• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1'''
2Created on May 19, 2011
3
4@author: bungeman
5'''
6
7import os
8import re
9import math
10
11# bench representation algorithm constant names
12ALGORITHM_AVERAGE = 'avg'
13ALGORITHM_MEDIAN = 'med'
14ALGORITHM_MINIMUM = 'min'
15ALGORITHM_25TH_PERCENTILE = '25th'
16
17# Regular expressions used throughout.
18PER_SETTING_RE = '([^\s=]+)(?:=(\S+))?'
19SETTINGS_RE = 'skia bench:((?:\s+' + PER_SETTING_RE + ')*)'
20BENCH_RE = 'running bench (?:\[\d+ \d+\] )?\s*(\S+)'
21TIME_RE = '(?:(\w*)msecs = )?\s*((?:\d+\.\d+)(?:,\s*\d+\.\d+)*)'
22# non-per-tile benches have configs that don't end with ']' or '>'
23CONFIG_RE = '(\S+[^\]>]):\s+((?:' + TIME_RE + '\s+)+)'
24# per-tile bench lines are in the following format. Note that there are
25# non-averaged bench numbers in separate lines, which we ignore now due to
26# their inaccuracy.
27TILE_RE = ('  tile_(\S+): tile \[\d+,\d+\] out of \[\d+,\d+\] <averaged>:'
28           ' ((?:' + TIME_RE + '\s+)+)')
29# for extracting tile layout
30TILE_LAYOUT_RE = ' out of \[(\d+),(\d+)\] <averaged>: '
31
32PER_SETTING_RE_COMPILED = re.compile(PER_SETTING_RE)
33SETTINGS_RE_COMPILED = re.compile(SETTINGS_RE)
34BENCH_RE_COMPILED = re.compile(BENCH_RE)
35TIME_RE_COMPILED = re.compile(TIME_RE)
36CONFIG_RE_COMPILED = re.compile(CONFIG_RE)
37TILE_RE_COMPILED = re.compile(TILE_RE)
38TILE_LAYOUT_RE_COMPILED = re.compile(TILE_LAYOUT_RE)
39
40class BenchDataPoint:
41    """A single data point produced by bench.
42    """
43    def __init__(self, bench, config, time_type, time, settings,
44                 tile_layout='', per_tile_values=[], per_iter_time=[]):
45        # string name of the benchmark to measure
46        self.bench = bench
47        # string name of the configurations to run
48        self.config = config
49        # type of the timer in string: '' (walltime), 'c' (cpu) or 'g' (gpu)
50        self.time_type = time_type
51        # float number of the bench time value
52        self.time = time
53        # dictionary of the run settings
54        self.settings = settings
55        # how tiles cover the whole picture: '5x3' means 5 columns and 3 rows
56        self.tile_layout = tile_layout
57        # list of float for per_tile bench values, if applicable
58        self.per_tile_values = per_tile_values
59        # list of float for per-iteration bench time, if applicable
60        self.per_iter_time = per_iter_time
61
62    def __repr__(self):
63        return "BenchDataPoint(%s, %s, %s, %s, %s)" % (
64                   str(self.bench),
65                   str(self.config),
66                   str(self.time_type),
67                   str(self.time),
68                   str(self.settings),
69               )
70
71class _ExtremeType(object):
72    """Instances of this class compare greater or less than other objects."""
73    def __init__(self, cmpr, rep):
74        object.__init__(self)
75        self._cmpr = cmpr
76        self._rep = rep
77
78    def __cmp__(self, other):
79        if isinstance(other, self.__class__) and other._cmpr == self._cmpr:
80            return 0
81        return self._cmpr
82
83    def __repr__(self):
84        return self._rep
85
86Max = _ExtremeType(1, "Max")
87Min = _ExtremeType(-1, "Min")
88
89class _ListAlgorithm(object):
90    """Algorithm for selecting the representation value from a given list.
91    representation is one of the ALGORITHM_XXX representation types."""
92    def __init__(self, data, representation=None):
93        if not representation:
94            representation = ALGORITHM_AVERAGE  # default algorithm
95        self._data = data
96        self._len = len(data)
97        if representation == ALGORITHM_AVERAGE:
98            self._rep = sum(self._data) / self._len
99        else:
100            self._data.sort()
101            if representation == ALGORITHM_MINIMUM:
102                self._rep = self._data[0]
103            else:
104                # for percentiles, we use the value below which x% of values are
105                # found, which allows for better detection of quantum behaviors.
