1 /*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "SkCanvas.h"
9 #include "SkClipStack.h"
10 #include "SkPath.h"
11 #include "SkThread.h"
12
13 #include <new>
14
15
16 // 0-2 are reserved for invalid, empty & wide-open
17 static const int32_t kFirstUnreservedGenID = 3;
18 int32_t SkClipStack::gGenID = kFirstUnreservedGenID;
19
Element(const Element & that)20 SkClipStack::Element::Element(const Element& that) {
21 switch (that.getType()) {
22 case kEmpty_Type:
23 fPath.reset();
24 break;
25 case kRect_Type: // Rect uses rrect
26 case kRRect_Type:
27 fPath.reset();
28 fRRect = that.fRRect;
29 break;
30 case kPath_Type:
31 fPath.set(that.getPath());
32 break;
33 }
34
35 fSaveCount = that.fSaveCount;
36 fOp = that.fOp;
37 fType = that.fType;
38 fDoAA = that.fDoAA;
39 fFiniteBoundType = that.fFiniteBoundType;
40 fFiniteBound = that.fFiniteBound;
41 fIsIntersectionOfRects = that.fIsIntersectionOfRects;
42 fGenID = that.fGenID;
43 }
44
operator ==(const Element & element) const45 bool SkClipStack::Element::operator== (const Element& element) const {
46 if (this == &element) {
47 return true;
48 }
49 if (fOp != element.fOp ||
50 fType != element.fType ||
51 fDoAA != element.fDoAA ||
52 fSaveCount != element.fSaveCount) {
53 return false;
54 }
55 switch (fType) {
56 case kPath_Type:
57 return this->getPath() == element.getPath();
58 case kRRect_Type:
59 return fRRect == element.fRRect;
60 case kRect_Type:
61 return this->getRect() == element.getRect();
62 case kEmpty_Type:
63 return true;
64 default:
65 SkDEBUGFAIL("Unexpected type.");
66 return false;
67 }
68 }
69
replay(SkCanvasClipVisitor * visitor) const70 void SkClipStack::Element::replay(SkCanvasClipVisitor* visitor) const {
71 static const SkRect kEmptyRect = { 0, 0, 0, 0 };
72
73 switch (fType) {
74 case kPath_Type:
75 visitor->clipPath(this->getPath(), this->getOp(), this->isAA());
76 break;
77 case kRRect_Type:
78 visitor->clipRRect(this->getRRect(), this->getOp(), this->isAA());
79 break;
80 case kRect_Type:
81 visitor->clipRect(this->getRect(), this->getOp(), this->isAA());
82 break;
83 case kEmpty_Type:
84 visitor->clipRect(kEmptyRect, SkRegion::kIntersect_Op, false);
85 break;
86 }
87 }
88
invertShapeFillType()89 void SkClipStack::Element::invertShapeFillType() {
90 switch (fType) {
91 case kRect_Type:
92 fPath.init();
93 fPath.get()->addRect(this->getRect());
94 fPath.get()->setFillType(SkPath::kInverseEvenOdd_FillType);
95 fType = kPath_Type;
96 break;
97 case kRRect_Type:
98 fPath.init();
99 fPath.get()->addRRect(fRRect);
100 fPath.get()->setFillType(SkPath::kInverseEvenOdd_FillType);
101 fType = kPath_Type;
102 break;
103 case kPath_Type:
104 fPath.get()->toggleInverseFillType();
105 break;
106 case kEmpty_Type:
107 // Should this set to an empty, inverse filled path?
