• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "CubicUtilities.h"
8 #include "IntersectionUtilities.h"
9 
10 /*
11  Given a cubic c, t1, and t2, find a small cubic segment.
12 
13  The new cubic is defined as points A, B, C, and D, where
14  s1 = 1 - t1
15  s2 = 1 - t2
16  A = c[0]*s1*s1*s1 + 3*c[1]*s1*s1*t1 + 3*c[2]*s1*t1*t1 + c[3]*t1*t1*t1
17  D = c[0]*s2*s2*s2 + 3*c[1]*s2*s2*t2 + 3*c[2]*s2*t2*t2 + c[3]*t2*t2*t2
18 
19  We don't have B or C. So We define two equations to isolate them.
20  First, compute two reference T values 1/3 and 2/3 from t1 to t2:
21 
22  c(at (2*t1 + t2)/3) == E
23  c(at (t1 + 2*t2)/3) == F
24 
25  Next, compute where those values must be if we know the values of B and C:
26 
27  _12   =  A*2/3 + B*1/3
28  12_   =  A*1/3 + B*2/3
29  _23   =  B*2/3 + C*1/3
30  23_   =  B*1/3 + C*2/3
31  _34   =  C*2/3 + D*1/3
32  34_   =  C*1/3 + D*2/3
33  _123  = (A*2/3 + B*1/3)*2/3 + (B*2/3 + C*1/3)*1/3 = A*4/9 + B*4/9 + C*1/9
34  123_  = (A*1/3 + B*2/3)*1/3 + (B*1/3 + C*2/3)*2/3 = A*1/9 + B*4/9 + C*4/9
35  _234  = (B*2/3 + C*1/3)*2/3 + (C*2/3 + D*1/3)*1/3 = B*4/9 + C*4/9 + D*1/9
36  234_  = (B*1/3 + C*2/3)*1/3 + (C*1/3 + D*2/3)*2/3 = B*1/9 + C*4/9 + D*4/9
37  _1234 = (A*4/9 + B*4/9 + C*1/9)*2/3 + (B*4/9 + C*4/9 + D*1/9)*1/3
38        =  A*8/27 + B*12/27 + C*6/27 + D*1/27
39        =  E
40  1234_ = (A*1/9 + B*4/9 + C*4/9)*1/3 + (B*1/9 + C*4/9 + D*4/9)*2/3
41        =  A*1/27 + B*6/27 + C*12/27 + D*8/27
42        =  F
43  E*27  =  A*8    + B*12   + C*6     + D
44  F*27  =  A      + B*6    + C*12    + D*8
45 
46 Group the known values on one side:
47 
48  M       = E*27 - A*8 - D     = B*12 + C* 6
49  N       = F*27 - A   - D*8   = B* 6 + C*12
50  M*2 - N = B*18
51  N*2 - M = C*18
52  B       = (M*2 - N)/18
53  C       = (N*2 - M)/18
54  */
55 
interp_cubic_coords(const double * src,double t)56 static double interp_cubic_coords(const double* src, double t)
57 {
58     double ab = interp(src[0], src[2], t);
59     double bc = interp(src[2], src[4], t);
60     double cd = interp(src[4], src[6], t);
61     double abc = interp(ab, bc, t);
62     double bcd = interp(bc, cd, t);
63     double abcd = interp(abc, bcd, t);
64     return abcd;
65 }
66 
sub_divide(const Cubic & src,double t1,double t2,Cubic & dst)67 void sub_divide(const Cubic& src, double t1, double t2, Cubic& dst) {
68     if (t1 == 0 && t2 == 1) {
69         dst[0] = src[0];
70         dst[1] = src[1];
71         dst[2] = src[2];
72         dst[3] = src[3];
73         return;
74     }
75     double ax = dst[0].x = interp_cubic_coords(&src[0].x, t1);
76     double ay = dst[0].y = interp_cubic_coords(&src[0].y, t1);
77     double ex = interp_cubic_coords(&src[0].x, (t1*2+t2)/3);
78     double ey = interp_cubic_coords(&src[0].y, (t1*2+t2)/3);
79     double fx = interp_cubic_coords(&src[0].x, (t1+t2*2)/3);
80     double fy = interp_cubic_coords(&src[0].y, (t1+t2*2)/3);
81     double dx = dst[3].x = interp_cubic_coords(&src[0].x, t2);