106                if representation == ALGORITHM_MEDIAN:
107                    x = int(round(0.5 * self._len + 0.5))
108                elif representation == ALGORITHM_25TH_PERCENTILE:
109                    x = int(round(0.25 * self._len + 0.5))
110                else:
111                    raise Exception("invalid representation algorithm %s!" %
112                                    representation)
113                self._rep = self._data[x - 1]
114
115    def compute(self):
116        return self._rep
117
118def _ParseAndStoreTimes(config_re_compiled, is_per_tile, line, bench,
119                        value_dic, layout_dic):
120    """Parses given bench time line with regex and adds data to value_dic.
121
122    config_re_compiled: precompiled regular expression for parsing the config
123        line.
124    is_per_tile: boolean indicating whether this is a per-tile bench.
125        If so, we add tile layout into layout_dic as well.
126    line: input string line to parse.
127    bench: name of bench for the time values.
128    value_dic: dictionary to store bench values. See bench_dic in parse() below.
129    layout_dic: dictionary to store tile layouts. See parse() for descriptions.
130    """
131
132    for config in config_re_compiled.finditer(line):
133        current_config = config.group(1)
134        tile_layout = ''
135        if is_per_tile:  # per-tile bench, add name prefix
136            current_config = 'tile_' + current_config
137            layouts = TILE_LAYOUT_RE_COMPILED.search(line)
138            if layouts and len(layouts.groups()) == 2:
139              tile_layout = '%sx%s' % layouts.groups()
140        times = config.group(2)
141        for new_time in TIME_RE_COMPILED.finditer(times):
142            current_time_type = new_time.group(1)
143            iters = [float(i) for i in
144                     new_time.group(2).strip().split(',')]
145            value_dic.setdefault(bench, {}).setdefault(
146                current_config, {}).setdefault(current_time_type, []).append(
147                    iters)
148            layout_dic.setdefault(bench, {}).setdefault(
149                current_config, {}).setdefault(current_time_type, tile_layout)
150
151def parse_skp_bench_data(directory, revision, rep, default_settings=None):
152    """Parses all the skp bench data in the given directory.
153
154    Args:
155      directory: string of path to input data directory.
156      revision: git hash revision that matches the data to process.
157      rep: bench representation algorithm, see bench_util.py.
158      default_settings: dictionary of other run settings. See writer.option() in
159          bench/benchmain.cpp.
160
161    Returns:
162      A list of BenchDataPoint objects.
163    """
164    revision_data_points = []
165    file_list = os.listdir(directory)
166    file_list.sort()
167    for bench_file in file_list:
168        scalar_type = None
169        # Scalar type, if any, is in the bench filename after 'scalar_'.
170        if (bench_file.startswith('bench_' + revision + '_data_')):
171            if bench_file.find('scalar_') > 0:
172                components = bench_file.split('_')
173                scalar_type = components[components.index('scalar') + 1]
174        else:  # Skips non skp bench files.
175            continue
176
177        with open('/'.join([directory, bench_file]), 'r') as file_handle:
178          settings = dict(default_settings or {})
179          settings['scalar'] = scalar_type
180          revision_data_points.extend(parse(settings, file_handle, rep))
181
182    return revision_data_points
183
184# TODO(bensong): switch to reading JSON output when available. This way we don't
185# need the RE complexities.
186def parse(settings, lines, representation=None):
187    """Parses bench output into a useful data structure.
188
189    ({str:str}, __iter__ -> str) -> [BenchDataPoint]
190    representation is one of the ALGORITHM_XXX types."""
191
192    benches = []
193    current_bench = None
194    # [bench][config][time_type] -> [[per-iter values]] where per-tile config
195    # has per-iter value list for each tile [[<tile1_iter1>,<tile1_iter2>,...],
196    # [<tile2_iter1>,<tile2_iter2>,...],...], while non-per-tile config only
197    # contains one list of iterations [[iter1, iter2, ...]].