108 break;
109 }
110 }
111
initPath(int saveCount,const SkPath & path,SkRegion::Op op,bool doAA)112 void SkClipStack::Element::initPath(int saveCount, const SkPath& path, SkRegion::Op op,
113 bool doAA) {
114 if (!path.isInverseFillType()) {
115 if (SkPath::kNone_PathAsRect != path.asRect()) {
116 this->initRect(saveCount, path.getBounds(), op, doAA);
117 return;
118 }
119 SkRect ovalRect;
120 if (path.isOval(&ovalRect)) {
121 SkRRect rrect;
122 rrect.setOval(ovalRect);
123 this->initRRect(saveCount, rrect, op, doAA);
124 return;
125 }
126 }
127 fPath.set(path);
128 fType = kPath_Type;
129 this->initCommon(saveCount, op, doAA);
130 }
131
asPath(SkPath * path) const132 void SkClipStack::Element::asPath(SkPath* path) const {
133 switch (fType) {
134 case kEmpty_Type:
135 path->reset();
136 break;
137 case kRect_Type:
138 path->reset();
139 path->addRect(this->getRect());
140 break;
141 case kRRect_Type:
142 path->reset();
143 path->addRRect(fRRect);
144 break;
145 case kPath_Type:
146 *path = *fPath.get();
147 break;
148 }
149 }
150
setEmpty()151 void SkClipStack::Element::setEmpty() {
152 fType = kEmpty_Type;
153 fFiniteBound.setEmpty();
154 fFiniteBoundType = kNormal_BoundsType;
155 fIsIntersectionOfRects = false;
156 fRRect.setEmpty();
157 fPath.reset();
158 fGenID = kEmptyGenID;
159 SkDEBUGCODE(this->checkEmpty();)
160 }
161
checkEmpty() const162 void SkClipStack::Element::checkEmpty() const {
163 SkASSERT(fFiniteBound.isEmpty());
164 SkASSERT(kNormal_BoundsType == fFiniteBoundType);
165 SkASSERT(!fIsIntersectionOfRects);
166 SkASSERT(kEmptyGenID == fGenID);
167 SkASSERT(!fPath.isValid());
168 }
169
canBeIntersectedInPlace(int saveCount,SkRegion::Op op) const170 bool SkClipStack::Element::canBeIntersectedInPlace(int saveCount, SkRegion::Op op) const {
171 if (kEmpty_Type == fType &&
172 (SkRegion::kDifference_Op == op || SkRegion::kIntersect_Op == op)) {
173 return true;
174 }
175 // Only clips within the same save/restore frame (as captured by
176 // the save count) can be merged
177 return fSaveCount == saveCount &&
178 SkRegion::kIntersect_Op == op &&
179 (SkRegion::kIntersect_Op == fOp || SkRegion::kReplace_Op == fOp);
180 }
181
rectRectIntersectAllowed(const SkRect & newR,bool newAA) const182 bool SkClipStack::Element::rectRectIntersectAllowed(const SkRect& newR, bool newAA) const {
183 SkASSERT(kRect_Type == fType);
184
185 if (fDoAA == newAA) {
186 // if the AA setting is the same there is no issue
187 return true;
188 }
189
190 if (!SkRect::Intersects(this->getRect(), newR)) {
191 // The calling code will correctly set the result to the empty clip
192 return true;
193 }
194
195 if (this->getRect().contains(newR)) {
196 // if the new rect carves out a portion of the old one there is no
197 // issue
198 return true;
199 }
200
201 // So either the two overlap in some complex manner or newR contains oldR.
202 // In the first, case the edges will require different AA. In the second,
203 // the AA setting that would be carried forward is incorrect (e.g., oldR
204 // is AA while newR is BW but since newR contains oldR, oldR will be
205 // drawn BW) since the new AA setting will predominate.
206 return false;
207 }
208
209 // a mirror of combineBoundsRevDiff
combineBoundsDiff(FillCombo combination,const SkRect & prevFinite)210 void SkClipStack::Element::combineBoundsDiff(FillCombo combination, const SkRect& prevFinite) {
211 switch (combination) {
212 case kInvPrev_InvCur_FillCombo:
213 // In this case the only pixels that can remain set
214 // are inside the current clip rect since the extensions
215 // to infinity of both clips cancel out and whatever
216 // is outside of the current clip is removed
217 fFiniteBoundType = kNormal_BoundsType;
218 break;
219 case kInvPrev_Cur_FillCombo:
220 // In this case the current op is finite so the only pixels
221 // that aren't set are whatever isn't set in the previous
222 // clip and whatever this clip carves out
223 fFiniteBound.join(prevFinite);
224 fFiniteBoundType = kInsideOut_BoundsType;
225 break;
226 case kPrev_InvCur_FillCombo:
227 // In this case everything outside of this clip's bound
228 // is erased, so the only pixels that can remain set
229 // occur w/in the intersection of the two finite bounds
230 if (!fFiniteBound.intersect(prevFinite)) {
231 this->setEmpty();
232 } else {
233 fFiniteBoundType = kNormal_BoundsType;
234 }
235 break;
236 case kPrev_Cur_FillCombo:
237 // The most conservative result bound is that of the
238 // prior clip. This could be wildly incorrect if the
239 // second clip either exactly matches the first clip
240 // (which should yield the empty set) or reduces the
241 // size of the prior bound (e.g., if the second clip
242 // exactly matched the bottom half of the prior clip).
