• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "CurveIntersection.h"
8 #include "Intersections.h"
9 #include "IntersectionUtilities.h"
10 #include "LineIntersection.h"
11 #include "LineUtilities.h"
12 #include "QuadraticLineSegments.h"
13 #include "QuadraticUtilities.h"
14 #include <algorithm> // for swap
15 
16 static const double tClipLimit = 0.8; // http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf see Multiple intersections
17 
18 class QuadraticIntersections {
19 public:
20 
QuadraticIntersections(const Quadratic & q1,const Quadratic & q2,Intersections & i)21 QuadraticIntersections(const Quadratic& q1, const Quadratic& q2, Intersections& i)
22     : quad1(q1)
23     , quad2(q2)
24     , intersections(i)
25     , depth(0)
26     , splits(0)
27     , coinMinT1(-1) {
28 }
29 
intersect()30 bool intersect() {
31     double minT1, minT2, maxT1, maxT2;
32     if (!bezier_clip(quad2, quad1, minT1, maxT1)) {
33         return false;
34     }
35     if (!bezier_clip(quad1, quad2, minT2, maxT2)) {
36         return false;
37     }
38     quad1Divisions = 1 / subDivisions(quad1);
39     quad2Divisions = 1 / subDivisions(quad2);
40     int split;
41     if (maxT1 - minT1 < maxT2 - minT2) {
42         intersections.swap();
43         minT2 = 0;
44         maxT2 = 1;
45         split = maxT1 - minT1 > tClipLimit;
46     } else {
47         minT1 = 0;
48         maxT1 = 1;
49         split = (maxT2 - minT2 > tClipLimit) << 1;
50     }
51     return chop(minT1, maxT1, minT2, maxT2, split);
52 }
53 
54 protected:
55 
intersect(double minT1,double maxT1,double minT2,double maxT2)56 bool intersect(double minT1, double maxT1, double minT2, double maxT2) {
57     bool t1IsLine = maxT1 - minT1 <= quad1Divisions;
58     bool t2IsLine = maxT2 - minT2 <= quad2Divisions;
59     if (t1IsLine | t2IsLine) {
60         return intersectAsLine(minT1, maxT1, minT2, maxT2, t1IsLine, t2IsLine);
61     }
62     Quadratic smaller, larger;
63     // FIXME: carry last subdivide and reduceOrder result with quad
64     sub_divide(quad1, minT1, maxT1, intersections.swapped() ? larger : smaller);
65     sub_divide(quad2, minT2, maxT2, intersections.swapped() ? smaller : larger);
66     double minT, maxT;
67     if (!bezier_clip(smaller, larger, minT, maxT)) {
68         if (approximately_equal(minT, maxT)) {
69             double smallT, largeT;
70             _Point q2pt, q1pt;
71             if (intersections.swapped()) {
72                 largeT = interp(minT2, maxT2, minT);
73                 xy_at_t(quad2, largeT, q2pt.x, q2pt.y);
74                 xy_at_t(quad1, minT1, q1pt.x, q1pt.y);
75                 if (AlmostEqualUlps(q2pt.x, q1pt.x) && AlmostEqualUlps(q2pt.y, q1pt.y)) {
76                     smallT = minT1;
77                 } else {
78                     xy_at_t(quad1, maxT1, q1pt.x, q1pt.y); // FIXME: debug code
79                     SkASSERT(AlmostEqualUlps(q2pt.x, q1pt.x) && AlmostEqualUlps(q2pt.y, q1pt.y));
80                     smallT = maxT1;
81                 }
82             } else {
83                 smallT = interp(minT1, maxT1, minT);
84                 xy_at_t(quad1, smallT, q1pt.x, q1pt.y);
85                 xy_at_t(quad2, minT2, q2pt.x, q2pt.y);
86                 if (AlmostEqualUlps(q2pt.x, q1pt.x) && AlmostEqualUlps(q2pt.y, q1pt.y)) {
87                     largeT = minT2;
88                 } else {
89                     xy_at_t(quad2, maxT2, q2pt.x, q2pt.y); // FIXME: debug code
90                     SkASSERT(AlmostEqualUlps(q2pt.x, q1pt.x) && AlmostEqualUlps(q2pt.y, q1pt.y));
91                     largeT = maxT2;
92                 }
93             }
94             intersections.add(smallT, largeT);
95             return true;
96         }
97         return false;
98     }
99     int split;
100     if (intersections.swapped()) {
101         double newMinT1 = interp(minT1, maxT1, minT);
102         double newMaxT1 = interp(minT1, maxT1, maxT);
103         split = (newMaxT1 - newMinT1 > (maxT1 - minT1) * tClipLimit) << 1;
104 #define VERBOSE 0
105 #if VERBOSE
106         printf("%s d=%d s=%d new1=(%g,%g) old1=(%g,%g) split=%d\n", __FUNCTION__, depth,
107             splits, newMinT1, newMaxT1, minT1, maxT1, split);
108 #endif
