• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "SkIntersections.h"
8 #include "SkPathOpsCubic.h"
9 #include "SkPathOpsLine.h"
10 
11 /*
12 Find the interection of a line and cubic by solving for valid t values.
13 
14 Analogous to line-quadratic intersection, solve line-cubic intersection by
15 representing the cubic as:
16   x = a(1-t)^3 + 2b(1-t)^2t + c(1-t)t^2 + dt^3
17   y = e(1-t)^3 + 2f(1-t)^2t + g(1-t)t^2 + ht^3
18 and the line as:
19   y = i*x + j  (if the line is more horizontal)
20 or:
21   x = i*y + j  (if the line is more vertical)
22 
23 Then using Mathematica, solve for the values of t where the cubic intersects the
24 line:
25 
26   (in) Resultant[
27         a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x,
28         e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - i*x - j, x]
29   (out) -e     +   j     +
30        3 e t   - 3 f t   -
31        3 e t^2 + 6 f t^2 - 3 g t^2 +
32          e t^3 - 3 f t^3 + 3 g t^3 - h t^3 +
33      i ( a     -
34        3 a t + 3 b t +
35        3 a t^2 - 6 b t^2 + 3 c t^2 -
36          a t^3 + 3 b t^3 - 3 c t^3 + d t^3 )
37 
38 if i goes to infinity, we can rewrite the line in terms of x. Mathematica:
39 
40   (in) Resultant[
41         a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - i*y - j,
42         e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y,       y]
43   (out)  a     -   j     -
44        3 a t   + 3 b t   +
45        3 a t^2 - 6 b t^2 + 3 c t^2 -
46          a t^3 + 3 b t^3 - 3 c t^3 + d t^3 -
47      i ( e     -
48        3 e t   + 3 f t   +
49        3 e t^2 - 6 f t^2 + 3 g t^2 -
50          e t^3 + 3 f t^3 - 3 g t^3 + h t^3 )
51 
52 Solving this with Mathematica produces an expression with hundreds of terms;
53 instead, use Numeric Solutions recipe to solve the cubic.
54 
55 The near-horizontal case, in terms of:  Ax^3 + Bx^2 + Cx + D == 0
56     A =   (-(-e + 3*f - 3*g + h) + i*(-a + 3*b - 3*c + d)     )
57     B = 3*(-( e - 2*f +   g    ) + i*( a - 2*b +   c    )     )
58     C = 3*(-(-e +   f          ) + i*(-a +   b          )     )
59     D =   (-( e                ) + i*( a                ) + j )
60 
61 The near-vertical case, in terms of:  Ax^3 + Bx^2 + Cx + D == 0
62     A =   ( (-a + 3*b - 3*c + d) - i*(-e + 3*f - 3*g + h)     )
63     B = 3*( ( a - 2*b +   c    ) - i*( e - 2*f +   g    )     )
64     C = 3*( (-a +   b          ) - i*(-e +   f          )     )
65     D =   ( ( a                ) - i*( e                ) - j )
66 
67 For horizontal lines:
68 (in) Resultant[
69       a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - j,
70       e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y]
71 (out)  e     -   j     -
72      3 e t   + 3 f t   +
73      3 e t^2 - 6 f t^2 + 3 g t^2 -
74        e t^3 + 3 f t^3 - 3 g t^3 + h t^3
75  */
76 
77 class LineCubicIntersections {
78 public:
79     enum PinTPoint {
80         kPointUninitialized,
81         kPointInitialized
82     };
83 
LineCubicIntersections(const SkDCubic & c,const SkDLine & l,SkIntersections * i)84     LineCubicIntersections(const SkDCubic& c, const SkDLine& l, SkIntersections* i)
85         : fCubic(c)
86         , fLine(l)
87         , fIntersections(i)
88         , fAllowNear(true) {
89         i->setMax(3);
90     }
91 
allowNear(bool allow)92     void allowNear(bool allow) {
93         fAllowNear = allow;
94     }
95 
96     // see parallel routine in line quadratic intersections
intersectRay(double roots[3])97     int intersectRay(double roots[3]) {
98         double adj = fLine[1].fX - fLine[0].fX;
99         double opp = fLine[1].fY - fLine[0].fY;
100         SkDCubic c;
101         for (int n = 0; n < 4; ++n) {
102             c[n].fX = (fCubic[n].fY - fLine[0].fY) * adj - (fCubic[n].fX - fLine[0].fX) * opp;
103         }
104         double A, B, C, D;
105         SkDCubic::Coefficients(&c[0].fX, &A, &B, &C, &D);
106         int count = SkDCubic::RootsValidT(A, B, C, D, roots);
107         for (int index = 0; index < count; ++index) {
108             SkDPoint calcPt = c.ptAtT(roots[index]);
109             if (!approximately_zero(calcPt.fX)) {
110                 for (int n = 0; n < 4; ++n) {
111                     c[n].fY = (fCubic[n].fY - fLine[0].fY) * opp
112                             + (fCubic[n].fX - fLine[0].fX) * adj;
