• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /*---------------------------------------------------------------*/
3 /*--- begin                                guest_amd64_defs.h ---*/
4 /*---------------------------------------------------------------*/
5 
6 /*
7    This file is part of Valgrind, a dynamic binary instrumentation
8    framework.
9 
10    Copyright (C) 2004-2013 OpenWorks LLP
11       info@open-works.net
12 
13    This program is free software; you can redistribute it and/or
14    modify it under the terms of the GNU General Public License as
15    published by the Free Software Foundation; either version 2 of the
16    License, or (at your option) any later version.
17 
18    This program is distributed in the hope that it will be useful, but
19    WITHOUT ANY WARRANTY; without even the implied warranty of
20    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
21    General Public License for more details.
22 
23    You should have received a copy of the GNU General Public License
24    along with this program; if not, write to the Free Software
25    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
26    02110-1301, USA.
27 
28    The GNU General Public License is contained in the file COPYING.
29 
30    Neither the names of the U.S. Department of Energy nor the
31    University of California nor the names of its contributors may be
32    used to endorse or promote products derived from this software
33    without prior written permission.
34 */
35 
36 /* Only to be used within the guest-amd64 directory. */
37 
38 #ifndef __VEX_GUEST_AMD64_DEFS_H
39 #define __VEX_GUEST_AMD64_DEFS_H
40 
41 #include "libvex_basictypes.h"
42 #include "libvex_emnote.h"              // VexEmNote
43 #include "libvex_guest_amd64.h"         // VexGuestAMD64State
44 #include "guest_generic_bb_to_IR.h"     // DisResult
45 
46 /*---------------------------------------------------------*/
47 /*--- amd64 to IR conversion                            ---*/
48 /*---------------------------------------------------------*/
49 
50 /* Convert one amd64 insn to IR.  See the type DisOneInstrFn in
51    bb_to_IR.h. */
52 extern
53 DisResult disInstr_AMD64 ( IRSB*        irbb,
54                            Bool         (*resteerOkFn) ( void*, Addr64 ),
55                            Bool         resteerCisOk,
56                            void*        callback_opaque,
57                            UChar*       guest_code,
58                            Long         delta,
59                            Addr64       guest_IP,
60                            VexArch      guest_arch,
61                            VexArchInfo* archinfo,
62                            VexAbiInfo*  abiinfo,
63                            Bool         host_bigendian,
64                            Bool         sigill_diag );
65 
66 /* Used by the optimiser to specialise calls to helpers. */
67 extern
68 IRExpr* guest_amd64_spechelper ( const HChar* function_name,
69                                  IRExpr** args,
70                                  IRStmt** precedingStmts,
71                                  Int      n_precedingStmts );
72 
73 /* Describes to the optimiser which part of the guest state require
74    precise memory exceptions.  This is logically part of the guest
75    state description. */
76 extern
77 Bool guest_amd64_state_requires_precise_mem_exns ( Int, Int );
78 
79 extern
80 VexGuestLayout amd64guest_layout;
81 
82 
83 /*---------------------------------------------------------*/
84 /*--- amd64 guest helpers                               ---*/
85 /*---------------------------------------------------------*/
86 
87 /* --- CLEAN HELPERS --- */
88 
89 extern ULong amd64g_calculate_rflags_all (
90                 ULong cc_op,
91                 ULong cc_dep1, ULong cc_dep2, ULong cc_ndep
92              );
93 
94 extern ULong amd64g_calculate_rflags_c (
95                 ULong cc_op,
96                 ULong cc_dep1, ULong cc_dep2, ULong cc_ndep