82     double dy = dst[3].y = interp_cubic_coords(&src[0].y, t2);
83     double mx = ex * 27 - ax * 8 - dx;
84     double my = ey * 27 - ay * 8 - dy;
85     double nx = fx * 27 - ax - dx * 8;
86     double ny = fy * 27 - ay - dy * 8;
87     /* bx = */ dst[1].x = (mx * 2 - nx) / 18;
88     /* by = */ dst[1].y = (my * 2 - ny) / 18;
89     /* cx = */ dst[2].x = (nx * 2 - mx) / 18;
90     /* cy = */ dst[2].y = (ny * 2 - my) / 18;
91 }
92 
sub_divide(const Cubic & src,const _Point & a,const _Point & d,double t1,double t2,_Point dst[2])93 void sub_divide(const Cubic& src, const _Point& a, const _Point& d,
94         double t1, double t2, _Point dst[2]) {
95     double ex = interp_cubic_coords(&src[0].x, (t1 * 2 + t2) / 3);
96     double ey = interp_cubic_coords(&src[0].y, (t1 * 2 + t2) / 3);
97     double fx = interp_cubic_coords(&src[0].x, (t1 + t2 * 2) / 3);
98     double fy = interp_cubic_coords(&src[0].y, (t1 + t2 * 2) / 3);
99     double mx = ex * 27 - a.x * 8 - d.x;
100     double my = ey * 27 - a.y * 8 - d.y;
101     double nx = fx * 27 - a.x - d.x * 8;
102     double ny = fy * 27 - a.y - d.y * 8;
103     /* bx = */ dst[0].x = (mx * 2 - nx) / 18;
104     /* by = */ dst[0].y = (my * 2 - ny) / 18;
105     /* cx = */ dst[1].x = (nx * 2 - mx) / 18;
106     /* cy = */ dst[1].y = (ny * 2 - my) / 18;
107 }
108 
109 /* classic one t subdivision */
interp_cubic_coords(const double * src,double * dst,double t)110 static void interp_cubic_coords(const double* src, double* dst, double t)
111 {
112     double ab = interp(src[0], src[2], t);
113     double bc = interp(src[2], src[4], t);
114     double cd = interp(src[4], src[6], t);
115     double abc = interp(ab, bc, t);
116     double bcd = interp(bc, cd, t);
117     double abcd = interp(abc, bcd, t);
118 
119     dst[0] = src[0];
120     dst[2] = ab;
121     dst[4] = abc;
122     dst[6] = abcd;
123     dst[8] = bcd;
124     dst[10] = cd;
125     dst[12] = src[6];
126 }
127 
chop_at(const Cubic & src,CubicPair & dst,double t)128 void chop_at(const Cubic& src, CubicPair& dst, double t)
129 {
130     if (t == 0.5) {
131         dst.pts[0] = src[0];
132         dst.pts[1].x = (src[0].x + src[1].x) / 2;
133         dst.pts[1].y = (src[0].y + src[1].y) / 2;
134         dst.pts[2].x = (src[0].x + 2 * src[1].x + src[2].x) / 4;
135         dst.pts[2].y = (src[0].y + 2 * src[1].y + src[2].y) / 4;
136         dst.pts[3].x = (src[0].x + 3 * (src[1].x + src[2].x) + src[3].x) / 8;
137         dst.pts[3].y = (src[0].y + 3 * (src[1].y + src[2].y) + src[3].y) / 8;
138         dst.pts[4].x = (src[1].x + 2 * src[2].x + src[3].x) / 4;
139         dst.pts[4].y = (src[1].y + 2 * src[2].y + src[3].y) / 4;
140         dst.pts[5].x = (src[2].x + src[3].x) / 2;
141         dst.pts[5].y = (src[2].y + src[3].y) / 2;
142         dst.pts[6] = src[3];
143         return;
144     }
145     interp_cubic_coords(&src[0].x, &dst.pts[0].x, t);
146     interp_cubic_coords(&src[0].y, &dst.pts[0].y, t);
147 }
148