1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "ReaderWriter_3_2.h"
15 #include "legacy_bitcode.h"
16 #include "ValueEnumerator.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/Bitcode/BitstreamWriter.h"
19 #include "llvm/Bitcode/LLVMBitCodes.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/InlineAsm.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/ValueSymbolTable.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/Program.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <cctype>
33 #include <map>
34 using namespace llvm;
35
36 static bool EnablePreserveUseListOrdering = false;
37
38 /// These are manifest constants used by the bitcode writer. They do not need to
39 /// be kept in sync with the reader, but need to be consistent within this file.
40 enum {
41 CurVersion = 0,
42
43 // VALUE_SYMTAB_BLOCK abbrev id's.
44 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
45 VST_ENTRY_7_ABBREV,
46 VST_ENTRY_6_ABBREV,
47 VST_BBENTRY_6_ABBREV,
48
49 // CONSTANTS_BLOCK abbrev id's.
50 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
51 CONSTANTS_INTEGER_ABBREV,
52 CONSTANTS_CE_CAST_Abbrev,
53 CONSTANTS_NULL_Abbrev,
54
55 // FUNCTION_BLOCK abbrev id's.
56 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
57 FUNCTION_INST_BINOP_ABBREV,
58 FUNCTION_INST_BINOP_FLAGS_ABBREV,
59 FUNCTION_INST_CAST_ABBREV,
60 FUNCTION_INST_RET_VOID_ABBREV,
61 FUNCTION_INST_RET_VAL_ABBREV,
62 FUNCTION_INST_UNREACHABLE_ABBREV,
63
64 // SwitchInst Magic
65 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
66 };
67
GetEncodedCastOpcode(unsigned Opcode)68 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
69 switch (Opcode) {
70 default: llvm_unreachable("Unknown cast instruction!");
71 case Instruction::Trunc : return bitc::CAST_TRUNC;
72 case Instruction::ZExt : return bitc::CAST_ZEXT;
73 case Instruction::SExt : return bitc::CAST_SEXT;
74 case Instruction::FPToUI : return bitc::CAST_FPTOUI;
75 case Instruction::FPToSI : return bitc::CAST_FPTOSI;
76 case Instruction::UIToFP : return bitc::CAST_UITOFP;
77 case Instruction::SIToFP : return bitc::CAST_SITOFP;
78 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
79 case Instruction::FPExt : return bitc::CAST_FPEXT;
80 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
81 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
82 case Instruction::BitCast : return bitc::CAST_BITCAST;
83 }
84 }
85
GetEncodedBinaryOpcode(unsigned Opcode)86 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
87 switch (Opcode) {
88 default: llvm_unreachable("Unknown binary instruction!");
89 case Instruction::Add:
90 case Instruction::FAdd: return bitc::BINOP_ADD;
91 case Instruction::Sub:
92 case Instruction::FSub: return bitc::BINOP_SUB;
93 case Instruction::Mul:
94 case Instruction::FMul: return bitc::BINOP_MUL;
95 case Instruction::UDiv: return bitc::BINOP_UDIV;
96 case Instruction::FDiv:
97 case Instruction::SDiv: return bitc::BINOP_SDIV;
98 case Instruction::URem: return bitc::BINOP_UREM;
99 case Instruction::FRem:
100 case Instruction::SRem: return bitc::BINOP_SREM;
101 case Instruction::Shl: return bitc::BINOP_SHL;
102 case Instruction::LShr: return bitc::BINOP_LSHR;
103 case Instruction::AShr: return bitc::BINOP_ASHR;
104 case Instruction::And: return bitc::BINOP_AND;
105 case Instruction::Or: return bitc::BINOP_OR;
106 case Instruction::Xor: return bitc::BINOP_XOR;
107 }
108 }
109
GetEncodedRMWOperation(AtomicRMWInst::BinOp Op)110 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
111 switch (Op) {
112 default: llvm_unreachable("Unknown RMW operation!");
113 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
114 case AtomicRMWInst::Add: return bitc::RMW_ADD;
115 case AtomicRMWInst::Sub: return bitc::RMW_SUB;
116 case AtomicRMWInst::And: return bitc::RMW_AND;
117 case AtomicRMWInst::Nand: return bitc::RMW_NAND;
118 case AtomicRMWInst::Or: return bitc::RMW_OR;
119 case AtomicRMWInst::Xor: return bitc::RMW_XOR;
120 case AtomicRMWInst::Max: return bitc::RMW_MAX;
121 case AtomicRMWInst::Min: return bitc::RMW_MIN;
122 case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
123 case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
124 }
125 }
126
GetEncodedOrdering(AtomicOrdering Ordering)127 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
128 switch (Ordering) {
129 case NotAtomic: return bitc::ORDERING_NOTATOMIC;
130 case Unordered: return bitc::ORDERING_UNORDERED;
131 case Monotonic: return bitc::ORDERING_MONOTONIC;
132 case Acquire: return bitc::ORDERING_ACQUIRE;
133 case Release: return bitc::ORDERING_RELEASE;
134 case AcquireRelease: return bitc::ORDERING_ACQREL;
135 case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
136 }
137 llvm_unreachable("Invalid ordering");
138 }
139
GetEncodedSynchScope(SynchronizationScope SynchScope)140 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
141 switch (SynchScope) {
142 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
143 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
144 }
145 llvm_unreachable("Invalid synch scope");
146 }
147
WriteStringRecord(unsigned Code,StringRef Str,unsigned AbbrevToUse,BitstreamWriter & Stream)148 static void WriteStringRecord(unsigned Code, StringRef Str,
149 unsigned AbbrevToUse, BitstreamWriter &Stream) {
150 SmallVector<unsigned, 64> Vals;
151
152 // Code: [strchar x N]
153 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
154 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
155 AbbrevToUse = 0;
156 Vals.push_back(Str[i]);
157 }
158
159 // Emit the finished record.
160 Stream.EmitRecord(Code, Vals, AbbrevToUse);
161 }
162
163 // Emit information about parameter attributes.
WriteAttributeTable(const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)164 static void WriteAttributeTable(const llvm_3_2::ValueEnumerator &VE,
165 BitstreamWriter &Stream) {
166 const std::vector<AttributeSet> &Attrs = VE.getAttributes();
167 if (Attrs.empty()) return;
168
169 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
170
171 SmallVector<uint64_t, 64> Record;
172 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
173 const AttributeSet &A = Attrs[i];
174 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
175 Record.push_back(A.getSlotIndex(i));
176 Record.push_back(encodeLLVMAttributesForBitcode(A, A.getSlotIndex(i)));
177 }
178
179 // This needs to use the 3.2 entry type
180 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY_OLD, Record);
181 Record.clear();
182 }
183
184 Stream.ExitBlock();
185 }
186
187 /// WriteTypeTable - Write out the type table for a module.
