1#!/usr/bin/env perl 2 3# ==================================================================== 4# [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL 5# project. The module is, however, dual licensed under OpenSSL and 6# CRYPTOGAMS licenses depending on where you obtain it. For further 7# details see http://www.openssl.org/~appro/cryptogams/. 8# ==================================================================== 9 10# "[Re]written" was achieved in two major overhauls. In 2004 BODY_* 11# functions were re-implemented to address P4 performance issue [see 12# commentary below], and in 2006 the rest was rewritten in order to 13# gain freedom to liberate licensing terms. 14 15# January, September 2004. 16# 17# It was noted that Intel IA-32 C compiler generates code which 18# performs ~30% *faster* on P4 CPU than original *hand-coded* 19# SHA1 assembler implementation. To address this problem (and 20# prove that humans are still better than machines:-), the 21# original code was overhauled, which resulted in following 22# performance changes: 23# 24# compared with original compared with Intel cc 25# assembler impl. generated code 26# Pentium -16% +48% 27# PIII/AMD +8% +16% 28# P4 +85%(!) +45% 29# 30# As you can see Pentium came out as looser:-( Yet I reckoned that 31# improvement on P4 outweights the loss and incorporate this 32# re-tuned code to 0.9.7 and later. 33# ---------------------------------------------------------------- 34# <appro@fy.chalmers.se> 35 36# August 2009. 37# 38# George Spelvin has tipped that F_40_59(b,c,d) can be rewritten as 39# '(c&d) + (b&(c^d))', which allows to accumulate partial results 40# and lighten "pressure" on scratch registers. This resulted in 41# >12% performance improvement on contemporary AMD cores (with no 42# degradation on other CPUs:-). Also, the code was revised to maximize 43# "distance" between instructions producing input to 'lea' instruction 44# and the 'lea' instruction itself, which is essential for Intel Atom 45# core and resulted in ~15% improvement. 46 47# October 2010. 48# 49# Add SSSE3, Supplemental[!] SSE3, implementation. The idea behind it 50# is to offload message schedule denoted by Wt in NIST specification, 51# or Xupdate in OpenSSL source, to SIMD unit. The idea is not novel, 52# and in SSE2 context was first explored by Dean Gaudet in 2004, see 53# http://arctic.org/~dean/crypto/sha1.html. Since then several things 54# have changed that made it interesting again: 55# 56# a) XMM units became faster and wider; 57# b) instruction set became more versatile; 58# c) an important observation was made by Max Locktykhin, which made 59# it possible to reduce amount of instructions required to perform 60# the operation in question, for further details see 61# http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/. 62 63# April 2011. 64# 65# Add AVX code path, probably most controversial... The thing is that 66# switch to AVX alone improves performance by as little as 4% in 67# comparison to SSSE3 code path. But below result doesn't look like 68# 4% improvement... Trouble is that Sandy Bridge decodes 'ro[rl]' as 69# pair of µ-ops, and it's the additional µ-ops, two per round, that 70# make it run slower than Core2 and Westmere. But 'sh[rl]d' is decoded 71# as single µ-op by Sandy Bridge and it's replacing 'ro[rl]' with 72# equivalent 'sh[rl]d' that is responsible for the impressive 5.1 73# cycles per processed byte. But 'sh[rl]d' is not something that used 74# to be fast, nor does it appear to be fast in upcoming Bulldozer 75# [according to its optimization manual]. Which is why AVX code path 76# is guarded by *both* AVX and synthetic bit denoting Intel CPUs. 77# One can argue that it's unfair to AMD, but without 'sh[rl]d' it 78# makes no sense to keep the AVX code path. If somebody feels that 79# strongly, it's probably more appropriate to discuss possibility of 80# using vector rotate XOP on AMD... 81 82###################################################################### 83# Current performance is summarized in following table. Numbers are 84# CPU clock cycles spent to process single byte (less is better). 85# 86# x86 SSSE3 AVX 87# Pentium 15.7 - 88# PIII 11.5 - 89# P4 10.6 - 90# AMD K8 7.1 - 91# Core2 7.3 6.1/+20% - 92# Atom 12.5 9.5(*)/+32% - 93# Westmere 7.3 5.6/+30% - 94# Sandy Bridge 8.8 6.2/+40% 5.1(**)/+70% 95# 96# (*) Loop is 1056 instructions long and expected result is ~8.25. 97# It remains mystery [to me] why ILP is limited to 1.7. 98# 99# (**) As per above comment, the result is for AVX *plus* sh[rl]d. 100 101$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; 102push(@INC,"${dir}","${dir}../../perlasm"); 103require "x86asm.pl"; 104 105&asm_init($ARGV[0],"sha1-586.pl",$ARGV[$#ARGV] eq "386"); 106 107$xmm=$ymm=0; 108for (@ARGV) { $xmm=1 if (/-DOPENSSL_IA32_SSE2/); } 109 110$ymm=1 if ($xmm && 111 `$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` 112 =~ /GNU assembler version ([2-9]\.[0-9]+)/ && 113 $1>=2.19); # first version supporting AVX 114 115$ymm=1 if ($xmm && !