• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "CurveIntersection.h"
8 #include "CubicUtilities.h"
9 #include "Intersections.h"
10 #include "LineUtilities.h"
11 
12 /*
13 Find the interection of a line and cubic by solving for valid t values.
14 
15 Analogous to line-quadratic intersection, solve line-cubic intersection by
16 representing the cubic as:
17   x = a(1-t)^3 + 2b(1-t)^2t + c(1-t)t^2 + dt^3
18   y = e(1-t)^3 + 2f(1-t)^2t + g(1-t)t^2 + ht^3
19 and the line as:
20   y = i*x + j  (if the line is more horizontal)
21 or:
22   x = i*y + j  (if the line is more vertical)
23 
24 Then using Mathematica, solve for the values of t where the cubic intersects the
25 line:
26 
27   (in) Resultant[
28         a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x,
29         e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - i*x - j, x]
30   (out) -e     +   j     +
31        3 e t   - 3 f t   -
32        3 e t^2 + 6 f t^2 - 3 g t^2 +
33          e t^3 - 3 f t^3 + 3 g t^3 - h t^3 +
34      i ( a     -
35        3 a t + 3 b t +
36        3 a t^2 - 6 b t^2 + 3 c t^2 -
37          a t^3 + 3 b t^3 - 3 c t^3 + d t^3 )
38 
39 if i goes to infinity, we can rewrite the line in terms of x. Mathematica:
40 
41   (in) Resultant[
42         a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - i*y - j,
43         e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y,       y]
44   (out)  a     -   j     -
45        3 a t   + 3 b t   +
46        3 a t^2 - 6 b t^2 + 3 c t^2 -
47          a t^3 + 3 b t^3 - 3 c t^3 + d t^3 -
48      i ( e     -
49        3 e t   + 3 f t   +
50        3 e t^2 - 6 f t^2 + 3 g t^2 -
51          e t^3 + 3 f t^3 - 3 g t^3 + h t^3 )
52 
53 Solving this with Mathematica produces an expression with hundreds of terms;
54 instead, use Numeric Solutions recipe to solve the cubic.
55 
56 The near-horizontal case, in terms of:  Ax^3 + Bx^2 + Cx + D == 0
57     A =   (-(-e + 3*f - 3*g + h) + i*(-a + 3*b - 3*c + d)     )
58     B = 3*(-( e - 2*f +   g    ) + i*( a - 2*b +   c    )     )
59     C = 3*(-(-e +   f          ) + i*(-a +   b          )     )
60     D =   (-( e                ) + i*( a                ) + j )
61 
62 The near-vertical case, in terms of:  Ax^3 + Bx^2 + Cx + D == 0
63     A =   ( (-a + 3*b - 3*c + d) - i*(-e + 3*f - 3*g + h)     )
64     B = 3*( ( a - 2*b +   c    ) - i*( e - 2*f +   g    )     )
65     C = 3*( (-a +   b          ) - i*(-e +   f          )     )
66     D =   ( ( a                ) - i*( e                ) - j )
67 
68 For horizontal lines:
69 (in) Resultant[
70       a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - j,
71       e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y]
72 (out)  e     -   j     -
73      3 e t   + 3 f t   +
74      3 e t^2 - 6 f t^2 + 3 g t^2 -
75        e t^3 + 3 f t^3 - 3 g t^3 + h t^3
76 So the cubic coefficients are:
77 
78  */
79 
80 class LineCubicIntersections {
81 public:
82 
LineCubicIntersections(const Cubic & c,const _Line & l,Intersections & i)83 LineCubicIntersections(const Cubic& c, const _Line& l, Intersections& i)
84     : cubic(c)
85     , line(l)
86     , intersections(i) {
87 }
88 
89 // see parallel routine in line quadratic intersections
intersectRay(double roots[3])90 int intersectRay(double roots[3]) {
91     double adj = line[1].x - line[0].x;
92     double opp = line[1].y - line[0].y;
93     Cubic r;
94     for (int n = 0; n < 4; ++n) {
95         r[n].x = (cubic[n].y - line[0].y) * adj - (cubic[n].x - line[0].x) * opp;
96     }
97     double A, B, C, D;
98     coefficients(&r[0].x, A, B, C, D);
99     return cubicRootsValidT(A, B, C, D, roots);
100 }
101 
intersect()102 int intersect() {