WriteTypeTable(const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)188 static void WriteTypeTable(const llvm_3_2::ValueEnumerator &VE,
189 BitstreamWriter &Stream) {
190 const llvm_3_2::ValueEnumerator::TypeList &TypeList = VE.getTypes();
191
192 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
193 SmallVector<uint64_t, 64> TypeVals;
194
195 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1);
196
197 // Abbrev for TYPE_CODE_POINTER.
198 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
199 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
200 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
201 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
202 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
203
204 // Abbrev for TYPE_CODE_FUNCTION.
205 Abbv = new BitCodeAbbrev();
206 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
207 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
208 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
210
211 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
212
213 // Abbrev for TYPE_CODE_STRUCT_ANON.
214 Abbv = new BitCodeAbbrev();
215 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
216 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
217 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
218 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
219
220 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
221
222 // Abbrev for TYPE_CODE_STRUCT_NAME.
223 Abbv = new BitCodeAbbrev();
224 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
225 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
226 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
227 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
228
229 // Abbrev for TYPE_CODE_STRUCT_NAMED.
230 Abbv = new BitCodeAbbrev();
231 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
235
236 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
237
238 // Abbrev for TYPE_CODE_ARRAY.
239 Abbv = new BitCodeAbbrev();
240 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
241 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
242 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
243
244 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
245
246 // Emit an entry count so the reader can reserve space.
247 TypeVals.push_back(TypeList.size());
248 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
249 TypeVals.clear();
250
251 // Loop over all of the types, emitting each in turn.
252 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
253 Type *T = TypeList[i];
254 int AbbrevToUse = 0;
255 unsigned Code = 0;
256
257 switch (T->getTypeID()) {
258 default: llvm_unreachable("Unknown type!");
259 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
260 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
261 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
262 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
263 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
264 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
265 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
266 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
267 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
268 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
269 case Type::IntegerTyID:
270 // INTEGER: [width]
271 Code = bitc::TYPE_CODE_INTEGER;
272 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
273 break;
274 case Type::PointerTyID: {
275 PointerType *PTy = cast<PointerType>(T);
276 // POINTER: [pointee type, address space]
277 Code = bitc::TYPE_CODE_POINTER;
278 TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
279 unsigned AddressSpace = PTy->getAddressSpace();
280 TypeVals.push_back(AddressSpace);
281 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
282 break;
283 }
284 case Type::FunctionTyID: {
285 FunctionType *FT = cast<FunctionType>(T);
286 // FUNCTION: [isvararg, retty, paramty x N]
287 Code = bitc::TYPE_CODE_FUNCTION;
288 TypeVals.push_back(FT->isVarArg());
289 TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
290 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
291 TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
292 AbbrevToUse = FunctionAbbrev;
293 break;
294 }
295 case Type::StructTyID: {
296 StructType *ST = cast<StructType>(T);
297 // STRUCT: [ispacked, eltty x N]
298 TypeVals.push_back(ST->isPacked());
299 // Output all of the element types.
300 for (StructType::element_iterator I = ST->element_begin(),
301 E = ST->element_end(); I != E; ++I)
302 TypeVals.push_back(VE.getTypeID(*I));
303
304 if (ST->isLiteral()) {
305 Code = bitc::TYPE_CODE_STRUCT_ANON;
306 AbbrevToUse = StructAnonAbbrev;
307 } else {
308 if (ST->isOpaque()) {
309 Code = bitc::TYPE_CODE_OPAQUE;
310 } else {
311 Code = bitc::TYPE_CODE_STRUCT_NAMED;
312 AbbrevToUse = StructNamedAbbrev;
313 }
314
315 // Emit the name if it is present.
316 if (!ST->getName().empty())
317 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
318 StructNameAbbrev, Stream);
319 }
320 break;
321 }
322 case Type::ArrayTyID: {
323 ArrayType *AT = cast<ArrayType>(T);
324 // ARRAY: [numelts, eltty]
325 Code = bitc::TYPE_CODE_ARRAY;
326 TypeVals.push_back(AT->getNumElements());
327 TypeVals.push_back(VE.getTypeID(AT->getElementType()));
328 AbbrevToUse = ArrayAbbrev;
329 break;
330 }
331 case Type::VectorTyID: {
332 VectorType *VT = cast<VectorType>(T);
333 // VECTOR [numelts, eltty]
334 Code = bitc::TYPE_CODE_VECTOR;
335 TypeVals.push_back(VT->getNumElements());
336 TypeVals.push_back(VE.getTypeID(VT->getElementType()));
337 break;
338 }
339 }
340
341 // Emit the finished record.
342 Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
343 TypeVals.clear();
344 }
345
346 Stream.ExitBlock();
347 }
348
getEncodedLinkage(const GlobalValue * GV)349 static unsigned getEncodedLinkage(const GlobalValue *GV) {
350 switch (GV->getLinkage()) {
351 case GlobalValue::ExternalLinkage: return 0;
352 case GlobalValue::WeakAnyLinkage: return 1;
353 case GlobalValue::AppendingLinkage: return 2;
354 case GlobalValue::InternalLinkage: return 3;
355 case GlobalValue::LinkOnceAnyLinkage: return 4;
356 case GlobalValue::ExternalWeakLinkage: return 7;
357 case GlobalValue::CommonLinkage: return 8;
358 case GlobalValue::PrivateLinkage: return 9;
359 case GlobalValue::WeakODRLinkage: return 10;
360 case GlobalValue::LinkOnceODRLinkage: return 11;
361 case GlobalValue::AvailableExternallyLinkage: return 12;
362 }
363 llvm_unreachable("Invalid linkage");
364 }
365
getEncodedVisibility(const GlobalValue * GV)366 static unsigned getEncodedVisibility(const GlobalValue *GV) {
367 switch (GV->getVisibility()) {
368 case GlobalValue::DefaultVisibility: return 0;
369 case GlobalValue::HiddenVisibility: return 1;
370 case GlobalValue::ProtectedVisibility: return 2;
371 }
372 llvm_unreachable("Invalid visibility");
373 }
374
getEncodedThreadLocalMode(const GlobalVariable * GV)375 static unsigned getEncodedThreadLocalMode(const GlobalVariable *GV) {
376 switch (GV->getThreadLocalMode()) {
377 case GlobalVariable::NotThreadLocal: return 0;
378 case GlobalVariable::GeneralDynamicTLSModel: return 1;
379 case GlobalVariable::LocalDynamicTLSModel: return 2;
380 case GlobalVariable::InitialExecTLSModel: return 3;
381 case GlobalVariable::LocalExecTLSModel: return 4;
382 }
383 llvm_unreachable("Invalid TLS model");
384 }
385
386 // Emit top-level description of module, including target triple, inline asm,
387 // descriptors for global variables, and function prototype info.