$ymm && $ARGV[0] eq "win32n" && 116 `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/ && 117 $1>=2.03); # first version supporting AVX 118 119&external_label("OPENSSL_ia32cap_P") if ($xmm); 120 121 122$A="eax"; 123$B="ebx"; 124$C="ecx"; 125$D="edx"; 126$E="edi"; 127$T="esi"; 128$tmp1="ebp"; 129 130@V=($A,$B,$C,$D,$E,$T); 131 132$alt=0; # 1 denotes alternative IALU implementation, which performs 133 # 8% *worse* on P4, same on Westmere and Atom, 2% better on 134 # Sandy Bridge... 135 136sub BODY_00_15 137 { 138 local($n,$a,$b,$c,$d,$e,$f)=@_; 139 140 &comment("00_15 $n"); 141 142 &mov($f,$c); # f to hold F_00_19(b,c,d) 143 if ($n==0) { &mov($tmp1,$a); } 144 else { &mov($a,$tmp1); } 145 &rotl($tmp1,5); # tmp1=ROTATE(a,5) 146 &xor($f,$d); 147 &add($tmp1,$e); # tmp1+=e; 148 &mov($e,&swtmp($n%16)); # e becomes volatile and is loaded 149 # with xi, also note that e becomes 150 # f in next round... 151 &and($f,$b); 152 &rotr($b,2); # b=ROTATE(b,30) 153 &xor($f,$d); # f holds F_00_19(b,c,d) 154 &lea($tmp1,&DWP(0x5a827999,$tmp1,$e)); # tmp1+=K_00_19+xi 155 156 if ($n==15) { &mov($e,&swtmp(($n+1)%16));# pre-fetch f for next round 157 &add($f,$tmp1); } # f+=tmp1 158 else { &add($tmp1,$f); } # f becomes a in next round 159 &mov($tmp1,$a) if ($alt && $n==15); 160 } 161 162sub BODY_16_19 163 { 164 local($n,$a,$b,$c,$d,$e,$f)=@_; 165 166 &comment("16_19 $n"); 167 168if ($alt) { 169 &xor($c,$d); 170 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) 171 &and($tmp1,$c); # tmp1 to hold F_00_19(b,c,d), b&=c^d 172 &xor($f,&swtmp(($n+8)%16)); 173 &xor($tmp1,$d); # tmp1=F_00_19(b,c,d) 174 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd 175 &rotl($f,1); # f=ROTATE(f,1) 176 &add($e,$tmp1); # e+=F_00_19(b,c,d) 177 &xor($c,$d); # restore $c 178 &mov($tmp1,$a); # b in next round 179 &rotr($b,$n==16?2:7); # b=ROTATE(b,30) 180 &mov(&swtmp($n%16),$f); # xi=f 181 &rotl($a,5); # ROTATE(a,5) 182 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e 183 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round 184 &add($f,$a); # f+=ROTATE(a,5) 185} else { 186 &mov($tmp1,$c); # tmp1 to hold F_00_19(b,c,d) 187 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) 188 &xor($tmp1,$d); 189 &xor($f,&swtmp(($n+8)%16)); 190 &and($tmp1,$b); 191 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd 192 &rotl($f,1); # f=ROTATE(f,1) 193 &xor($tmp1,$d); # tmp1=F_00_19(b,c,d) 194 &add($e,$tmp1); # e+=F_00_19(b,c,d) 195 &mov($tmp1,$a); 196 &rotr($b,2); # b=ROTATE(b,30) 197 &mov(&swtmp($n%16),$f); # xi=f 198 &rotl($tmp1,5); # ROTATE(a,5) 199 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e 200 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round 201 &add($f,$tmp1); # f+=ROTATE(a,5) 202} 203 } 204 205sub BODY_20_39 206 { 207 local($n,$a,$b,$c,$d,$e,$f)=@_; 208 local $K=($n<40)?0x6ed9eba1:0xca62c1d6; 209 210 &comment("20_39 $n"); 211 212if ($alt) { 213 &xor($tmp1,$c); # tmp1 to hold F_20_39(b,c,d), b^=c 214 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) 215 &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d) 216 &xor($f,&swtmp(($n+8)%16)); 217 &add($e,$tmp1); # e+=F_20_39(b,c,d) 218 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd 219 &rotl($f,1); # f=ROTATE(f,1) 220 &mov($tmp1,$a); # b in next round 221 &rotr($b,7); # b=ROTATE(b,30) 222 &mov(&swtmp($n%16),$f) if($n<77);# xi=f 223 &rotl($a,5); # ROTATE(a,5) 224 &xor($b,$c) if($n==39);# warm up for BODY_40_59 225 &and($tmp1,$b) if($n==39); 226 &lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY 227 &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round 228 &add($f,$a); # f+=ROTATE(a,5) 229 &rotr($a,5) if ($n==79); 230} else { 231 &mov($tmp1,$b); # tmp1 to hold F_20_39(b,c,d) 232 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) 233 &xor($tmp1,$c); 234 &xor($f,&swtmp(($n+8)%16)); 235 &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d) 236 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd 237 &rotl($f,1); # f=ROTATE(f,1) 238 &add($e,$tmp1); # e+=F_20_39(b,c,d) 239 &rotr($b,2); # b=ROTATE(b,30) 240 &mov($tmp1,$a); 241 &rotl($tmp1,5); # ROTATE(a,5) 242 &mov(&swtmp($n%16),$f) if($n<77);# xi=f 243 &lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY 244 &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round 245 &add($f,$tmp1); # f+=ROTATE(a,5) 246} 247 } 248 249sub BODY_40_59 250 { 251 local($n,$a,$b,$c,$d,$e,$f)=@_; 252 253 &comment("40_59 $n"); 254 255if ($alt) { 256 &add($e,$tmp1); # e+=b&(c^d) 257 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) 258 &mov($tmp1,$d); 259 &xor($f,&swtmp(($n+8)%16)); 260 &xor($c,$d); # restore $c 261 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd 262 &rotl($f,1); # f=ROTATE(f,1) 263 &and($tmp1,$c); 264 &rotr($b,7); # b=ROTATE(b,30) 265 &add($e,$tmp1); # e+=c&d 266 &mov($tmp1,$a); # b in next round 267 &mov(&swtmp($n%16),$f); # xi=f 268 &rotl($a,5); # ROTATE(a,5) 269 &xor($b,$c) if ($n<59); 270 &and($tmp1,$b) if ($n<59);# tmp1 to hold F_40_59(b,c,d) 271 &lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e+(b&(c^d)) 272 