• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "SkIntersections.h"
8 #include "SkPathOpsLine.h"
9 #include "SkPathOpsQuad.h"
10 
11 /*
12 Find the interection of a line and quadratic by solving for valid t values.
13 
14 From http://stackoverflow.com/questions/1853637/how-to-find-the-mathematical-function-defining-a-bezier-curve
15 
16 "A Bezier curve is a parametric function. A quadratic Bezier curve (i.e. three
17 control points) can be expressed as: F(t) = A(1 - t)^2 + B(1 - t)t + Ct^2 where
18 A, B and C are points and t goes from zero to one.
19 
20 This will give you two equations:
21 
22   x = a(1 - t)^2 + b(1 - t)t + ct^2
23   y = d(1 - t)^2 + e(1 - t)t + ft^2
24 
25 If you add for instance the line equation (y = kx + m) to that, you'll end up
26 with three equations and three unknowns (x, y and t)."
27 
28 Similar to above, the quadratic is represented as
29   x = a(1-t)^2 + 2b(1-t)t + ct^2
30   y = d(1-t)^2 + 2e(1-t)t + ft^2
31 and the line as
32   y = g*x + h
33 
34 Using Mathematica, solve for the values of t where the quadratic intersects the
35 line:
36 
37   (in)  t1 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - x,
38                        d*(1 - t)^2 + 2*e*(1 - t)*t  + f*t^2 - g*x - h, x]
39   (out) -d + h + 2 d t - 2 e t - d t^2 + 2 e t^2 - f t^2 +
40          g  (a - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2)
41   (in)  Solve[t1 == 0, t]
42   (out) {
43     {t -> (-2 d + 2 e +   2 a g - 2 b g    -
44       Sqrt[(2 d - 2 e -   2 a g + 2 b g)^2 -
45           4 (-d + 2 e - f + a g - 2 b g    + c g) (-d + a g + h)]) /
46          (2 (-d + 2 e - f + a g - 2 b g    + c g))
47          },
48     {t -> (-2 d + 2 e +   2 a g - 2 b g    +
49       Sqrt[(2 d - 2 e -   2 a g + 2 b g)^2 -
50           4 (-d + 2 e - f + a g - 2 b g    + c g) (-d + a g + h)]) /
51          (2 (-d + 2 e - f + a g - 2 b g    + c g))
52          }
53         }
54 
55 Using the results above (when the line tends towards horizontal)
56        A =   (-(d - 2*e + f) + g*(a - 2*b + c)     )
57        B = 2*( (d -   e    ) - g*(a -   b    )     )
58        C =   (-(d          ) + g*(a          ) + h )
59 
60 If g goes to infinity, we can rewrite the line in terms of x.
61   x = g'*y + h'
62 
63 And solve accordingly in Mathematica:
64 
65   (in)  t2 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - g'*y - h',
66                        d*(1 - t)^2 + 2*e*(1 - t)*t  + f*t^2 - y, y]
67   (out)  a - h' - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2 -
68          g'  (d - 2 d t + 2 e t + d t^2 - 2 e t^2 + f t^2)
69   (in)  Solve[t2 == 0, t]
70   (out) {
71     {t -> (2 a - 2 b -   2 d g' + 2 e g'    -
72     Sqrt[(-2 a + 2 b +   2 d g' - 2 e g')^2 -
73           4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')]) /
74          (2 (a - 2 b + c - d g' + 2 e g' - f g'))
75          },
76     {t -> (2 a - 2 b -   2 d g' + 2 e g'    +
77     Sqrt[(-2 a + 2 b +   2 d g' - 2 e g')^2 -
78           4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')])/
79          (2 (a - 2 b + c - d g' + 2 e g' - f g'))
80          }
81         }
82 
83 Thus, if the slope of the line tends towards vertical, we use:
84        A =   ( (a - 2*b + c) - g'*(d  - 2*e + f)      )
85        B = 2*(-(a -   b    ) + g'*(d  -   e    )      )
86        C =   ( (a          ) - g'*(d           ) - h' )
87  */
88 
89 class LineQuadraticIntersections {
90 public:
91     enum PinTPoint {
92         kPointUninitialized,
93         kPointInitialized
94     };
95 
LineQuadraticIntersections(const SkDQuad & q,const SkDLine & l,SkIntersections * i)96     LineQuadraticIntersections(const SkDQuad& q, const SkDLine& l, SkIntersections* i)
97         : fQuad(q)
98         , fLine(l)
99         , fIntersections(i)
100         , fAllowNear(true) {
101         i->setMax(3);  // allow short partial coincidence plus discrete intersection
102     }
103 
allowNear(bool allow)104     void allowNear(bool allow) {
105         fAllowNear = allow;