WriteModuleInfo(const Module * M,const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)388 static void WriteModuleInfo(const Module *M,
389 const llvm_3_2::ValueEnumerator &VE,
390 BitstreamWriter &Stream) {
391 // Emit various pieces of data attached to a module.
392 if (!M->getTargetTriple().empty())
393 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
394 0/*TODO*/, Stream);
395 if (!M->getDataLayoutStr().empty())
396 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayoutStr(),
397 0/*TODO*/, Stream);
398 if (!M->getModuleInlineAsm().empty())
399 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
400 0/*TODO*/, Stream);
401
402 // Emit information about sections and GC, computing how many there are. Also
403 // compute the maximum alignment value.
404 std::map<std::string, unsigned> SectionMap;
405 std::map<std::string, unsigned> GCMap;
406 unsigned MaxAlignment = 0;
407 unsigned MaxGlobalType = 0;
408 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
409 GV != E; ++GV) {
410 MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
411 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
412 if (GV->hasSection()) {
413 // Give section names unique ID's.
414 unsigned &Entry = SectionMap[GV->getSection()];
415 if (!Entry) {
416 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
417 0/*TODO*/, Stream);
418 Entry = SectionMap.size();
419 }
420 }
421 }
422 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
423 MaxAlignment = std::max(MaxAlignment, F->getAlignment());
424 if (F->hasSection()) {
425 // Give section names unique ID's.
426 unsigned &Entry = SectionMap[F->getSection()];
427 if (!Entry) {
428 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
429 0/*TODO*/, Stream);
430 Entry = SectionMap.size();
431 }
432 }
433 if (F->hasGC()) {
434 // Same for GC names.
435 unsigned &Entry = GCMap[F->getGC()];
436 if (!Entry) {
437 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
438 0/*TODO*/, Stream);
439 Entry = GCMap.size();
440 }
441 }
442 }
443
444 // Emit abbrev for globals, now that we know # sections and max alignment.
445 unsigned SimpleGVarAbbrev = 0;
446 if (!M->global_empty()) {
447 // Add an abbrev for common globals with no visibility or thread localness.
448 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
449 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
451 Log2_32_Ceil(MaxGlobalType+1)));
452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant.
453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage.
455 if (MaxAlignment == 0) // Alignment.
456 Abbv->Add(BitCodeAbbrevOp(0));
457 else {
458 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
460 Log2_32_Ceil(MaxEncAlignment+1)));
461 }
462 if (SectionMap.empty()) // Section.
463 Abbv->Add(BitCodeAbbrevOp(0));
464 else
465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
466 Log2_32_Ceil(SectionMap.size()+1)));
467 // Don't bother emitting vis + thread local.
468 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
469 }
470
471 // Emit the global variable information.
472 SmallVector<unsigned, 64> Vals;
473 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
474 GV != E; ++GV) {
475 unsigned AbbrevToUse = 0;
476
477 // GLOBALVAR: [type, isconst, initid,
478 // linkage, alignment, section, visibility, threadlocal,
479 // unnamed_addr]
480 Vals.push_back(VE.getTypeID(GV->getType()));
481 Vals.push_back(GV->isConstant());
482 Vals.push_back(GV->isDeclaration() ? 0 :
483 (VE.getValueID(GV->getInitializer()) + 1));
484 Vals.push_back(getEncodedLinkage(GV));
485 Vals.push_back(Log2_32(GV->getAlignment())+1);
486 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
487 if (GV->isThreadLocal() ||
488 GV->getVisibility() != GlobalValue::DefaultVisibility ||
489 GV->hasUnnamedAddr() || GV->isExternallyInitialized()) {
490 Vals.push_back(getEncodedVisibility(GV));
491 Vals.push_back(getEncodedThreadLocalMode(GV));
492 Vals.push_back(GV->hasUnnamedAddr());
493 Vals.push_back(GV->isExternallyInitialized());
494 } else {
495 AbbrevToUse = SimpleGVarAbbrev;
496 }
497
498 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
499 Vals.clear();
500 }
501
502 // Emit the function proto information.
503 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
504 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment,
505 // section, visibility, gc, unnamed_addr]
506 Vals.push_back(VE.getTypeID(F->getType()));
507 Vals.push_back(F->getCallingConv());
508 Vals.push_back(F->isDeclaration());
509 Vals.push_back(getEncodedLinkage(F));
510 Vals.push_back(VE.getAttributeID(F->getAttributes()));
511 Vals.push_back(Log2_32(F->getAlignment())+1);
512 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
513 Vals.push_back(getEncodedVisibility(F));
514 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
515 Vals.push_back(F->hasUnnamedAddr());
516
517 unsigned AbbrevToUse = 0;
518 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
519 Vals.clear();
520 }
521
522 // Emit the alias information.
523 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
524 AI != E; ++AI) {
525 // ALIAS: [alias type, aliasee val#, linkage, visibility]
526 Vals.push_back(VE.getTypeID(AI->getType()));
527 Vals.push_back(VE.getValueID(AI->getAliasee()));
528 Vals.push_back(getEncodedLinkage(AI));
529 Vals.push_back(getEncodedVisibility(AI));
530 unsigned AbbrevToUse = 0;
531 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
532 Vals.clear();
533 }
534 }
535
GetOptimizationFlags(const Value * V)536 static uint64_t GetOptimizationFlags(const Value *V) {
537 uint64_t Flags = 0;
538
539 if (const OverflowingBinaryOperator *OBO =
540 dyn_cast<OverflowingBinaryOperator>(V)) {
541 if (OBO->hasNoSignedWrap())
542 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
543 if (OBO->hasNoUnsignedWrap())
544 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
545 } else if (const PossiblyExactOperator *PEO =
546 dyn_cast<PossiblyExactOperator>(V)) {
547 if (PEO->isExact())
548 Flags |= 1 << bitc::PEO_EXACT;
549 } else if (const FPMathOperator *FPMO =
550 dyn_cast<const FPMathOperator>(V)) {
551 // FIXME(srhines): We don't handle fast math in llvm-rs-cc today.
