• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package android.net;
18 
19 import android.os.SystemClock;
20 import android.util.Log;
21 
22 import java.net.DatagramPacket;
23 import java.net.DatagramSocket;
24 import java.net.InetAddress;
25 
26 /**
27  * {@hide}
28  *
29  * Simple SNTP client class for retrieving network time.
30  *
31  * Sample usage:
32  * <pre>SntpClient client = new SntpClient();
33  * if (client.requestTime("time.foo.com")) {
34  *     long now = client.getNtpTime() + SystemClock.elapsedRealtime() - client.getNtpTimeReference();
35  * }
36  * </pre>
37  */
38 public class SntpClient
39 {
40     private static final String TAG = "SntpClient";
41 
42     private static final int REFERENCE_TIME_OFFSET = 16;
43     private static final int ORIGINATE_TIME_OFFSET = 24;
44     private static final int RECEIVE_TIME_OFFSET = 32;
45     private static final int TRANSMIT_TIME_OFFSET = 40;
46     private static final int NTP_PACKET_SIZE = 48;
47 
48     private static final int NTP_PORT = 123;
49     private static final int NTP_MODE_CLIENT = 3;
50     private static final int NTP_VERSION = 3;
51 
52     // Number of seconds between Jan 1, 1900 and Jan 1, 1970
53     // 70 years plus 17 leap days
54     private static final long OFFSET_1900_TO_1970 = ((365L * 70L) + 17L) * 24L * 60L * 60L;
55 
56     // system time computed from NTP server response
57     private long mNtpTime;
58 
59     // value of SystemClock.elapsedRealtime() corresponding to mNtpTime
60     private long mNtpTimeReference;
61 
62     // round trip time in milliseconds
63     private long mRoundTripTime;
64 
65     /**
66      * Sends an SNTP request to the given host and processes the response.
67      *
68      * @param host host name of the server.
69      * @param timeout network timeout in milliseconds.
70      * @return true if the transaction was successful.
71      */
requestTime(String host, int timeout)72     public boolean requestTime(String host, int timeout) {
73         DatagramSocket socket = null;
74         try {
75             socket = new DatagramSocket();
76             socket.setSoTimeout(timeout);
77             InetAddress address = InetAddress.getByName(host);
78             byte[] buffer = new byte[NTP_PACKET_SIZE];
79             DatagramPacket request = new DatagramPacket(buffer, buffer.length, address, NTP_PORT);
80 
81             // set mode = 3 (client) and version = 3
82             // mode is in low 3 bits of first byte
83             // version is in bits 3-5 of first byte
84             buffer[0] = NTP_MODE_CLIENT | (NTP_VERSION << 3);
85 
86             // get current time and write it to the request packet
87             long requestTime = System.currentTimeMillis();
88             long requestTicks = SystemClock.elapsedRealtime();
89             writeTimeStamp(buffer, TRANSMIT_TIME_OFFSET, requestTime);
90 
91             socket.send(request);
92 
93             // read the response
94             DatagramPacket response = new DatagramPacket(buffer, buffer.length);
95             socket.receive(response);
96             long responseTicks = SystemClock.elapsedRealtime();
97             long responseTime = requestTime + (responseTicks - requestTicks);
98 
99             // extract the results
100             long originateTime = readTimeStamp(buffer, ORIGINATE_TIME_OFFSET);
101             long receiveTime = readTimeStamp(buffer, RECEIVE_TIME_OFFSET);
102             long transmitTime = readTimeStamp(buffer, TRANSMIT_TIME_OFFSET);
103             long roundTripTime = responseTicks - requestTicks - (transmitTime - receiveTime);
104             // receiveTime = originateTime + transit + skew
105             // responseTime = transmitTime + transit - skew
106             // clockOffset = ((receiveTime - originateTime) + (transmitTime - responseTime))/2
107             //             = ((originateTime + transit + skew - originateTime) +
108             //                (transmitTime - (transmitTime + transit - skew)))/2
109             //             = ((transit + skew) + (transmitTime - transmitTime - transit + skew))/2
110             //             = (transit + skew - transit + skew)/2
111             //             = (2 * skew)/2 = skew
112             long clockOffset = ((receiveTime - originateTime) + (transmitTime - responseTime))/2;
113             // if (false) Log.d(TAG, "round trip: " + roundTripTime + " ms");
114             // if (false) Log.d(TAG, "clock offset: " + clockOffset + " ms");
115 
116             // save our results - use the times on this side of the network latency
117             // (response rather than request time)
118             mNtpTime = responseTime + clockOffset;
119             mNtpTimeReference = responseTicks;
120             mRoundTripTime = roundTripTime;
121         } catch (Exception e) {
122             if (false) Log.d(TAG, "request time failed: " + e);
123             return false;
124         } finally {
125             if (socket != null) {
126                 socket.close();
127             }
128         }
129 
130         return true;
131     }
132 
133     /**
134      * Returns the time computed from the NTP transaction.
