• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2011 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkTArray_DEFINED
9 #define SkTArray_DEFINED
10 
11 #include <new>
12 #include "SkTypes.h"
13 #include "SkTemplates.h"
14 
15 template <typename T, bool MEM_COPY = false> class SkTArray;
16 
17 namespace SkTArrayExt {
18 
19 template<typename T>
copy(SkTArray<T,true> * self,int dst,int src)20 inline void copy(SkTArray<T, true>* self, int dst, int src) {
21     memcpy(&self->fItemArray[dst], &self->fItemArray[src], sizeof(T));
22 }
23 template<typename T>
copy(SkTArray<T,true> * self,const T * array)24 inline void copy(SkTArray<T, true>* self, const T* array) {
25     memcpy(self->fMemArray, array, self->fCount * sizeof(T));
26 }
27 template<typename T>
copyAndDelete(SkTArray<T,true> * self,char * newMemArray)28 inline void copyAndDelete(SkTArray<T, true>* self, char* newMemArray) {
29     memcpy(newMemArray, self->fMemArray, self->fCount * sizeof(T));
30 }
31 
32 template<typename T>
copy(SkTArray<T,false> * self,int dst,int src)33 inline void copy(SkTArray<T, false>* self, int dst, int src) {
34     SkNEW_PLACEMENT_ARGS(&self->fItemArray[dst], T, (self->fItemArray[src]));
35 }
36 template<typename T>
copy(SkTArray<T,false> * self,const T * array)37 inline void copy(SkTArray<T, false>* self, const T* array) {
38     for (int i = 0; i < self->fCount; ++i) {
39         SkNEW_PLACEMENT_ARGS(self->fItemArray + i, T, (array[i]));
40     }
41 }
42 template<typename T>
copyAndDelete(SkTArray<T,false> * self,char * newMemArray)43 inline void copyAndDelete(SkTArray<T, false>* self, char* newMemArray) {
44     for (int i = 0; i < self->fCount; ++i) {
45         SkNEW_PLACEMENT_ARGS(newMemArray + sizeof(T) * i, T, (self->fItemArray[i]));
46         self->fItemArray[i].~T();
47     }
48 }
49 
50 }
51 
52 template <typename T, bool MEM_COPY> void* operator new(size_t, SkTArray<T, MEM_COPY>*, int);
53 
54 /** When MEM_COPY is true T will be bit copied when moved.
55     When MEM_COPY is false, T will be copy constructed / destructed.
56     In all cases T will be default-initialized on allocation,
57     and its destructor will be called from this object's destructor.
58 */
59 template <typename T, bool MEM_COPY> class SkTArray {
60 public:
61     /**
62      * Creates an empty array with no initial storage
63      */
SkTArray()64     SkTArray() {
65         fCount = 0;
66         fReserveCount = gMIN_ALLOC_COUNT;
67         fAllocCount = 0;
68         fMemArray = NULL;
69         fPreAllocMemArray = NULL;
70     }
71 
72     /**
73      * Creates an empty array that will preallocate space for reserveCount
74      * elements.
75      */
SkTArray(int reserveCount)76     explicit SkTArray(int reserveCount) {
77         this->init(NULL, 0, NULL, reserveCount);
78     }
79 
80     /**
81      * Copies one array to another. The new array will be heap allocated.
82      */
SkTArray(const SkTArray & array)83     explicit SkTArray(const SkTArray& array) {
84         this->init(array.fItemArray, array.fCount, NULL, 0);
85     }
86 
87     /**
88      * Creates a SkTArray by copying contents of a standard C array. The new
89      * array will be heap allocated. Be careful not to use this constructor
90      * when you really want the (void*, int) version.