552 if (false) {
553 if (FPMO->hasUnsafeAlgebra())
554 Flags |= FastMathFlags::UnsafeAlgebra;
555 if (FPMO->hasNoNaNs())
556 Flags |= FastMathFlags::NoNaNs;
557 if (FPMO->hasNoInfs())
558 Flags |= FastMathFlags::NoInfs;
559 if (FPMO->hasNoSignedZeros())
560 Flags |= FastMathFlags::NoSignedZeros;
561 if (FPMO->hasAllowReciprocal())
562 Flags |= FastMathFlags::AllowReciprocal;
563 }
564 }
565
566 return Flags;
567 }
568
WriteMDNode(const MDNode * N,const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream,SmallVector<uint64_t,64> & Record)569 static void WriteMDNode(const MDNode *N,
570 const llvm_3_2::ValueEnumerator &VE,
571 BitstreamWriter &Stream,
572 SmallVector<uint64_t, 64> &Record) {
573 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
574 if (N->getOperand(i)) {
575 Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
576 Record.push_back(VE.getValueID(N->getOperand(i)));
577 } else {
578 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
579 Record.push_back(0);
580 }
581 }
582 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
583 bitc::METADATA_NODE;
584 Stream.EmitRecord(MDCode, Record, 0);
585 Record.clear();
586 }
587
WriteModuleMetadata(const Module * M,const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)588 static void WriteModuleMetadata(const Module *M,
589 const llvm_3_2::ValueEnumerator &VE,
590 BitstreamWriter &Stream) {
591 const llvm_3_2::ValueEnumerator::ValueList &Vals = VE.getMDValues();
592 bool StartedMetadataBlock = false;
593 unsigned MDSAbbrev = 0;
594 SmallVector<uint64_t, 64> Record;
595 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
596
597 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
598 if (!N->isFunctionLocal() || !N->getFunction()) {
599 if (!StartedMetadataBlock) {
600 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
601 StartedMetadataBlock = true;
602 }
603 WriteMDNode(N, VE, Stream, Record);
604 }
605 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
606 if (!StartedMetadataBlock) {
607 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
608
609 // Abbrev for METADATA_STRING.
610 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
611 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
612 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
613 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
614 MDSAbbrev = Stream.EmitAbbrev(Abbv);
615 StartedMetadataBlock = true;
616 }
617
618 // Code: [strchar x N]
619 Record.append(MDS->begin(), MDS->end());
620
621 // Emit the finished record.
622 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
623 Record.clear();
624 }
625 }
626
627 // Write named metadata.
628 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
629 E = M->named_metadata_end(); I != E; ++I) {
630 const NamedMDNode *NMD = I;
631 if (!StartedMetadataBlock) {
632 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
633 StartedMetadataBlock = true;
634 }
635
636 // Write name.
637 StringRef Str = NMD->getName();
638 for (unsigned i = 0, e = Str.size(); i != e; ++i)
639 Record.push_back(Str[i]);
640 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
641 Record.clear();
642
643 // Write named metadata operands.
644 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
645 Record.push_back(VE.getValueID(NMD->getOperand(i)));
646 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
647 Record.clear();
648 }
649
650 if (StartedMetadataBlock)
651 Stream.ExitBlock();
652 }
653
WriteFunctionLocalMetadata(const Function & F,const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)654 static void WriteFunctionLocalMetadata(const Function &F,
655 const llvm_3_2::ValueEnumerator &VE,
656 BitstreamWriter &Stream) {
657 bool StartedMetadataBlock = false;
658 SmallVector<uint64_t, 64> Record;
659 const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues();
660 for (unsigned i = 0, e = Vals.size(); i != e; ++i)
661 if (const MDNode *N = Vals[i])
662 if (N->isFunctionLocal() && N->getFunction() == &F) {
663 if (!StartedMetadataBlock) {
664 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
665 StartedMetadataBlock = true;
666 }
667 WriteMDNode(N, VE, Stream, Record);
668 }
669
670 if (StartedMetadataBlock)
671 Stream.ExitBlock();
672 }
673
WriteMetadataAttachment(const Function & F,const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)674 static void WriteMetadataAttachment(const Function &F,
675 const llvm_3_2::ValueEnumerator &VE,
676 BitstreamWriter &Stream) {
677 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
678
679 SmallVector<uint64_t, 64> Record;
680
681 // Write metadata attachments
682 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
683 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
684
685 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
686 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
687 I != E; ++I) {
688 MDs.clear();
689 I->getAllMetadataOtherThanDebugLoc(MDs);
690
691 // If no metadata, ignore instruction.
692 if (MDs.empty()) continue;
693
694 Record.push_back(VE.getInstructionID(I));
695
696 for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
697 Record.push_back(MDs[i].first);
698 Record.push_back(VE.getValueID(MDs[i].second));
699 }
700 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
701 Record.clear();
702 }
703
704 Stream.ExitBlock();
705 }
706
WriteModuleMetadataStore(const Module * M,BitstreamWriter & Stream)707 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
708 SmallVector<uint64_t, 64> Record;
709
710 // Write metadata kinds
711 // METADATA_KIND - [n x [id, name]]
712 SmallVector<StringRef, 4> Names;
713 M->getMDKindNames(Names);
714
715 if (Names.empty()) return;
716
717 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
718
719 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
720 Record.push_back(MDKindID);
721 StringRef KName = Names[MDKindID];
722 Record.append(KName.begin(), KName.end());
723
724 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
725 Record.clear();
726 }
727
728 Stream.ExitBlock();
729 }
730
EmitAPInt(SmallVectorImpl<uint64_t> & Vals,unsigned & Code,unsigned & AbbrevToUse,const APInt & Val,bool EmitSizeForWideNumbers=false)731 static void EmitAPInt(SmallVectorImpl<uint64_t> &Vals,
732 unsigned &Code, unsigned &AbbrevToUse, const APInt &Val,
733 bool EmitSizeForWideNumbers = false
734 ) {
735 if (Val.getBitWidth() <= 64) {
736 uint64_t V = Val.getSExtValue();
737 if ((int64_t)V >= 0)
738 Vals.push_back(V << 1);
739 else
740 Vals.push_back((-V << 1) | 1);
741 Code = bitc::CST_CODE_INTEGER;
742 AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
743 } else {
744 // Wide integers, > 64 bits in size.
