• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /*
3  * Copyright 2006 The Android Open Source Project
4  *
5  * Use of this source code is governed by a BSD-style license that can be
6  * found in the LICENSE file.
7  */
8 
9 
10 #ifndef SkMath_DEFINED
11 #define SkMath_DEFINED
12 
13 #include "SkTypes.h"
14 
15 // 64bit -> 32bit utilities
16 
17 /**
18  *  Return true iff the 64bit value can exactly be represented in signed 32bits
19  */
sk_64_isS32(int64_t value)20 static inline bool sk_64_isS32(int64_t value) {
21     return (int32_t)value == value;
22 }
23 
24 /**
25  *  Return the 64bit argument as signed 32bits, asserting in debug that the arg
26  *  exactly fits in signed 32bits. In the release build, no checks are preformed
27  *  and the return value if the arg does not fit is undefined.
28  */
sk_64_asS32(int64_t value)29 static inline int32_t sk_64_asS32(int64_t value) {
30     SkASSERT(sk_64_isS32(value));
31     return (int32_t)value;
32 }
33 
34 // Handy util that can be passed two ints, and will automatically promote to
35 // 64bits before the multiply, so the caller doesn't have to remember to cast
36 // e.g. (int64_t)a * b;
sk_64_mul(int64_t a,int64_t b)37 static inline int64_t sk_64_mul(int64_t a, int64_t b) {
38     return a * b;
39 }
40 
41 ///////////////////////////////////////////////////////////////////////////////
42 
43 /**
44  *  Computes numer1 * numer2 / denom in full 64 intermediate precision.
45  *  It is an error for denom to be 0. There is no special handling if
46  *  the result overflows 32bits.
47  */
SkMulDiv(int32_t numer1,int32_t numer2,int32_t denom)48 static inline int32_t SkMulDiv(int32_t numer1, int32_t numer2, int32_t denom) {
49     SkASSERT(denom);
50 
51     int64_t tmp = sk_64_mul(numer1, numer2) / denom;
52     return sk_64_asS32(tmp);
53 }
54 
55 /**
56  *  Computes (numer1 << shift) / denom in full 64 intermediate precision.
57  *  It is an error for denom to be 0. There is no special handling if
58  *  the result overflows 32bits.
59  */
60 int32_t SkDivBits(int32_t numer, int32_t denom, int shift);
61 
62 /**
63  *  Return the integer square root of value, with a bias of bitBias
64  */
65 int32_t SkSqrtBits(int32_t value, int bitBias);
66 
67 /** Return the integer square root of n, treated as a SkFixed (16.16)
68  */
69 #define SkSqrt32(n)         SkSqrtBits(n, 15)
70 
71 //! Returns the number of leading zero bits (0...32)
72 int SkCLZ_portable(uint32_t);
73 
74 #ifndef SkCLZ
75     #if defined(_MSC_VER) && _MSC_VER >= 1400
76         #include <intrin.h>
77 
SkCLZ(uint32_t mask)78         static inline int SkCLZ(uint32_t mask) {
79             if (mask) {
80                 DWORD index;
81                 _BitScanReverse(&index, mask);
82                 return index ^ 0x1F;
83             } else {
84                 return 32;
85             }
86         }
87     #elif defined(SK_CPU_ARM32) || defined(__GNUC__) || defined(__clang__)
SkCLZ(uint32_t mask)88         static inline int SkCLZ(uint32_t mask) {
89             // __builtin_clz(0) is undefined, so we have to detect that case.
90             return mask ? __builtin_clz(mask) : 32;
91         }
92     #else
93         #define SkCLZ(x)    SkCLZ_portable(x)
94     #endif
95 #endif
96 
97 /**
98  *  Returns (value < 0 ? 0 : value) efficiently (i.e. no compares or branches)
99  */
SkClampPos(int value)100 static inline int SkClampPos(int value) {
101     return value & ~(value >> 31);
102 }
103 
104 /** Given an integer and a positive (max) integer, return the value
105  *  pinned against 0 and max, inclusive.
106  *  @param value    The value we want returned pinned between [0...max]
107  *  @param max      The positive max value
108  *  @return 0 if value < 0, max if value > max, else value
109  */
SkClampMax(int value,int max)110 static inline int SkClampMax(int value, int max) {
111     // ensure that max is positive
112     SkASSERT(max >= 0);
113     if (value < 0) {
114         value = 0;
115     }
116     if (value > max) {
117         value = max;
118     }
119     return value;
120 }
121 
122 /**
123  *  Returns the smallest power-of-2 that is >= the specified value. If value
124  *  is already a power of 2, then it is returned unchanged. It is undefined
125  *  if value is <= 0.
