• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* crypto/rand/md_rand.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3  * All rights reserved.
4  *
5  * This package is an SSL implementation written
6  * by Eric Young (eay@cryptsoft.com).
7  * The implementation was written so as to conform with Netscapes SSL.
8  *
9  * This library is free for commercial and non-commercial use as long as
10  * the following conditions are aheared to.  The following conditions
11  * apply to all code found in this distribution, be it the RC4, RSA,
12  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13  * included with this distribution is covered by the same copyright terms
14  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15  *
16  * Copyright remains Eric Young's, and as such any Copyright notices in
17  * the code are not to be removed.
18  * If this package is used in a product, Eric Young should be given attribution
19  * as the author of the parts of the library used.
20  * This can be in the form of a textual message at program startup or
21  * in documentation (online or textual) provided with the package.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 3. All advertising materials mentioning features or use of this software
32  *    must display the following acknowledgement:
33  *    "This product includes cryptographic software written by
34  *     Eric Young (eay@cryptsoft.com)"
35  *    The word 'cryptographic' can be left out if the rouines from the library
36  *    being used are not cryptographic related :-).
37  * 4. If you include any Windows specific code (or a derivative thereof) from
38  *    the apps directory (application code) you must include an acknowledgement:
39  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40  *
41  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  * The licence and distribution terms for any publically available version or
54  * derivative of this code cannot be changed.  i.e. this code cannot simply be
55  * copied and put under another distribution licence
56  * [including the GNU Public Licence.]
57  */
58 /* ====================================================================
59  * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
60  *
61  * Redistribution and use in source and binary forms, with or without
62  * modification, are permitted provided that the following conditions
63  * are met:
64  *
65  * 1. Redistributions of source code must retain the above copyright
66  *    notice, this list of conditions and the following disclaimer.
67  *
68  * 2. Redistributions in binary form must reproduce the above copyright
69  *    notice, this list of conditions and the following disclaimer in
70  *    the documentation and/or other materials provided with the
71  *    distribution.
72  *
73  * 3. All advertising materials mentioning features or use of this
74  *    software must display the following acknowledgment:
75  *    "This product includes software developed by the OpenSSL Project
76  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77  *
78  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79  *    endorse or promote products derived from this software without
80  *    prior written permission. For written permission, please contact
81  *    openssl-core@openssl.org.
82  *
83  * 5. Products derived from this software may not be called "OpenSSL"
84  *    nor may "OpenSSL" appear in their names without prior written
85  *    permission of the OpenSSL Project.
86  *
87  * 6. Redistributions of any form whatsoever must retain the following
88  *    acknowledgment:
89  *    "This product includes software developed by the OpenSSL Project
90  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91  *
92  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103  * OF THE POSSIBILITY OF SUCH DAMAGE.
104  * ====================================================================
105  *
106  * This product includes cryptographic software written by Eric Young
107  * (eay@cryptsoft.com).  This product includes software written by Tim
108  * Hudson (tjh@cryptsoft.com).
