• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "CurveIntersection.h"
8 #include "CurveUtilities.h"
9 #include "LineParameters.h"
10 
11 // return false if unable to clip (e.g., unable to create implicit line)
12 // caller should subdivide, or create degenerate if the values are too small
bezier_clip(const Cubic & cubic1,const Cubic & cubic2,double & minT,double & maxT)13 bool bezier_clip(const Cubic& cubic1, const Cubic& cubic2, double& minT, double& maxT) {
14     minT = 1;
15     maxT = 0;
16     // determine normalized implicit line equation for pt[0] to pt[3]
17     //   of the form ax + by + c = 0, where a*a + b*b == 1
18 
19     // find the implicit line equation parameters
20     LineParameters endLine;
21     endLine.cubicEndPoints(cubic1);
22     if (!endLine.normalize()) {
23         printf("line cannot be normalized: need more code here\n");
24         return false;
25     }
26 
27     double distance[2];
28     distance[0] = endLine.controlPtDistance(cubic1, 1);
29     distance[1] = endLine.controlPtDistance(cubic1, 2);
30 
31     // find fat line
32     double top = distance[0];
33     double bottom = distance[1];
34     if (top > bottom) {
35         SkTSwap(top, bottom);
36     }
37     if (top * bottom >= 0) {
38         const double scale = 3/4.0; // http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf (13)
39         if (top < 0) {
40             top *= scale;
41             bottom = 0;
42         } else {
43             top = 0;
44             bottom *= scale;
45         }
46     } else {
47         const double scale = 4/9.0; // http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf (15)
48         top *= scale;
49         bottom *= scale;
50     }
51 
52     // compute intersecting candidate distance
53     Cubic distance2y; // points with X of (0, 1/3, 2/3, 1)
54     endLine.cubicDistanceY(cubic2, distance2y);
55 
56     int flags = 0;
57     if (approximately_lesser_or_equal(distance2y[0].y, top)) {
58         flags |= kFindTopMin;
59     } else if (approximately_greater_or_equal(distance2y[0].y, bottom)) {
60         flags |= kFindBottomMin;
61     } else {
62         minT = 0;
63     }
64 
65     if (approximately_lesser_or_equal(distance2y[3].y, top)) {
66         flags |= kFindTopMax;
67     } else if (approximately_greater_or_equal(distance2y[3].y, bottom)) {
68         flags |= kFindBottomMax;
69     } else {
70         maxT = 1;
71     }
72     // Find the intersection of distance convex hull and fat line.
73     char to_0[2];
74     char to_3[2];
75     bool do_1_2_edge = convex_x_hull(distance2y, to_0, to_3);
76     x_at(distance2y[0], distance2y[to_0[0]], top, bottom, flags, minT, maxT);
77     if (to_0[0] != to_0[1]) {
78         x_at(distance2y[0], distance2y[to_0[1]], top, bottom, flags, minT, maxT);
79     }
80     x_at(distance2y[to_3[0]], distance2y[3], top, bottom, flags, minT, maxT);
81     if (to_3[0] != to_3[1]) {
82         x_at(distance2y[to_3[1]], distance2y[3], top, bottom, flags, minT, maxT);
83     }
84     if (do_1_2_edge) {
85         x_at(distance2y[1], distance2y[2], top, bottom, flags, minT, maxT);
86     }
87 
88     return minT < maxT; // returns false if distance shows no intersection
89 }
90