745 // We have an arbitrary precision integer value to write whose
746 // bit width is > 64. However, in canonical unsigned integer
747 // format it is likely that the high bits are going to be zero.
748 // So, we only write the number of active words.
749 unsigned NWords = Val.getActiveWords();
750
751 if (EmitSizeForWideNumbers)
752 Vals.push_back(NWords);
753
754 const uint64_t *RawWords = Val.getRawData();
755 for (unsigned i = 0; i != NWords; ++i) {
756 int64_t V = RawWords[i];
757 if (V >= 0)
758 Vals.push_back(V << 1);
759 else
760 Vals.push_back((-V << 1) | 1);
761 }
762 Code = bitc::CST_CODE_WIDE_INTEGER;
763 }
764 }
765
WriteConstants(unsigned FirstVal,unsigned LastVal,const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream,bool isGlobal)766 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
767 const llvm_3_2::ValueEnumerator &VE,
768 BitstreamWriter &Stream, bool isGlobal) {
769 if (FirstVal == LastVal) return;
770
771 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
772
773 unsigned AggregateAbbrev = 0;
774 unsigned String8Abbrev = 0;
775 unsigned CString7Abbrev = 0;
776 unsigned CString6Abbrev = 0;
777 // If this is a constant pool for the module, emit module-specific abbrevs.
778 if (isGlobal) {
779 // Abbrev for CST_CODE_AGGREGATE.
780 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
781 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
784 AggregateAbbrev = Stream.EmitAbbrev(Abbv);
785
786 // Abbrev for CST_CODE_STRING.
787 Abbv = new BitCodeAbbrev();
788 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
791 String8Abbrev = Stream.EmitAbbrev(Abbv);
792 // Abbrev for CST_CODE_CSTRING.
793 Abbv = new BitCodeAbbrev();
794 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
797 CString7Abbrev = Stream.EmitAbbrev(Abbv);
798 // Abbrev for CST_CODE_CSTRING.
799 Abbv = new BitCodeAbbrev();
800 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
803 CString6Abbrev = Stream.EmitAbbrev(Abbv);
804 }
805
806 SmallVector<uint64_t, 64> Record;
807
808 const llvm_3_2::ValueEnumerator::ValueList &Vals = VE.getValues();
809 Type *LastTy = 0;
810 for (unsigned i = FirstVal; i != LastVal; ++i) {
811 const Value *V = Vals[i].first;
812 // If we need to switch types, do so now.
813 if (V->getType() != LastTy) {
814 LastTy = V->getType();
815 Record.push_back(VE.getTypeID(LastTy));
816 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
817 CONSTANTS_SETTYPE_ABBREV);
818 Record.clear();
819 }
820
821 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
822 Record.push_back(unsigned(IA->hasSideEffects()) |
823 unsigned(IA->isAlignStack()) << 1 |
824 unsigned(IA->getDialect()&1) << 2);
825
826 // Add the asm string.
827 const std::string &AsmStr = IA->getAsmString();
828 Record.push_back(AsmStr.size());
829 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
830 Record.push_back(AsmStr[i]);
831
832 // Add the constraint string.
833 const std::string &ConstraintStr = IA->getConstraintString();
834 Record.push_back(ConstraintStr.size());
835 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
836 Record.push_back(ConstraintStr[i]);
837 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
838 Record.clear();
839 continue;
840 }
841 const Constant *C = cast<Constant>(V);
842 unsigned Code = -1U;
843 unsigned AbbrevToUse = 0;
844 if (C->isNullValue()) {
845 Code = bitc::CST_CODE_NULL;
846 } else if (isa<UndefValue>(C)) {
847 Code = bitc::CST_CODE_UNDEF;
848 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
849 EmitAPInt(Record, Code, AbbrevToUse, IV->getValue());
850 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
851 Code = bitc::CST_CODE_FLOAT;
852 Type *Ty = CFP->getType();
853 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
854 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
855 } else if (Ty->isX86_FP80Ty()) {
856 // api needed to prevent premature destruction
857 // bits are not in the same order as a normal i80 APInt, compensate.
858 APInt api = CFP->getValueAPF().bitcastToAPInt();
859 const uint64_t *p = api.getRawData();
860 Record.push_back((p[1] << 48) | (p[0] >> 16));
861 Record.push_back(p[0] & 0xffffLL);
862 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
863 APInt api = CFP->getValueAPF().bitcastToAPInt();
864 const uint64_t *p = api.getRawData();
865 Record.push_back(p[0]);
866 Record.push_back(p[1]);
867 } else {
868 assert (0 && "Unknown FP type!");
869 }
870 } else if (isa<ConstantDataSequential>(C) &&
871 cast<ConstantDataSequential>(C)->isString()) {
872 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
873 // Emit constant strings specially.
874 unsigned NumElts = Str->getNumElements();
875 // If this is a null-terminated string, use the denser CSTRING encoding.
876 if (Str->isCString()) {
877 Code = bitc::CST_CODE_CSTRING;
878 --NumElts; // Don't encode the null, which isn't allowed by char6.