109  *
110  */
111 
112 #define OPENSSL_FIPSEVP
113 
114 #ifdef MD_RAND_DEBUG
115 # ifndef NDEBUG
116 #   define NDEBUG
117 # endif
118 #endif
119 
120 #include <assert.h>
121 #include <stdio.h>
122 #include <string.h>
123 
124 #include "e_os.h"
125 
126 #include <openssl/crypto.h>
127 #include <openssl/rand.h>
128 #include "rand_lcl.h"
129 
130 #include <openssl/err.h>
131 
132 #ifdef BN_DEBUG
133 # define PREDICT
134 #endif
135 
136 /* #define PREDICT	1 */
137 
138 #define STATE_SIZE	1023
139 static int state_num=0,state_index=0;
140 static unsigned char state[STATE_SIZE+MD_DIGEST_LENGTH];
141 static unsigned char md[MD_DIGEST_LENGTH];
142 static long md_count[2]={0,0};
143 static double entropy=0;
144 static int initialized=0;
145 
146 static unsigned int crypto_lock_rand = 0; /* may be set only when a thread
147                                            * holds CRYPTO_LOCK_RAND
148                                            * (to prevent double locking) */
149 /* access to lockin_thread is synchronized by CRYPTO_LOCK_RAND2 */
150 static CRYPTO_THREADID locking_threadid; /* valid iff crypto_lock_rand is set */
151 
152 
153 #ifdef PREDICT
154 int rand_predictable=0;
155 #endif
156 
157 const char RAND_version[]="RAND" OPENSSL_VERSION_PTEXT;
158 
159 static void ssleay_rand_cleanup(void);
160 static void ssleay_rand_seed(const void *buf, int num);
161 static void ssleay_rand_add(const void *buf, int num, double add_entropy);
162 static int ssleay_rand_bytes(unsigned char *buf, int num, int pseudo);
163 static int ssleay_rand_nopseudo_bytes(unsigned char *buf, int num);
164 static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num);
165 static int ssleay_rand_status(void);
166 
167 RAND_METHOD rand_ssleay_meth={
168 	ssleay_rand_seed,
169 	ssleay_rand_nopseudo_bytes,
170 	ssleay_rand_cleanup,
171 	ssleay_rand_add,
172 	ssleay_rand_pseudo_bytes,
173 	ssleay_rand_status
174 	};
175 
RAND_SSLeay(void)176 RAND_METHOD *RAND_SSLeay(void)
177 	{
178 	return(&rand_ssleay_meth);
179 	}
180 
ssleay_rand_cleanup(void)181 static void ssleay_rand_cleanup(void)
182 	{
183 	OPENSSL_cleanse(state,sizeof(state));
184 	state_num=0;
185 	state_index=0;
186 	OPENSSL_cleanse(md,MD_DIGEST_LENGTH);
187 	md_count[0]=0;
188 	md_count[1]=0;
189 	entropy=0;
190 	initialized=0;
191 	}
192 
ssleay_rand_add(const void * buf,int num,double add)193 static void ssleay_rand_add(const void *buf, int num, double add)
194 	{
195 	int i,j,k,st_idx;
196 	long md_c[2];
197 	unsigned char local_md[MD_DIGEST_LENGTH];
198 	EVP_MD_CTX m;
199 	int do_not_lock;
200 
201 	if (!num)
202 		return;
203 
204 	/*
205 	 * (Based on the rand(3) manpage)
206 	 *
207 	 * The input is chopped up into units of 20 bytes (or less for
208 	 * the last block).  Each of these blocks is run through the hash
209 	 * function as follows:  The data passed to the hash function
210 	 * is the current 'md', the same number of bytes from the 'state'
211 	 * (the location determined by in incremented looping index) as
212 	 * the current 'block', the new key data 'block', and 'count'
213 	 * (which is incremented after each use).
214 	 * The result of this is kept in 'md' and also xored into the
215 	 * 'state' at the same locations that were used as input into the
216          * hash function.
217 	 */
218 
219 	/* check if we already have the lock */
220 	if (crypto_lock_rand)
221 		{
222 		CRYPTO_THREADID cur;
223 		CRYPTO_THREADID_current(&cur);
224 		CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
225 		do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur);
226 		CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
227 		}
228 	else
229 		do_not_lock = 0;
230 
231 	if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
232 	st_idx=state_index;
233 
234 	/* use our own copies of the counters so that even
235 	 * if a concurrent thread seeds with exactly the
236 	 * same data and uses the same subarray there's _some_
237 	 * difference */
238 	md_c[0] = md_count[0];
239 	md_c[1] = md_count[1];
240 
241 	memcpy(local_md, md, sizeof md);
242 
243 	/* state_index <= state_num <= STATE_SIZE */
244 	state_index += num;
245 	if (state_index >= STATE_SIZE)
246 		{
247 		state_index%=STATE_SIZE;
248 		state_num=STATE_SIZE;
249 		}
