1 /*
2 * Copyright 2012 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7 #include "SkFloatBits.h"
8 #include "SkPathOpsTypes.h"
9
arguments_denormalized(float a,float b,int epsilon)10 static bool arguments_denormalized(float a, float b, int epsilon) {
11 float denormalizedCheck = FLT_EPSILON * epsilon / 2;
12 return fabsf(a) <= denormalizedCheck && fabsf(b) <= denormalizedCheck;
13 }
14
15 // from http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
16 // FIXME: move to SkFloatBits.h
equal_ulps(float a,float b,int epsilon,int depsilon)17 static bool equal_ulps(float a, float b, int epsilon, int depsilon) {
18 if (!SkScalarIsFinite(a) || !SkScalarIsFinite(b)) {
19 return false;
20 }
21 if (arguments_denormalized(a, b, depsilon)) {
22 return true;
23 }
24 int aBits = SkFloatAs2sCompliment(a);
25 int bBits = SkFloatAs2sCompliment(b);
26 // Find the difference in ULPs.
27 return aBits < bBits + epsilon && bBits < aBits + epsilon;
28 }
29
d_equal_ulps(float a,float b,int epsilon)30 static bool d_equal_ulps(float a, float b, int epsilon) {
31 if (!SkScalarIsFinite(a) || !SkScalarIsFinite(b)) {
32 return false;
33 }
34 int aBits = SkFloatAs2sCompliment(a);
35 int bBits = SkFloatAs2sCompliment(b);
36 // Find the difference in ULPs.
37 return aBits < bBits + epsilon && bBits < aBits + epsilon;
38 }
39
not_equal_ulps(float a,float b,int epsilon)40 static bool not_equal_ulps(float a, float b, int epsilon) {
41 if (!SkScalarIsFinite(a) || !SkScalarIsFinite(b)) {
42 return false;
43 }
44 if (arguments_denormalized(a, b, epsilon)) {
45 return false;
46 }
47 int aBits = SkFloatAs2sCompliment(a);
48 int bBits = SkFloatAs2sCompliment(b);
49 // Find the difference in ULPs.
50 return aBits >= bBits + epsilon || bBits >= aBits + epsilon;
51 }
52
d_not_equal_ulps(float a,float b,int epsilon)53 static bool d_not_equal_ulps(float a, float b, int epsilon) {
54 if (!SkScalarIsFinite(a) || !SkScalarIsFinite(b)) {
55 return false;
56 }
57 int aBits = SkFloatAs2sCompliment(a);
58 int bBits = SkFloatAs2sCompliment(b);
59 // Find the difference in ULPs.
60 return aBits >= bBits + epsilon || bBits >= aBits + epsilon;
61 }
62
less_ulps(float a,float b,int epsilon)63 static bool less_ulps(float a, float b, int epsilon) {
64 if (!SkScalarIsFinite(a) || !SkScalarIsFinite(b)) {
65 return false;
66 }
67 if (arguments_denormalized(a, b, epsilon)) {
68 return a <= b - FLT_EPSILON * epsilon;
69 }
70 int aBits = SkFloatAs2sCompliment(a);
71 int bBits = SkFloatAs2sCompliment(b);
72 // Find the difference in ULPs.
73 return aBits <= bBits - epsilon;
74 }
75
less_or_equal_ulps(float a,float b,int epsilon)76 static bool less_or_equal_ulps(float a, float b, int epsilon) {
77 if (!SkScalarIsFinite(a) || !SkScalarIsFinite(b)) {
78 return false;
79 }
80 if (arguments_denormalized(a, b, epsilon)) {
81 return a < b + FLT_EPSILON * epsilon;
82 }
83 int aBits = SkFloatAs2sCompliment(a);
84 int bBits = SkFloatAs2sCompliment(b);
85 // Find the difference in ULPs.