106     }
107 
intersectRay(double roots[2])108     int intersectRay(double roots[2]) {
109     /*
110         solve by rotating line+quad so line is horizontal, then finding the roots
111         set up matrix to rotate quad to x-axis
112         |cos(a) -sin(a)|
113         |sin(a)  cos(a)|
114         note that cos(a) = A(djacent) / Hypoteneuse
115                   sin(a) = O(pposite) / Hypoteneuse
116         since we are computing Ts, we can ignore hypoteneuse, the scale factor:
117         |  A     -O    |
118         |  O      A    |
119         A = line[1].fX - line[0].fX (adjacent side of the right triangle)
120         O = line[1].fY - line[0].fY (opposite side of the right triangle)
121         for each of the three points (e.g. n = 0 to 2)
122         quad[n].fY' = (quad[n].fY - line[0].fY) * A - (quad[n].fX - line[0].fX) * O
123     */
124         double adj = fLine[1].fX - fLine[0].fX;
125         double opp = fLine[1].fY - fLine[0].fY;
126         double r[3];
127         for (int n = 0; n < 3; ++n) {
128             r[n] = (fQuad[n].fY - fLine[0].fY) * adj - (fQuad[n].fX - fLine[0].fX) * opp;
129         }
130         double A = r[2];
131         double B = r[1];
132         double C = r[0];
133         A += C - 2 * B;  // A = a - 2*b + c
134         B -= C;  // B = -(b - c)
135         return SkDQuad::RootsValidT(A, 2 * B, C, roots);
136     }
137 
intersect()138     int intersect() {
139         addExactEndPoints();
140         if (fAllowNear) {
141             addNearEndPoints();
142         }
143         if (fIntersections->used() == 2) {
144             // FIXME : need sharable code that turns spans into coincident if middle point is on
145         } else {
146             double rootVals[2];
147             int roots = intersectRay(rootVals);
148             for (int index = 0; index < roots; ++index) {
149                 double quadT = rootVals[index];
150                 double lineT = findLineT(quadT);
151                 SkDPoint pt;
152                 if (pinTs(&quadT, &lineT, &pt, kPointUninitialized)) {
153                     fIntersections->insert(quadT, lineT, pt);
154                 }
155             }
156         }
157         return fIntersections->used();
158     }
159 
horizontalIntersect(double axisIntercept,double roots[2])160     int horizontalIntersect(double axisIntercept, double roots[2]) {
161         double D = fQuad[2].fY;  // f
162         double E = fQuad[1].fY;  // e
163         double F = fQuad[0].fY;  // d
164         D += F - 2 * E;         // D = d - 2*e + f
165         E -= F;                 // E = -(d - e)
166         F -= axisIntercept;
167         return SkDQuad::RootsValidT(D, 2 * E, F, roots);
168     }
169 
horizontalIntersect(double axisIntercept,double left,double right,bool flipped)170     int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) {
171         addExactHorizontalEndPoints(left, right, axisIntercept);
172         if (fAllowNear) {
173             addNearHorizontalEndPoints(left, right, axisIntercept);
174         }
175         double rootVals[2];
176         int roots = horizontalIntersect(axisIntercept, rootVals);
177         for (int index = 0; index < roots; ++index) {
178             double quadT = rootVals[index];
179             SkDPoint pt = fQuad.ptAtT(quadT);
180             double lineT = (pt.fX - left) / (right - left);
181             if (pinTs(&quadT, &lineT, &pt, kPointInitialized)) {
182                 fIntersections->insert(quadT, lineT, pt);
183             }
184         }
185         if (flipped) {
186             fIntersections->flip();
187         }
188         return fIntersections->used();
189     }
190 
verticalIntersect(double axisIntercept,double roots[2])191     int verticalIntersect(double axisIntercept, double roots[2]) {
192         double D = fQuad[2].fX;  // f
193         double E = fQuad[1].fX;  // e
194         double F = fQuad[0].fX;  // d
195         D += F - 2 * E;         // D = d - 2*e + f