243 // We ignore these two possibilities.
244 fFiniteBound = prevFinite;
245 break;
246 default:
247 SkDEBUGFAIL("SkClipStack::Element::combineBoundsDiff Invalid fill combination");
248 break;
249 }
250 }
251
combineBoundsXOR(int combination,const SkRect & prevFinite)252 void SkClipStack::Element::combineBoundsXOR(int combination, const SkRect& prevFinite) {
253
254 switch (combination) {
255 case kInvPrev_Cur_FillCombo: // fall through
256 case kPrev_InvCur_FillCombo:
257 // With only one of the clips inverted the result will always
258 // extend to infinity. The only pixels that may be un-writeable
259 // lie within the union of the two finite bounds
260 fFiniteBound.join(prevFinite);
261 fFiniteBoundType = kInsideOut_BoundsType;
262 break;
263 case kInvPrev_InvCur_FillCombo:
264 // The only pixels that can survive are within the
265 // union of the two bounding boxes since the extensions
266 // to infinity of both clips cancel out
267 // fall through!
268 case kPrev_Cur_FillCombo:
269 // The most conservative bound for xor is the
270 // union of the two bounds. If the two clips exactly overlapped
271 // the xor could yield the empty set. Similarly the xor
272 // could reduce the size of the original clip's bound (e.g.,
273 // if the second clip exactly matched the bottom half of the
274 // first clip). We ignore these two cases.
275 fFiniteBound.join(prevFinite);
276 fFiniteBoundType = kNormal_BoundsType;
277 break;
278 default:
279 SkDEBUGFAIL("SkClipStack::Element::combineBoundsXOR Invalid fill combination");
280 break;
281 }
282 }
283
284 // a mirror of combineBoundsIntersection
combineBoundsUnion(int combination,const SkRect & prevFinite)285 void SkClipStack::Element::combineBoundsUnion(int combination, const SkRect& prevFinite) {
286
287 switch (combination) {
288 case kInvPrev_InvCur_FillCombo:
289 if (!fFiniteBound.intersect(prevFinite)) {
290 fFiniteBound.setEmpty();
291 fGenID = kWideOpenGenID;
292 }
293 fFiniteBoundType = kInsideOut_BoundsType;
294 break;
295 case kInvPrev_Cur_FillCombo:
296 // The only pixels that won't be drawable are inside
297 // the prior clip's finite bound
298 fFiniteBound = prevFinite;
299 fFiniteBoundType = kInsideOut_BoundsType;
300 break;
301 case kPrev_InvCur_FillCombo:
302 // The only pixels that won't be drawable are inside
303 // this clip's finite bound
304 break;
305 case kPrev_Cur_FillCombo:
306 fFiniteBound.join(prevFinite);
307 break;
308 default:
309 SkDEBUGFAIL("SkClipStack::Element::combineBoundsUnion Invalid fill combination");
310 break;
311 }
312 }
313
314 // a mirror of combineBoundsUnion
combineBoundsIntersection(int combination,const SkRect & prevFinite)315 void SkClipStack::Element::combineBoundsIntersection(int combination, const SkRect& prevFinite) {
316
317 switch (combination) {
318 case kInvPrev_InvCur_FillCombo:
319 // The only pixels that aren't writable in this case
320 // occur in the union of the two finite bounds
321 fFiniteBound.join(prevFinite);
322 fFiniteBoundType = kInsideOut_BoundsType;
323 break;
324 case kInvPrev_Cur_FillCombo:
325 // In this case the only pixels that will remain writeable
326 // are within the current clip
327 break;
328 case kPrev_InvCur_FillCombo:
329 // In this case the only pixels that will remain writeable
330 // are with the previous clip
331 fFiniteBound = prevFinite;
332 fFiniteBoundType = kNormal_BoundsType;
333 break;
334 case kPrev_Cur_FillCombo:
335 if (!fFiniteBound.intersect(prevFinite)) {
336 this->setEmpty();
337 }
338 break;
339 default:
340 SkDEBUGFAIL("SkClipStack::Element::combineBoundsIntersection Invalid fill combination");
341 break;
342 }
343 }
344
345 // a mirror of combineBoundsDiff
combineBoundsRevDiff(int combination,const SkRect & prevFinite)346 void SkClipStack::Element::combineBoundsRevDiff(int combination, const SkRect& prevFinite) {
347
348 switch (combination) {
349 case kInvPrev_InvCur_FillCombo:
350 // The only pixels that can survive are in the
351 // previous bound since the extensions to infinity in
352 // both clips cancel out
353 fFiniteBound = prevFinite;
354 fFiniteBoundType = kNormal_BoundsType;
355 break;
356 case kInvPrev_Cur_FillCombo:
357 if (!fFiniteBound.intersect(prevFinite)) {
358 this->setEmpty();
359 } else {
360 fFiniteBoundType = kNormal_BoundsType;
361 }
362 break;
363 case kPrev_InvCur_FillCombo:
364 fFiniteBound.join(prevFinite);
365 fFiniteBoundType = kInsideOut_BoundsType;
366 break;
367 case kPrev_Cur_FillCombo:
368 // Fall through - as with the kDifference_Op case, the
369 // most conservative result bound is the bound of the
370 // current clip. The prior clip could reduce the size of this
371 // bound (as in the kDifference_Op case) but we are ignoring
372 // those cases.