198    bench_dic = {}
199    # [bench][config][time_type] -> tile_layout
200    layout_dic = {}
201
202    for line in lines:
203
204        # see if this line is a settings line
205        settingsMatch = SETTINGS_RE_COMPILED.search(line)
206        if (settingsMatch):
207            settings = dict(settings)
208            for settingMatch in PER_SETTING_RE_COMPILED.finditer(settingsMatch.group(1)):
209                if (settingMatch.group(2)):
210                    settings[settingMatch.group(1)] = settingMatch.group(2)
211                else:
212                    settings[settingMatch.group(1)] = True
213
214        # see if this line starts a new bench
215        new_bench = BENCH_RE_COMPILED.search(line)
216        if new_bench:
217            current_bench = new_bench.group(1)
218
219        # add configs on this line to the bench_dic
220        if current_bench:
221            if line.startswith('  tile_') :
222                _ParseAndStoreTimes(TILE_RE_COMPILED, True, line, current_bench,
223                                    bench_dic, layout_dic)
224            else:
225                _ParseAndStoreTimes(CONFIG_RE_COMPILED, False, line,
226                                    current_bench, bench_dic, layout_dic)
227
228    # append benches to list
229    for bench in bench_dic:
230        for config in bench_dic[bench]:
231            for time_type in bench_dic[bench][config]:
232                tile_layout = ''
233                per_tile_values = []  # empty for non-per-tile configs
234                per_iter_time = []  # empty for per-tile configs
235                bench_summary = None  # a single final bench value
236                if len(bench_dic[bench][config][time_type]) > 1:
237                    # per-tile config; compute representation for each tile
238                    per_tile_values = [
239                        _ListAlgorithm(iters, representation).compute()
240                            for iters in bench_dic[bench][config][time_type]]
241                    # use sum of each tile representation for total bench value
242                    bench_summary = sum(per_tile_values)
243                    # extract tile layout
244                    tile_layout = layout_dic[bench][config][time_type]
245                else:
246                    # get the list of per-iteration values
247                    per_iter_time = bench_dic[bench][config][time_type][0]
248                    bench_summary = _ListAlgorithm(
249                        per_iter_time, representation).compute()
250                benches.append(BenchDataPoint(
251                    bench,
252                    config,
253                    time_type,
254                    bench_summary,
255                    settings,
256                    tile_layout,
257                    per_tile_values,
258                    per_iter_time))
259
260    return benches
261
262class LinearRegression:
263    """Linear regression data based on a set of data points.
264
265    ([(Number,Number)])
266    There must be at least two points for this to make sense."""
267    def __init__(self, points):
268        n = len(points)
269        max_x = Min
270        min_x = Max
271
272        Sx = 0.0
273        Sy = 0.0
274        Sxx = 0.0
275        Sxy = 0.0
276        Syy = 0.0
277        for point in points:
278            x = point[0]
279            y = point[1]
280            max_x = max(max_x, x)
281            min_x = min(min_x, x)
282
283            Sx += x
284            Sy += y
285            Sxx += x*x
286            Sxy += x*y
287            Syy += y*y
288
289        denom = n*Sxx - Sx*Sx
290        if (denom != 0.0):
291            B = (n*Sxy - Sx*Sy) / denom
292        else:
293            B = 0.0
294        a = (1.0/n)*(Sy - B*Sx)
295
296        se2 = 0
297        sB2 = 0
298        sa2 = 0
299        if (n >= 3 and denom != 0.0):
300            se2 = (1.0/(n*(n-2)) * (n*Syy - Sy*Sy - B*B*denom))
301            sB2 = (n*se2) / denom
302            sa2 = sB2 * (1.0/n) * Sxx
303
304
305        self.slope = B
306        self.intercept = a
307        self.serror = math.sqrt(max(0, se2))
308        self.serror_slope = math.sqrt(max(0, sB2))
309        self.serror_intercept = math.sqrt(max(0, sa2))
310        self.max_x = max_x
311        self.min_x = min_x
312
313    def __repr__(self):
314        return "LinearRegression(%s, %s, %s, %s, %s)" % (
315                   str(self.slope),
316                   str(self.intercept),
317                   str(self.serror),
318                   str(self.serror_slope),
319                   str(self.serror_intercept),
320               )
321
322    def find_min_slope(self):
323        """Finds the minimal slope given one standard deviation."""
324        slope = self.slope
325        intercept = self.intercept
326        error = self.serror
327        regr_start = self.min_x
328        regr_end = self.max_x
329        regr_width = regr_end - regr_start
330
331        if slope < 0:
332            lower_left_y = slope*regr_start + intercept - error
333            upper_right_y = slope*regr_end + intercept + error
334            return min(0, (upper_right_y - lower_left_y) / regr_width)
335
336        elif slope > 0:
337            upper_left_y = slope*regr_start + intercept + error
338            lower_right_y = slope*regr_end + intercept - error
339            return max(0, (lower_right_y - upper_left_y) / regr_width)
340
341        return 0
342
343def CreateRevisionLink(revision_number):
344    """Returns HTML displaying the given revision number and linking to
345    that revision's change page at code.google.com, e.g.
346    http://code.google.com/p/skia/source/detail?r=2056
347    """
348    return '<a href="http://code.google.com/p/skia/source/detail?r=%s">%s</a>'%(
349        revision_number, revision_number)
350
351def main():
352    foo = [[0.0, 0.0], [0.0, 1.0], [0.0, 2.0], [0.0, 3.0]]
353    LinearRegression(foo)
354
355if __name__ == "__main__":
356    main()
357