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round 273 &add($f,$a); # f+=ROTATE(a,5) 274} else { 275 &mov($tmp1,$c); # tmp1 to hold F_40_59(b,c,d) 276 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd) 277 &xor($tmp1,$d); 278 &xor($f,&swtmp(($n+8)%16)); 279 &and($tmp1,$b); 280 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd 281 &rotl($f,1); # f=ROTATE(f,1) 282 &add($tmp1,$e); # b&(c^d)+=e 283 &rotr($b,2); # b=ROTATE(b,30) 284 &mov($e,$a); # e becomes volatile 285 &rotl($e,5); # ROTATE(a,5) 286 &mov(&swtmp($n%16),$f); # xi=f 287 &lea($f,&DWP(0x8f1bbcdc,$f,$tmp1));# f+=K_40_59+e+(b&(c^d)) 288 &mov($tmp1,$c); 289 &add($f,$e); # f+=ROTATE(a,5) 290 &and($tmp1,$d); 291 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round 292 &add($f,$tmp1); # f+=c&d 293} 294 } 295 296&function_begin("sha1_block_data_order"); 297if ($xmm) { 298 &static_label("ssse3_shortcut"); 299 &static_label("avx_shortcut") if ($ymm); 300 &static_label("K_XX_XX"); 301 302 &call (&label("pic_point")); # make it PIC! 303 &set_label("pic_point"); 304 &blindpop($tmp1); 305 &picmeup($T,"OPENSSL_ia32cap_P",$tmp1,&label("pic_point")); 306 &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1)); 307 308 &mov ($A,&DWP(0,$T)); 309 &mov ($D,&DWP(4,$T)); 310 &test ($D,1<<9); # check SSSE3 bit 311 &jz (&label("x86")); 312 &test ($A,1<<24); # check FXSR bit 313 &jz (&label("x86")); 314 if ($ymm) { 315 &and ($D,1<<28); # mask AVX bit 316 &and ($A,1<<30); # mask "Intel CPU" bit 317 &or ($A,$D); 318 &cmp ($A,1<<28|1<<30); 319 &je (&label("avx_shortcut")); 320 } 321 &jmp (&label("ssse3_shortcut")); 322 &set_label("x86",16); 323} 324 &mov($tmp1,&wparam(0)); # SHA_CTX *c 325 &mov($T,&wparam(1)); # const void *input 326 &mov($A,&wparam(2)); # size_t num 327 &stack_push(16+3); # allocate X[16] 328 &shl($A,6); 329 &add($A,$T); 330 &mov(&wparam(2),$A); # pointer beyond the end of input 331 &mov($E,&DWP(16,$tmp1));# pre-load E 332 &jmp(&label("loop")); 333 334&set_label("loop",16); 335 336 # copy input chunk to X, but reversing byte order! 337 for ($i=0; $i<16; $i+=4) 338 { 339 &mov($A,&DWP(4*($i+0),$T)); 340 &mov($B,&DWP(4*($i+1),$T)); 341 &mov($C,&DWP(4*($i+2),$T)); 342 &mov($D,&DWP(4*($i+3),$T)); 343 &bswap($A); 344 &bswap($B); 345 &bswap($C); 346 &bswap($D); 347 &mov(&swtmp($i+0),$A); 348 &mov(&swtmp($i+1),$B); 349 &mov(&swtmp($i+2),$C); 350 &mov(&swtmp($i+3),$D); 351 } 352 &mov(&wparam(1),$T); # redundant in 1st spin 353 354 &mov($A,&DWP(0,$tmp1)); # load SHA_CTX 355 &mov($B,&DWP(4,$tmp1)); 356 &mov($C,&DWP(8,$tmp1)); 357 &mov($D,&DWP(12,$tmp1)); 358 # E is pre-loaded 359 360 for($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); } 361 for(;$i<20;$i++) { &BODY_16_19($i,@V); unshift(@V,pop(@V)); } 362 for(;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } 363 for(;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); } 364 for(;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } 365 366 (($V[5] eq $D) and ($V[0] eq $E)) or die; # double-check 367 368 &mov($tmp1,&wparam(0)); # re-load SHA_CTX* 369 &mov($D,&wparam(1)); # D is last "T" and is discarded 370 371 &add($E,&DWP(0,$tmp1)); # E is last "A"... 372 &add($T,&DWP(4,$tmp1)); 373 &add($A,&DWP(8,$tmp1)); 374 &add($B,&DWP(12,$tmp1)); 375 &add($C,&DWP(16,$tmp1)); 376 377 &mov(&DWP(0,$tmp1),$E); # update SHA_CTX 378 &add($D,64); # advance input pointer 379 &mov(&DWP(4,$tmp1),$T); 380 &cmp($D,&wparam(2)); # have we reached the end yet? 381 &mov(&DWP(8,$tmp1),$A); 382 &mov($E,$C); # C is last "E" which needs to be "pre-loaded" 383 &mov(&DWP(12,$tmp1),$B); 384 &mov($T,$D); # input pointer 385 &mov(&DWP(16,$tmp1),$C); 386 &jb(&label("loop")); 387 388 &stack_pop(16+3); 389&function_end("sha1_block_data_order"); 390 391if ($xmm) { 392###################################################################### 393# The SSSE3 implementation. 394# 395# %xmm[0-7] are used as ring @X[] buffer containing quadruples of last 396# 32 elements of the message schedule or Xupdate outputs. First 4 397# quadruples are simply byte-swapped input, next 4 are calculated 398# according to method originally suggested by Dean Gaudet (modulo 399# being implemented in SSSE3). Once 8 quadruples or 32 elements are 400# collected, it switches to routine proposed by Max Locktyukhin. 401# 402# Calculations inevitably require temporary reqisters, and there are 403# no %xmm registers left to spare. For this reason part of the ring 404# buffer, X[2..4] to be specific, is offloaded to 3 quadriples ring 405# buffer on the stack. Keep in mind that X[2] is alias X[-6], X[3] - 406# X[-5], and X[4] - X[-4]... 407# 408# Another notable optimization is aggressive stack frame compression 409# aiming to minimize amount of 9-byte instructions... 410# 411# Yet another notable optimization is "jumping" $B variable. It means 412# that there is no register permanently allocated for $B value. This 413# allowed to eliminate one instruction from body_20_39... 