373 break;
374 default:
375 SkDEBUGFAIL("SkClipStack::Element::combineBoundsRevDiff Invalid fill combination");
376 break;
377 }
378 }
379
updateBoundAndGenID(const Element * prior)380 void SkClipStack::Element::updateBoundAndGenID(const Element* prior) {
381 // We set this first here but we may overwrite it later if we determine that the clip is
382 // either wide-open or empty.
383 fGenID = GetNextGenID();
384
385 // First, optimistically update the current Element's bound information
386 // with the current clip's bound
387 fIsIntersectionOfRects = false;
388 switch (fType) {
389 case kRect_Type:
390 fFiniteBound = this->getRect();
391 fFiniteBoundType = kNormal_BoundsType;
392
393 if (SkRegion::kReplace_Op == fOp ||
394 (SkRegion::kIntersect_Op == fOp && NULL == prior) ||
395 (SkRegion::kIntersect_Op == fOp && prior->fIsIntersectionOfRects &&
396 prior->rectRectIntersectAllowed(this->getRect(), fDoAA))) {
397 fIsIntersectionOfRects = true;
398 }
399 break;
400 case kRRect_Type:
401 fFiniteBound = fRRect.getBounds();
402 fFiniteBoundType = kNormal_BoundsType;
403 break;
404 case kPath_Type:
405 fFiniteBound = fPath.get()->getBounds();
406
407 if (fPath.get()->isInverseFillType()) {
408 fFiniteBoundType = kInsideOut_BoundsType;
409 } else {
410 fFiniteBoundType = kNormal_BoundsType;
411 }
412 break;
413 case kEmpty_Type:
414 SkDEBUGFAIL("We shouldn't get here with an empty element.");
415 break;
416 }
417
418 if (!fDoAA) {
419 // Here we mimic a non-anti-aliased scanline system. If there is
420 // no anti-aliasing we can integerize the bounding box to exclude
421 // fractional parts that won't be rendered.
422 // Note: the left edge is handled slightly differently below. We
423 // are a bit more generous in the rounding since we don't want to
424 // risk missing the left pixels when fLeft is very close to .5
425 fFiniteBound.set(SkScalarFloorToScalar(fFiniteBound.fLeft+0.45f),
426 SkScalarRoundToScalar(fFiniteBound.fTop),
427 SkScalarRoundToScalar(fFiniteBound.fRight),
428 SkScalarRoundToScalar(fFiniteBound.fBottom));
429 }
430
431 // Now determine the previous Element's bound information taking into
432 // account that there may be no previous clip
433 SkRect prevFinite;
434 SkClipStack::BoundsType prevType;
435
436 if (NULL == prior) {
437 // no prior clip means the entire plane is writable
438 prevFinite.setEmpty(); // there are no pixels that cannot be drawn to
439 prevType = kInsideOut_BoundsType;
440 } else {
441 prevFinite = prior->fFiniteBound;
442 prevType = prior->fFiniteBoundType;
443 }
444
445 FillCombo combination = kPrev_Cur_FillCombo;
446 if (kInsideOut_BoundsType == fFiniteBoundType) {
447 combination = (FillCombo) (combination | 0x01);
448 }
449 if (kInsideOut_BoundsType == prevType) {
450 combination = (FillCombo) (combination | 0x02);
451 }
452
453 SkASSERT(kInvPrev_InvCur_FillCombo == combination ||
454 kInvPrev_Cur_FillCombo == combination ||
455 kPrev_InvCur_FillCombo == combination ||
456 kPrev_Cur_FillCombo == combination);
457
458 // Now integrate with clip with the prior clips
459 switch (fOp) {
460 case SkRegion::kDifference_Op:
461 this->combineBoundsDiff(combination, prevFinite);
462 break;
463 case SkRegion::kXOR_Op:
464 this->combineBoundsXOR(combination, prevFinite);