196         E -= F;                 // E = -(d - e)
197         F -= axisIntercept;
198         return SkDQuad::RootsValidT(D, 2 * E, F, roots);
199     }
200 
verticalIntersect(double axisIntercept,double top,double bottom,bool flipped)201     int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) {
202         addExactVerticalEndPoints(top, bottom, axisIntercept);
203         if (fAllowNear) {
204             addNearVerticalEndPoints(top, bottom, axisIntercept);
205         }
206         double rootVals[2];
207         int roots = verticalIntersect(axisIntercept, rootVals);
208         for (int index = 0; index < roots; ++index) {
209             double quadT = rootVals[index];
210             SkDPoint pt = fQuad.ptAtT(quadT);
211             double lineT = (pt.fY - top) / (bottom - top);
212             if (pinTs(&quadT, &lineT, &pt, kPointInitialized)) {
213                 fIntersections->insert(quadT, lineT, pt);
214             }
215         }
216         if (flipped) {
217             fIntersections->flip();
218         }
219         return fIntersections->used();
220     }
221 
222 protected:
223     // add endpoints first to get zero and one t values exactly
addExactEndPoints()224     void addExactEndPoints() {
225         for (int qIndex = 0; qIndex < 3; qIndex += 2) {
226             double lineT = fLine.exactPoint(fQuad[qIndex]);
227             if (lineT < 0) {
228                 continue;
229             }
230             double quadT = (double) (qIndex >> 1);
231             fIntersections->insert(quadT, lineT, fQuad[qIndex]);
232         }
233     }
234 
addNearEndPoints()235     void addNearEndPoints() {
236         for (int qIndex = 0; qIndex < 3; qIndex += 2) {
237             double quadT = (double) (qIndex >> 1);
238             if (fIntersections->hasT(quadT)) {
239                 continue;
240             }
241             double lineT = fLine.nearPoint(fQuad[qIndex], NULL);
242             if (lineT < 0) {
243                 continue;
244             }
245             fIntersections->insert(quadT, lineT, fQuad[qIndex]);
246         }
247         // FIXME: see if line end is nearly on quad
248     }
249 
addExactHorizontalEndPoints(double left,double right,double y)250     void addExactHorizontalEndPoints(double left, double right, double y) {
251         for (int qIndex = 0; qIndex < 3; qIndex += 2) {
252             double lineT = SkDLine::ExactPointH(fQuad[qIndex], left, right, y);
253             if (lineT < 0) {
254                 continue;
255             }
256             double quadT = (double) (qIndex >> 1);
257             fIntersections->insert(quadT, lineT, fQuad[qIndex]);
258         }
259     }
260 
addNearHorizontalEndPoints(double left,double right,double y)261     void addNearHorizontalEndPoints(double left, double right, double y) {
262         for (int qIndex = 0; qIndex < 3; qIndex += 2) {
263             double quadT = (double) (qIndex >> 1);
264             if (fIntersections->hasT(quadT)) {
265                 continue;
266             }
267             double lineT = SkDLine::NearPointH(fQuad[qIndex], left, right, y);
268             if (lineT < 0) {
269                 continue;
270             }
271             fIntersections->insert(quadT, lineT, fQuad[qIndex]);
272         }
273         // FIXME: see if line end is nearly on quad
274     }
275 
addExactVerticalEndPoints(double top,double bottom,double x)276     void addExactVerticalEndPoints(double top, double bottom, double x) {
277         for (int qIndex = 0; qIndex < 3; qIndex += 2) {
278             double lineT = SkDLine::ExactPointV(fQuad[qIndex], top, bottom, x);
279             if (lineT < 0) {
280                 continue;
281             }
282             double quadT = (double) (qIndex >> 1);
283             fIntersections->insert(quadT, lineT, fQuad[qIndex]);
284         }
285     }
286 
addNearVerticalEndPoints(double top,double bottom,double x)287     void addNearVerticalEndPoints(double top, double bottom, double x) {