103     addEndPoints();
104     double rootVals[3];
105     int roots = intersectRay(rootVals);
106     for (int index = 0; index < roots; ++index) {
107         double cubicT = rootVals[index];
108         double lineT = findLineT(cubicT);
109         if (pinTs(cubicT, lineT)) {
110             _Point pt;
111             xy_at_t(line, lineT, pt.x, pt.y);
112             intersections.insert(cubicT, lineT, pt);
113         }
114     }
115     return intersections.fUsed;
116 }
117 
horizontalIntersect(double axisIntercept,double roots[3])118 int horizontalIntersect(double axisIntercept, double roots[3]) {
119     double A, B, C, D;
120     coefficients(&cubic[0].y, A, B, C, D);
121     D -= axisIntercept;
122     return cubicRootsValidT(A, B, C, D, roots);
123 }
124 
horizontalIntersect(double axisIntercept,double left,double right,bool flipped)125 int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) {
126     addHorizontalEndPoints(left, right, axisIntercept);
127     double rootVals[3];
128     int roots = horizontalIntersect(axisIntercept, rootVals);
129     for (int index = 0; index < roots; ++index) {
130         _Point pt;
131         double cubicT = rootVals[index];
132         xy_at_t(cubic, cubicT, pt.x, pt.y);
133         double lineT = (pt.x - left) / (right - left);
134         if (pinTs(cubicT, lineT)) {
135             intersections.insert(cubicT, lineT, pt);
136         }
137     }
138     if (flipped) {
139         flip();
140     }
141     return intersections.fUsed;
142 }
143 
verticalIntersect(double axisIntercept,double roots[3])144 int verticalIntersect(double axisIntercept, double roots[3]) {
145     double A, B, C, D;
146     coefficients(&cubic[0].x, A, B, C, D);
147     D -= axisIntercept;
148     return cubicRootsValidT(A, B, C, D, roots);
149 }
150 
verticalIntersect(double axisIntercept,double top,double bottom,bool flipped)151 int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) {
152     addVerticalEndPoints(top, bottom, axisIntercept);
153     double rootVals[3];
154     int roots = verticalIntersect(axisIntercept, rootVals);
155     for (int index = 0; index < roots; ++index) {
156         _Point pt;
157         double cubicT = rootVals[index];
158         xy_at_t(cubic, cubicT, pt.x, pt.y);
159         double lineT = (pt.y - top) / (bottom - top);
160         if (pinTs(cubicT, lineT)) {
161             intersections.insert(cubicT, lineT, pt);
162         }
163     }
164     if (flipped) {
165         flip();
166     }
167     return intersections.fUsed;
168 }
169 
170 protected:
171 
addEndPoints()172 void addEndPoints()
173 {
174     for (int cIndex = 0; cIndex < 4; cIndex += 3) {
175         for (int lIndex = 0; lIndex < 2; lIndex++) {
176             if (cubic[cIndex] == line[lIndex]) {
177                 intersections.insert(cIndex >> 1, lIndex, line[lIndex]);
178             }
179         }
180     }
181 }
182 
addHorizontalEndPoints(double left,double right,double y)183 void addHorizontalEndPoints(double left, double right, double y)
184 {
185     for (int cIndex = 0; cIndex < 4; cIndex += 3) {
186         if (cubic[cIndex].y != y) {
187             continue;
188         }
189         if (cubic[cIndex].x == left) {
190             intersections.insert(cIndex >> 1, 0, cubic[cIndex]);
191         }
192         if (cubic[cIndex].x == right) {
193             intersections.insert(cIndex >> 1, 1, cubic[cIndex]);
194         }
195     }
196 }
197 
addVerticalEndPoints(double top,double bottom,double x)198 void addVerticalEndPoints(double top, double bottom, double x)
199 {
200     for (int cIndex = 0; cIndex < 4; cIndex += 3) {
201         if (cubic[cIndex].x != x) {