91      */
SkTArray(const T * array,int count)92     SkTArray(const T* array, int count) {
93         this->init(array, count, NULL, 0);
94     }
95 
96     /**
97      * assign copy of array to this
98      */
99     SkTArray& operator =(const SkTArray& array) {
100         for (int i = 0; i < fCount; ++i) {
101             fItemArray[i].~T();
102         }
103         fCount = 0;
104         this->checkRealloc((int)array.count());
105         fCount = array.count();
106         SkTArrayExt::copy(this, static_cast<const T*>(array.fMemArray));
107         return *this;
108     }
109 
~SkTArray()110     virtual ~SkTArray() {
111         for (int i = 0; i < fCount; ++i) {
112             fItemArray[i].~T();
113         }
114         if (fMemArray != fPreAllocMemArray) {
115             sk_free(fMemArray);
116         }
117     }
118 
119     /**
120      * Resets to count() == 0
121      */
reset()122     void reset() { this->pop_back_n(fCount); }
123 
124     /**
125      * Resets to count() = n newly constructed T objects.
126      */
reset(int n)127     void reset(int n) {
128         SkASSERT(n >= 0);
129         for (int i = 0; i < fCount; ++i) {
130             fItemArray[i].~T();
131         }
132         // set fCount to 0 before calling checkRealloc so that no copy cons. are called.
133         fCount = 0;
134         this->checkRealloc(n);
135         fCount = n;
136         for (int i = 0; i < fCount; ++i) {
137             SkNEW_PLACEMENT(fItemArray + i, T);
138         }
139     }
140 
141     /**
142      * Resets to a copy of a C array.
143      */
reset(const T * array,int count)144     void reset(const T* array, int count) {
145         for (int i = 0; i < fCount; ++i) {
146             fItemArray[i].~T();
147         }
148         int delta = count - fCount;
149         this->checkRealloc(delta);
150         fCount = count;
151         SkTArrayExt::copy(this, array);
152     }
153 
removeShuffle(int n)154     void removeShuffle(int n) {
155         SkASSERT(n < fCount);
156         int newCount = fCount - 1;
157         fCount = newCount;
158         fItemArray[n].~T();
159         if (n != newCount) {
160             SkTArrayExt::copy(this, n, newCount);
161             fItemArray[newCount].~T();
162         }
163     }
164 
165     /**
166      * Number of elements in the array.
167      */
count()168     int count() const { return fCount; }
169 
170     /**
171      * Is the array empty.
172      */
empty()173     bool empty() const { return !fCount; }
174 
175     /**
176      * Adds 1 new default-initialized T value and returns it by reference. Note
177      * the reference only remains valid until the next call that adds or removes
178      * elements.
179      */
push_back()180     T& push_back() {
181         T* newT = reinterpret_cast<T*>(this->push_back_raw(1));
182         SkNEW_PLACEMENT(newT, T);
183         return *newT;
184     }
185 
186     /**
187      * Version of above that uses a copy constructor to initialize the new item
188      */
push_back(const T & t)189     T& push_back(const T& t) {
190         T* newT = reinterpret_cast<T*>(this->push_back_raw(1));
191         SkNEW_PLACEMENT_ARGS(newT, T, (t));
192         return *newT;
193     }
194 
195     /**
196      * Allocates n more default-initialized T values, and returns the address of
197      * the start of that new range. Note: this address is only valid until the
198      * next API call made on the array that might add or remove elements.
199      */
push_back_n(int n)200     T* push_back_n(int n) {
201         SkASSERT(n >= 0);
202         T* newTs = reinterpret_cast<T*>(this->push_back_raw(n));
203         for (int i = 0; i < n; ++i) {
204             SkNEW_PLACEMENT(newTs + i, T);
205         }
206         return newTs;
207     }
208 
209     /**
210      * Version of above that uses a copy constructor to initialize all n items
211      * to the same T.