250 	else if (state_num < STATE_SIZE)
251 		{
252 		if (state_index > state_num)
253 			state_num=state_index;
254 		}
255 	/* state_index <= state_num <= STATE_SIZE */
256 
257 	/* state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE]
258 	 * are what we will use now, but other threads may use them
259 	 * as well */
260 
261 	md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0);
262 
263 	if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
264 
265 	EVP_MD_CTX_init(&m);
266 	for (i=0; i<num; i+=MD_DIGEST_LENGTH)
267 		{
268 		j=(num-i);
269 		j=(j > MD_DIGEST_LENGTH)?MD_DIGEST_LENGTH:j;
270 
271 		MD_Init(&m);
272 		MD_Update(&m,local_md,MD_DIGEST_LENGTH);
273 		k=(st_idx+j)-STATE_SIZE;
274 		if (k > 0)
275 			{
276 			MD_Update(&m,&(state[st_idx]),j-k);
277 			MD_Update(&m,&(state[0]),k);
278 			}
279 		else
280 			MD_Update(&m,&(state[st_idx]),j);
281 
282 		/* DO NOT REMOVE THE FOLLOWING CALL TO MD_Update()! */
283 		MD_Update(&m,buf,j);
284 		/* We know that line may cause programs such as
285 		   purify and valgrind to complain about use of
286 		   uninitialized data.  The problem is not, it's
287 		   with the caller.  Removing that line will make
288 		   sure you get really bad randomness and thereby
289 		   other problems such as very insecure keys. */
290 
291 		MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
292 		MD_Final(&m,local_md);
293 		md_c[1]++;
294 
295 		buf=(const char *)buf + j;
296 
297 		for (k=0; k<j; k++)
298 			{
299 			/* Parallel threads may interfere with this,
300 			 * but always each byte of the new state is
301 			 * the XOR of some previous value of its
302 			 * and local_md (itermediate values may be lost).
303 			 * Alway using locking could hurt performance more
304 			 * than necessary given that conflicts occur only
305 			 * when the total seeding is longer than the random
306 			 * state. */
307 			state[st_idx++]^=local_md[k];
308 			if (st_idx >= STATE_SIZE)
309 				st_idx=0;
310 			}
311 		}
312 	EVP_MD_CTX_cleanup(&m);
313 
314 	if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
315 	/* Don't just copy back local_md into md -- this could mean that
316 	 * other thread's seeding remains without effect (except for
317 	 * the incremented counter).  By XORing it we keep at least as
318 	 * much entropy as fits into md. */
319 	for (k = 0; k < (int)sizeof(md); k++)
320 		{
321 		md[k] ^= local_md[k];
322 		}
323 	if (entropy < ENTROPY_NEEDED) /* stop counting when we have enough */
324 	    entropy += add;
325 	if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
326 
327 #if !defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32)
328 	assert(md_c[1] == md_count[1]);
329 #endif
330 	}
331 
ssleay_rand_seed(const void * buf,int num)332 static void ssleay_rand_seed(const void *buf, int num)
333 	{
334 	ssleay_rand_add(buf, num, (double)num);
335 	}
336 
ssleay_rand_bytes(unsigned char * buf,int num,int pseudo)337 static int ssleay_rand_bytes(unsigned char *buf, int num, int pseudo)
338 	{
339 	static volatile int stirred_pool = 0;
340 	int i,j,k,st_num,st_idx;
341 	int num_ceil;
342 	int ok;
343 	long md_c[2];
344 	unsigned char local_md[MD_DIGEST_LENGTH];
345 	EVP_MD_CTX m;
346 #ifndef GETPID_IS_MEANINGLESS
347 	pid_t curr_pid = getpid();
348 #endif
349 	int do_stir_pool = 0;
350 
351 #ifdef PREDICT
352 	if (rand_predictable)
353 		{
354 		static unsigned char val=0;
355 
356 		for (i=0; i<num; i++)
357 			buf[i]=val++;
358 		return(1);
359 		}
360 #endif
361 
362 	if (num <= 0)
363 		return 1;
364 
365 	EVP_MD_CTX_init(&m);
366 	/* round upwards to multiple of MD_DIGEST_LENGTH/2 */
367 	num_ceil = (1 + (num-1)/(MD_DIGEST_LENGTH/2)) * (MD_DIGEST_LENGTH/2);
368 
369 	/*
370 	 * (Based on the rand(3) manpage:)
371 	 *
372 	 * For each group of 10 bytes (or less), we do the following:
373 	 *
374 	 * Input into the hash function the local 'md' (which is initialized from
375 	 * the global 'md' before any bytes are generated), the bytes that are to
376 	 * be overwritten by the random bytes, and bytes from the 'state'
377 	 * (incrementing looping index). From this digest output (which is kept
378 	 * in 'md'), the top (up to) 10 bytes are returned to the caller and the
379 	 * bottom 10 bytes are xored into the 'state'.