879 } else {
880 Code = bitc::CST_CODE_STRING;
881 AbbrevToUse = String8Abbrev;
882 }
883 bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
884 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
885 for (unsigned i = 0; i != NumElts; ++i) {
886 unsigned char V = Str->getElementAsInteger(i);
887 Record.push_back(V);
888 isCStr7 &= (V & 128) == 0;
889 if (isCStrChar6)
890 isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
891 }
892
893 if (isCStrChar6)
894 AbbrevToUse = CString6Abbrev;
895 else if (isCStr7)
896 AbbrevToUse = CString7Abbrev;
897 } else if (const ConstantDataSequential *CDS =
898 dyn_cast<ConstantDataSequential>(C)) {
899 Code = bitc::CST_CODE_DATA;
900 Type *EltTy = CDS->getType()->getElementType();
901 if (isa<IntegerType>(EltTy)) {
902 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
903 Record.push_back(CDS->getElementAsInteger(i));
904 } else if (EltTy->isFloatTy()) {
905 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
906 union { float F; uint32_t I; };
907 F = CDS->getElementAsFloat(i);
908 Record.push_back(I);
909 }
910 } else {
911 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
912 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
913 union { double F; uint64_t I; };
914 F = CDS->getElementAsDouble(i);
915 Record.push_back(I);
916 }
917 }
918 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
919 isa<ConstantVector>(C)) {
920 Code = bitc::CST_CODE_AGGREGATE;
921 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
922 Record.push_back(VE.getValueID(C->getOperand(i)));
923 AbbrevToUse = AggregateAbbrev;
924 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
925 switch (CE->getOpcode()) {
926 default:
927 if (Instruction::isCast(CE->getOpcode())) {
928 Code = bitc::CST_CODE_CE_CAST;
929 Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
930 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
931 Record.push_back(VE.getValueID(C->getOperand(0)));
932 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
933 } else {
934 assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
935 Code = bitc::CST_CODE_CE_BINOP;
936 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
937 Record.push_back(VE.getValueID(C->getOperand(0)));
938 Record.push_back(VE.getValueID(C->getOperand(1)));
939 uint64_t Flags = GetOptimizationFlags(CE);
940 if (Flags != 0)
941 Record.push_back(Flags);
942 }
943 break;
944 case Instruction::GetElementPtr:
945 Code = bitc::CST_CODE_CE_GEP;
946 if (cast<GEPOperator>(C)->isInBounds())
947 Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
948 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
949 Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
950 Record.push_back(VE.getValueID(C->getOperand(i)));
951 }
952 break;
953 case Instruction::Select:
954 Code = bitc::CST_CODE_CE_SELECT;
955 Record.push_back(VE.getValueID(C->getOperand(0)));
956 Record.push_back(VE.getValueID(C->getOperand(1)));
957 Record.push_back(VE.getValueID(C->getOperand(2)));
958 break;
959 case Instruction::ExtractElement:
960 Code = bitc::CST_CODE_CE_EXTRACTELT;
961 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
962 Record.push_back(VE.getValueID(C->getOperand(0)));
963 Record.push_back(VE.getValueID(C->getOperand(1)));
964 break;
965 case Instruction::InsertElement:
966 Code = bitc::CST_CODE_CE_INSERTELT;
967 Record.push_back(VE.getValueID(C->getOperand(0)));
968 Record.push_back(VE.getValueID(C->getOperand(1)));
969 Record.push_back(VE.getValueID(C->getOperand(2)));
970 break;
971 case Instruction::ShuffleVector:
972 // If the return type and argument types are the same, this is a
973 // standard shufflevector instruction. If the types are different,
974 // then the shuffle is widening or truncating the input vectors, and
975 // the argument type must also be encoded.
976 if (C->getType() == C->getOperand(0)->getType()) {
977 Code = bitc::CST_CODE_CE_SHUFFLEVEC;
978 } else {
979 Code = bitc::CST_CODE_CE_SHUFVEC_EX;
980 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
981 }
982 Record.push_back(VE.getValueID(C->getOperand(0)));
983 Record.push_back(VE.getValueID(C->getOperand(1)));
984 Record.push_back(VE.getValueID(C->getOperand(2)));
985 break;
986 case Instruction::ICmp:
987 case Instruction::FCmp:
988 Code = bitc::CST_CODE_CE_CMP;
989 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
990 Record.push_back(VE.getValueID(C->getOperand(0)));
991 Record.push_back(VE.getValueID(C->getOperand(1)));
992 Record.push_back(CE->getPredicate());
993 break;
994 }
995 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
996 Code = bitc::CST_CODE_BLOCKADDRESS;
997 Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
998 Record.push_back(VE.getValueID(BA->getFunction()));
999 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
1000 } else {
1001 #ifndef NDEBUG
1002 C->dump();
1003 #endif
1004 llvm_unreachable("Unknown constant!");
1005 }
1006 Stream.EmitRecord(Code, Record, AbbrevToUse);
1007 Record.clear();
1008 }
1009
1010 Stream.ExitBlock();
1011 }
1012
WriteModuleConstants(const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)1013 static void WriteModuleConstants(const llvm_3_2::ValueEnumerator &VE,
1014 BitstreamWriter &Stream) {
1015 const llvm_3_2::ValueEnumerator::ValueList &Vals = VE.getValues();
1016
1017 // Find the first constant to emit, which is the first non-globalvalue value.
1018 // We know globalvalues have been emitted by WriteModuleInfo.
1019 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1020 if (!isa<GlobalValue>(Vals[i].first)) {
1021 WriteConstants(i, Vals.size(), VE, Stream, true);
1022 return;
1023 }
1024 }
1025 }
1026
1027 /// PushValueAndType - The file has to encode both the value and type id for
1028 /// many values, because we need to know what type to create for forward
1029 /// references. However, most operands are not forward references, so this type
1030 /// field is not needed.
1031 ///
1032 /// This function adds V's value ID to Vals. If the value ID is higher than the
1033 /// instruction ID, then it is a forward reference, and it also includes the
1034 /// type ID.
PushValueAndType(const Value * V,unsigned InstID,SmallVector<unsigned,64> & Vals,llvm_3_2::ValueEnumerator & VE)1035 static bool PushValueAndType(const Value *V, unsigned InstID,
1036 SmallVector<unsigned, 64> &Vals,
1037 llvm_3_2::ValueEnumerator &VE) {
1038 unsigned ValID = VE.getValueID(V);
1039 Vals.push_back(ValID);
1040 if (ValID >= InstID) {
1041 Vals.push_back(VE.getTypeID(V->getType()));
1042 return true;
1043 }
1044 return false;
1045 }
1046
1047 /// WriteInstruction - Emit an instruction to the specified stream.