109         minT1 = newMinT1;
110         maxT1 = newMaxT1;
111     } else {
112         double newMinT2 = interp(minT2, maxT2, minT);
113         double newMaxT2 = interp(minT2, maxT2, maxT);
114         split = newMaxT2 - newMinT2 > (maxT2 - minT2) * tClipLimit;
115 #if VERBOSE
116         printf("%s d=%d s=%d new2=(%g,%g) old2=(%g,%g) split=%d\n", __FUNCTION__, depth,
117             splits, newMinT2, newMaxT2, minT2, maxT2, split);
118 #endif
119         minT2 = newMinT2;
120         maxT2 = newMaxT2;
121     }
122     return chop(minT1, maxT1, minT2, maxT2, split);
123 }
124 
intersectAsLine(double minT1,double maxT1,double minT2,double maxT2,bool treat1AsLine,bool treat2AsLine)125 bool intersectAsLine(double minT1, double maxT1, double minT2, double maxT2,
126        bool treat1AsLine, bool treat2AsLine)
127 {
128     _Line line1, line2;
129     if (intersections.swapped()) {
130         SkTSwap(treat1AsLine, treat2AsLine);
131         SkTSwap(minT1, minT2);
132         SkTSwap(maxT1, maxT2);
133     }
134     if (coinMinT1 >= 0) {
135         bool earlyExit;
136         if ((earlyExit = coinMaxT1 == minT1)) {
137             coinMaxT1 = maxT1;
138         }
139         if (coinMaxT2 == minT2) {
140             coinMaxT2 = maxT2;
141             return true;
142         }
143         if (earlyExit) {
144             return true;
145         }
146         coinMinT1 = -1;
147     }
148     // do line/quadratic or even line/line intersection instead
149     if (treat1AsLine) {
150         xy_at_t(quad1, minT1, line1[0].x, line1[0].y);
151         xy_at_t(quad1, maxT1, line1[1].x, line1[1].y);
152     }
153     if (treat2AsLine) {
154         xy_at_t(quad2, minT2, line2[0].x, line2[0].y);
155         xy_at_t(quad2, maxT2, line2[1].x, line2[1].y);
156     }
157     int pts;
158     double smallT1, largeT1, smallT2, largeT2;
159     if (treat1AsLine & treat2AsLine) {
160         double t1[2], t2[2];
161         pts = ::intersect(line1, line2, t1, t2);
162         if (pts == 2) {
163             smallT1 = interp(minT1, maxT1, t1[0]);
164             largeT1 = interp(minT2, maxT2, t2[0]);
165             smallT2 = interp(minT1, maxT1, t1[1]);
166             largeT2 = interp(minT2, maxT2, t2[1]);
167             intersections.addCoincident(smallT1, smallT2, largeT1, largeT2);
168         } else {
169             smallT1 = interp(minT1, maxT1, t1[0]);
170             largeT1 = interp(minT2, maxT2, t2[0]);
171             intersections.add(smallT1, largeT1);
172         }
173     } else {
174         Intersections lq;
175         pts = ::intersect(treat1AsLine ? quad2 : quad1,
176                 treat1AsLine ? line1 : line2, lq);
177         if (pts == 2) { // if the line and edge are coincident treat differently
178             _Point midQuad, midLine;
179             double midQuadT = (lq.fT[0][0] + lq.fT[0][1]) / 2;
180             xy_at_t(treat1AsLine ? quad2 : quad1, midQuadT, midQuad.x, midQuad.y);
181             double lineT = t_at(treat1AsLine ? line1 : line2, midQuad);
182             xy_at_t(treat1AsLine ? line1 : line2, lineT, midLine.x, midLine.y);
183             if (AlmostEqualUlps(midQuad.x, midLine.x)
184                     && AlmostEqualUlps(midQuad.y, midLine.y)) {
185                 smallT1 = lq.fT[0][0];
186                 largeT1 = lq.fT[1][0];
187                 smallT2 = lq.fT[0][1];
188                 largeT2 = lq.fT[1][1];
189                 if (treat2AsLine) {
190                     smallT1 = interp(minT1, maxT1, smallT1);
191                     smallT2 = interp(minT1, maxT1, smallT2);
192                 } else {
193                     largeT1 = interp(minT2, maxT2, largeT1);
194                     largeT2 = interp(minT2, maxT2, largeT2);
195                 }
196                 intersections.addCoincident(smallT1, smallT2, largeT1, largeT2);
197                 goto setCoinMinMax;
198             }
199         }
200         for (int index = 0; index < pts; ++index) {
201             smallT1 = lq.fT[0][index];
202             largeT1 = lq.fT[1][index];
203             if (treat2AsLine) {
204                 smallT1 = interp(minT1, maxT1, smallT1);
205             } else {
206                 largeT1 = interp(minT2, maxT2, largeT1);
