• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /*
3  * Copyright 2009 The Android Open Source Project
4  *
5  * Use of this source code is governed by a BSD-style license that can be
6  * found in the LICENSE file.
7  */
8 
9 
10 #include "SkCubicClipper.h"
11 #include "SkGeometry.h"
12 
SkCubicClipper()13 SkCubicClipper::SkCubicClipper() {
14     fClip.setEmpty();
15 }
16 
setClip(const SkIRect & clip)17 void SkCubicClipper::setClip(const SkIRect& clip) {
18     // conver to scalars, since that's where we'll see the points
19     fClip.set(clip);
20 }
21 
22 
chopMonoCubicAtY(SkPoint pts[4],SkScalar y,SkScalar * t)23 static bool chopMonoCubicAtY(SkPoint pts[4], SkScalar y, SkScalar* t) {
24     SkScalar ycrv[4];
25     ycrv[0] = pts[0].fY - y;
26     ycrv[1] = pts[1].fY - y;
27     ycrv[2] = pts[2].fY - y;
28     ycrv[3] = pts[3].fY - y;
29 
30 #ifdef NEWTON_RAPHSON    // Quadratic convergence, typically <= 3 iterations.
31     // Initial guess.
32     // TODO(turk): Check for zero denominator? Shouldn't happen unless the curve
33     // is not only monotonic but degenerate.
34     SkScalar t1 = ycrv[0] / (ycrv[0] - ycrv[3]);
35 
36     // Newton's iterations.
37     const SkScalar tol = SK_Scalar1 / 16384;  // This leaves 2 fixed noise bits.
38     SkScalar t0;
39     const int maxiters = 5;
40     int iters = 0;
41     bool converged;
42     do {
43         t0 = t1;
44         SkScalar y01   = SkScalarInterp(ycrv[0], ycrv[1], t0);
45         SkScalar y12   = SkScalarInterp(ycrv[1], ycrv[2], t0);
46         SkScalar y23   = SkScalarInterp(ycrv[2], ycrv[3], t0);
47         SkScalar y012  = SkScalarInterp(y01,  y12,  t0);
48         SkScalar y123  = SkScalarInterp(y12,  y23,  t0);
49         SkScalar y0123 = SkScalarInterp(y012, y123, t0);
50         SkScalar yder  = (y123 - y012) * 3;
51         // TODO(turk): check for yder==0: horizontal.
52         t1 -= y0123 / yder;
53         converged = SkScalarAbs(t1 - t0) <= tol;  // NaN-safe
54         ++iters;
55     } while (!converged && (iters < maxiters));
56     *t = t1;                  // Return the result.
57 
58     // The result might be valid, even if outside of the range [0, 1], but
59     // we never evaluate a Bezier outside this interval, so we return false.
60     if (t1 < 0 || t1 > SK_Scalar1)
61         return false;         // This shouldn't happen, but check anyway.
62     return converged;
63 
64 #else  // BISECTION    // Linear convergence, typically 16 iterations.
65 
66     // Check that the endpoints straddle zero.
67     SkScalar tNeg, tPos;    // Negative and positive function parameters.
68     if (ycrv[0] < 0) {
69         if (ycrv[3] < 0)
70             return false;
71         tNeg = 0;
72         tPos = SK_Scalar1;
73     } else if (ycrv[0] > 0) {
74         if (ycrv[3] > 0)
75             return false;
76         tNeg = SK_Scalar1;
77         tPos = 0;
78     } else {
79         *t = 0;
80         return true;
81     }
82 
83     const SkScalar tol = SK_Scalar1 / 65536;  // 1 for fixed, 1e-5 for float.
84     int iters = 0;
85     do {
86         SkScalar tMid = (tPos + tNeg) / 2;
87         SkScalar y01   = SkScalarInterp(ycrv[0], ycrv[1], tMid);
88         SkScalar y12   = SkScalarInterp(ycrv[1], ycrv[2], tMid);
89         SkScalar y23   = SkScalarInterp(ycrv[2], ycrv[3], tMid);
90         SkScalar y012  = SkScalarInterp(y01,     y12,     tMid);
91         SkScalar y123  = SkScalarInterp(y12,     y23,     tMid);
92         SkScalar y0123 = SkScalarInterp(y012,    y123,    tMid);
93         if (y0123 == 0) {
94             *t = tMid;
95             return true;
96         }
97         if (y0123 < 0)  tNeg = tMid;
98         else            tPos = tMid;
99         ++iters;
100     } while (!(SkScalarAbs(tPos - tNeg) <= tol));   // Nan-safe
101 
102     *t = (tNeg + tPos) / 2;
103     return true;
104 #endif  // BISECTION
105 }
106 
107 
clipCubic(const SkPoint srcPts[4],SkPoint dst[4])108 bool SkCubicClipper::clipCubic(const SkPoint srcPts[4], SkPoint dst[4]) {
109     bool reverse;
110 
111     // we need the data to be monotonically descending in Y
112     if (srcPts[0].fY > srcPts[3].fY) {
113         dst[0] = srcPts[3];
114         dst[1] = srcPts[2];
115         dst[2] = srcPts[1];
116         dst[3] = srcPts[0];
117         reverse = true;
118     } else {
119         memcpy(dst, srcPts, 4 * sizeof(SkPoint));
120         reverse = false;
121     }
122 
123     // are we completely above or below
124     const SkScalar ctop = fClip.fTop;
125     const SkScalar cbot = fClip.fBottom;
126     if (dst[3].fY <= ctop || dst[0].fY >= cbot) {
127         return false;
128     }
129 
130     SkScalar t;
131     SkPoint tmp[7]; // for SkChopCubicAt
132 
133     // are we partially above
134     if (dst[0].fY < ctop && chopMonoCubicAtY(dst, ctop, &t)) {
135         SkChopCubicAt(dst, tmp, t);
136         dst[0] = tmp[3];
137         dst[1] = tmp[4];
138         dst[2] = tmp[5];
139     }
140 
141     // are we partially below
142     if (dst[3].fY > cbot && chopMonoCubicAtY(dst, cbot, &t)) {
143         SkChopCubicAt(dst, tmp, t);
144         dst[1] = tmp[1];
145         dst[2] = tmp[2];
146         dst[3] = tmp[3];
147     }
148 
149     if (reverse) {
150         SkTSwap<SkPoint>(dst[0], dst[3]);
151         SkTSwap<SkPoint>(dst[1], dst[2]);
152     }
153     return true;
154 }
155