WriteInstruction(const Instruction & I,unsigned InstID,llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream,SmallVector<unsigned,64> & Vals)1048 static void WriteInstruction(const Instruction &I, unsigned InstID,
1049 llvm_3_2::ValueEnumerator &VE,
1050 BitstreamWriter &Stream,
1051 SmallVector<unsigned, 64> &Vals) {
1052 unsigned Code = 0;
1053 unsigned AbbrevToUse = 0;
1054 VE.setInstructionID(&I);
1055 switch (I.getOpcode()) {
1056 default:
1057 if (Instruction::isCast(I.getOpcode())) {
1058 Code = bitc::FUNC_CODE_INST_CAST;
1059 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1060 AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1061 Vals.push_back(VE.getTypeID(I.getType()));
1062 Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1063 } else {
1064 assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1065 Code = bitc::FUNC_CODE_INST_BINOP;
1066 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1067 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1068 Vals.push_back(VE.getValueID(I.getOperand(1)));
1069 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1070 uint64_t Flags = GetOptimizationFlags(&I);
1071 if (Flags != 0) {
1072 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1073 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1074 Vals.push_back(Flags);
1075 }
1076 }
1077 break;
1078
1079 case Instruction::GetElementPtr:
1080 Code = bitc::FUNC_CODE_INST_GEP;
1081 if (cast<GEPOperator>(&I)->isInBounds())
1082 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
1083 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1084 PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1085 break;
1086 case Instruction::ExtractValue: {
1087 Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1088 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1089 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1090 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1091 Vals.push_back(*i);
1092 break;
1093 }
1094 case Instruction::InsertValue: {
1095 Code = bitc::FUNC_CODE_INST_INSERTVAL;
1096 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1097 PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1098 const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1099 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1100 Vals.push_back(*i);
1101 break;
1102 }
1103 case Instruction::Select:
1104 Code = bitc::FUNC_CODE_INST_VSELECT;
1105 PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1106 Vals.push_back(VE.getValueID(I.getOperand(2)));
1107 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1108 break;
1109 case Instruction::ExtractElement:
1110 Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1111 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1112 Vals.push_back(VE.getValueID(I.getOperand(1)));
1113 break;
1114 case Instruction::InsertElement:
1115 Code = bitc::FUNC_CODE_INST_INSERTELT;
1116 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1117 Vals.push_back(VE.getValueID(I.getOperand(1)));
1118 Vals.push_back(VE.getValueID(I.getOperand(2)));
1119 break;
1120 case Instruction::ShuffleVector:
1121 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1122 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1123 Vals.push_back(VE.getValueID(I.getOperand(1)));
1124 Vals.push_back(VE.getValueID(I.getOperand(2)));
1125 break;
1126 case Instruction::ICmp:
1127 case Instruction::FCmp:
1128 // compare returning Int1Ty or vector of Int1Ty
1129 Code = bitc::FUNC_CODE_INST_CMP2;
1130 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1131 Vals.push_back(VE.getValueID(I.getOperand(1)));
1132 Vals.push_back(cast<CmpInst>(I).getPredicate());
1133 break;
1134
1135 case Instruction::Ret:
1136 {
1137 Code = bitc::FUNC_CODE_INST_RET;
1138 unsigned NumOperands = I.getNumOperands();
1139 if (NumOperands == 0)
1140 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1141 else if (NumOperands == 1) {
1142 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1143 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1144 } else {
1145 for (unsigned i = 0, e = NumOperands; i != e; ++i)
1146 PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1147 }
1148 }
1149 break;
1150 case Instruction::Br:
1151 {
1152 Code = bitc::FUNC_CODE_INST_BR;
1153 const BranchInst &II = cast<BranchInst>(I);
1154 Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1155 if (II.isConditional()) {
1156 Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1157 Vals.push_back(VE.getValueID(II.getCondition()));
1158 }
1159 }
1160 break;
1161 case Instruction::Switch:
1162 {
1163 Code = bitc::FUNC_CODE_INST_SWITCH;
1164 const SwitchInst &SI = cast<SwitchInst>(I);
1165 Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
1166 Vals.push_back(VE.getValueID(SI.getCondition()));
1167 Vals.push_back(VE.getValueID(SI.getDefaultDest()));
1168 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
1169 i != e; ++i) {
1170 Vals.push_back(VE.getValueID(i.getCaseValue()));
1171 Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
1172 }
1173 }
1174 break;
1175 case Instruction::IndirectBr:
1176 Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1177 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1178 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1179 Vals.push_back(VE.getValueID(I.getOperand(i)));
1180 break;
1181
1182 case Instruction::Invoke: {
1183 const InvokeInst *II = cast<InvokeInst>(&I);
1184 const Value *Callee(II->getCalledValue());
1185 PointerType *PTy = cast<PointerType>(Callee->getType());
1186 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1187 Code = bitc::FUNC_CODE_INST_INVOKE;
1188
1189 Vals.push_back(VE.getAttributeID(II->getAttributes()));
1190 Vals.push_back(II->getCallingConv());
1191 Vals.push_back(VE.getValueID(II->getNormalDest()));
1192 Vals.push_back(VE.getValueID(II->getUnwindDest()));
1193 PushValueAndType(Callee, InstID, Vals, VE);
1194
1195 // Emit value #'s for the fixed parameters.
1196 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1197 Vals.push_back(VE.getValueID(I.getOperand(i))); // fixed param.
1198
1199 // Emit type/value pairs for varargs params.
1200 if (FTy->isVarArg()) {
1201 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1202 i != e; ++i)
1203 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1204 }
1205 break;
1206 }
1207 case Instruction::Resume:
1208 Code = bitc::FUNC_CODE_INST_RESUME;
1209 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1210 break;
1211 case Instruction::Unreachable:
1212 Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1213 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1214 break;
1215
1216 case Instruction::PHI: {
1217 const PHINode &PN = cast<PHINode>(I);
1218 Code = bitc::FUNC_CODE_INST_PHI;
1219 Vals.push_back(VE.getTypeID(PN.getType()));
1220 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1221 Vals.push_back(VE.getValueID(PN.getIncomingValue(i)));
1222 Vals.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1223 }
1224 break;
1225 }
1226
1227 case Instruction::LandingPad: {
1228 const LandingPadInst &LP = cast<LandingPadInst>(I);
1229 Code = bitc::FUNC_CODE_INST_LANDINGPAD;
1230 Vals.push_back(VE.getTypeID(LP.getType()));
1231 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
1232 Vals.push_back(LP.isCleanup());
1233 Vals.push_back(LP.getNumClauses());
1234 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
1235 if (LP.isCatch(I))
1236 Vals.push_back(LandingPadInst::Catch);
1237 else
1238 Vals.push_back(LandingPadInst::Filter);
1239 PushValueAndType(LP.getClause(I), InstID, Vals, VE);
1240 }
1241 break;
1242 }
1243
1244 case Instruction::Alloca:
1245 Code = bitc::FUNC_CODE_INST_ALLOCA;
1246 Vals.push_back(VE.getTypeID(I.getType()));
1247 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1248 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1249 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1250 break;
1251
1252 case Instruction::Load:
1253 if (cast<LoadInst>(I).isAtomic()) {
1254 Code = bitc::FUNC_CODE_INST_LOADATOMIC;
1255 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1256 } else {
1257 Code = bitc::FUNC_CODE_INST_LOAD;
1258 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
1259 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1260 }
1261 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1262 Vals.push_back(cast<LoadInst>(I).isVolatile());
1263 if (cast<LoadInst>(I).isAtomic()) {
1264 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
1265 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
1266 }
1267 break;
1268 case Instruction::Store:
1269 if (cast<StoreInst>(I).isAtomic())