126  */
SkNextPow2(int value)127 static inline int SkNextPow2(int value) {
128     SkASSERT(value > 0);
129     return 1 << (32 - SkCLZ(value - 1));
130 }
131 
132 /**
133  *  Returns the log2 of the specified value, were that value to be rounded up
134  *  to the next power of 2. It is undefined to pass 0. Examples:
135  *  SkNextLog2(1) -> 0
136  *  SkNextLog2(2) -> 1
137  *  SkNextLog2(3) -> 2
138  *  SkNextLog2(4) -> 2
139  *  SkNextLog2(5) -> 3
140  */
SkNextLog2(uint32_t value)141 static inline int SkNextLog2(uint32_t value) {
142     SkASSERT(value != 0);
143     return 32 - SkCLZ(value - 1);
144 }
145 
146 /**
147  *  Returns true if value is a power of 2. Does not explicitly check for
148  *  value <= 0.
149  */
SkIsPow2(int value)150 static inline bool SkIsPow2(int value) {
151     return (value & (value - 1)) == 0;
152 }
153 
154 ///////////////////////////////////////////////////////////////////////////////
155 
156 /**
157  *  SkMulS16(a, b) multiplies a * b, but requires that a and b are both int16_t.
158  *  With this requirement, we can generate faster instructions on some
159  *  architectures.
160  */
161 #ifdef SK_ARM_HAS_EDSP
SkMulS16(S16CPU x,S16CPU y)162     static inline int32_t SkMulS16(S16CPU x, S16CPU y) {
163         SkASSERT((int16_t)x == x);
164         SkASSERT((int16_t)y == y);
165         int32_t product;
166         asm("smulbb %0, %1, %2 \n"
167             : "=r"(product)
168             : "r"(x), "r"(y)
169             );
170         return product;
171     }
172 #else
173     #ifdef SK_DEBUG
SkMulS16(S16CPU x,S16CPU y)174         static inline int32_t SkMulS16(S16CPU x, S16CPU y) {
175             SkASSERT((int16_t)x == x);
176             SkASSERT((int16_t)y == y);
177             return x * y;
178         }
179     #else
180         #define SkMulS16(x, y)  ((x) * (y))
181     #endif
182 #endif
183 
184 /**
185  *  Return a*b/((1 << shift) - 1), rounding any fractional bits.
186  *  Only valid if a and b are unsigned and <= 32767 and shift is > 0 and <= 8
187  */
SkMul16ShiftRound(U16CPU a,U16CPU b,int shift)188 static inline unsigned SkMul16ShiftRound(U16CPU a, U16CPU b, int shift) {
189     SkASSERT(a <= 32767);
190     SkASSERT(b <= 32767);
191     SkASSERT(shift > 0 && shift <= 8);
192     unsigned prod = SkMulS16(a, b) + (1 << (shift - 1));
193     return (prod + (prod >> shift)) >> shift;
194 }
195 
196 /**
197  *  Return a*b/255, rounding any fractional bits.
198  *  Only valid if a and b are unsigned and <= 32767.
199  */
SkMulDiv255Round(U16CPU a,U16CPU b)200 static inline U8CPU SkMulDiv255Round(U16CPU a, U16CPU b) {
201     SkASSERT(a <= 32767);
202     SkASSERT(b <= 32767);
203     unsigned prod = SkMulS16(a, b) + 128;
204     return (prod + (prod >> 8)) >> 8;
205 }
206 
207 /**
208  * Stores numer/denom and numer%denom into div and mod respectively.
209  */
210 template <typename In, typename Out>
SkTDivMod(In numer,In denom,Out * div,Out * mod)211 inline void SkTDivMod(In numer, In denom, Out* div, Out* mod) {
212 #ifdef SK_CPU_ARM32
213     // If we wrote this as in the else branch, GCC won't fuse the two into one
214     // divmod call, but rather a div call followed by a divmod.  Silly!  This
215     // version is just as fast as calling __aeabi_[u]idivmod manually, but with
216     // prettier code.
217     //
218     // This benches as around 2x faster than the code in the else branch.
219     const In d = numer/denom;
220     *div = static_cast<Out>(d);
221     *mod = static_cast<Out>(numer-d*denom);
222 #else
223     // On x86 this will just be a single idiv.
224     *div = static_cast<Out>(numer/denom);
225     *mod = static_cast<Out>(numer%denom);
226 #endif
227 }
228 
229 #endif
230