380 	 *
381 	 * Finally, after we have finished 'num' random bytes for the
382 	 * caller, 'count' (which is incremented) and the local and global 'md'
383 	 * are fed into the hash function and the results are kept in the
384 	 * global 'md'.
385 	 */
386 #ifdef OPENSSL_FIPS
387 	/* NB: in FIPS mode we are already under a lock */
388 	if (!FIPS_mode())
389 #endif
390 		CRYPTO_w_lock(CRYPTO_LOCK_RAND);
391 
392 	/* prevent ssleay_rand_bytes() from trying to obtain the lock again */
393 	CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
394 	CRYPTO_THREADID_current(&locking_threadid);
395 	CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
396 	crypto_lock_rand = 1;
397 
398 	if (!initialized)
399 		{
400 		RAND_poll();
401 		initialized = 1;
402 		}
403 
404 	if (!stirred_pool)
405 		do_stir_pool = 1;
406 
407 	ok = (entropy >= ENTROPY_NEEDED);
408 	if (!ok)
409 		{
410 		/* If the PRNG state is not yet unpredictable, then seeing
411 		 * the PRNG output may help attackers to determine the new
412 		 * state; thus we have to decrease the entropy estimate.
413 		 * Once we've had enough initial seeding we don't bother to
414 		 * adjust the entropy count, though, because we're not ambitious
415 		 * to provide *information-theoretic* randomness.
416 		 *
417 		 * NOTE: This approach fails if the program forks before
418 		 * we have enough entropy. Entropy should be collected
419 		 * in a separate input pool and be transferred to the
420 		 * output pool only when the entropy limit has been reached.
421 		 */
422 		entropy -= num;
423 		if (entropy < 0)
424 			entropy = 0;
425 		}
426 
427 	if (do_stir_pool)
428 		{
429 		/* In the output function only half of 'md' remains secret,
430 		 * so we better make sure that the required entropy gets
431 		 * 'evenly distributed' through 'state', our randomness pool.
432 		 * The input function (ssleay_rand_add) chains all of 'md',
433 		 * which makes it more suitable for this purpose.
434 		 */
435 
436 		int n = STATE_SIZE; /* so that the complete pool gets accessed */
437 		while (n > 0)
438 			{
439 #if MD_DIGEST_LENGTH > 20
440 # error "Please adjust DUMMY_SEED."
441 #endif
442 #define DUMMY_SEED "...................." /* at least MD_DIGEST_LENGTH */
443 			/* Note that the seed does not matter, it's just that
444 			 * ssleay_rand_add expects to have something to hash. */
445 			ssleay_rand_add(DUMMY_SEED, MD_DIGEST_LENGTH, 0.0);
446 			n -= MD_DIGEST_LENGTH;
447 			}
448 		if (ok)
449 			stirred_pool = 1;
450 		}
451 
452 	st_idx=state_index;
453 	st_num=state_num;
454 	md_c[0] = md_count[0];
455 	md_c[1] = md_count[1];
456 	memcpy(local_md, md, sizeof md);
457 
458 	state_index+=num_ceil;
459 	if (state_index > state_num)
460 		state_index %= state_num;
461 
462 	/* state[st_idx], ..., state[(st_idx + num_ceil - 1) % st_num]
463 	 * are now ours (but other threads may use them too) */
464 
465 	md_count[0] += 1;
466 
467 	/* before unlocking, we must clear 'crypto_lock_rand' */
468 	crypto_lock_rand = 0;
469 #ifdef OPENSSL_FIPS
470 	if (!FIPS_mode())
471 #endif
472 		CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
473 
474 	while (num > 0)
475 		{
476 		/* num_ceil -= MD_DIGEST_LENGTH/2 */
477 		j=(num >= MD_DIGEST_LENGTH/2)?MD_DIGEST_LENGTH/2:num;
478 		num-=j;
479 		MD_Init(&m);
480 #ifndef GETPID_IS_MEANINGLESS
481 		if (curr_pid) /* just in the first iteration to save time */
482 			{
483 			MD_Update(&m,(unsigned char*)&curr_pid,sizeof curr_pid);
484 			curr_pid = 0;
485 			}
486 #endif
487 		MD_Update(&m,local_md,MD_DIGEST_LENGTH);
488 		MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
489 
490 #ifndef PURIFY /* purify complains */
491 		/* The following line uses the supplied buffer as a small
492 		 * source of entropy: since this buffer is often uninitialised
493 		 * it may cause programs such as purify or valgrind to
494 		 * complain. So for those builds it is not used: the removal
495 		 * of such a small source of entropy has negligible impact on
496 		 * security.