113                 }
114                 double extremeTs[6];
115                 int extrema = SkDCubic::FindExtrema(c[0].fX, c[1].fX, c[2].fX, c[3].fX, extremeTs);
116                 count = c.searchRoots(extremeTs, extrema, 0, SkDCubic::kXAxis, roots);
117                 break;
118             }
119         }
120         return count;
121     }
122 
intersect()123     int intersect() {
124         addExactEndPoints();
125         if (fAllowNear) {
126             addNearEndPoints();
127         }
128         double rootVals[3];
129         int roots = intersectRay(rootVals);
130         for (int index = 0; index < roots; ++index) {
131             double cubicT = rootVals[index];
132             double lineT = findLineT(cubicT);
133             SkDPoint pt;
134             if (pinTs(&cubicT, &lineT, &pt, kPointUninitialized)) {
135     #if ONE_OFF_DEBUG
136                 SkDPoint cPt = fCubic.ptAtT(cubicT);
137                 SkDebugf("%s pt=(%1.9g,%1.9g) cPt=(%1.9g,%1.9g)\n", __FUNCTION__, pt.fX, pt.fY,
138                         cPt.fX, cPt.fY);
139     #endif
140                 for (int inner = 0; inner < fIntersections->used(); ++inner) {
141                     if (fIntersections->pt(inner) != pt) {
142                         continue;
143                     }
144                     double existingCubicT = (*fIntersections)[0][inner];
145                     if (cubicT == existingCubicT) {
146                         goto skipInsert;
147                     }
148                     // check if midway on cubic is also same point. If so, discard this
149                     double cubicMidT = (existingCubicT + cubicT) / 2;
150                     SkDPoint cubicMidPt = fCubic.ptAtT(cubicMidT);
151                     if (cubicMidPt.approximatelyEqual(pt)) {
152                         goto skipInsert;
153                     }
154                 }
155                 fIntersections->insert(cubicT, lineT, pt);
156         skipInsert:
157                 ;
158             }
159         }
160         return fIntersections->used();
161     }
162 
HorizontalIntersect(const SkDCubic & c,double axisIntercept,double roots[3])163     static int HorizontalIntersect(const SkDCubic& c, double axisIntercept, double roots[3]) {
164         double A, B, C, D;
165         SkDCubic::Coefficients(&c[0].fY, &A, &B, &C, &D);
166         D -= axisIntercept;
167         int count = SkDCubic::RootsValidT(A, B, C, D, roots);
168         for (int index = 0; index < count; ++index) {
169             SkDPoint calcPt = c.ptAtT(roots[index]);
170             if (!approximately_equal(calcPt.fY, axisIntercept)) {
171                 double extremeTs[6];
172                 int extrema = SkDCubic::FindExtrema(c[0].fY, c[1].fY, c[2].fY, c[3].fY, extremeTs);
173                 count = c.searchRoots(extremeTs, extrema, axisIntercept, SkDCubic::kYAxis, roots);
174                 break;
175             }
176         }
177         return count;
178     }
179 
horizontalIntersect(double axisIntercept,double left,double right,bool flipped)180     int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) {
181         addExactHorizontalEndPoints(left, right, axisIntercept);
182         if (fAllowNear) {
183             addNearHorizontalEndPoints(left, right, axisIntercept);
184         }
185         double roots[3];
186         int count = HorizontalIntersect(fCubic, axisIntercept, roots);
187         for (int index = 0; index < count; ++index) {
188             double cubicT = roots[index];
189             SkDPoint pt;
190             pt.fX = fCubic.ptAtT(cubicT).fX;
191             pt.fY = axisIntercept;
192             double lineT = (pt.fX - left) / (right - left);
193             if (pinTs(&cubicT, &lineT, &pt, kPointInitialized)) {
194                 fIntersections->insert(cubicT, lineT, pt);
195             }
196         }
197         if (flipped) {
198             fIntersections->flip();
199         }
200         return fIntersections->used();
201     }
202 
VerticalIntersect(const SkDCubic & c,double axisIntercept,double roots[3])203     static int VerticalIntersect(const SkDCubic& c, double axisIntercept, double roots[3]) {
204         double A, B, C, D;
205         SkDCubic::Coefficients(&c[0].fX, &A, &B, &C, &D);
206         D -= axisIntercept;