97              );
98 
99 extern ULong amd64g_calculate_condition (
100                 ULong/*AMD64Condcode*/ cond,
101                 ULong cc_op,
102                 ULong cc_dep1, ULong cc_dep2, ULong cc_ndep
103              );
104 
105 extern ULong amd64g_calculate_FXAM ( ULong tag, ULong dbl );
106 
107 extern ULong amd64g_calculate_RCR  (
108                 ULong arg, ULong rot_amt, ULong rflags_in, Long sz
109              );
110 
111 extern ULong amd64g_calculate_RCL  (
112                 ULong arg, ULong rot_amt, ULong rflags_in, Long sz
113              );
114 
115 extern ULong amd64g_calculate_pclmul(ULong s1, ULong s2, ULong which);
116 
117 extern ULong amd64g_check_fldcw ( ULong fpucw );
118 
119 extern ULong amd64g_create_fpucw ( ULong fpround );
120 
121 extern ULong amd64g_check_ldmxcsr ( ULong mxcsr );
122 
123 extern ULong amd64g_create_mxcsr ( ULong sseround );
124 
125 extern VexEmNote amd64g_dirtyhelper_FLDENV  ( VexGuestAMD64State*, HWord );
126 extern VexEmNote amd64g_dirtyhelper_FRSTOR  ( VexGuestAMD64State*, HWord );
127 extern VexEmNote amd64g_dirtyhelper_FRSTORS ( VexGuestAMD64State*, HWord );
128 
129 extern void amd64g_dirtyhelper_FSTENV  ( VexGuestAMD64State*, HWord );
130 extern void amd64g_dirtyhelper_FNSAVE  ( VexGuestAMD64State*, HWord );
131 extern void amd64g_dirtyhelper_FNSAVES ( VexGuestAMD64State*, HWord );
132 
133 /* Translate a guest virtual_addr into a guest linear address by
134    consulting the supplied LDT/GDT structures.  Their representation
135    must be as specified in pub/libvex_guest_amd64.h.  To indicate a
136    translation failure, 1<<32 is returned.  On success, the lower 32
137    bits of the returned result indicate the linear address.
138 */
139 //extern
140 //ULong amd64g_use_seg_selector ( HWord ldt, HWord gdt,
141 //                              UInt seg_selector, UInt virtual_addr );
142 
143 extern ULong amd64g_calculate_mmx_pmaddwd  ( ULong, ULong );
144 extern ULong amd64g_calculate_mmx_psadbw   ( ULong, ULong );
145 
146 extern ULong amd64g_calculate_sse_phminposuw ( ULong sLo, ULong sHi );
147 
148 extern ULong amd64g_calc_crc32b ( ULong crcIn, ULong b );
149 extern ULong amd64g_calc_crc32w ( ULong crcIn, ULong w );
150 extern ULong amd64g_calc_crc32l ( ULong crcIn, ULong l );
151 extern ULong amd64g_calc_crc32q ( ULong crcIn, ULong q );
152 
153 extern ULong amd64g_calc_mpsadbw ( ULong sHi, ULong sLo,
154                                    ULong dHi, ULong dLo,
155                                    ULong imm_and_return_control_bit );
156 
157 extern ULong amd64g_calculate_pext  ( ULong, ULong );
158 extern ULong amd64g_calculate_pdep  ( ULong, ULong );
159 
160 /* --- DIRTY HELPERS --- */
161 
162 extern ULong amd64g_dirtyhelper_loadF80le  ( ULong/*addr*/ );
163 
164 extern void  amd64g_dirtyhelper_storeF80le ( ULong/*addr*/, ULong/*data*/ );
165 
166 extern void  amd64g_dirtyhelper_CPUID_baseline ( VexGuestAMD64State* st );
167 extern void  amd64g_dirtyhelper_CPUID_sse3_and_cx16 ( VexGuestAMD64State* st );
168 extern void  amd64g_dirtyhelper_CPUID_sse42_and_cx16 ( VexGuestAMD64State* st );
169 extern void  amd64g_dirtyhelper_CPUID_avx_and_cx16 ( VexGuestAMD64State* st );
170 
171 extern void  amd64g_dirtyhelper_FINIT ( VexGuestAMD64State* );
172 
173 extern void      amd64g_dirtyhelper_FXSAVE  ( VexGuestAMD64State*, HWord );
174 extern VexEmNote amd64g_dirtyhelper_FXRSTOR ( VexGuestAMD64State*, HWord );
175 
176 extern ULong amd64g_dirtyhelper_RDTSC ( void );
177 extern void  amd64g_dirtyhelper_RDTSCP ( VexGuestAMD64State* st );
178 
179 extern ULong amd64g_dirtyhelper_IN  ( ULong portno, ULong sz/*1,2 or 4*/ );
180 extern void  amd64g_dirtyhelper_OUT ( ULong portno, ULong data,
181                                       ULong sz/*1,2 or 4*/ );
182 
183 extern void amd64g_dirtyhelper_SxDT ( void* address,
184                                       ULong op /* 0 or 1 */ );
185 
186 /* Helps with PCMP{I,E}STR{I,M}.
