;
341 int num_ceil;
342 int ok;
343 long md_c[2];
344 unsigned char local_md[MD_DIGEST_LENGTH];
345 EVP_MD_CTX m;
346 #ifndef GETPID_IS_MEANINGLESS
347 pid_t curr_pid = getpid();
348 #endif
349 int do_stir_pool = 0;
350
351 #ifdef PREDICT
352 if (rand_predictable)
353 {
354 static unsigned char val=0;
355
356 for (i=0; i<num; i++)
357 buf[i]=val++;
358 return(1);
359 }
360 #endif
361
362 if (num <= 0)
363 return 1;
364
365 EVP_MD_CTX_init(&m);
366 /* round upwards to multiple of MD_DIGEST_LENGTH/2 */
367 num_ceil = (1 + (num-1)/(MD_DIGEST_LENGTH/2)) * (MD_DIGEST_LENGTH/2);
368
369 /*
370 * (Based on the rand(3) manpage:)
371 *
372 * For each group of 10 bytes (or less), we do the following:
373 *
374 * Input into the hash function the local 'md' (which is initialized from
375 * the global 'md' before any bytes are generated), the bytes that are to
376 * be overwritten by the random bytes, and bytes from the 'state'
377 * (incrementing looping index). From this digest output (which is kept
378 * in 'md'), the top (up to) 10 bytes are returned to the caller and the
379 * bottom 10 bytes are xored into the 'state'.
380 *
381 * Finally, after we have finished 'num' random bytes for the
382 * caller, 'count' (which is incremented) and the local and global 'md'
383 * are fed into the hash function and the results are kept in the
384 * global 'md'.
385 */
386 #ifdef OPENSSL_FIPS
387 /* NB: in FIPS mode we are already under a lock */
388 if (!FIPS_mode())
389 #endif
390 CRYPTO_w_lock(CRYPTO_LOCK_RAND);
391
392 /* prevent ssleay_rand_bytes() from trying to obtain the lock again */
393 CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
394 CRYPTO_THREADID_current(&locking_threadid);
395 CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
396 crypto_lock_rand = 1;
397
398 if (!initialized)
399 {
400 RAND_poll();
401 initialized = 1;
402 }
403
404 if (!stirred_pool)
405 do_stir_pool = 1;
406
407 ok = (entropy >= ENTROPY_NEEDED);
408 if (!ok)
409 {
410 /* If the PRNG state is not yet unpredictable, then seeing
411 * the PRNG output may help attackers to determine the new
412 * state; thus we have to decrease the entropy estimate.
413 * Once we've had enough initial seeding we don't bother to
414 * adjust the entropy count, though, because we're not ambitious
415 * to provide *information-theoretic* randomness.
416 *
417 * NOTE: This approach fails if the program forks before
418 * we have enough entropy. Entropy should be collected
419 * in a separate input pool and be transferred to the
420 * output pool only when the entropy limit has been reached.
421 */
422 entropy -= num;
423 if (entropy < 0)
424 entropy = 0;
425 }
426
427 if (do_stir_pool)
428 {
429 /* In the output function only half of 'md' remains secret,
430 * so we better make sure that the required entropy gets
431 * 'evenly distributed' through 'state', our randomness pool.
432 * The input function (ssleay_rand_add) chains all of 'md',
433 * which makes it more suitable for this purpose.
434 */
435
436 int n = STATE_SIZE; /* so that the complete pool gets accessed */
437 while (n > 0)
438 {
439 #if MD_DIGEST_LENGTH > 20
440 # error "Please adjust DUMMY_SEED."
