1 /*
2 * Copyright 2012 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7 #include "CurveIntersection.h"
8 #include "CubicUtilities.h"
9 #include "Intersections.h"
10 #include "LineUtilities.h"
11
12 /*
13 Find the interection of a line and cubic by solving for valid t values.
14
15 Analogous to line-quadratic intersection, solve line-cubic intersection by
16 representing the cubic as:
17 x = a(1-t)^3 + 2b(1-t)^2t + c(1-t)t^2 + dt^3
18 y = e(1-t)^3 + 2f(1-t)^2t + g(1-t)t^2 + ht^3
19 and the line as:
20 y = i*x + j (if the line is more horizontal)
21 or:
22 x = i*y + j (if the line is more vertical)
23
24 Then using Mathematica, solve for the values of t where the cubic intersects the
25 line:
26
27 (in) Resultant[
28 a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x,
29 e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - i*x - j, x]
30 (out) -e + j +
31 3 e t - 3 f t -
32 3 e t^2 + 6 f t^2 - 3 g t^2 +
33 e t^3 - 3 f t^3 + 3 g t^3 - h t^3 +
34 i ( a -
35 3 a t + 3 b t +
36 3 a t^2 - 6 b t^2 + 3 c t^2 -
37 a t^3 + 3 b t^3 - 3 c t^3 + d t^3 )
38
39 if i goes to infinity, we can rewrite the line in terms of x. Mathematica:
40
41 (in) Resultant[
42 a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - i*y - j,
43 e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y]
44 (out) a - j -
45 3 a t + 3 b t +
46 3 a t^2 - 6 b t^2 + 3 c t^2 -
47 a t^3 + 3 b t^3 - 3 c t^3 + d t^3 -
48 i ( e -
49 3 e t + 3 f t +
50 3 e t^2 - 6 f t^2 + 3 g t^2 -
51 e t^3 + 3 f t^3 - 3 g t^3 + h t^3 )
52
53 Solving this with Mathematica produces an expression with hundreds of terms;
54 instead, use Numeric Solutions recipe to solve the cubic.
55
56 The near-horizontal case, in terms of: Ax^3 + Bx^2 + Cx + D == 0
57 A = (-(-e + 3*f - 3*g + h) + i*(-a + 3*b - 3*c + d) )
58 B = 3*(-( e - 2*f + g ) + i*( a - 2*b + c ) )
59 C = 3*(-(-e + f ) + i*(-a + b ) )
60 D = (-( e ) + i*( a ) + j )
61
62 The near-vertical case, in terms of: Ax^3 + Bx^2 + Cx + D == 0
63 A = ( (-a + 3*b - 3*c + d) - i*(-e + 3*f - 3*g + h) )
64 B = 3*( ( a - 2*b + c ) - i*( e - 2*f + g ) )
65 C = 3*( (-a + b ) - i*(-e + f ) )
66 D = ( ( a ) - i*( e ) - j )
67
68 For horizontal lines:
69 (in) Resultant[
70 a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - j,
71 e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y]
72 (out) e - j -
73 3 e t + 3 f t +
74 3 e t^2 - 6 f t^2 + 3 g t^2 -
75 e t^3 + 3 f t^3 - 3 g t^3 + h t^3
76 So the cubic coefficients are:
77
78 */
79
80 class LineCubicIntersections {
81 public:
82
LineCubicIntersections(const Cubic & c,const _Line & l,Intersections & i)83 LineCubicIntersections(const Cubic& c, const _Line& l, Intersections& i)
84 : cubic(c)
85 , line(l)
86 , intersections(i) {
87 }
88
89 // see parallel routine in line quadratic intersections
intersectRay(double roots[3])90 int intersectRay(double roots[3]) {
91 double adj = line[1].x - line[0].x;
92 double opp = line[1].y - line[0].y;
93 Cubic r;
94 for (int n = 0; n < 4; ++n) {
95 r[n].x = (cubic[n].y - line[0].y) * adj - (cubic[n].x - line[0].x) * opp;
96 }
97 double A, B, C, D;
98 coefficients(&r[0].x, A, B, C, D);
99 return cubicRootsValidT(A, B, C, D, roots);
100 }
101
intersect()102 int intersect() {
103 addEndPoints();