187 
188    CALLED FROM GENERATED CODE: DIRTY HELPER(s).  (But not really,
189    actually it could be a clean helper, but for the fact that we can't
190    pass by value 2 x V128 to a clean helper, nor have one returned.)
191    Reads guest state, writes to guest state for the xSTRM cases, no
192    accesses of memory, is a pure function.
193 
194    opc_and_imm contains (4th byte of opcode << 8) | the-imm8-byte so
195    the callee knows which I/E and I/M variant it is dealing with and
196    what the specific operation is.  4th byte of opcode is in the range
197    0x60 to 0x63:
198        istri  66 0F 3A 63
199        istrm  66 0F 3A 62
200        estri  66 0F 3A 61
201        estrm  66 0F 3A 60
202 
203    gstOffL and gstOffR are the guest state offsets for the two XMM
204    register inputs.  We never have to deal with the memory case since
205    that is handled by pre-loading the relevant value into the fake
206    XMM16 register.
207 
208    For ESTRx variants, edxIN and eaxIN hold the values of those two
209    registers.
210 
211    In all cases, the bottom 16 bits of the result contain the new
212    OSZACP %rflags values.  For xSTRI variants, bits[31:16] of the
213    result hold the new %ecx value.  For xSTRM variants, the helper
214    writes the result directly to the guest XMM0.
215 
216    Declarable side effects: in all cases, reads guest state at
217    [gstOffL, +16) and [gstOffR, +16).  For xSTRM variants, also writes
218    guest_XMM0.
219 
220    Is expected to be called with opc_and_imm combinations which have
221    actually been validated, and will assert if otherwise.  The front
222    end should ensure we're only called with verified values.
223 */
224 extern ULong amd64g_dirtyhelper_PCMPxSTRx (
225           VexGuestAMD64State*,
226           HWord opc4_and_imm,
227           HWord gstOffL, HWord gstOffR,
228           HWord edxIN, HWord eaxIN
229        );
230 
231 /* Implementation of intel AES instructions as described in
232    Intel  Advanced Vector Extensions
233           Programming Reference
234           MARCH 2008
235           319433-002.
236 
237    CALLED FROM GENERATED CODE: DIRTY HELPER(s).  (But not really,
238    actually it could be a clean helper, but for the fact that we can't
239    pass by value 2 x V128 to a clean helper, nor have one returned.)
240    Reads guest state, writes to guest state, no
241    accesses of memory, is a pure function.
242 
243    opc4 contains the 4th byte of opcode. Front-end should only
244    give opcode corresponding to AESENC/AESENCLAST/AESDEC/AESDECLAST/AESIMC.
245    (will assert otherwise).
246 
247    gstOffL and gstOffR are the guest state offsets for the two XMM
248    register inputs, gstOffD is the guest state offset for the XMM register
249    output.  We never have to deal with the memory case since that is handled
250    by pre-loading the relevant value into the fake XMM16 register.
251 
252 */
253 extern void amd64g_dirtyhelper_AES (
254           VexGuestAMD64State* gst,
255           HWord opc4, HWord gstOffD,
256           HWord gstOffL, HWord gstOffR
257        );
258 
259 /* Implementation of AESKEYGENASSIST.