497 		 */
498 		MD_Update(&m,buf,j);
499 #endif
500 
501 		k=(st_idx+MD_DIGEST_LENGTH/2)-st_num;
502 		if (k > 0)
503 			{
504 			MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2-k);
505 			MD_Update(&m,&(state[0]),k);
506 			}
507 		else
508 			MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2);
509 		MD_Final(&m,local_md);
510 
511 		for (i=0; i<MD_DIGEST_LENGTH/2; i++)
512 			{
513 			state[st_idx++]^=local_md[i]; /* may compete with other threads */
514 			if (st_idx >= st_num)
515 				st_idx=0;
516 			if (i < j)
517 				*(buf++)=local_md[i+MD_DIGEST_LENGTH/2];
518 			}
519 		}
520 
521 	MD_Init(&m);
522 	MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
523 	MD_Update(&m,local_md,MD_DIGEST_LENGTH);
524 #ifdef OPENSSL_FIPS
525 	if (!FIPS_mode())
526 #endif
527 		CRYPTO_w_lock(CRYPTO_LOCK_RAND);
528 	MD_Update(&m,md,MD_DIGEST_LENGTH);
529 	MD_Final(&m,md);
530 #ifdef OPENSSL_FIPS
531 	if (!FIPS_mode())
532 #endif
533 		CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
534 
535 	EVP_MD_CTX_cleanup(&m);
536 	if (ok)
537 		return(1);
538 	else if (pseudo)
539 		return 0;
540 	else
541 		{
542 		RANDerr(RAND_F_SSLEAY_RAND_BYTES,RAND_R_PRNG_NOT_SEEDED);
543 		ERR_add_error_data(1, "You need to read the OpenSSL FAQ, "
544 			"http://www.openssl.org/support/faq.html");
545 		return(0);
546 		}
547 	}
548 
ssleay_rand_nopseudo_bytes(unsigned char * buf,int num)549 static int ssleay_rand_nopseudo_bytes(unsigned char *buf, int num)
550 	{
551 	return ssleay_rand_bytes(buf, num, 0);
552 	}
553 
554 /* pseudo-random bytes that are guaranteed to be unique but not
555    unpredictable */
ssleay_rand_pseudo_bytes(unsigned char * buf,int num)556 static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num)
557 	{
558 	return ssleay_rand_bytes(buf, num, 1);
559 	}
560 
ssleay_rand_status(void)561 static int ssleay_rand_status(void)
562 	{
563 	CRYPTO_THREADID cur;
564 	int ret;
565 	int do_not_lock;
566 
567 	CRYPTO_THREADID_current(&cur);
568 	/* check if we already have the lock
569 	 * (could happen if a RAND_poll() implementation calls RAND_status()) */
570 	if (crypto_lock_rand)
571 		{
572 		CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
573 		do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur);
574 		CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
575 		}
576 	else
577 		do_not_lock = 0;
578 
579 	if (!do_not_lock)
580 		{
581 		CRYPTO_w_lock(CRYPTO_LOCK_RAND);
582 
583 		/* prevent ssleay_rand_bytes() from trying to obtain the lock again */
584 		CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
585 		CRYPTO_THREADID_cpy(&locking_threadid, &cur);
586 		CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
587 		crypto_lock_rand = 1;
588 		}
589 
590 	if (!initialized)
591 		{
592 		RAND_poll();
593 		initialized = 1;
594 		}
595 
596 	ret = entropy >= ENTROPY_NEEDED;
597 
598 	if (!do_not_lock)
599 		{
600 		/* before unlocking, we must clear 'crypto_lock_rand' */
601 		crypto_lock_rand = 0;
602 
603 		CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
604 		}
605 
606 	return ret;
607 	}
608