212      */
push_back_n(int n,const T & t)213     T* push_back_n(int n, const T& t) {
214         SkASSERT(n >= 0);
215         T* newTs = reinterpret_cast<T*>(this->push_back_raw(n));
216         for (int i = 0; i < n; ++i) {
217             SkNEW_PLACEMENT_ARGS(newTs[i], T, (t));
218         }
219         return newTs;
220     }
221 
222     /**
223      * Version of above that uses a copy constructor to initialize the n items
224      * to separate T values.
225      */
push_back_n(int n,const T t[])226     T* push_back_n(int n, const T t[]) {
227         SkASSERT(n >= 0);
228         this->checkRealloc(n);
229         for (int i = 0; i < n; ++i) {
230             SkNEW_PLACEMENT_ARGS(fItemArray + fCount + i, T, (t[i]));
231         }
232         fCount += n;
233         return fItemArray + fCount - n;
234     }
235 
236     /**
237      * Removes the last element. Not safe to call when count() == 0.
238      */
pop_back()239     void pop_back() {
240         SkASSERT(fCount > 0);
241         --fCount;
242         fItemArray[fCount].~T();
243         this->checkRealloc(0);
244     }
245 
246     /**
247      * Removes the last n elements. Not safe to call when count() < n.
248      */
pop_back_n(int n)249     void pop_back_n(int n) {
250         SkASSERT(n >= 0);
251         SkASSERT(fCount >= n);
252         fCount -= n;
253         for (int i = 0; i < n; ++i) {
254             fItemArray[fCount + i].~T();
255         }
256         this->checkRealloc(0);
257     }
258 
259     /**
260      * Pushes or pops from the back to resize. Pushes will be default
261      * initialized.
262      */
resize_back(int newCount)263     void resize_back(int newCount) {
264         SkASSERT(newCount >= 0);
265 
266         if (newCount > fCount) {
267             this->push_back_n(newCount - fCount);
268         } else if (newCount < fCount) {
269             this->pop_back_n(fCount - newCount);
270         }
271     }
272 
begin()273     T* begin() {
274         return fItemArray;
275     }
begin()276     const T* begin() const {
277         return fItemArray;
278     }
end()279     T* end() {
280         return fItemArray ? fItemArray + fCount : NULL;
281     }
end()282     const T* end() const {
283         return fItemArray ? fItemArray + fCount : NULL;;
284     }
285 
286    /**
287      * Get the i^th element.
288      */
289     T& operator[] (int i) {
290         SkASSERT(i < fCount);
291         SkASSERT(i >= 0);
292         return fItemArray[i];
293     }
294 
295     const T& operator[] (int i) const {
296         SkASSERT(i < fCount);
297         SkASSERT(i >= 0);
298         return fItemArray[i];
299     }
300 
301     /**
302      * equivalent to operator[](0)
303      */
front()304     T& front() { SkASSERT(fCount > 0); return fItemArray[0];}
305 
front()306     const T& front() const { SkASSERT(fCount > 0); return fItemArray[0];}
307 
308     /**
309      * equivalent to operator[](count() - 1)
310      */
back()311     T& back() { SkASSERT(fCount); return fItemArray[fCount - 1];}
312 
back()313     const T& back() const { SkASSERT(fCount > 0); return fItemArray[fCount - 1];}
314 
315     /**
316      * equivalent to operator[](count()-1-i)
317      */
fromBack(int i)318     T& fromBack(int i) {
319         SkASSERT(i >= 0);
320         SkASSERT(i < fCount);
321         return fItemArray[fCount - i - 1];
322     }
323 
fromBack(int i)324     const T& fromBack(int i) const {
325         SkASSERT(i >= 0);
326         SkASSERT(i < fCount);
327         return fItemArray[fCount - i - 1];
328     }
329 
330     bool operator==(const SkTArray<T, MEM_COPY>& right) const {
331         int leftCount = this->count();
332         if (leftCount != right.count()) {
333             return false;
334         }
335         for (int index = 0; index < leftCount; ++index) {
336             if (fItemArray[index] != right.fItemArray[index]) {
337                 return false;
338             }
339         }
340         return true;
341     }
342 
343     bool operator!=(const SkTArray<T, MEM_COPY>& right) const {
344         return !(*this == right);
345     }
346 
347 protected:
348     /**
349      * Creates an empty array that will use the passed storage block until it
350      * is insufficiently large to hold the entire array.