260 
261    CALLED FROM GENERATED CODE: DIRTY HELPER(s).  (But not really,
262    actually it could be a clean helper, but for the fact that we can't
263    pass by value 1 x V128 to a clean helper, nor have one returned.)
264    Reads guest state, writes to guest state, no
265    accesses of memory, is a pure function.
266 
267    imm8 is the Round Key constant.
268 
269    gstOffL and gstOffR are the guest state offsets for the two XMM
270    register input and output.  We never have to deal with the memory case since
271    that is handled by pre-loading the relevant value into the fake
272    XMM16 register.
273 
274 */
275 extern void amd64g_dirtyhelper_AESKEYGENASSIST (
276           VexGuestAMD64State* gst,
277           HWord imm8,
278           HWord gstOffL, HWord gstOffR
279        );
280 
281 //extern void  amd64g_dirtyhelper_CPUID_sse0 ( VexGuestAMD64State* );
282 //extern void  amd64g_dirtyhelper_CPUID_sse1 ( VexGuestAMD64State* );
283 //extern void  amd64g_dirtyhelper_CPUID_sse2 ( VexGuestAMD64State* );
284 
285 //extern void  amd64g_dirtyhelper_FSAVE ( VexGuestAMD64State*, HWord );
286 
287 //extern VexEmNote
288 //            amd64g_dirtyhelper_FRSTOR ( VexGuestAMD64State*, HWord );
289 
290 //extern void amd64g_dirtyhelper_FSTENV ( VexGuestAMD64State*, HWord );
291 
292 //extern VexEmNote
293 //            amd64g_dirtyhelper_FLDENV ( VexGuestAMD64State*, HWord );
294 
295 
296 
297 /*---------------------------------------------------------*/
298 /*--- Condition code stuff                              ---*/
299 /*---------------------------------------------------------*/
300 
301 /* rflags masks */
302 #define AMD64G_CC_SHIFT_O   11
303 #define AMD64G_CC_SHIFT_S   7
304 #define AMD64G_CC_SHIFT_Z   6
305 #define AMD64G_CC_SHIFT_A   4
306 #define AMD64G_CC_SHIFT_C   0
307 #define AMD64G_CC_SHIFT_P   2
308 
309 #define AMD64G_CC_MASK_O    (1ULL << AMD64G_CC_SHIFT_O)
310 #define AMD64G_CC_MASK_S    (1ULL << AMD64G_CC_SHIFT_S)
311 #define AMD64G_CC_MASK_Z    (1ULL << AMD64G_CC_SHIFT_Z)
312 #define AMD64G_CC_MASK_A    (1ULL << AMD64G_CC_SHIFT_A)
313 #define AMD64G_CC_MASK_C    (1ULL << AMD64G_CC_SHIFT_C)
314 #define AMD64G_CC_MASK_P    (1ULL << AMD64G_CC_SHIFT_P)
315 
316 /* FPU flag masks */
317 #define AMD64G_FC_SHIFT_C3   14
318 #define AMD64G_FC_SHIFT_C2   10
319 #define AMD64G_FC_SHIFT_C1   9
320 #define AMD64G_FC_SHIFT_C0   8
321 
322 #define AMD64G_FC_MASK_C3    (1ULL << AMD64G_FC_SHIFT_C3)
323 #define AMD64G_FC_MASK_C2    (1ULL << AMD64G_FC_SHIFT_C2)
324 #define AMD64G_FC_MASK_C1    (1ULL << AMD64G_FC_SHIFT_C1)
325 #define AMD64G_FC_MASK_C0    (1ULL << AMD64G_FC_SHIFT_C0)
326 
327 
328 /* %RFLAGS thunk descriptors.  A four-word thunk is used to record
329    details of the most recent flag-setting operation, so the flags can
330    be computed later if needed.  It is possible to do this a little
331    more efficiently using a 3-word thunk, but that makes it impossible
332    to describe the flag data dependencies sufficiently accurately for
333    Memcheck.  Hence 4 words are used, with minimal loss of efficiency.
334 
335    The four words are:
336 
337       CC_OP, which describes the operation.
338 
339       CC_DEP1 and CC_DEP2.  These are arguments to the operation.
340          We want Memcheck to believe that the resulting flags are
341          data-dependent on both CC_DEP1 and CC_DEP2, hence the
342          name DEP.
