• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "CurveIntersection.h"
8 #include "Extrema.h"
9 #include "IntersectionUtilities.h"
10 #include "LineParameters.h"
11 
interp_quad_coords(double a,double b,double c,double t)12 static double interp_quad_coords(double a, double b, double c, double t)
13 {
14     double ab = interp(a, b, t);
15     double bc = interp(b, c, t);
16     return interp(ab, bc, t);
17 }
18 
coincident_line(const Quadratic & quad,Quadratic & reduction)19 static int coincident_line(const Quadratic& quad, Quadratic& reduction) {
20     reduction[0] = reduction[1] = quad[0];
21     return 1;
22 }
23 
vertical_line(const Quadratic & quad,ReduceOrder_Styles reduceStyle,Quadratic & reduction)24 static int vertical_line(const Quadratic& quad, ReduceOrder_Styles reduceStyle,
25         Quadratic& reduction) {
26     double tValue;
27     reduction[0] = quad[0];
28     reduction[1] = quad[2];
29     if (reduceStyle == kReduceOrder_TreatAsFill) {
30         return 2;
31     }
32     int smaller = reduction[1].y > reduction[0].y;
33     int larger = smaller ^ 1;
34     if (findExtrema(quad[0].y, quad[1].y, quad[2].y, &tValue)) {
35         double yExtrema = interp_quad_coords(quad[0].y, quad[1].y, quad[2].y, tValue);
36         if (reduction[smaller].y > yExtrema) {
37             reduction[smaller].y = yExtrema;
38         } else if (reduction[larger].y < yExtrema) {
39             reduction[larger].y = yExtrema;
40         }
41     }
42     return 2;
43 }
44 
horizontal_line(const Quadratic & quad,ReduceOrder_Styles reduceStyle,Quadratic & reduction)45 static int horizontal_line(const Quadratic& quad, ReduceOrder_Styles reduceStyle,
46         Quadratic& reduction) {
47     double tValue;
48     reduction[0] = quad[0];
49     reduction[1] = quad[2];
50     if (reduceStyle == kReduceOrder_TreatAsFill) {
51         return 2;
52     }
53     int smaller = reduction[1].x > reduction[0].x;
54     int larger = smaller ^ 1;
55     if (findExtrema(quad[0].x, quad[1].x, quad[2].x, &tValue)) {
56         double xExtrema = interp_quad_coords(quad[0].x, quad[1].x, quad[2].x, tValue);
57         if (reduction[smaller].x > xExtrema) {
58             reduction[smaller].x = xExtrema;
59         }  else if (reduction[larger].x < xExtrema) {
60             reduction[larger].x = xExtrema;
61         }
62     }
63     return 2;
64 }
65 
check_linear(const Quadratic & quad,ReduceOrder_Styles reduceStyle,int minX,int maxX,int minY,int maxY,Quadratic & reduction)66 static int check_linear(const Quadratic& quad, ReduceOrder_Styles reduceStyle,
67         int minX, int maxX, int minY, int maxY, Quadratic& reduction) {
68     int startIndex = 0;
69     int endIndex = 2;
70     while (quad[startIndex].approximatelyEqual(quad[endIndex])) {
71         --endIndex;
72         if (endIndex == 0) {
73             printf("%s shouldn't get here if all four points are about equal", __FUNCTION__);
74             SkASSERT(0);
75         }
76     }
77     if (!isLinear(quad, startIndex, endIndex)) {
78         return 0;
79     }
80     // four are colinear: return line formed by outside
81     reduction[0] = quad[0];
82     reduction[1] = quad[2];
83     if (reduceStyle == kReduceOrder_TreatAsFill) {
84         return 2;
85     }
86     int sameSide;
87     bool useX = quad[maxX].x - quad[minX].x >= quad[maxY].y - quad[minY].y;
88     if (useX) {
89         sameSide = sign(quad[0].x - quad[1].x) + sign(quad[2].x - quad[1].x);
90     } else {
91         sameSide = sign(quad[0].y - quad[1].y) + sign(quad[2].y - quad[1].y);
92     }
93     if ((sameSide & 3) != 2) {
94         return 2;
95     }