288         for (int qIndex = 0; qIndex < 3; qIndex += 2) {
289             double quadT = (double) (qIndex >> 1);
290             if (fIntersections->hasT(quadT)) {
291                 continue;
292             }
293             double lineT = SkDLine::NearPointV(fQuad[qIndex], top, bottom, x);
294             if (lineT < 0) {
295                 continue;
296             }
297             fIntersections->insert(quadT, lineT, fQuad[qIndex]);
298         }
299         // FIXME: see if line end is nearly on quad
300     }
301 
findLineT(double t)302     double findLineT(double t) {
303         SkDPoint xy = fQuad.ptAtT(t);
304         double dx = fLine[1].fX - fLine[0].fX;
305         double dy = fLine[1].fY - fLine[0].fY;
306         if (fabs(dx) > fabs(dy)) {
307             return (xy.fX - fLine[0].fX) / dx;
308         }
309         return (xy.fY - fLine[0].fY) / dy;
310     }
311 
pinTs(double * quadT,double * lineT,SkDPoint * pt,PinTPoint ptSet)312     bool pinTs(double* quadT, double* lineT, SkDPoint* pt, PinTPoint ptSet) {
313         if (!approximately_one_or_less_double(*lineT)) {
314             return false;
315         }
316         if (!approximately_zero_or_more_double(*lineT)) {
317             return false;
318         }
319         double qT = *quadT = SkPinT(*quadT);
320         double lT = *lineT = SkPinT(*lineT);
321         if (lT == 0 || lT == 1 || (ptSet == kPointUninitialized && qT != 0 && qT != 1)) {
322             *pt = fLine.ptAtT(lT);
323         } else if (ptSet == kPointUninitialized) {
324             *pt = fQuad.ptAtT(qT);
325         }
326         SkPoint gridPt = pt->asSkPoint();
327         if (SkDPoint::ApproximatelyEqual(gridPt, fLine[0].asSkPoint())) {
328             *pt = fLine[0];
329             *lineT = 0;
330         } else if (SkDPoint::ApproximatelyEqual(gridPt, fLine[1].asSkPoint())) {
331             *pt = fLine[1];
332             *lineT = 1;
333         }
334         if (fIntersections->used() > 0 && approximately_equal((*fIntersections)[1][0], *lineT)) {
335             return false;
336         }
337         if (gridPt == fQuad[0].asSkPoint()) {
338             *pt = fQuad[0];
339             *quadT = 0;
340         } else if (gridPt == fQuad[2].asSkPoint()) {
341             *pt = fQuad[2];
342             *quadT = 1;
343         }
344         return true;
345     }
346 
347 private:
348     const SkDQuad& fQuad;
349     const SkDLine& fLine;
350     SkIntersections* fIntersections;
351     bool fAllowNear;
352 };
353 
horizontal(const SkDQuad & quad,double left,double right,double y,bool flipped)354 int SkIntersections::horizontal(const SkDQuad& quad, double left, double right, double y,
355                                 bool flipped) {
356     SkDLine line = {{{ left, y }, { right, y }}};
357     LineQuadraticIntersections q(quad, line, this);
358     return q.horizontalIntersect(y, left, right, flipped);
359 }
360 
vertical(const SkDQuad & quad,double top,double bottom,double x,bool flipped)361 int SkIntersections::vertical(const SkDQuad& quad, double top, double bottom, double x,
362                               bool flipped) {
363     SkDLine line = {{{ x, top }, { x, bottom }}};
364     LineQuadraticIntersections q(quad, line, this);
365     return q.verticalIntersect(x, top, bottom, flipped);
366 }
367 
intersect(const SkDQuad & quad,const SkDLine & line)368 int SkIntersections::intersect(const SkDQuad& quad, const SkDLine& line) {
369     LineQuadraticIntersections q(quad, line, this);
370     q.allowNear(fAllowNear);
371     return q.intersect();
372 }
373 
intersectRay(const SkDQuad & quad,const SkDLine & line)374 int SkIntersections::intersectRay(const SkDQuad& quad, const SkDLine& line) {
375     LineQuadraticIntersections q(quad, line, this);
376     fUsed = q.intersectRay(fT[0]);
377     for (int index = 0; index < fUsed; ++index) {
378         fPt[index] = quad.ptAtT(fT[0][index]);
379     }
380     return fUsed;
381 }
382