343 
344       CC_NDEP.  This is a 3rd argument to the operation which is
345          sometimes needed.  We arrange things so that Memcheck does
346          not believe the resulting flags are data-dependent on CC_NDEP
347          ("not dependent").
348 
349    To make Memcheck believe that (the definedness of) the encoded
350    flags depends only on (the definedness of) CC_DEP1 and CC_DEP2
351    requires two things:
352 
353    (1) In the guest state layout info (amd64guest_layout), CC_OP and
354        CC_NDEP are marked as always defined.
355 
356    (2) When passing the thunk components to an evaluation function
357        (calculate_condition, calculate_eflags, calculate_eflags_c) the
358        IRCallee's mcx_mask must be set so as to exclude from
359        consideration all passed args except CC_DEP1 and CC_DEP2.
360 
361    Strictly speaking only (2) is necessary for correctness.  However,
362    (1) helps efficiency in that since (2) means we never ask about the
363    definedness of CC_OP or CC_NDEP, we may as well not even bother to
364    track their definedness.
365 
366    When building the thunk, it is always necessary to write words into
367    CC_DEP1 and CC_DEP2, even if those args are not used given the
368    CC_OP field (eg, CC_DEP2 is not used if CC_OP is CC_LOGIC1/2/4).
369    This is important because otherwise Memcheck could give false
370    positives as it does not understand the relationship between the
371    CC_OP field and CC_DEP1 and CC_DEP2, and so believes that the
372    definedness of the stored flags always depends on both CC_DEP1 and
373    CC_DEP2.
374 
375    However, it is only necessary to set CC_NDEP when the CC_OP value
376    requires it, because Memcheck ignores CC_NDEP, and the evaluation
377    functions do understand the CC_OP fields and will only examine
378    CC_NDEP for suitable values of CC_OP.
379 
380    A summary of the field usages is:
381 
382    Operation          DEP1               DEP2               NDEP
383    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
384 
385    add/sub/mul        first arg          second arg         unused
386 
387    adc/sbb            first arg          (second arg)
388                                          XOR old_carry      old_carry
389 
390    and/or/xor         result             zero               unused
391 
392    inc/dec            result             zero               old_carry
393 
394    shl/shr/sar        result             subshifted-        unused
395                                          result
396 
397    rol/ror            result             zero               old_flags
398 
399    copy               old_flags          zero               unused.
400 
401 
402    Therefore Memcheck will believe the following:
403 
404    * add/sub/mul -- definedness of result flags depends on definedness
405      of both args.
406 
407    * adc/sbb -- definedness of result flags depends on definedness of
408      both args and definedness of the old C flag.  Because only two
409      DEP fields are available, the old C flag is XOR'd into the second
410      arg so that Memcheck sees the data dependency on it.  That means
411      the NDEP field must contain a second copy of the old C flag
412      so that the evaluation functions can correctly recover the second
413      arg.
414 
415    * and/or/xor are straightforward -- definedness of result flags
416      depends on definedness of result value.
417 
418    * inc/dec -- definedness of result flags depends only on
419      definedness of result.  This isn't really true -- it also depends
420      on the old C flag.  However, we don't want Memcheck to see that,
421      and so the old C flag must be passed in NDEP and not in DEP2.
422      It's inconceivable that a compiler would generate code that puts
423      the C flag in an undefined state, then does an inc/dec, which
424      leaves C unchanged, and then makes a conditional jump/move based
425      on C.  So our fiction seems a good approximation.