351      */
352     template <int N>
SkTArray(SkAlignedSTStorage<N,T> * storage)353     SkTArray(SkAlignedSTStorage<N,T>* storage) {
354         this->init(NULL, 0, storage->get(), N);
355     }
356 
357     /**
358      * Copy another array, using preallocated storage if preAllocCount >=
359      * array.count(). Otherwise storage will only be used when array shrinks
360      * to fit.
361      */
362     template <int N>
SkTArray(const SkTArray & array,SkAlignedSTStorage<N,T> * storage)363     SkTArray(const SkTArray& array, SkAlignedSTStorage<N,T>* storage) {
364         this->init(array.fItemArray, array.fCount, storage->get(), N);
365     }
366 
367     /**
368      * Copy a C array, using preallocated storage if preAllocCount >=
369      * count. Otherwise storage will only be used when array shrinks
370      * to fit.
371      */
372     template <int N>
SkTArray(const T * array,int count,SkAlignedSTStorage<N,T> * storage)373     SkTArray(const T* array, int count, SkAlignedSTStorage<N,T>* storage) {
374         this->init(array, count, storage->get(), N);
375     }
376 
init(const T * array,int count,void * preAllocStorage,int preAllocOrReserveCount)377     void init(const T* array, int count,
378                void* preAllocStorage, int preAllocOrReserveCount) {
379         SkASSERT(count >= 0);
380         SkASSERT(preAllocOrReserveCount >= 0);
381         fCount              = count;
382         fReserveCount       = (preAllocOrReserveCount > 0) ?
383                                     preAllocOrReserveCount :
384                                     gMIN_ALLOC_COUNT;
385         fPreAllocMemArray   = preAllocStorage;
386         if (fReserveCount >= fCount &&
387             NULL != preAllocStorage) {
388             fAllocCount = fReserveCount;
389             fMemArray = preAllocStorage;
390         } else {
391             fAllocCount = SkMax32(fCount, fReserveCount);
392             fMemArray = sk_malloc_throw(fAllocCount * sizeof(T));
393         }
394 
395         SkTArrayExt::copy(this, array);
396     }
397 
398 private:
399 
400     static const int gMIN_ALLOC_COUNT = 8;
401 
402     // Helper function that makes space for n objects, adjusts the count, but does not initialize
403     // the new objects.
push_back_raw(int n)404     void* push_back_raw(int n) {
405         this->checkRealloc(n);
406         void* ptr = fItemArray + fCount;
407         fCount += n;
408         return ptr;
409     }
410 
checkRealloc(int delta)411     inline void checkRealloc(int delta) {
412         SkASSERT(fCount >= 0);
413         SkASSERT(fAllocCount >= 0);
414 
415         SkASSERT(-delta <= fCount);
416 
417         int newCount = fCount + delta;
418         int newAllocCount = fAllocCount;
419 
420         if (newCount > fAllocCount || newCount < (fAllocCount / 3)) {
421             // whether we're growing or shrinking, we leave at least 50% extra space for future
422             // growth (clamped to the reserve count).