465 break;
466 case SkRegion::kUnion_Op:
467 this->combineBoundsUnion(combination, prevFinite);
468 break;
469 case SkRegion::kIntersect_Op:
470 this->combineBoundsIntersection(combination, prevFinite);
471 break;
472 case SkRegion::kReverseDifference_Op:
473 this->combineBoundsRevDiff(combination, prevFinite);
474 break;
475 case SkRegion::kReplace_Op:
476 // Replace just ignores everything prior
477 // The current clip's bound information is already filled in
478 // so nothing to do
479 break;
480 default:
481 SkDebugf("SkRegion::Op error\n");
482 SkASSERT(0);
483 break;
484 }
485 }
486
487 // This constant determines how many Element's are allocated together as a block in
488 // the deque. As such it needs to balance allocating too much memory vs.
489 // incurring allocation/deallocation thrashing. It should roughly correspond to
490 // the deepest save/restore stack we expect to see.
491 static const int kDefaultElementAllocCnt = 8;
492
SkClipStack()493 SkClipStack::SkClipStack()
494 : fDeque(sizeof(Element), kDefaultElementAllocCnt)
495 , fSaveCount(0) {
496 }
497
SkClipStack(const SkClipStack & b)498 SkClipStack::SkClipStack(const SkClipStack& b)
499 : fDeque(sizeof(Element), kDefaultElementAllocCnt) {
500 *this = b;
501 }
502
SkClipStack(const SkRect & r)503 SkClipStack::SkClipStack(const SkRect& r)
504 : fDeque(sizeof(Element), kDefaultElementAllocCnt)
505 , fSaveCount(0) {
506 if (!r.isEmpty()) {
507 this->clipDevRect(r, SkRegion::kReplace_Op, false);
508 }
509 }
510
SkClipStack(const SkIRect & r)511 SkClipStack::SkClipStack(const SkIRect& r)
512 : fDeque(sizeof(Element), kDefaultElementAllocCnt)
513 , fSaveCount(0) {
514 if (!r.isEmpty()) {
515 SkRect temp;
516 temp.set(r);
517 this->clipDevRect(temp, SkRegion::kReplace_Op, false);
518 }
519 }
520
~SkClipStack()521 SkClipStack::~SkClipStack() {
522 reset();
523 }
524
operator =(const SkClipStack & b)525 SkClipStack& SkClipStack::operator=(const SkClipStack& b) {
526 if (this == &b) {
527 return *this;
528 }
529 reset();
530
531 fSaveCount = b.fSaveCount;
532 SkDeque::F2BIter recIter(b.fDeque);
533 for (const Element* element = (const Element*)recIter.next();
534 element != NULL;
535 element = (const Element*)recIter.next()) {
536 new (fDeque.push_back()) Element(*element);
537 }
538
539 return *this;
540 }
541
operator ==(const SkClipStack & b) const542 bool SkClipStack::operator==(const SkClipStack& b) const {
543 if (this->getTopmostGenID() == b.getTopmostGenID()) {
544 return true;
545 }
546 if (fSaveCount != b.fSaveCount ||
547 fDeque.count() != b.fDeque.count()) {
548 return false;
549 }
550 SkDeque::F2BIter myIter(fDeque);
551 SkDeque::F2BIter bIter(b.fDeque);
552 const Element* myElement = (const Element*)myIter.next();
553 const Element* bElement = (const Element*)bIter.next();
554
555 while (myElement != NULL && bElement != NULL) {
556 if (*myElement != *bElement) {
557 return false;
558 }
559 myElement = (const Element*)myIter.next();
560 bElement = (const Element*)bIter.next();
561 }
562 return myElement == NULL && bElement == NULL;
563 }
564
reset()565 void SkClipStack::reset() {
566 // We used a placement new for each object in fDeque, so we're responsible
567 // for calling the destructor on each of them as well.