207         int count = SkDCubic::RootsValidT(A, B, C, D, roots);
208         for (int index = 0; index < count; ++index) {
209             SkDPoint calcPt = c.ptAtT(roots[index]);
210             if (!approximately_equal(calcPt.fX, axisIntercept)) {
211                 double extremeTs[6];
212                 int extrema = SkDCubic::FindExtrema(c[0].fX, c[1].fX, c[2].fX, c[3].fX, extremeTs);
213                 count = c.searchRoots(extremeTs, extrema, axisIntercept, SkDCubic::kXAxis, roots);
214                 break;
215             }
216         }
217         return count;
218     }
219 
verticalIntersect(double axisIntercept,double top,double bottom,bool flipped)220     int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) {
221         addExactVerticalEndPoints(top, bottom, axisIntercept);
222         if (fAllowNear) {
223             addNearVerticalEndPoints(top, bottom, axisIntercept);
224         }
225         double roots[3];
226         int count = VerticalIntersect(fCubic, axisIntercept, roots);
227         for (int index = 0; index < count; ++index) {
228             double cubicT = roots[index];
229             SkDPoint pt;
230             pt.fX = axisIntercept;
231             pt.fY = fCubic.ptAtT(cubicT).fY;
232             double lineT = (pt.fY - top) / (bottom - top);
233             if (pinTs(&cubicT, &lineT, &pt, kPointInitialized)) {
234                 fIntersections->insert(cubicT, lineT, pt);
235             }
236         }
237         if (flipped) {
238             fIntersections->flip();
239         }
240         return fIntersections->used();
241     }
242 
243     protected:
244 
addExactEndPoints()245     void addExactEndPoints() {
246         for (int cIndex = 0; cIndex < 4; cIndex += 3) {
247             double lineT = fLine.exactPoint(fCubic[cIndex]);
248             if (lineT < 0) {
249                 continue;
250             }
251             double cubicT = (double) (cIndex >> 1);
252             fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
253         }
254     }
255 
256     /* Note that this does not look for endpoints of the line that are near the cubic.
257        These points are found later when check ends looks for missing points */
addNearEndPoints()258     void addNearEndPoints() {
259         for (int cIndex = 0; cIndex < 4; cIndex += 3) {
260             double cubicT = (double) (cIndex >> 1);
261             if (fIntersections->hasT(cubicT)) {
262                 continue;
263             }
264             double lineT = fLine.nearPoint(fCubic[cIndex], NULL);
265             if (lineT < 0) {
266                 continue;
267             }
268             fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
269         }
270     }
271 
addExactHorizontalEndPoints(double left,double right,double y)272     void addExactHorizontalEndPoints(double left, double right, double y) {
273         for (int cIndex = 0; cIndex < 4; cIndex += 3) {
274             double lineT = SkDLine::ExactPointH(fCubic[cIndex], left, right, y);
275             if (lineT < 0) {
276                 continue;
277             }
278             double cubicT = (double) (cIndex >> 1);
279             fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
280         }
281     }
282 
addNearHorizontalEndPoints(double left,double right,double y)283     void addNearHorizontalEndPoints(double left, double right, double y) {
284         for (int cIndex = 0; cIndex < 4; cIndex += 3) {
285             double cubicT = (double) (cIndex >> 1);
286             if (fIntersections->hasT(cubicT)) {
287                 continue;
288             }
289             double lineT = SkDLine::NearPointH(fCubic[cIndex], left, right, y);
290             if (lineT < 0) {
291                 continue;
292             }
293             fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
294         }
295         // FIXME: see if line end is nearly on cubic
296     }
297 
addExactVerticalEndPoints(double top,double bottom,double x)298     void addExactVerticalEndPoints(double top, double bottom, double x) {
299         for (int cIndex = 0; cIndex < 4; cIndex += 3) {
300             double lineT = SkDLine::ExactPointV(fCubic[cIndex], top, bottom, x);
301             if (lineT < 0) {
302                 continue;