414# 415my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded 416my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4 417my @V=($A,$B,$C,$D,$E); 418my $j=0; # hash round 419my @T=($T,$tmp1); 420my $inp; 421 422my $_rol=sub { &rol(@_) }; 423my $_ror=sub { &ror(@_) }; 424 425&function_begin("_sha1_block_data_order_ssse3"); 426 &call (&label("pic_point")); # make it PIC! 427 &set_label("pic_point"); 428 &blindpop($tmp1); 429 &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1)); 430&set_label("ssse3_shortcut"); 431 432 &movdqa (@X[3],&QWP(0,$tmp1)); # K_00_19 433 &movdqa (@X[4],&QWP(16,$tmp1)); # K_20_39 434 &movdqa (@X[5],&QWP(32,$tmp1)); # K_40_59 435 &movdqa (@X[6],&QWP(48,$tmp1)); # K_60_79 436 &movdqa (@X[2],&QWP(64,$tmp1)); # pbswap mask 437 438 &mov ($E,&wparam(0)); # load argument block 439 &mov ($inp=@T[1],&wparam(1)); 440 &mov ($D,&wparam(2)); 441 &mov (@T[0],"esp"); 442 443 # stack frame layout 444 # 445 # +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area 446 # X[4]+K X[5]+K X[6]+K X[7]+K 447 # X[8]+K X[9]+K X[10]+K X[11]+K 448 # X[12]+K X[13]+K X[14]+K X[15]+K 449 # 450 # +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area 451 # X[4] X[5] X[6] X[7] 452 # X[8] X[9] X[10] X[11] # even borrowed for K_00_19 453 # 454 # +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants 455 # K_40_59 K_40_59 K_40_59 K_40_59 456 # K_60_79 K_60_79 K_60_79 K_60_79 457 # K_00_19 K_00_19 K_00_19 K_00_19 458 # pbswap mask 459 # 460 # +192 ctx # argument block 461 # +196 inp 462 # +200 end 463 # +204 esp 464 &sub ("esp",208); 465 &and ("esp",-64); 466 467 &movdqa (&QWP(112+0,"esp"),@X[4]); # copy constants 468 &movdqa (&QWP(112+16,"esp"),@X[5]); 469 &movdqa (&QWP(112+32,"esp"),@X[6]); 470 &shl ($D,6); # len*64 471 &movdqa (&QWP(112+48,"esp"),@X[3]); 472 &add ($D,$inp); # end of input 473 &movdqa (&QWP(112+64,"esp"),@X[2]); 474 &add ($inp,64); 475 &mov (&DWP(192+0,"esp"),$E); # save argument block 476 &mov (&DWP(192+4,"esp"),$inp); 477 &mov (&DWP(192+8,"esp"),$D); 478 &mov (&DWP(192+12,"esp"),@T[0]); # save original %esp 479 480 &mov ($A,&DWP(0,$E)); # load context 481 &mov ($B,&DWP(4,$E)); 482 &mov ($C,&DWP(8,$E)); 483 &mov ($D,&DWP(12,$E)); 484 &mov ($E,&DWP(16,$E)); 485 &mov (@T[0],$B); # magic seed 486 487 &movdqu (@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3] 488 &movdqu (@X[-3&7],&QWP(-48,$inp)); 489 &movdqu (@X[-2&7],&QWP(-32,$inp)); 490 &movdqu (@X[-1&7],&QWP(-16,$inp)); 491 &pshufb (@X[-4&7],@X[2]); # byte swap 492 &pshufb (@X[-3&7],@X[2]); 493 &pshufb (@X[-2&7],@X[2]); 494 &movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot 495 &pshufb (@X[-1&7],@X[2]); 496 &paddd (@X[-4&7],@X[3]); # add K_00_19 497 &paddd (@X[-3&7],@X[3]); 498 &paddd (@X[-2&7],@X[3]); 499 &movdqa (&QWP(0,"esp"),@X[-4&7]); # X[]+K xfer to IALU 500 &psubd (@X[-4&7],@X[3]); # restore X[] 501 &movdqa (&QWP(0+16,"esp"),@X[-3&7]); 502 &psubd (@X[-3&7],@X[3]); 503 &movdqa (&QWP(0+32,"esp"),@X[-2&7]); 504 &psubd (@X[-2&7],@X[3]); 505 &movdqa (@X[0],@X[-3&7]); 506 &jmp (&label("loop")); 507 508###################################################################### 509# SSE instruction sequence is first broken to groups of indepentent 510# instructions, independent in respect to their inputs and shifter 511# (not all architectures have more than one). Then IALU instructions 512# are "knitted in" between the SSE groups. Distance is maintained for 513# SSE latency of 2 in hope that it fits better upcoming AMD Bulldozer 514# [which allegedly also implements SSSE3]... 515# 516# Temporary registers usage. X[2] is volatile at the entry and at the 517# end is restored from backtrace ring buffer. X[3] is expected to 518# contain current K_XX_XX constant and is used to caclulate X[-1]+K 519# from previous round, it becomes volatile the moment the value is 520# saved to stack for transfer to IALU. X[4] becomes volatile whenever 521# X[-4] is accumulated and offloaded to backtrace ring buffer, at the 522# end it is loaded with next K_XX_XX [which becomes X[3] in next 523# round]... 524# 525sub Xupdate_ssse3_16_31() # recall that $Xi starts wtih 4 526{ use integer; 527 my $body = shift; 528 my @insns = (&$body,&$body,&$body,&$body); # 40 instructions 529 my ($a,$b,$c,$d,$e); 530 531 eval(shift(@insns)); 532 eval(shift(@insns)); 533 &palignr(@X[0],@X[-4&7],8); # compose "X[-14]" in "X[0]" 534 &movdqa (@X[2],@X[-1&7]); 535 eval(shift(@insns)); 536 eval(shift(@insns)); 537 538 &paddd (@X[3],@X[-1&7]); 539 &movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer 540 eval(shift(@insns)); 541 eval(shift(@insns)); 542 &psrldq (@X[2],4); # "X[-3]", 3 dwords 543 eval(shift(@insns)); 544 eval(shift(@insns)); 545 &pxor (@X[0],@X[-4&7]); # "X[0]"^="X[-16]" 546 eval(shift(@insns)); 547 eval(shift(@insns)); 548 549 &pxor (@X[2],@X[-2&7]); # "X[-3]"^"X[-8]" 550 eval(shift(@insns)); 551 eval(shift(@insns)); 552 eval(shift(@insns)); 553 eval(shift(@insns)); 554 555 &pxor (@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]" 556 eval(shift(@insns)); 557 eval(shift(@insns)); 558 &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU 559 eval(shift(@insns)); 560 eval(shift(@insns)); 561 562 &movdqa (@X[4],@X[0]); 563 &movdqa (@X[2],@X[0]); 564 eval(shift(@insns)); 565 eval(shift(@insns)); 566 eval(shift(@insns)); 567 eval(shift(@insns)); 568 569 &pslldq (@X[4],12); # "X[0]"<<96, extract one dword 570 &paddd (@X[0],@X[0]); 571 eval(shift(@insns)); 572 eval(shift(@insns)); 573 eval(shift(@insns)); 574 eval(shift(@insns)); 575 576 &psrld (@X[2],31); 577 eval(shift(@insns)); 578 eval(shift(@insns)); 579 &movdqa (@X[3],@X[4]); 580 eval(shift(@insns)); 581 eval(shift(@insns)); 582 583 &psrld (@X[4],30); 584 &por (@X[0],@X[2]); # "X[0]"<<<=1 585 eval(shift(@insns)); 586 eval(shift(@insns)); 587 &movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5); # restore X[] from backtrace buffer 588 eval(shift(@insns)); 589 eval(shift(@insns)); 590 591 &pslld (@X[3],2); 592 &pxor (@X[0],@X[4]); 593 eval(shift(@insns)); 594 eval(shift(@insns)); 595 &movdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_XX 596 eval(shift(@insns)); 597 eval(shift(@insns)); 598 599 &pxor (@X[0],@X[3]); # "X[0]"^=("X[0]"<<96)<<<2 600 &movdqa (@X[1],@X[-2&7]) if ($Xi<7); 601 eval(shift(@insns)); 602 eval(shift(@insns)); 603 604 foreach (@insns) { eval; } # remaining instructions [if any] 605 606 $Xi++; push(@X,shift(@X)); # "rotate" X[] 607} 608 609sub Xupdate_ssse3_32_79() 610{ use integer; 611 my $body = shift; 612 my @insns = (&$body,&$body,&$body,&$body); # 32 to 48 instructions 613 my ($a,$b,$c,$d,$e); 614 615 &movdqa (@X[2],@X[-1&7]) if ($Xi==8); 616 eval(shift(@insns)); # body_20_39 617 &pxor (@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]" 618 &palignr(@X[2],@X[-2&7],8); # compose "X[-6]" 619 eval(shift(@insns)); 620 eval(shift(@insns)); 621 eval(shift(@insns)); # rol 622 623 &pxor (@X[0],@X[-7&7]); # "X[0]"^="X[-28]" 624 &movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X[] to backtrace buffer 625 eval(shift(@insns)); 626 eval(shift(@insns)); 627 if ($Xi%5) { 628 &movdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX... 629 } else { # ... or load next one 630 &movdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp")); 631 } 632 &paddd (@X[3],@X[-1&7]); 633 eval(shift(@insns)); # ror 634 eval(shift(@insns)); 635 636 &pxor (@X[0],@X[2]); # "X[0]"^="X[-6]" 637 eval(shift(@insns)); # body_20_39 638 eval(shift(@insns)); 639 eval(shift(@insns)); 640 eval(shift(@insns)); # rol 641 642 &movdqa (@X[2],@X[0]); 643 &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU 644 eval(shift(@insns)); 645 eval(shift(@insns)); 646 eval(shift(@insns)); # ror 647 eval(shift(@insns)); 648 649 &pslld (@X[0],2); 650 eval(shift(@insns)); # body_20_39 651 eval(shift(@insns)); 652 &psrld (@X[2],30); 653 eval(shift(@insns)); 654 eval(shift(@insns)); # rol 655 eval(shift(@insns)); 656 eval(shift(@insns)); 657 eval(shift(@insns)); # ror 658 eval(shift(@insns)); 659 660 &por (@X[0],@X[2]); # "X[0]"<<<=2 661 eval(shift(@insns)); # body_20_39 662 eval(shift(@insns)); 663 &movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19); # restore X[] from backtrace buffer 664 eval(shift(@insns)); 665 eval(shift(@insns)); # rol 666 eval(shift(@insns)); 667 eval(shift(@insns)); 668 eval(shift(@insns)); # ror 669 &movdqa (@X[3],@X[0]) if ($Xi<19); 670 eval(shift(@insns)); 671 672 foreach (@insns) { eval; } # remaining instructions 673 674 $Xi++; push(@X,shift(@X)); # "rotate" X[] 675} 676 677sub Xuplast_ssse3_80() 678{ use integer; 679 my $body = shift; 680 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions 681 my ($a,$b,$c,$d,$e); 682 683 eval(shift(@insns)); 684 &paddd (@X[3],@X[-1&7]); 685 eval(shift(@insns)); 686 eval(shift(@insns)); 687 eval(shift(@insns)); 688 eval(shift(@insns)); 689 690 &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IALU 691 692 foreach (@insns) { eval; } # remaining instructions 693 694 &mov ($inp=@T[1],&DWP(192+4,"esp")); 695 &cmp ($inp,&DWP(192+8,"esp")); 696 &je (&label("done")); 697 698 &movdqa (@X[3],&QWP(112+48,"esp")); # K_00_19 699 &movdqa (@X[2],&QWP(112+64,"esp")); # pbswap mask 700 &movdqu (@X[-4&7],&QWP(0,$inp)); # load input 701 &movdqu (@X[-3&7],&QWP(16,$inp)); 702 &movdqu (@X[-2&7],&QWP(32,$inp)); 703 &movdqu (@X[-1&7],&QWP(48,$inp)); 704 &add ($inp,64); 705 &pshufb (@X[-4&7],@X[2]); # byte swap 706 &mov (&DWP(192+4,"esp"),$inp); 707 &movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot 708 709 $Xi=0; 710} 711 712sub Xloop_ssse3() 713{ use integer; 714 my $body = shift; 715 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions 716 my ($a,$b,$c,$d,$e); 717 718 eval(shift(@insns)); 719 eval(shift(@insns)); 720 &pshufb (@X[($Xi-3)&7],@X[2]); 721 eval(shift(@insns)); 722 eval(shift(@insns)); 723 &paddd (@X[($Xi-4)&7],@X[3]); 724 eval(shift(@insns)); 725 eval(shift(@insns)); 726 eval(shift(@insns)); 727 eval(shift(@insns)); 728 &movdqa (&QWP(0+16*$Xi,"esp"),@X[($Xi-4)&7]); # X[]+K xfer to IALU 729 eval(shift(@insns)); 730 eval(shift(@insns)); 731 &psubd (@X[($Xi-4)&7],@X[3]); 732 733 foreach (@insns) { eval; } 734 $Xi++; 735} 736 737sub Xtail_ssse3() 738{ use integer; 739 my $body = shift; 740 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions 741 my ($a,$b,$c,$d,$e); 742 743 foreach (@insns) { eval; } 744} 745 746sub body_00_19 () { 747 ( 748 '($a,$b,$c,$d,$e)=@V;'. 