104 double rootVals[3];
105 int roots = intersectRay(rootVals);
106 for (int index = 0; index < roots; ++index) {
107 double cubicT = rootVals[index];
108 double lineT = findLineT(cubicT);
109 if (pinTs(cubicT, lineT)) {
110 _Point pt;
111 xy_at_t(line, lineT, pt.x, pt.y);
112 intersections.insert(cubicT, lineT, pt);
113 }
114 }
115 return intersections.fUsed;
116 }
117
horizontalIntersect(double axisIntercept,double roots[3])118 int horizontalIntersect(double axisIntercept, double roots[3]) {
119 double A, B, C, D;
120 coefficients(&cubic[0].y, A, B, C, D);
121 D -= axisIntercept;
122 return cubicRootsValidT(A, B, C, D, roots);
123 }
124
horizontalIntersect(double axisIntercept,double left,double right,bool flipped)125 int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) {
126 addHorizontalEndPoints(left, right, axisIntercept);
127 double rootVals[3];
128 int roots = horizontalIntersect(axisIntercept, rootVals);
129 for (int index = 0; index < roots; ++index) {
130 _Point pt;
131 double cubicT = rootVals[index];
132 xy_at_t(cubic, cubicT, pt.x, pt.y);
133 double lineT = (pt.x - left) / (right - left);
134 if (pinTs(cubicT, lineT)) {
135 intersections.insert(cubicT, lineT, pt);
136 }
137 }
138 if (flipped) {
139 flip();
140 }
141 return intersections.fUsed;
142 }
143
verticalIntersect(double axisIntercept,double roots[3])144 int verticalIntersect(double axisIntercept, double roots[3]) {
145 double A, B, C, D;
146 coefficients(&cubic[0].x, A, B, C, D);
147 D -= axisIntercept;
148 return cubicRootsValidT(A, B, C, D, roots);
149 }
150
verticalIntersect(double axisIntercept,double top,double bottom,bool flipped)151 int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) {
152 addVerticalEndPoints(top, bottom, axisIntercept);
153 double rootVals[3];
154 int roots = verticalIntersect(axisIntercept, rootVals);
155 for (int index = 0; index < roots; ++index) {
156 _Point pt;
157 double cubicT = rootVals[index];
158 xy_at_t(cubic, cubicT, pt.x, pt.y);
159 double lineT = (pt.y - top) / (bottom - top);
160 if (pinTs(cubicT, lineT)) {
161 intersections.insert(cubicT, lineT, pt);
162 }
163 }
164 if (flipped) {
165 flip();
166 }
167 return intersections.fUsed;
168 }
169
170 protected:
171
addEndPoints()172 void addEndPoints()
173 {
174 for (int cIndex = 0; cIndex < 4; cIndex += 3) {
175 for (int lIndex = 0; lIndex < 2; lIndex++) {
176 if (cubic[cIndex] == line[lIndex]) {
177 intersections.insert(cIndex >> 1, lIndex, line[lIndex]);
178 }
179 }
180 }
181 }
182
addHorizontalEndPoints(double left,double right,double y)183 void addHorizontalEndPoints(double left, double right, double y)
184 {
185 for (int cIndex = 0; cIndex < 4; cIndex += 3) {
186 if (cubic[cIndex].y != y) {
187 continue;
188 }
189 if (cubic[cIndex].x == left) {
190 intersections.insert(cIndex >> 1, 0, cubic[cIndex]);
191 }
192 if (cubic[cIndex].x == right) {
193 intersections.insert(cIndex >> 1, 1, cubic[cIndex]);
194 }
195 }
196 }
197
addVerticalEndPoints(double top,double bottom,double x)198 void addVerticalEndPoints(double top, double bottom, double x)
199 {
200 for (int cIndex = 0; cIndex < 4; cIndex += 3) {
201 if (cubic[cIndex].x != x) {
202 continue;
203 }
204 if (cubic[cIndex].y == top) {