303             }
304             double cubicT = (double) (cIndex >> 1);
305             fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
306         }
307     }
308 
addNearVerticalEndPoints(double top,double bottom,double x)309     void addNearVerticalEndPoints(double top, double bottom, double x) {
310         for (int cIndex = 0; cIndex < 4; cIndex += 3) {
311             double cubicT = (double) (cIndex >> 1);
312             if (fIntersections->hasT(cubicT)) {
313                 continue;
314             }
315             double lineT = SkDLine::NearPointV(fCubic[cIndex], top, bottom, x);
316             if (lineT < 0) {
317                 continue;
318             }
319             fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
320         }
321         // FIXME: see if line end is nearly on cubic
322     }
323 
findLineT(double t)324     double findLineT(double t) {
325         SkDPoint xy = fCubic.ptAtT(t);
326         double dx = fLine[1].fX - fLine[0].fX;
327         double dy = fLine[1].fY - fLine[0].fY;
328         if (fabs(dx) > fabs(dy)) {
329             return (xy.fX - fLine[0].fX) / dx;
330         }
331         return (xy.fY - fLine[0].fY) / dy;
332     }
333 
pinTs(double * cubicT,double * lineT,SkDPoint * pt,PinTPoint ptSet)334     bool pinTs(double* cubicT, double* lineT, SkDPoint* pt, PinTPoint ptSet) {
335         if (!approximately_one_or_less(*lineT)) {
336             return false;
337         }
338         if (!approximately_zero_or_more(*lineT)) {
339             return false;
340         }
341         double cT = *cubicT = SkPinT(*cubicT);
342         double lT = *lineT = SkPinT(*lineT);
343         SkDPoint lPt = fLine.ptAtT(lT);
344         SkDPoint cPt = fCubic.ptAtT(cT);
345         if (!lPt.moreRoughlyEqual(cPt)) {
346             return false;
347         }
348         // FIXME: if points are roughly equal but not approximately equal, need to do
349         // a binary search like quad/quad intersection to find more precise t values
350         if (lT == 0 || lT == 1 || (ptSet == kPointUninitialized && cT != 0 && cT != 1)) {
351             *pt = lPt;
352         } else if (ptSet == kPointUninitialized) {
353             *pt = cPt;
354         }
355         SkPoint gridPt = pt->asSkPoint();
356         if (gridPt == fLine[0].asSkPoint()) {
357             *lineT = 0;
358         } else if (gridPt == fLine[1].asSkPoint()) {
359             *lineT = 1;
360         }
361         if (gridPt == fCubic[0].asSkPoint() && approximately_equal(*cubicT, 0)) {
362             *cubicT = 0;
363         } else if (gridPt == fCubic[3].asSkPoint() && approximately_equal(*cubicT, 1)) {
364             *cubicT = 1;
365         }
366         return true;
367     }
368 
369 private:
370     const SkDCubic& fCubic;
371     const SkDLine& fLine;
372     SkIntersections* fIntersections;
373     bool fAllowNear;
374 };
375 
horizontal(const SkDCubic & cubic,double left,double right,double y,bool flipped)376 int SkIntersections::horizontal(const SkDCubic& cubic, double left, double right, double y,
377         bool flipped) {
378     SkDLine line = {{{ left, y }, { right, y }}};
379     LineCubicIntersections c(cubic, line, this);
380     return c.horizontalIntersect(y, left, right, flipped);
381 }
382 
vertical(const SkDCubic & cubic,double top,double bottom,double x,bool flipped)383 int SkIntersections::vertical(const SkDCubic& cubic, double top, double bottom, double x,
384         bool flipped) {
385     SkDLine line = {{{ x, top }, { x, bottom }}};
386     LineCubicIntersections c(cubic, line, this);
387     return c.verticalIntersect(x, top, bottom, flipped);
388 }
389 
intersect(const SkDCubic & cubic,const SkDLine & line)390 int SkIntersections::intersect(const SkDCubic& cubic, const SkDLine& line) {
391     LineCubicIntersections c(cubic, line, this);
392     c.allowNear(fAllowNear);
393     return c.intersect();
394 }
395 
intersectRay(const SkDCubic & cubic,const SkDLine & line)396 int SkIntersections::intersectRay(const SkDCubic& cubic, const SkDLine& line) {
397     LineCubicIntersections c(cubic, line, this);
398     fUsed = c.intersectRay(fT[0]);
399     for (int index = 0; index < fUsed; ++index) {
400         fPt[index] = cubic.ptAtT(fT[0][index]);
401     }
402     return fUsed;
403 }
404