749 '&add ($e,&DWP(4*($j&15),"esp"));', # X[]+K xfer 750 '&xor ($c,$d);', 751 '&mov (@T[1],$a);', # $b in next round 752 '&$_rol ($a,5);', 753 '&and (@T[0],$c);', # ($b&($c^$d)) 754 '&xor ($c,$d);', # restore $c 755 '&xor (@T[0],$d);', 756 '&add ($e,$a);', 757 '&$_ror ($b,$j?7:2);', # $b>>>2 758 '&add ($e,@T[0]);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' 759 ); 760} 761 762sub body_20_39 () { 763 ( 764 '($a,$b,$c,$d,$e)=@V;'. 765 '&add ($e,&DWP(4*($j++&15),"esp"));', # X[]+K xfer 766 '&xor (@T[0],$d);', # ($b^$d) 767 '&mov (@T[1],$a);', # $b in next round 768 '&$_rol ($a,5);', 769 '&xor (@T[0],$c);', # ($b^$d^$c) 770 '&add ($e,$a);', 771 '&$_ror ($b,7);', # $b>>>2 772 '&add ($e,@T[0]);' .'unshift(@V,pop(@V)); unshift(@T,pop(@T));' 773 ); 774} 775 776sub body_40_59 () { 777 ( 778 '($a,$b,$c,$d,$e)=@V;'. 779 '&mov (@T[1],$c);', 780 '&xor ($c,$d);', 781 '&add ($e,&DWP(4*($j++&15),"esp"));', # X[]+K xfer 782 '&and (@T[1],$d);', 783 '&and (@T[0],$c);', # ($b&($c^$d)) 784 '&$_ror ($b,7);', # $b>>>2 785 '&add ($e,@T[1]);', 786 '&mov (@T[1],$a);', # $b in next round 787 '&$_rol ($a,5);', 788 '&add ($e,@T[0]);', 789 '&xor ($c,$d);', # restore $c 790 '&add ($e,$a);' .'unshift(@V,pop(@V)); unshift(@T,pop(@T));' 791 ); 792} 793 794&set_label("loop",16); 795 &Xupdate_ssse3_16_31(\&body_00_19); 796 &Xupdate_ssse3_16_31(\&body_00_19); 797 &Xupdate_ssse3_16_31(\&body_00_19); 798 &Xupdate_ssse3_16_31(\&body_00_19); 799 &Xupdate_ssse3_32_79(\&body_00_19); 800 &Xupdate_ssse3_32_79(\&body_20_39); 801 &Xupdate_ssse3_32_79(\&body_20_39); 802 &Xupdate_ssse3_32_79(\&body_20_39); 803 &Xupdate_ssse3_32_79(\&body_20_39); 804 &Xupdate_ssse3_32_79(\&body_20_39); 805 &Xupdate_ssse3_32_79(\&body_40_59); 806 &Xupdate_ssse3_32_79(\&body_40_59); 807 &Xupdate_ssse3_32_79(\&body_40_59); 808 &Xupdate_ssse3_32_79(\&body_40_59); 809 &Xupdate_ssse3_32_79(\&body_40_59); 810 &Xupdate_ssse3_32_79(\&body_20_39); 811 &Xuplast_ssse3_80(\&body_20_39); # can jump to "done" 812 813 $saved_j=$j; @saved_V=@V; 814 815 &Xloop_ssse3(\&body_20_39); 816 &Xloop_ssse3(\&body_20_39); 817 &Xloop_ssse3(\&body_20_39); 818 819 &mov (@T[1],&DWP(192,"esp")); # update context 820 &add ($A,&DWP(0,@T[1])); 821 &add (@T[0],&DWP(4,@T[1])); # $b 822 &add ($C,&DWP(8,@T[1])); 823 &mov (&DWP(0,@T[1]),$A); 824 &add ($D,&DWP(12,@T[1])); 825 &mov (&DWP(4,@T[1]),@T[0]); 826 &add ($E,&DWP(16,@T[1])); 827 &mov (&DWP(8,@T[1]),$C); 828 &mov ($B,@T[0]); 829 &mov (&DWP(12,@T[1]),$D); 830 &mov (&DWP(16,@T[1]),$E); 831 &movdqa (@X[0],@X[-3&7]); 832 833 &jmp (&label("loop")); 834 835&set_label("done",16); $j=$saved_j; @V=@saved_V; 836 837 &Xtail_ssse3(\&body_20_39); 838 &Xtail_ssse3(\&body_20_39); 839 &Xtail_ssse3(\&body_20_39); 840 841 &mov (@T[1],&DWP(192,"esp")); # update context 842 &add ($A,&DWP(0,@T[1])); 843 &mov ("esp",&DWP(192+12,"esp")); # restore %esp 844 &add (@T[0],&DWP(4,@T[1])); # $b 845 &add ($C,&DWP(8,@T[1])); 846 &mov (&DWP(0,@T[1]),$A); 847 &add ($D,&DWP(12,@T[1])); 848 &mov (&DWP(4,@T[1]),@T[0]); 849 &add ($E,&DWP(16,@T[1])); 850 &mov (&DWP(8,@T[1]),$C); 851 &mov (&DWP(12,@T[1]),$D); 852 &mov (&DWP(16,@T[1]),$E); 853 854&function_end("_sha1_block_data_order_ssse3"); 855 856if ($ymm) { 857my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded 858my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4 859my @V=($A,$B,$C,$D,$E); 860my $j=0; # hash round 861my @T=($T,$tmp1); 862my $inp; 863 864my $_rol=sub { &shld(@_[0],@_) }; 865my $_ror=sub { &shrd(@_[0],@_) }; 866 867&function_begin("_sha1_block_data_order_avx"); 868 &call (&label("pic_point")); # make it PIC! 869 &set_label("pic_point"); 870 &blindpop($tmp1); 871 &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1)); 872&set_label("avx_shortcut"); 873 &vzeroall(); 874 875 &vmovdqa(@X[3],&QWP(0,$tmp1)); # K_00_19 876 &vmovdqa(@X[4],&QWP(16,$tmp1)); # K_20_39 877 &vmovdqa(@X[5],&QWP(32,$tmp1)); # K_40_59 878 &vmovdqa(@X[6],&QWP(48,$tmp1)); # K_60_79 879 &vmovdqa(@X[2],&QWP(64,$tmp1)); # pbswap mask 880 881 &mov ($E,&wparam(0)); # load argument block 882 &mov ($inp=@T[1],&wparam(1)); 883 &mov ($D,&wparam(2)); 884 &mov (@T[0],"esp"); 885 886 # stack frame layout 887 # 888 # +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area 889 # X[4]+K X[5]+K X[6]+K X[7]+K 890 # X[8]+K X[9]+K X[10]+K X[11]+K 891 # X[12]+K X[13]+K X[14]+K X[15]+K 892 # 893 # +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area 894 # X[4] X[5] X[6] X[7] 895 # X[8] X[9] X[10] X[11] # even borrowed for K_00_19 896 # 897 # +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants 898 # K_40_59 K_40_59 K_40_59 K_40_59 899 # K_60_79 K_60_79 K_60_79 K_60_79 900 # K_00_19 K_00_19 K_00_19 K_00_19 901 # pbswap mask 902 # 903 # +192 ctx # argument block 904 # +196 inp 905 # +200 end 906 # +204 esp 907 &sub ("esp",208); 908 &and ("esp",-64); 909 910 &vmovdqa(&QWP(112+0,"esp"),@X[4]); # copy constants 911 &vmovdqa(&QWP(112+16,"esp"),@X[5]); 912 &vmovdqa(&QWP(112+32,"esp"),@X[6]); 