207             }
208             intersections.add(smallT1, largeT1);
209         }
210     }
211     if (pts > 0) {
212 setCoinMinMax:
213         coinMinT1 = minT1;
214         coinMaxT1 = maxT1;
215         coinMinT2 = minT2;
216         coinMaxT2 = maxT2;
217     }
218     return pts > 0;
219 }
220 
chop(double minT1,double maxT1,double minT2,double maxT2,int split)221 bool chop(double minT1, double maxT1, double minT2, double maxT2, int split) {
222     ++depth;
223     intersections.swap();
224     if (split) {
225         ++splits;
226         if (split & 2) {
227             double middle1 = (maxT1 + minT1) / 2;
228             intersect(minT1, middle1, minT2, maxT2);
229             intersect(middle1, maxT1, minT2, maxT2);
230         } else {
231             double middle2 = (maxT2 + minT2) / 2;
232             intersect(minT1, maxT1, minT2, middle2);
233             intersect(minT1, maxT1, middle2, maxT2);
234         }
235         --splits;
236         intersections.swap();
237         --depth;
238         return intersections.intersected();
239     }
240     bool result = intersect(minT1, maxT1, minT2, maxT2);
241     intersections.swap();
242     --depth;
243     return result;
244 }
245 
246 private:
247 
248 const Quadratic& quad1;
249 const Quadratic& quad2;
250 Intersections& intersections;
251 int depth;
252 int splits;
253 double quad1Divisions; // line segments to approximate original within error
254 double quad2Divisions;
255 double coinMinT1; // range of Ts where approximate line intersected curve
256 double coinMaxT1;
257 double coinMinT2;
258 double coinMaxT2;
259 };
260 
261 #include "LineParameters.h"
262 
hackToFixPartialCoincidence(const Quadratic & q1,const Quadratic & q2,Intersections & i)263 static void hackToFixPartialCoincidence(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
264     // look to see if non-coincident data basically has unsortable tangents
265 
266     // look to see if a point between non-coincident data is on the curve
267     int cIndex;
268     for (int uIndex = 0; uIndex < i.fUsed; ) {
269         double bestDist1 = 1;
270         double bestDist2 = 1;
271         int closest1 = -1;
272         int closest2 = -1;
273         for (cIndex = 0; cIndex < i.fCoincidentUsed; ++cIndex) {
274             double dist = fabs(i.fT[0][uIndex] - i.fCoincidentT[0][cIndex]);
275             if (bestDist1 > dist) {
276                 bestDist1 = dist;
277                 closest1 = cIndex;
278             }
279             dist = fabs(i.fT[1][uIndex] - i.fCoincidentT[1][cIndex]);
280             if (bestDist2 > dist) {
281                 bestDist2 = dist;
282                 closest2 = cIndex;
283             }
284         }
285         _Line ends;
286         _Point mid;
287         double t1 = i.fT[0][uIndex];
288         xy_at_t(q1, t1, ends[0].x, ends[0].y);
289         xy_at_t(q1, i.fCoincidentT[0][closest1], ends[1].x, ends[1].y);
290         double midT = (t1 + i.fCoincidentT[0][closest1]) / 2;
291         xy_at_t(q1, midT, mid.x, mid.y);
292         LineParameters params;
293         params.lineEndPoints(ends);
294         double midDist = params.pointDistance(mid);
295         // Note that we prefer to always measure t error, which does not scale,
296         // instead of point error, which is scale dependent. FIXME
297         if (!approximately_zero(midDist)) {
298             ++uIndex;
299             continue;
300         }
301         double t2 = i.fT[1][uIndex];
302         xy_at_t(q2, t2, ends[0].x, ends[0].y);
303         xy_at_t(q2, i.fCoincidentT[1][closest2], ends[1].x, ends[1].y);
304         midT = (t2 + i.fCoincidentT[1][closest2]) / 2;
305         xy_at_t(q2, midT, mid.x, mid.y);
306         params.lineEndPoints(ends);
307         midDist = params.pointDistance(mid);
308         if (!approximately_zero(midDist)) {
309             ++uIndex;
310             continue;
311         }
312         // if both midpoints are close to the line, lengthen coincident span
313         int cEnd = closest1 ^ 1; // assume coincidence always travels in pairs
314         if (!between(i.fCoincidentT[0][cEnd], t1, i.fCoincidentT[0][closest1])) {
315             i.fCoincidentT[0][closest1] = t1;