568 while (!fDeque.empty()) {
569 Element* element = (Element*)fDeque.back();
570 element->~Element();
571 fDeque.pop_back();
572 }
573
574 fSaveCount = 0;
575 }
576
save()577 void SkClipStack::save() {
578 fSaveCount += 1;
579 }
580
restore()581 void SkClipStack::restore() {
582 fSaveCount -= 1;
583 restoreTo(fSaveCount);
584 }
585
restoreTo(int saveCount)586 void SkClipStack::restoreTo(int saveCount) {
587 while (!fDeque.empty()) {
588 Element* element = (Element*)fDeque.back();
589 if (element->fSaveCount <= saveCount) {
590 break;
591 }
592 element->~Element();
593 fDeque.pop_back();
594 }
595 }
596
getBounds(SkRect * canvFiniteBound,BoundsType * boundType,bool * isIntersectionOfRects) const597 void SkClipStack::getBounds(SkRect* canvFiniteBound,
598 BoundsType* boundType,
599 bool* isIntersectionOfRects) const {
600 SkASSERT(NULL != canvFiniteBound && NULL != boundType);
601
602 Element* element = (Element*)fDeque.back();
603
604 if (NULL == element) {
605 // the clip is wide open - the infinite plane w/ no pixels un-writeable
606 canvFiniteBound->setEmpty();
607 *boundType = kInsideOut_BoundsType;
608 if (NULL != isIntersectionOfRects) {
609 *isIntersectionOfRects = false;
610 }
611 return;
612 }
613
614 *canvFiniteBound = element->fFiniteBound;
615 *boundType = element->fFiniteBoundType;
616 if (NULL != isIntersectionOfRects) {
617 *isIntersectionOfRects = element->fIsIntersectionOfRects;
618 }
619 }
620
intersectRectWithClip(SkRect * rect) const621 bool SkClipStack::intersectRectWithClip(SkRect* rect) const {
622 SkASSERT(NULL != rect);
623
624 SkRect bounds;
625 SkClipStack::BoundsType bt;
626 this->getBounds(&bounds, &bt);
627 if (bt == SkClipStack::kInsideOut_BoundsType) {
628 if (bounds.contains(*rect)) {
629 return false;
630 } else {
631 // If rect's x values are both within bound's x range we
632 // could clip here. Same for y. But we don't bother to check.
633 return true;
634 }
635 } else {
636 return rect->intersect(bounds);
637 }
638 }
639
quickContains(const SkRect & rect) const640 bool SkClipStack::quickContains(const SkRect& rect) const {
641
642 Iter iter(*this, Iter::kTop_IterStart);
643 const Element* element = iter.prev();
644 while (element != NULL) {
645 if (SkRegion::kIntersect_Op != element->getOp() && SkRegion::kReplace_Op != element->getOp())
646 return false;
647 if (element->isInverseFilled()) {
648 // Part of 'rect' could be trimmed off by the inverse-filled clip element
649 if (SkRect::Intersects(element->getBounds(), rect)) {
650 return false;
651 }
652 } else {
653 if (!element->contains(rect)) {
654 return false;
655 }
656 }
657 if (SkRegion::kReplace_Op == element->getOp()) {
658 break;
659 }
660 element = iter.prev();
661 }
662 return true;
663 }
664
pushElement(const Element & element)665 void SkClipStack::pushElement(const Element& element) {
666 // Use reverse iterator instead of back because Rect path may need previous
667 SkDeque::Iter iter(fDeque, SkDeque::Iter::kBack_IterStart);
668 Element* prior = (Element*) iter.prev();
669
670 if (NULL != prior) {
671 if (prior->canBeIntersectedInPlace(fSaveCount, element.getOp())) {
672 switch (prior->fType) {
673 case Element::kEmpty_Type:
674 SkDEBUGCODE(prior->checkEmpty();)
675 return;
676 case Element::kRect_Type:
677 if (Element::kRect_Type == element.getType()) {
678 if (prior->rectRectIntersectAllowed(element.getRect(), element.isAA())) {
679 SkRect isectRect;
680 if (!isectRect.intersect(prior->getRect(), element.getRect())) {
681 prior->setEmpty();