913 &shl ($D,6); # len*64 914 &vmovdqa(&QWP(112+48,"esp"),@X[3]); 915 &add ($D,$inp); # end of input 916 &vmovdqa(&QWP(112+64,"esp"),@X[2]); 917 &add ($inp,64); 918 &mov (&DWP(192+0,"esp"),$E); # save argument block 919 &mov (&DWP(192+4,"esp"),$inp); 920 &mov (&DWP(192+8,"esp"),$D); 921 &mov (&DWP(192+12,"esp"),@T[0]); # save original %esp 922 923 &mov ($A,&DWP(0,$E)); # load context 924 &mov ($B,&DWP(4,$E)); 925 &mov ($C,&DWP(8,$E)); 926 &mov ($D,&DWP(12,$E)); 927 &mov ($E,&DWP(16,$E)); 928 &mov (@T[0],$B); # magic seed 929 930 &vmovdqu(@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3] 931 &vmovdqu(@X[-3&7],&QWP(-48,$inp)); 932 &vmovdqu(@X[-2&7],&QWP(-32,$inp)); 933 &vmovdqu(@X[-1&7],&QWP(-16,$inp)); 934 &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap 935 &vpshufb(@X[-3&7],@X[-3&7],@X[2]); 936 &vpshufb(@X[-2&7],@X[-2&7],@X[2]); 937 &vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot 938 &vpshufb(@X[-1&7],@X[-1&7],@X[2]); 939 &vpaddd (@X[0],@X[-4&7],@X[3]); # add K_00_19 940 &vpaddd (@X[1],@X[-3&7],@X[3]); 941 &vpaddd (@X[2],@X[-2&7],@X[3]); 942 &vmovdqa(&QWP(0,"esp"),@X[0]); # X[]+K xfer to IALU 943 &vmovdqa(&QWP(0+16,"esp"),@X[1]); 944 &vmovdqa(&QWP(0+32,"esp"),@X[2]); 945 &jmp (&label("loop")); 946 947sub Xupdate_avx_16_31() # recall that $Xi starts wtih 4 948{ use integer; 949 my $body = shift; 950 my @insns = (&$body,&$body,&$body,&$body); # 40 instructions 951 my ($a,$b,$c,$d,$e); 952 953 eval(shift(@insns)); 954 eval(shift(@insns)); 955 &vpalignr(@X[0],@X[-3&7],@X[-4&7],8); # compose "X[-14]" in "X[0]" 956 eval(shift(@insns)); 957 eval(shift(@insns)); 958 959 &vpaddd (@X[3],@X[3],@X[-1&7]); 960 &vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer 961 eval(shift(@insns)); 962 eval(shift(@insns)); 963 &vpsrldq(@X[2],@X[-1&7],4); # "X[-3]", 3 dwords 964 eval(shift(@insns)); 965 eval(shift(@insns)); 966 &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"^="X[-16]" 967 eval(shift(@insns)); 968 eval(shift(@insns)); 969 970 &vpxor (@X[2],@X[2],@X[-2&7]); # "X[-3]"^"X[-8]" 971 eval(shift(@insns)); 972 eval(shift(@insns)); 973 &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU 974 eval(shift(@insns)); 975 eval(shift(@insns)); 976 977 &vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]" 978 eval(shift(@insns)); 979 eval(shift(@insns)); 980 eval(shift(@insns)); 981 eval(shift(@insns)); 982 983 &vpsrld (@X[2],@X[0],31); 984 eval(shift(@insns)); 985 eval(shift(@insns)); 986 eval(shift(@insns)); 987 eval(shift(@insns)); 988 989 &vpslldq(@X[4],@X[0],12); # "X[0]"<<96, extract one dword 990 &vpaddd (@X[0],@X[0],@X[0]); 991 eval(shift(@insns)); 992 eval(shift(@insns)); 993 eval(shift(@insns)); 994 eval(shift(@insns)); 995 996 &vpsrld (@X[3],@X[4],30); 997 &vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=1 998 eval(shift(@insns)); 999 eval(shift(@insns)); 1000 eval(shift(@insns)); 1001 eval(shift(@insns)); 1002 1003 &vpslld (@X[4],@X[4],2); 1004 &vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5); # restore X[] from backtrace buffer 1005 eval(shift(@insns)); 1006 eval(shift(@insns)); 1007 &vpxor (@X[0],@X[0],@X[3]); 1008 eval(shift(@insns)); 1009 eval(shift(@insns)); 1010 eval(shift(@insns)); 1011 eval(shift(@insns)); 1012 1013 &vpxor (@X[0],@X[0],@X[4]); # "X[0]"^=("X[0]"<<96)<<<2 1014 eval(shift(@insns)); 1015 eval(shift(@insns)); 1016 &vmovdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_XX 1017 eval(shift(@insns)); 1018 eval(shift(@insns)); 1019 1020 foreach (@insns) { eval; } # remaining instructions [if any] 1021 1022 $Xi++; push(@X,shift(@X)); # "rotate" X[] 1023} 1024 1025sub Xupdate_avx_32_79() 1026{ use integer; 1027 my $body = shift; 1028 my @insns = (&$body,&$body,&$body,&$body); # 32 to 48 instructions 1029 my ($a,$b,$c,$d,$e); 1030 1031 &vpalignr(@X[2],@X[-1&7],@X[-2&7],8); # compose "X[-6]" 1032 &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]" 1033 eval(shift(@insns)); # body_20_39 1034 eval(shift(@insns)); 1035 eval(shift(@insns)); 1036 eval(shift(@insns)); # rol 1037 1038 &vpxor (@X[0],@X[0],@X[-7&7]); # "X[0]"^="X[-28]" 1039 &vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X[] to backtrace buffer 1040 eval(shift(@insns)); 1041 eval(shift(@insns)); 1042 if ($Xi%5) { 1043 &vmovdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX... 1044 } else { # ... or load next one 1045 &vmovdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp")); 1046 } 1047 &vpaddd (@X[3],@X[3],@X[-1&7]); 1048 eval(shift(@insns)); # ror 1049 eval(shift(@insns)); 1050 1051 &vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-6]" 1052 eval(shift(@insns)); # body_20_39 1053 eval(shift(@insns)); 1054 eval(shift(@insns)); 1055 eval(shift(@insns)); # rol 1056 1057 &vpsrld (@X[2],@X[0],30); 1058 &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU 1059 eval(shift(@insns)); 1060 eval(shift(@insns)); 1061 eval(shift(@insns)); # ror 1062 eval(shift(@insns)); 1063 1064 &vpslld (@X[0],@X[0],2); 1065 eval(shift(@insns)); # body_20_39 1066 eval(shift(@insns)); 1067 eval(shift(@insns)); 1068 