426 
427    * shl/shr/sar -- straightforward, again, definedness of result
428      flags depends on definedness of result value.  The subshifted
429      value (value shifted one less) is also needed, but its
430      definedness is the same as the definedness of the shifted value.
431 
432    * rol/ror -- these only set O and C, and leave A Z C P alone.
433      However it seems prudent (as per inc/dec) to say the definedness
434      of all resulting flags depends on the definedness of the result,
435      hence the old flags must go in as NDEP and not DEP2.
436 
437    * rcl/rcr are too difficult to do in-line, and so are done by a
438      helper function.  They are not part of this scheme.  The helper
439      function takes the value to be rotated, the rotate amount and the
440      old flags, and returns the new flags and the rotated value.
441      Since the helper's mcx_mask does not have any set bits, Memcheck
442      will lazily propagate undefinedness from any of the 3 args into
443      both results (flags and actual value).
444 */
445 enum {
446     AMD64G_CC_OP_COPY=0,  /* DEP1 = current flags, DEP2 = 0, NDEP = unused */
447                           /* just copy DEP1 to output */
448 
449     AMD64G_CC_OP_ADDB,    /* 1 */
450     AMD64G_CC_OP_ADDW,    /* 2 DEP1 = argL, DEP2 = argR, NDEP = unused */
451     AMD64G_CC_OP_ADDL,    /* 3 */
452     AMD64G_CC_OP_ADDQ,    /* 4 */
453 
454     AMD64G_CC_OP_SUBB,    /* 5 */
455     AMD64G_CC_OP_SUBW,    /* 6 DEP1 = argL, DEP2 = argR, NDEP = unused */
456     AMD64G_CC_OP_SUBL,    /* 7 */
457     AMD64G_CC_OP_SUBQ,    /* 8 */
458 
459     AMD64G_CC_OP_ADCB,    /* 9 */
460     AMD64G_CC_OP_ADCW,    /* 10 DEP1 = argL, DEP2 = argR ^ oldCarry, NDEP = oldCarry */
461     AMD64G_CC_OP_ADCL,    /* 11 */
462     AMD64G_CC_OP_ADCQ,    /* 12 */
463 
464     AMD64G_CC_OP_SBBB,    /* 13 */
465     AMD64G_CC_OP_SBBW,    /* 14 DEP1 = argL, DEP2 = argR ^ oldCarry, NDEP = oldCarry */
466     AMD64G_CC_OP_SBBL,    /* 15 */
467     AMD64G_CC_OP_SBBQ,    /* 16 */
468 
469     AMD64G_CC_OP_LOGICB,  /* 17 */
470     AMD64G_CC_OP_LOGICW,  /* 18 DEP1 = result, DEP2 = 0, NDEP = unused */
471     AMD64G_CC_OP_LOGICL,  /* 19 */
472     AMD64G_CC_OP_LOGICQ,  /* 20 */
473 
474     AMD64G_CC_OP_INCB,    /* 21 */
475     AMD64G_CC_OP_INCW,    /* 22 DEP1 = result, DEP2 = 0, NDEP = oldCarry (0 or 1) */
476     AMD64G_CC_OP_INCL,    /* 23 */
477     AMD64G_CC_OP_INCQ,    /* 24 */
478 
479     AMD64G_CC_OP_DECB,    /* 25 */
480     AMD64G_CC_OP_DECW,    /* 26 DEP1 = result, DEP2 = 0, NDEP = oldCarry (0 or 1) */
481     AMD64G_CC_OP_DECL,    /* 27 */
482     AMD64G_CC_OP_DECQ,    /* 28 */
483 
484     AMD64G_CC_OP_SHLB,    /* 29 DEP1 = res, DEP2 = res', NDEP = unused */
485     AMD64G_CC_OP_SHLW,    /* 30 where res' is like res but shifted one bit less */
486     AMD64G_CC_OP_SHLL,    /* 31 */
487     AMD64G_CC_OP_SHLQ,    /* 32 */