682 return;
683 }
684
685 prior->fRRect.setRect(isectRect);
686 prior->fDoAA = element.isAA();
687 Element* priorPrior = (Element*) iter.prev();
688 prior->updateBoundAndGenID(priorPrior);
689 return;
690 }
691 break;
692 }
693 // fallthrough
694 default:
695 if (!SkRect::Intersects(prior->getBounds(), element.getBounds())) {
696 prior->setEmpty();
697 return;
698 }
699 break;
700 }
701 } else if (SkRegion::kReplace_Op == element.getOp()) {
702 this->restoreTo(fSaveCount - 1);
703 prior = (Element*) fDeque.back();
704 }
705 }
706 Element* newElement = SkNEW_PLACEMENT_ARGS(fDeque.push_back(), Element, (element));
707 newElement->updateBoundAndGenID(prior);
708 }
709
clipDevRRect(const SkRRect & rrect,SkRegion::Op op,bool doAA)710 void SkClipStack::clipDevRRect(const SkRRect& rrect, SkRegion::Op op, bool doAA) {
711 Element element(fSaveCount, rrect, op, doAA);
712 this->pushElement(element);
713 }
714
clipDevRect(const SkRect & rect,SkRegion::Op op,bool doAA)715 void SkClipStack::clipDevRect(const SkRect& rect, SkRegion::Op op, bool doAA) {
716 Element element(fSaveCount, rect, op, doAA);
717 this->pushElement(element);
718 }
719
clipDevPath(const SkPath & path,SkRegion::Op op,bool doAA)720 void SkClipStack::clipDevPath(const SkPath& path, SkRegion::Op op, bool doAA) {
721 Element element(fSaveCount, path, op, doAA);
722 this->pushElement(element);
723 }
724
clipEmpty()725 void SkClipStack::clipEmpty() {
726 Element* element = (Element*) fDeque.back();
727
728 if (element && element->canBeIntersectedInPlace(fSaveCount, SkRegion::kIntersect_Op)) {
729 element->setEmpty();
730 }
731 new (fDeque.push_back()) Element(fSaveCount);
732
733 ((Element*)fDeque.back())->fGenID = kEmptyGenID;
734 }
735
isWideOpen() const736 bool SkClipStack::isWideOpen() const {
737 return this->getTopmostGenID() == kWideOpenGenID;
738 }
739
740 ///////////////////////////////////////////////////////////////////////////////
741
Iter()742 SkClipStack::Iter::Iter() : fStack(NULL) {
743 }
744
Iter(const SkClipStack & stack,IterStart startLoc)745 SkClipStack::Iter::Iter(const SkClipStack& stack, IterStart startLoc)
746 : fStack(&stack) {
747 this->reset(stack, startLoc);
748 }
749
next()750 const SkClipStack::Element* SkClipStack::Iter::next() {
751 return (const SkClipStack::Element*)fIter.next();
752 }
753
prev()754 const SkClipStack::Element* SkClipStack::Iter::prev() {
755 return (const SkClipStack::Element*)fIter.prev();
756 }
757
skipToTopmost(SkRegion::Op op)758 const SkClipStack::Element* SkClipStack::Iter::skipToTopmost(SkRegion::Op op) {
759
760 if (NULL == fStack) {
761 return NULL;
762 }
763
764 fIter.reset(fStack->fDeque, SkDeque::Iter::kBack_IterStart);
765
766 const SkClipStack::Element* element = NULL;
767
768 for (element = (const SkClipStack::Element*) fIter.prev();
769 NULL != element;
770 element = (const SkClipStack::Element*) fIter.prev()) {
771
772 if (op == element->fOp) {
773 // The Deque's iterator is actually one pace ahead of the
774 // returned value. So while "element" is the element we want to
775 // return, the iterator is actually pointing at (and will
776 // return on the next "next" or "prev" call) the element
777 // in front of it in the deque. Bump the iterator forward a
778 // step so we get the expected result.
779 if (NULL == fIter.next()) {
780 // The reverse iterator has run off the front of the deque
781 // (i.e., the "op" clip is the first clip) and can't
782 // recover. Reset the iterator to start at the front.