202             continue;
203         }
204         if (cubic[cIndex].y == top) {
205             intersections.insert(cIndex >> 1, 0, cubic[cIndex]);
206         }
207         if (cubic[cIndex].y == bottom) {
208             intersections.insert(cIndex >> 1, 1, cubic[cIndex]);
209         }
210     }
211 }
212 
findLineT(double t)213 double findLineT(double t) {
214     double x, y;
215     xy_at_t(cubic, t, x, y);
216     double dx = line[1].x - line[0].x;
217     double dy = line[1].y - line[0].y;
218     if (fabs(dx) > fabs(dy)) {
219         return (x - line[0].x) / dx;
220     }
221     return (y - line[0].y) / dy;
222 }
223 
flip()224 void flip() {
225     // OPTIMIZATION: instead of swapping, pass original line, use [1].y - [0].y
226     int roots = intersections.fUsed;
227     for (int index = 0; index < roots; ++index) {
228         intersections.fT[1][index] = 1 - intersections.fT[1][index];
229     }
230 }
231 
pinTs(double & cubicT,double & lineT)232 static bool pinTs(double& cubicT, double& lineT) {
233     if (!approximately_one_or_less(lineT)) {
234         return false;
235     }
236     if (!approximately_zero_or_more(lineT)) {
237         return false;
238     }
239     if (precisely_less_than_zero(cubicT)) {
240         cubicT = 0;
241     } else if (precisely_greater_than_one(cubicT)) {
242         cubicT = 1;
243     }
244     if (precisely_less_than_zero(lineT)) {
245         lineT = 0;
246     } else if (precisely_greater_than_one(lineT)) {
247         lineT = 1;
248     }
249     return true;
250 }
251 
252 private:
253 
254 const Cubic& cubic;
255 const _Line& line;
256 Intersections& intersections;
257 };
258 
horizontalIntersect(const Cubic & cubic,double left,double right,double y,double tRange[3])259 int horizontalIntersect(const Cubic& cubic, double left, double right, double y,
260         double tRange[3]) {
261     LineCubicIntersections c(cubic, *((_Line*) 0), *((Intersections*) 0));
262     double rootVals[3];
263     int result = c.horizontalIntersect(y, rootVals);
264     int tCount = 0;
265     for (int index = 0; index < result; ++index) {
266         double x, y;
267         xy_at_t(cubic, rootVals[index], x, y);
268         if (x < left || x > right) {
269             continue;
270         }
271         tRange[tCount++] = rootVals[index];
272     }
273     return result;
274 }
275 
horizontalIntersect(const Cubic & cubic,double left,double right,double y,bool flipped,Intersections & intersections)276 int horizontalIntersect(const Cubic& cubic, double left, double right, double y,
277         bool flipped, Intersections& intersections) {
278     LineCubicIntersections c(cubic, *((_Line*) 0), intersections);
279     return c.horizontalIntersect(y, left, right, flipped);
280 }
281 
verticalIntersect(const Cubic & cubic,double top,double bottom,double x,bool flipped,Intersections & intersections)282 int verticalIntersect(const Cubic& cubic, double top, double bottom, double x,
283         bool flipped, Intersections& intersections) {
284     LineCubicIntersections c(cubic, *((_Line*) 0), intersections);
285     return c.verticalIntersect(x, top, bottom, flipped);
286 }
287 
intersect(const Cubic & cubic,const _Line & line,Intersections & i)288 int intersect(const Cubic& cubic, const _Line& line, Intersections& i) {
289     LineCubicIntersections c(cubic, line, i);
290     return c.intersect();
291 }
292 
intersectRay(const Cubic & cubic,const _Line & line,Intersections & i)293 int intersectRay(const Cubic& cubic, const _Line& line, Intersections& i) {
294     LineCubicIntersections c(cubic, line, i);
295     return c.intersectRay(i.fT[0]);
296 }
297