eval(shift(@insns)); # rol 1069 eval(shift(@insns)); 1070 eval(shift(@insns)); 1071 eval(shift(@insns)); # ror 1072 eval(shift(@insns)); 1073 1074 &vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=2 1075 eval(shift(@insns)); # body_20_39 1076 eval(shift(@insns)); 1077 &vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19); # restore X[] from backtrace buffer 1078 eval(shift(@insns)); 1079 eval(shift(@insns)); # rol 1080 eval(shift(@insns)); 1081 eval(shift(@insns)); 1082 eval(shift(@insns)); # ror 1083 eval(shift(@insns)); 1084 1085 foreach (@insns) { eval; } # remaining instructions 1086 1087 $Xi++; push(@X,shift(@X)); # "rotate" X[] 1088} 1089 1090sub Xuplast_avx_80() 1091{ use integer; 1092 my $body = shift; 1093 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions 1094 my ($a,$b,$c,$d,$e); 1095 1096 eval(shift(@insns)); 1097 &vpaddd (@X[3],@X[3],@X[-1&7]); 1098 eval(shift(@insns)); 1099 eval(shift(@insns)); 1100 eval(shift(@insns)); 1101 eval(shift(@insns)); 1102 1103 &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IALU 1104 1105 foreach (@insns) { eval; } # remaining instructions 1106 1107 &mov ($inp=@T[1],&DWP(192+4,"esp")); 1108 &cmp ($inp,&DWP(192+8,"esp")); 1109 &je (&label("done")); 1110 1111 &vmovdqa(@X[3],&QWP(112+48,"esp")); # K_00_19 1112 &vmovdqa(@X[2],&QWP(112+64,"esp")); # pbswap mask 1113 &vmovdqu(@X[-4&7],&QWP(0,$inp)); # load input 1114 &vmovdqu(@X[-3&7],&QWP(16,$inp)); 1115 &vmovdqu(@X[-2&7],&QWP(32,$inp)); 1116 &vmovdqu(@X[-1&7],&QWP(48,$inp)); 1117 &add ($inp,64); 1118 &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap 1119 &mov (&DWP(192+4,"esp"),$inp); 1120 &vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot 1121 1122 $Xi=0; 1123} 1124 1125sub Xloop_avx() 1126{ use integer; 1127 my $body = shift; 1128 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions 1129 my ($a,$b,$c,$d,$e); 1130 1131 eval(shift(@insns)); 1132 eval(shift(@insns)); 1133 &vpshufb (@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]); 1134 eval(shift(@insns)); 1135 eval(shift(@insns)); 1136 &vpaddd (@X[$Xi&7],@X[($Xi-4)&7],@X[3]); 1137 eval(shift(@insns)); 1138 eval(shift(@insns)); 1139 eval(shift(@insns)); 1140 eval(shift(@insns)); 1141 &vmovdqa (&QWP(0+16*$Xi,"esp"),@X[$Xi&7]); # X[]+K xfer to IALU 1142 eval(shift(@insns)); 1143 eval(shift(@insns)); 1144 1145 foreach (@insns) { eval; } 1146 $Xi++; 1147} 1148 1149sub Xtail_avx() 1150{ use integer; 1151 my $body = shift; 1152 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions 1153 my ($a,$b,$c,$d,$e); 1154 1155 foreach (@insns) { eval; } 1156} 1157 1158&set_label("loop",16); 1159 &Xupdate_avx_16_31(\&body_00_19); 1160 &Xupdate_avx_16_31(\&body_00_19); 1161 &Xupdate_avx_16_31(\&body_00_19); 1162 &Xupdate_avx_16_31(\&body_00_19); 1163 &Xupdate_avx_32_79(\&body_00_19); 1164 &Xupdate_avx_32_79(\&body_20_39); 1165 &Xupdate_avx_32_79(\&body_20_39); 1166 &Xupdate_avx_32_79(\&body_20_39); 1167 &Xupdate_avx_32_79(\&body_20_39); 1168 &Xupdate_avx_32_79(\&body_20_39); 1169 &Xupdate_avx_32_79(\&body_40_59); 1170 &Xupdate_avx_32_79(\&body_40_59); 1171 &Xupdate_avx_32_79(\&body_40_59); 1172 &Xupdate_avx_32_79(\&body_40_59); 1173 &Xupdate_avx_32_79(\&body_40_59); 1174 &Xupdate_avx_32_79(\&body_20_39); 1175 &Xuplast_avx_80(\&body_20_39); # can jump to "done" 1176 1177 $saved_j=$j; @saved_V=@V; 1178 1179 &Xloop_avx(\&body_20_39); 1180 &Xloop_avx(\&body_20_39); 1181 &Xloop_avx(\&body_20_39); 1182 1183 &mov (@T[1],&DWP(192,"esp")); # update context 1184 &add ($A,&DWP(0,@T[1])); 1185 &add (@T[0],&DWP(4,@T[1])); # $b 1186 &add ($C,&DWP(8,@T[1])); 1187 &mov (&DWP(0,@T[1]),$A); 1188 &add ($D,&DWP(12,@T[1])); 1189 &mov (&DWP(4,@T[1]),@T[0]); 1190 &add ($E,&DWP(16,@T[1])); 1191 &mov (&DWP(8,@T[1]),$C); 1192 &mov ($B,@T[0]); 1193 &mov (&DWP(12,@T[1]),$D); 1194 &mov (&DWP(16,@T[1]),$E); 1195 1196 &jmp (&label("loop")); 1197 1198&set_label("done",16); $j=$saved_j; @V=@saved_V; 1199 1200 &Xtail_avx(\&body_20_39); 1201 &Xtail_avx(\&body_20_39); 1202 &Xtail_avx(\&body_20_39); 1203 1204 &vzeroall(); 1205 1206 &mov (@T[1],&DWP(192,"esp")); # update context 1207 &add ($A,&DWP(0,@T[1])); 1208 &mov ("esp",&DWP(192+12,"esp")); # restore %esp 1209 &add (@T[0],&DWP(4,@T[1])); # $b 1210 &add ($C,&DWP(8,@T[1])); 1211 &mov (&DWP(0,@T[1]),$A); 1212 &add ($D,&DWP(12,@T[1])); 1213 &mov (&DWP(4,@T[1]),@T[0]); 1214 &add ($E,&DWP(16,@T[1])); 1215 &mov (&DWP(8,@T[1]),$C); 1216 &mov (&DWP(12,@T[1]),$D); 1217 &mov (&DWP(16,@T[1]),$E); 1218&function_end("_sha1_block_data_order_avx"); 1219} 1220&set_label("K_XX_XX",64); 1221&data_word(0x5a827999,0x5a827999,0x5a827999,0x5a827999); # K_00_19 1222&data_word(0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1); # K_20_39 1223&data_word(0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc); # K_40_59 1224&data_word(0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6); # K_60_79 1225&data_word(0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f); # pbswap mask 1226} 1227&asciz("SHA1 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>"); 1228 1229&asm_finish(); 1230