205 intersections.insert(cIndex >> 1, 0, cubic[cIndex]);
206 }
207 if (cubic[cIndex].y == bottom) {
208 intersections.insert(cIndex >> 1, 1, cubic[cIndex]);
209 }
210 }
211 }
212
findLineT(double t)213 double findLineT(double t) {
214 double x, y;
215 xy_at_t(cubic, t, x, y);
216 double dx = line[1].x - line[0].x;
217 double dy = line[1].y - line[0].y;
218 if (fabs(dx) > fabs(dy)) {
219 return (x - line[0].x) / dx;
220 }
221 return (y - line[0].y) / dy;
222 }
223
flip()224 void flip() {
225 // OPTIMIZATION: instead of swapping, pass original line, use [1].y - [0].y
226 int roots = intersections.fUsed;
227 for (int index = 0; index < roots; ++index) {
228 intersections.fT[1][index] = 1 - intersections.fT[1][index];
229 }
230 }
231
pinTs(double & cubicT,double & lineT)232 static bool pinTs(double& cubicT, double& lineT) {
233 if (!approximately_one_or_less(lineT)) {
234 return false;
235 }
236 if (!approximately_zero_or_more(lineT)) {
237 return false;
238 }
239 if (precisely_less_than_zero(cubicT)) {
240 cubicT = 0;
241 } else if (precisely_greater_than_one(cubicT)) {
242 cubicT = 1;
243 }
244 if (precisely_less_than_zero(lineT)) {
245 lineT = 0;
246 } else if (precisely_greater_than_one(lineT)) {
247 lineT = 1;
248 }
249 return true;
250 }
251
252 private:
253
254 const Cubic& cubic;
255 const _Line& line;
256 Intersections& intersections;
257 };
258
horizontalIntersect(const Cubic & cubic,double left,double right,double y,double tRange[3])259 int horizontalIntersect(const Cubic& cubic, double left, double right, double y,
260 double tRange[3]) {
261 LineCubicIntersections c(cubic, *((_Line*) 0), *((Intersections*) 0));
262 double rootVals[3];
263 int result = c.horizontalIntersect(y, rootVals);
264 int tCount = 0;
265 for (int index = 0; index < result; ++index) {
266 double x, y;
267 xy_at_t(cubic, rootVals[index], x, y);
268 if (x < left || x > right) {
269 continue;
270 }
271 tRange[tCount++] = rootVals[index];
272 }
273 return result;
274 }
275
horizontalIntersect(const Cubic & cubic,double left,double right,double y,bool flipped,Intersections & intersections)276 int horizontalIntersect(const Cubic& cubic, double left, double right, double y,
277 bool flipped, Intersections& intersections) {
278 LineCubicIntersections c(cubic, *((_Line*) 0), intersections);
279 return c.horizontalIntersect(y, left, right, flipped);
280 }
281
verticalIntersect(const Cubic & cubic,double top,double bottom,double x,bool flipped,Intersections & intersections)282 int verticalIntersect(const Cubic& cubic, double top, double bottom, double x,
283 bool flipped, Intersections& intersections) {
284 LineCubicIntersections c(cubic, *((_Line*) 0), intersections);
285 return c.verticalIntersect(x, top, bottom, flipped);
286 }
287
intersect(const Cubic & cubic,const _Line & line,Intersections & i)288 int intersect(const Cubic& cubic, const _Line& line, Intersections& i) {
289 LineCubicIntersections c(cubic, line, i);
290 return c.intersect();
291 }
292
intersectRay(const Cubic & cubic,const _Line & line,Intersections & i)293 int intersectRay(const Cubic& cubic, const _Line& line, Intersections& i) {
294 LineCubicIntersections c(cubic, line, i);
295 return c.intersectRay(i.fT[0]);
296 }
297