488 
489     AMD64G_CC_OP_SHRB,    /* 33 DEP1 = res, DEP2 = res', NDEP = unused */
490     AMD64G_CC_OP_SHRW,    /* 34 where res' is like res but shifted one bit less */
491     AMD64G_CC_OP_SHRL,    /* 35 */
492     AMD64G_CC_OP_SHRQ,    /* 36 */
493 
494     AMD64G_CC_OP_ROLB,    /* 37 */
495     AMD64G_CC_OP_ROLW,    /* 38 DEP1 = res, DEP2 = 0, NDEP = old flags */
496     AMD64G_CC_OP_ROLL,    /* 39 */
497     AMD64G_CC_OP_ROLQ,    /* 40 */
498 
499     AMD64G_CC_OP_RORB,    /* 41 */
500     AMD64G_CC_OP_RORW,    /* 42 DEP1 = res, DEP2 = 0, NDEP = old flags */
501     AMD64G_CC_OP_RORL,    /* 43 */
502     AMD64G_CC_OP_RORQ,    /* 44 */
503 
504     AMD64G_CC_OP_UMULB,   /* 45 */
505     AMD64G_CC_OP_UMULW,   /* 46 DEP1 = argL, DEP2 = argR, NDEP = unused */
506     AMD64G_CC_OP_UMULL,   /* 47 */
507     AMD64G_CC_OP_UMULQ,   /* 48 */
508 
509     AMD64G_CC_OP_SMULB,   /* 49 */
510     AMD64G_CC_OP_SMULW,   /* 50 DEP1 = argL, DEP2 = argR, NDEP = unused */
511     AMD64G_CC_OP_SMULL,   /* 51 */
512     AMD64G_CC_OP_SMULQ,   /* 52 */
513 
514     AMD64G_CC_OP_ANDN32,  /* 53 */
515     AMD64G_CC_OP_ANDN64,  /* 54 DEP1 = res, DEP2 = 0, NDEP = unused */
516 
517     AMD64G_CC_OP_BLSI32,  /* 55 */
518     AMD64G_CC_OP_BLSI64,  /* 56 DEP1 = res, DEP2 = arg, NDEP = unused */
519 
520     AMD64G_CC_OP_BLSMSK32,/* 57 */
521     AMD64G_CC_OP_BLSMSK64,/* 58 DEP1 = res, DEP2 = arg, NDEP = unused */
522 
523     AMD64G_CC_OP_BLSR32,  /* 59 */
524     AMD64G_CC_OP_BLSR64,  /* 60 DEP1 = res, DEP2 = arg, NDEP = unused */
525 
526     AMD64G_CC_OP_NUMBER
527 };
528 
529 typedef
530    enum {
531       AMD64CondO      = 0,  /* overflow           */
532       AMD64CondNO     = 1,  /* no overflow        */
533 
534       AMD64CondB      = 2,  /* below              */
535       AMD64CondNB     = 3,  /* not below          */
536 
537       AMD64CondZ      = 4,  /* zero               */
538       AMD64CondNZ     = 5,  /* not zero           */
539 
540       AMD64CondBE     = 6,  /* below or equal     */
541       AMD64CondNBE    = 7,  /* not below or equal */
542 
543       AMD64CondS      = 8,  /* negative           */
544       AMD64CondNS     = 9,  /* not negative       */
545 
546       AMD64CondP      = 10, /* parity even        */
547       AMD64CondNP     = 11, /* not parity even    */
548 
549       AMD64CondL      = 12, /* jump less          */
550       AMD64CondNL     = 13, /* not less           */
551 
552       AMD64CondLE     = 14, /* less or equal      */
553       AMD64CondNLE    = 15, /* not less or equal  */
554 
555       AMD64CondAlways = 16  /* HACK */
556    }
557    AMD64Condcode;
558 
559 #endif /* ndef __VEX_GUEST_AMD64_DEFS_H */
560 
561 /*---------------------------------------------------------------*/
562 /*--- end                                  guest_amd64_defs.h ---*/
563 /*---------------------------------------------------------------*/
564