86 return aBits < bBits + epsilon;
87 }
88
89 // equality using the same error term as between
AlmostBequalUlps(float a,float b)90 bool AlmostBequalUlps(float a, float b) {
91 const int UlpsEpsilon = 2;
92 return equal_ulps(a, b, UlpsEpsilon, UlpsEpsilon);
93 }
94
AlmostPequalUlps(float a,float b)95 bool AlmostPequalUlps(float a, float b) {
96 const int UlpsEpsilon = 8;
97 return equal_ulps(a, b, UlpsEpsilon, UlpsEpsilon);
98 }
99
AlmostDequalUlps(float a,float b)100 bool AlmostDequalUlps(float a, float b) {
101 const int UlpsEpsilon = 16;
102 return d_equal_ulps(a, b, UlpsEpsilon);
103 }
104
AlmostDequalUlps(double a,double b)105 bool AlmostDequalUlps(double a, double b) {
106 if (SkScalarIsFinite(a) || SkScalarIsFinite(b)) {
107 return AlmostDequalUlps(SkDoubleToScalar(a), SkDoubleToScalar(b));
108 }
109 return fabs(a - b) / SkTMax(fabs(a), fabs(b)) < FLT_EPSILON * 16;
110 }
111
AlmostEqualUlps(float a,float b)112 bool AlmostEqualUlps(float a, float b) {
113 const int UlpsEpsilon = 16;
114 return equal_ulps(a, b, UlpsEpsilon, UlpsEpsilon);
115 }
116
NotAlmostEqualUlps(float a,float b)117 bool NotAlmostEqualUlps(float a, float b) {
118 const int UlpsEpsilon = 16;
119 return not_equal_ulps(a, b, UlpsEpsilon);
120 }
121
NotAlmostDequalUlps(float a,float b)122 bool NotAlmostDequalUlps(float a, float b) {
123 const int UlpsEpsilon = 16;
124 return d_not_equal_ulps(a, b, UlpsEpsilon);
125 }
126
RoughlyEqualUlps(float a,float b)127 bool RoughlyEqualUlps(float a, float b) {
128 const int UlpsEpsilon = 256;
129 const int DUlpsEpsilon = 1024;
130 return equal_ulps(a, b, UlpsEpsilon, DUlpsEpsilon);
131 }
132
AlmostBetweenUlps(float a,float b,float c)133 bool AlmostBetweenUlps(float a, float b, float c) {
134 const int UlpsEpsilon = 2;
135 return a <= c ? less_or_equal_ulps(a, b, UlpsEpsilon) && less_or_equal_ulps(b, c, UlpsEpsilon)
136 : less_or_equal_ulps(b, a, UlpsEpsilon) && less_or_equal_ulps(c, b, UlpsEpsilon);
137 }
138
AlmostLessUlps(float a,float b)139 bool AlmostLessUlps(float a, float b) {
140 const int UlpsEpsilon = 16;
141 return less_ulps(a, b, UlpsEpsilon);
142 }
143
AlmostLessOrEqualUlps(float a,float b)144 bool AlmostLessOrEqualUlps(float a, float b) {
145 const int UlpsEpsilon = 16;
146 return less_or_equal_ulps(a, b, UlpsEpsilon);
147 }
148
UlpsDistance(float a,float b)149 int UlpsDistance(float a, float b) {
150 if (!SkScalarIsFinite(a) || !SkScalarIsFinite(b)) {
151 return SK_MaxS32;
152 }
153 SkFloatIntUnion floatIntA, floatIntB;
154 floatIntA.fFloat = a;
155 floatIntB.fFloat = b;
156 // Different signs means they do not match.
157 if ((floatIntA.fSignBitInt < 0) != (floatIntB.fSignBitInt < 0)) {
158 // Check for equality to make sure +0 == -0
159 return a == b ? 0 : SK_MaxS32;
160 }
161 // Find the difference in ULPs.
162 return abs(floatIntA.fSignBitInt - floatIntB.fSignBitInt);
163 }
164
165 // cube root approximation using bit hack for 64-bit float
166 // adapted from Kahan's cbrt
cbrt_5d(double d)167 static double cbrt_5d(double d) {
168 const unsigned int B1 = 715094163;
169 double t = 0.0;
170 unsigned int* pt = (unsigned int*) &t;
171 unsigned int* px = (unsigned int*) &d;
172 pt[1] = px[1] / 3 + B1;
173 return t;
174 }
175
176 // iterative cube root approximation using Halley's method (double)
cbrta_halleyd(const double a,const double R)177 static double cbrta_halleyd(const double a, const double R) {
178 const double a3 = a * a * a;
179 const double b = a * (a3 + R + R) / (a3 + a3 + R);
180 return b;
181 }
182
183 // cube root approximation using 3 iterations of Halley's method (double)
halley_cbrt3d(double d)184 static double halley_cbrt3d(double d) {
185 double a = cbrt_5d(d);
186 a = cbrta_halleyd(a, d);
187 a = cbrta_halleyd(a, d);
188 return cbrta_halleyd(a, d);
189 }
190
SkDCubeRoot(double x)191 double SkDCubeRoot(double x) {
192 if (approximately_zero_cubed(x)) {
193 return 0;
194 }
195 double result = halley_cbrt3d(fabs(x));
196 if (x < 0) {
197 result = -result;
198 }
199 return result;
200 }
201