96     double tValue;
97     int root;
98     if (useX) {
99         root = findExtrema(quad[0].x, quad[1].x, quad[2].x, &tValue);
100     } else {
101         root = findExtrema(quad[0].y, quad[1].y, quad[2].y, &tValue);
102     }
103     if (root) {
104         _Point extrema;
105         extrema.x = interp_quad_coords(quad[0].x, quad[1].x, quad[2].x, tValue);
106         extrema.y = interp_quad_coords(quad[0].y, quad[1].y, quad[2].y, tValue);
107         // sameSide > 0 means mid is smaller than either [0] or [2], so replace smaller
108         int replace;
109         if (useX) {
110             if (extrema.x < quad[0].x ^ extrema.x < quad[2].x) {
111                 return 2;
112             }
113             replace = (extrema.x < quad[0].x | extrema.x < quad[2].x)
114                     ^ (quad[0].x < quad[2].x);
115         } else {
116             if (extrema.y < quad[0].y ^ extrema.y < quad[2].y) {
117                 return 2;
118             }
119             replace = (extrema.y < quad[0].y | extrema.y < quad[2].y)
120                     ^ (quad[0].y < quad[2].y);
121         }
122         reduction[replace] = extrema;
123     }
124     return 2;
125 }
126 
isLinear(const Quadratic & quad,int startIndex,int endIndex)127 bool isLinear(const Quadratic& quad, int startIndex, int endIndex) {
128     LineParameters lineParameters;
129     lineParameters.quadEndPoints(quad, startIndex, endIndex);
130     // FIXME: maybe it's possible to avoid this and compare non-normalized
131     lineParameters.normalize();
132     double distance = lineParameters.controlPtDistance(quad);
133     return approximately_zero(distance);
134 }
135 
136 // reduce to a quadratic or smaller
137 // look for identical points
138 // look for all four points in a line
139     // note that three points in a line doesn't simplify a cubic
140 // look for approximation with single quadratic
141     // save approximation with multiple quadratics for later
reduceOrder(const Quadratic & quad,Quadratic & reduction,ReduceOrder_Styles reduceStyle)142 int reduceOrder(const Quadratic& quad, Quadratic& reduction, ReduceOrder_Styles reduceStyle) {
143     int index, minX, maxX, minY, maxY;
144     int minXSet, minYSet;
145     minX = maxX = minY = maxY = 0;
146     minXSet = minYSet = 0;
147     for (index = 1; index < 3; ++index) {
148         if (quad[minX].x > quad[index].x) {
149             minX = index;
150         }
151         if (quad[minY].y > quad[index].y) {
152             minY = index;
153         }
154         if (quad[maxX].x < quad[index].x) {
155             maxX = index;
156         }
157         if (quad[maxY].y < quad[index].y) {
158             maxY = index;
159         }
160     }
161     for (index = 0; index < 3; ++index) {
162         if (AlmostEqualUlps(quad[index].x, quad[minX].x)) {
163             minXSet |= 1 << index;
164         }
165         if (AlmostEqualUlps(quad[index].y, quad[minY].y)) {
166             minYSet |= 1 << index;
167         }
168     }
169     if (minXSet == 0x7) { // test for vertical line
170         if (minYSet == 0x7) { // return 1 if all four are coincident
171             return coincident_line(quad, reduction);
172         }
173         return vertical_line(quad, reduceStyle, reduction);
174     }
175     if (minYSet == 0xF) { // test for horizontal line
176         return horizontal_line(quad, reduceStyle, reduction);
177     }
178     int result = check_linear(quad, reduceStyle, minX, maxX, minY, maxY, reduction);
179     if (result) {
180         return result;
181     }
182     memcpy(reduction, quad, sizeof(Quadratic));
183     return 3;
184 }
185