441 #endif
442 #define DUMMY_SEED "...................." /* at least MD_DIGEST_LENGTH */
443 /* Note that the seed does not matter, it's just that
444 * ssleay_rand_add expects to have something to hash. */
445 ssleay_rand_add(DUMMY_SEED, MD_DIGEST_LENGTH, 0.0);
446 n -= MD_DIGEST_LENGTH;
447 }
448 if (ok)
449 stirred_pool = 1;
450 }
451
452 st_idx=state_index;
453 st_num=state_num;
454 md_c[0] = md_count[0];
455 md_c[1] = md_count[1];
456 memcpy(local_md, md, sizeof md);
457
458 state_index+=num_ceil;
459 if (state_index > state_num)
460 state_index %= state_num;
461
462 /* state[st_idx], ..., state[(st_idx + num_ceil - 1) % st_num]
463 * are now ours (but other threads may use them too) */
464
465 md_count[0] += 1;
466
467 /* before unlocking, we must clear 'crypto_lock_rand' */
468 crypto_lock_rand = 0;
469 #ifdef OPENSSL_FIPS
470 if (!FIPS_mode())
471 #endif
472 CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
473
474 while (num > 0)
475 {
476 /* num_ceil -= MD_DIGEST_LENGTH/2 */
477 j=(num >= MD_DIGEST_LENGTH/2)?MD_DIGEST_LENGTH/2:num;
478 num-=j;
479 MD_Init(&m);
480 #ifndef GETPID_IS_MEANINGLESS
481 if (curr_pid) /* just in the first iteration to save time */
482 {
483 MD_Update(&m,(unsigned char*)&curr_pid,sizeof curr_pid);
484 curr_pid = 0;
485 }
486 #endif
487 MD_Update(&m,local_md,MD_DIGEST_LENGTH);
488 MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
489
490 #ifndef PURIFY /* purify complains */
491 /* The following line uses the supplied buffer as a small
492 * source of entropy: since this buffer is often uninitialised
493 * it may cause programs such as purify or valgrind to
494 * complain. So for those builds it is not used: the removal
495 * of such a small source of entropy has negligible impact on
496 * security.
497 */
498 MD_Update(&m,buf,j);
499 #endif
500
501 k=(st_idx+MD_DIGEST_LENGTH/2)-st_num;
502 if (k > 0)
503 {
504 MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2-k);
505 MD_Update(&m,&(state[0]),k);
506 }
507 else
508 MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2);
509 MD_Final(&m,local_md);
510
511 for (i=0; i<MD_DIGEST_LENGTH/2; i++)
512 {
513 state[st_idx++]^=local_md[i]; /* may compete with other threads */
514 if (st_idx >= st_num)
515 st_idx=0;
516 if (i < j)
517 *(buf++)=local_md[i+MD_DIGEST_LENGTH/2];
518 }
519 }
520
521 MD_Init(&m);
522 MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
523 MD_Update(&m,local_md,MD_DIGEST_LENGTH);
524 #ifdef OPENSSL_FIPS
525 if (!FIPS_mode())
526 #endif
527 CRYPTO_w_lock(CRYPTO_LOCK_RAND);
528 MD_Update(&m,md,MD_DIGEST_LENGTH);
529 MD_Final(&m,md);
530 #ifdef OPENSSL_FIPS
531 if (!FIPS_mode())
532 #endif
533 CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
534
535 EVP_MD_CTX_cleanup(&m);
536 if (ok)
537 return(1);
538 else if (pseudo)
539 return 0;
540 else
541 {
542 RANDerr(RAND_F_SSLEAY_RAND_BYTES,RAND_R_PRNG_NOT_SEEDED);
543 ERR_add_error_data(1, "You need to read the OpenSSL FAQ, "
544 "http://www.openssl.org/support/faq.html");
545 return(0);
546 }
547 }
548
ssleay_rand_nopseudo_bytes(unsigned char * buf,int num)549 static int ssleay_rand_nopseudo_bytes(unsigned char *buf, int num)
550 {
551 return ssleay_rand_bytes(buf, num, 0);
552 }
553
554 /* pseudo-random bytes that are guaranteed to be unique but not
555 unpredictable */
ssleay_rand_pseudo_bytes(unsigned char * buf,int num)556 static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num)
557 {
558 return ssleay_rand_bytes(buf, num, 1);
559 }
560
ssleay_rand_status(void)561 static int ssleay_rand_status(void)
562 {
563 CRYPTO_THREADID cur;
564 int ret;
565 int do_not_lock;
566
567 CRYPTO_THREADID_current(&cur);
568 /* check if we already have the lock
569 * (could happen if a RAND_poll() implementation calls RAND_status()) */
570 if (crypto_lock_rand)
571 {
572 CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
573 do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur);
574 CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
575 }
576 else
577 do_not_lock = 0;
578
579 if (!do_not_lock)
580 {
581 CRYPTO_w_lock(CRYPTO_LOCK_RAND);
582
583 /* prevent ssleay_rand_bytes() from trying to obtain the lock again */
584 CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
585 CRYPTO_THREADID_cpy(&locking_threadid, &cur);
586 CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
587 crypto_lock_rand = 1;
588 }
589
590 if (!initialized)
591 {
592 RAND_poll();
593 initialized = 1;
594 }
595
596 ret = entropy >= ENTROPY_NEEDED;
597
598 if (!do_not_lock)
599 {
600 /* before unlocking, we must clear 'crypto_lock_rand' */
601 crypto_lock_rand = 0;
602
603 CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
604 }
605
606 return ret;
607 }
608