423             newAllocCount = SkMax32(newCount + ((newCount + 1) >> 1), fReserveCount);
424         }
425         if (newAllocCount != fAllocCount) {
426 
427             fAllocCount = newAllocCount;
428             char* newMemArray;
429 
430             if (fAllocCount == fReserveCount && NULL != fPreAllocMemArray) {
431                 newMemArray = (char*) fPreAllocMemArray;
432             } else {
433                 newMemArray = (char*) sk_malloc_throw(fAllocCount*sizeof(T));
434             }
435 
436             SkTArrayExt::copyAndDelete<T>(this, newMemArray);
437 
438             if (fMemArray != fPreAllocMemArray) {
439                 sk_free(fMemArray);
440             }
441             fMemArray = newMemArray;
442         }
443     }
444 
445     friend void* operator new<T>(size_t, SkTArray*, int);
446 
447     template<typename X> friend void SkTArrayExt::copy(SkTArray<X, true>* that, int dst, int src);
448     template<typename X> friend void SkTArrayExt::copy(SkTArray<X, true>* that, const X*);
449     template<typename X> friend void SkTArrayExt::copyAndDelete(SkTArray<X, true>* that, char*);
450 
451     template<typename X> friend void SkTArrayExt::copy(SkTArray<X, false>* that, int dst, int src);
452     template<typename X> friend void SkTArrayExt::copy(SkTArray<X, false>* that, const X*);
453     template<typename X> friend void SkTArrayExt::copyAndDelete(SkTArray<X, false>* that, char*);
454 
455     int fReserveCount;
456     int fCount;
457     int fAllocCount;
458     void*    fPreAllocMemArray;
459     union {
460         T*       fItemArray;
461         void*    fMemArray;
462     };
463 };
464 
465 // Use the below macro (SkNEW_APPEND_TO_TARRAY) rather than calling this directly
466 template <typename T, bool MEM_COPY>
new(size_t,SkTArray<T,MEM_COPY> * array,int atIndex)467 void* operator new(size_t, SkTArray<T, MEM_COPY>* array, int atIndex) {
468     // Currently, we only support adding to the end of the array. When the array class itself
469     // supports random insertion then this should be updated.
470     // SkASSERT(atIndex >= 0 && atIndex <= array->count());
471     SkASSERT(atIndex == array->count());
472     return array->push_back_raw(1);
473 }
474 
475 // Skia doesn't use C++ exceptions but it may be compiled with them enabled. Having an op delete
476 // to match the op new silences warnings about missing op delete when a constructor throws an
477 // exception.
478 template <typename T, bool MEM_COPY>
delete(void *,SkTArray<T,MEM_COPY> * array,int atIndex)479 void operator delete(void*, SkTArray<T, MEM_COPY>* array, int atIndex) {
480     SK_CRASH();
481 }
482 
483 // Constructs a new object as the last element of an SkTArray.
484 #define SkNEW_APPEND_TO_TARRAY(array_ptr, type_name, args)  \
485     (new ((array_ptr), (array_ptr)->count()) type_name args)
486 
487 
488 /**
489  * Subclass of SkTArray that contains a preallocated memory block for the array.
490  */
491 template <int N, typename T, bool MEM_COPY = false>
492 class SkSTArray : public SkTArray<T, MEM_COPY> {
493 private:
494     typedef SkTArray<T, MEM_COPY> INHERITED;
495 
496 public:
SkSTArray()497     SkSTArray() : INHERITED(&fStorage) {
498     }
499 
SkSTArray(const SkSTArray & array)500     SkSTArray(const SkSTArray& array)
501         : INHERITED(array, &fStorage) {
502     }
503 
SkSTArray(const INHERITED & array)504     explicit SkSTArray(const INHERITED& array)
505         : INHERITED(array, &fStorage) {
506     }
507 
SkSTArray(int reserveCount)508     explicit SkSTArray(int reserveCount)
509         : INHERITED(reserveCount) {
510     }
511 
SkSTArray(const T * array,int count)512     SkSTArray(const T* array, int count)
513         : INHERITED(array, count, &fStorage) {
514     }
515 
516     SkSTArray& operator= (const SkSTArray& array) {
517         return *this = *(const INHERITED*)&array;
518     }
519 
520     SkSTArray& operator= (const INHERITED& array) {
521         INHERITED::operator=(array);
522         return *this;
523     }
524 
525 private:
526     SkAlignedSTStorage<N,T> fStorage;
527 };
528 
529 #endif
530