135      *
136      * @return time value computed from NTP server response.
137      */
getNtpTime()138     public long getNtpTime() {
139         return mNtpTime;
140     }
141 
142     /**
143      * Returns the reference clock value (value of SystemClock.elapsedRealtime())
144      * corresponding to the NTP time.
145      *
146      * @return reference clock corresponding to the NTP time.
147      */
getNtpTimeReference()148     public long getNtpTimeReference() {
149         return mNtpTimeReference;
150     }
151 
152     /**
153      * Returns the round trip time of the NTP transaction
154      *
155      * @return round trip time in milliseconds.
156      */
getRoundTripTime()157     public long getRoundTripTime() {
158         return mRoundTripTime;
159     }
160 
161     /**
162      * Reads an unsigned 32 bit big endian number from the given offset in the buffer.
163      */
read32(byte[] buffer, int offset)164     private long read32(byte[] buffer, int offset) {
165         byte b0 = buffer[offset];
166         byte b1 = buffer[offset+1];
167         byte b2 = buffer[offset+2];
168         byte b3 = buffer[offset+3];
169 
170         // convert signed bytes to unsigned values
171         int i0 = ((b0 & 0x80) == 0x80 ? (b0 & 0x7F) + 0x80 : b0);
172         int i1 = ((b1 & 0x80) == 0x80 ? (b1 & 0x7F) + 0x80 : b1);
173         int i2 = ((b2 & 0x80) == 0x80 ? (b2 & 0x7F) + 0x80 : b2);
174         int i3 = ((b3 & 0x80) == 0x80 ? (b3 & 0x7F) + 0x80 : b3);
175 
176         return ((long)i0 << 24) + ((long)i1 << 16) + ((long)i2 << 8) + (long)i3;
177     }
178 
179     /**
180      * Reads the NTP time stamp at the given offset in the buffer and returns
181      * it as a system time (milliseconds since January 1, 1970).
182      */
readTimeStamp(byte[] buffer, int offset)183     private long readTimeStamp(byte[] buffer, int offset) {
184         long seconds = read32(buffer, offset);
185         long fraction = read32(buffer, offset + 4);
186         return ((seconds - OFFSET_1900_TO_1970) * 1000) + ((fraction * 1000L) / 0x100000000L);
187     }
188 
189     /**
190      * Writes system time (milliseconds since January 1, 1970) as an NTP time stamp
191      * at the given offset in the buffer.
192      */
writeTimeStamp(byte[] buffer, int offset, long time)193     private void writeTimeStamp(byte[] buffer, int offset, long time) {
194         long seconds = time / 1000L;
195         long milliseconds = time - seconds * 1000L;
196         seconds += OFFSET_1900_TO_1970;
197 
198         // write seconds in big endian format
199         buffer[offset++] = (byte)(seconds >> 24);
200         buffer[offset++] = (byte)(seconds >> 16);
201         buffer[offset++] = (byte)(seconds >> 8);
202         buffer[offset++] = (byte)(seconds >> 0);
203 
204         long fraction = milliseconds * 0x100000000L / 1000L;
205         // write fraction in big endian format
206         buffer[offset++] = (byte)(fraction >> 24);
207         buffer[offset++] = (byte)(fraction >> 16);
208         buffer[offset++] = (byte)(fraction >> 8);
209         // low order bits should be random data
210         buffer[offset++] = (byte)(Math.random() * 255.0);
211     }
212 }
213