316         }
317         cEnd = closest2 ^ 1;
318         if (!between(i.fCoincidentT[0][cEnd], t2, i.fCoincidentT[0][closest2])) {
319             i.fCoincidentT[0][closest2] = t2;
320         }
321         int remaining = --i.fUsed - uIndex;
322         if (remaining > 0) {
323             memmove(&i.fT[0][uIndex], &i.fT[0][uIndex + 1], sizeof(i.fT[0][0]) * remaining);
324             memmove(&i.fT[1][uIndex], &i.fT[1][uIndex + 1], sizeof(i.fT[1][0]) * remaining);
325         }
326     }
327     // if coincident data is subjectively a tiny span, replace it with a single point
328     for (cIndex = 0; cIndex < i.fCoincidentUsed; ) {
329         double start1 = i.fCoincidentT[0][cIndex];
330         double end1 = i.fCoincidentT[0][cIndex + 1];
331         _Line ends1;
332         xy_at_t(q1, start1, ends1[0].x, ends1[0].y);
333         xy_at_t(q1, end1, ends1[1].x, ends1[1].y);
334         if (!AlmostEqualUlps(ends1[0].x, ends1[1].x) || AlmostEqualUlps(ends1[0].y, ends1[1].y)) {
335             cIndex += 2;
336             continue;
337         }
338         double start2 = i.fCoincidentT[1][cIndex];
339         double end2 = i.fCoincidentT[1][cIndex + 1];
340         _Line ends2;
341         xy_at_t(q2, start2, ends2[0].x, ends2[0].y);
342         xy_at_t(q2, end2, ends2[1].x, ends2[1].y);
343         // again, approximately should be used with T values, not points FIXME
344         if (!AlmostEqualUlps(ends2[0].x, ends2[1].x) || AlmostEqualUlps(ends2[0].y, ends2[1].y)) {
345             cIndex += 2;
346             continue;
347         }
348         if (approximately_less_than_zero(start1) || approximately_less_than_zero(end1)) {
349             start1 = 0;
350         } else if (approximately_greater_than_one(start1) || approximately_greater_than_one(end1)) {
351             start1 = 1;
352         } else {
353             start1 = (start1 + end1) / 2;
354         }
355         if (approximately_less_than_zero(start2) || approximately_less_than_zero(end2)) {
356             start2 = 0;
357         } else if (approximately_greater_than_one(start2) || approximately_greater_than_one(end2)) {
358             start2 = 1;
359         } else {
360             start2 = (start2 + end2) / 2;
361         }
362         i.insert(start1, start2);
363         i.fCoincidentUsed -= 2;
364         int remaining = i.fCoincidentUsed - cIndex;
365         if (remaining > 0) {
366             memmove(&i.fCoincidentT[0][cIndex], &i.fCoincidentT[0][cIndex + 2], sizeof(i.fCoincidentT[0][0]) * remaining);
367             memmove(&i.fCoincidentT[1][cIndex], &i.fCoincidentT[1][cIndex + 2], sizeof(i.fCoincidentT[1][0]) * remaining);
368         }
369     }
370 }
371 
intersect(const Quadratic & q1,const Quadratic & q2,Intersections & i)372 bool intersect(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
373     if (implicit_matches(q1, q2)) {
374         // FIXME: compute T values
375         // compute the intersections of the ends to find the coincident span
376         bool useVertical = fabs(q1[0].x - q1[2].x) < fabs(q1[0].y - q1[2].y);
377         double t;
378         if ((t = axialIntersect(q1, q2[0], useVertical)) >= 0) {
379             i.addCoincident(t, 0);
380         }
381         if ((t = axialIntersect(q1, q2[2], useVertical)) >= 0) {
382             i.addCoincident(t, 1);
383         }
384         useVertical = fabs(q2[0].x - q2[2].x) < fabs(q2[0].y - q2[2].y);
385         if ((t = axialIntersect(q2, q1[0], useVertical)) >= 0) {
386             i.addCoincident(0, t);
387         }
388         if ((t = axialIntersect(q2, q1[2], useVertical)) >= 0) {
389             i.addCoincident(1, t);
390         }
391         SkASSERT(i.fCoincidentUsed <= 2);
392         return i.fCoincidentUsed > 0;
393     }
394     QuadraticIntersections q(q1, q2, i);
395     bool result = q.intersect();
396     // FIXME: partial coincidence detection is currently poor. For now, try
397     // to fix up the data after the fact. In the future, revisit the error
398     // term to try to avoid this kind of result in the first place.
399     if (i.fUsed && i.fCoincidentUsed) {
400         hackToFixPartialCoincidence(q1, q2, i);
401     }
402     return result;
403 }
404