783 fIter.reset(fStack->fDeque, SkDeque::Iter::kFront_IterStart);
784 }
785 break;
786 }
787 }
788
789 if (NULL == element) {
790 // There were no "op" clips
791 fIter.reset(fStack->fDeque, SkDeque::Iter::kFront_IterStart);
792 }
793
794 return this->next();
795 }
796
reset(const SkClipStack & stack,IterStart startLoc)797 void SkClipStack::Iter::reset(const SkClipStack& stack, IterStart startLoc) {
798 fStack = &stack;
799 fIter.reset(stack.fDeque, static_cast<SkDeque::Iter::IterStart>(startLoc));
800 }
801
802 // helper method
getConservativeBounds(int offsetX,int offsetY,int maxWidth,int maxHeight,SkRect * devBounds,bool * isIntersectionOfRects) const803 void SkClipStack::getConservativeBounds(int offsetX,
804 int offsetY,
805 int maxWidth,
806 int maxHeight,
807 SkRect* devBounds,
808 bool* isIntersectionOfRects) const {
809 SkASSERT(NULL != devBounds);
810
811 devBounds->setLTRB(0, 0,
812 SkIntToScalar(maxWidth), SkIntToScalar(maxHeight));
813
814 SkRect temp;
815 SkClipStack::BoundsType boundType;
816
817 // temp starts off in canvas space here
818 this->getBounds(&temp, &boundType, isIntersectionOfRects);
819 if (SkClipStack::kInsideOut_BoundsType == boundType) {
820 return;
821 }
822
823 // but is converted to device space here
824 temp.offset(SkIntToScalar(offsetX), SkIntToScalar(offsetY));
825
826 if (!devBounds->intersect(temp)) {
827 devBounds->setEmpty();
828 }
829 }
830
GetNextGenID()831 int32_t SkClipStack::GetNextGenID() {
832 // TODO: handle overflow.
833 return sk_atomic_inc(&gGenID);
834 }
835
getTopmostGenID() const836 int32_t SkClipStack::getTopmostGenID() const {
837 if (fDeque.empty()) {
838 return kWideOpenGenID;
839 }
840
841 const Element* back = static_cast<const Element*>(fDeque.back());
842 if (kInsideOut_BoundsType == back->fFiniteBoundType && back->fFiniteBound.isEmpty()) {
843 return kWideOpenGenID;
844 }
845
846 return back->getGenID();
847 }
848
849 #ifdef SK_DEVELOPER
dump() const850 void SkClipStack::Element::dump() const {
851 static const char* kTypeStrings[] = {
852 "empty",
853 "rect",
854 "rrect",
855 "path"
856 };
857 SK_COMPILE_ASSERT(0 == kEmpty_Type, type_str);
858 SK_COMPILE_ASSERT(1 == kRect_Type, type_str);
859 SK_COMPILE_ASSERT(2 == kRRect_Type, type_str);
860 SK_COMPILE_ASSERT(3 == kPath_Type, type_str);
861 SK_COMPILE_ASSERT(SK_ARRAY_COUNT(kTypeStrings) == kTypeCnt, type_str);
862
863 static const char* kOpStrings[] = {
864 "difference",
865 "intersect",
866 "union",
867 "xor",
868 "reverse-difference",
869 "replace",
870 };
871 SK_COMPILE_ASSERT(0 == SkRegion::kDifference_Op, op_str);
872 SK_COMPILE_ASSERT(1 == SkRegion::kIntersect_Op, op_str);
873 SK_COMPILE_ASSERT(2 == SkRegion::kUnion_Op, op_str);
874 SK_COMPILE_ASSERT(3 == SkRegion::kXOR_Op, op_str);
875 SK_COMPILE_ASSERT(4 == SkRegion::kReverseDifference_Op, op_str);
876 SK_COMPILE_ASSERT(5 == SkRegion::kReplace_Op, op_str);
877 SK_COMPILE_ASSERT(SK_ARRAY_COUNT(kOpStrings) == SkRegion::kOpCnt, op_str);
878
879 SkDebugf("Type: %s, Op: %s, AA: %s, Save Count: %d\n", kTypeStrings[fType],
880 kOpStrings[fOp], (fDoAA ? "yes" : "no"), fSaveCount);
881 switch (fType) {
882 case kEmpty_Type:
883 SkDebugf("\n");
884 break;
885 case kRect_Type:
886 this->getRect().dump();
887 SkDebugf("\n");
888 break;
889 case kRRect_Type:
890 this->getRRect().dump();
891 SkDebugf("\n");
892 break;
893 case kPath_Type:
894 this->getPath().dump(true);
895 break;
896 }
897 }
898
dump() const899 void SkClipStack::dump() const {
900 B2TIter iter(*this);
901 const Element* e;
902 while ((e = iter.next())) {
903 e->dump();
904 SkDebugf("\n");
905 }
906 }
907 #endif
908