1270 Code = bitc::FUNC_CODE_INST_STOREATOMIC;
1271 else
1272 Code = bitc::FUNC_CODE_INST_STORE;
1273 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr
1274 Vals.push_back(VE.getValueID(I.getOperand(0))); // val.
1275 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1276 Vals.push_back(cast<StoreInst>(I).isVolatile());
1277 if (cast<StoreInst>(I).isAtomic()) {
1278 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
1279 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
1280 }
1281 break;
1282 case Instruction::AtomicCmpXchg:
1283 Code = bitc::FUNC_CODE_INST_CMPXCHG;
1284 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
1285 Vals.push_back(VE.getValueID(I.getOperand(1))); // cmp.
1286 Vals.push_back(VE.getValueID(I.getOperand(2))); // newval.
1287 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
1288 Vals.push_back(GetEncodedOrdering(
1289 cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
1290 Vals.push_back(GetEncodedSynchScope(
1291 cast<AtomicCmpXchgInst>(I).getSynchScope()));
1292 break;
1293 case Instruction::AtomicRMW:
1294 Code = bitc::FUNC_CODE_INST_ATOMICRMW;
1295 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
1296 Vals.push_back(VE.getValueID(I.getOperand(1))); // val.
1297 Vals.push_back(GetEncodedRMWOperation(
1298 cast<AtomicRMWInst>(I).getOperation()));
1299 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
1300 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
1301 Vals.push_back(GetEncodedSynchScope(
1302 cast<AtomicRMWInst>(I).getSynchScope()));
1303 break;
1304 case Instruction::Fence:
1305 Code = bitc::FUNC_CODE_INST_FENCE;
1306 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
1307 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
1308 break;
1309 case Instruction::Call: {
1310 const CallInst &CI = cast<CallInst>(I);
1311 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1312 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1313
1314 Code = bitc::FUNC_CODE_INST_CALL;
1315
1316 Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1317 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
1318 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee
1319
1320 // Emit value #'s for the fixed parameters.
1321 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1322 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); // fixed param.
1323
1324 // Emit type/value pairs for varargs params.
1325 if (FTy->isVarArg()) {
1326 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1327 i != e; ++i)
1328 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs
1329 }
1330 break;
1331 }
1332 case Instruction::VAArg:
1333 Code = bitc::FUNC_CODE_INST_VAARG;
1334 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
1335 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1336 Vals.push_back(VE.getTypeID(I.getType())); // restype.
1337 break;
1338 }
1339
1340 Stream.EmitRecord(Code, Vals, AbbrevToUse);
1341 Vals.clear();
1342 }
1343
1344 // Emit names for globals/functions etc.
WriteValueSymbolTable(const ValueSymbolTable & VST,const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)1345 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1346 const llvm_3_2::ValueEnumerator &VE,
1347 BitstreamWriter &Stream) {
1348 if (VST.empty()) return;
1349 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1350
1351 // FIXME: Set up the abbrev, we know how many values there are!
1352 // FIXME: We know if the type names can use 7-bit ascii.
1353 SmallVector<unsigned, 64> NameVals;
1354
1355 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1356 SI != SE; ++SI) {
1357
1358 const ValueName &Name = *SI;
1359
1360 // Figure out the encoding to use for the name.
1361 bool is7Bit = true;
1362 bool isChar6 = true;
1363 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1364 C != E; ++C) {
1365 if (isChar6)
1366 isChar6 = BitCodeAbbrevOp::isChar6(*C);
1367 if ((unsigned char)*C & 128) {
1368 is7Bit = false;
1369 break; // don't bother scanning the rest.
1370 }
1371 }
1372
1373 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1374
1375 // VST_ENTRY: [valueid, namechar x N]
1376 // VST_BBENTRY: [bbid, namechar x N]
1377 unsigned Code;
1378 if (isa<BasicBlock>(SI->getValue())) {
1379 Code = bitc::VST_CODE_BBENTRY;
1380 if (isChar6)
1381 AbbrevToUse = VST_BBENTRY_6_ABBREV;
1382 } else {
1383 Code = bitc::VST_CODE_ENTRY;
1384 if (isChar6)
1385 AbbrevToUse = VST_ENTRY_6_ABBREV;
1386 else if (is7Bit)
1387 AbbrevToUse = VST_ENTRY_7_ABBREV;
1388 }
1389
1390 NameVals.push_back(VE.getValueID(SI->getValue()));
1391 for (const char *P = Name.getKeyData(),
1392 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1393 NameVals.push_back((unsigned char)*P);
1394
1395 // Emit the finished record.
1396 Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1397 NameVals.clear();
1398 }
1399 Stream.ExitBlock();
1400 }
1401
1402 /// WriteFunction - Emit a function body to the module stream.
WriteFunction(const Function & F,llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)1403 static void WriteFunction(const Function &F, llvm_3_2::ValueEnumerator &VE,
1404 BitstreamWriter &Stream) {
1405 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1406 VE.incorporateFunction(F);
1407
1408 SmallVector<unsigned, 64> Vals;
1409
1410 // Emit the number of basic blocks, so the reader can create them ahead of
1411 // time.
1412 Vals.push_back(VE.getBasicBlocks().size());
1413 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1414 Vals.clear();
1415
1416 // If there are function-local constants, emit them now.
1417 unsigned CstStart, CstEnd;
1418 VE.getFunctionConstantRange(CstStart, CstEnd);
1419 WriteConstants(CstStart, CstEnd, VE, Stream, false);
1420
1421 // If there is function-local metadata, emit it now.
1422 WriteFunctionLocalMetadata(F, VE, Stream);
1423
1424 // Keep a running idea of what the instruction ID is.
1425 unsigned InstID = CstEnd;
1426
1427 bool NeedsMetadataAttachment = false;
1428
1429 DebugLoc LastDL;
1430
1431 // Finally, emit all the instructions, in order.
1432 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1433 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1434 I != E; ++I) {
1435 WriteInstruction(*I, InstID, VE, Stream, Vals);
1436
1437 if (!I->getType()->isVoidTy())
1438 ++InstID;
1439
1440 // If the instruction has metadata, write a metadata attachment later.
1441 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1442
1443 // If the instruction has a debug location, emit it.
1444 DebugLoc DL = I->getDebugLoc();
1445 if (DL.isUnknown()) {
1446 // nothing todo.
1447 } else if (DL == LastDL) {
1448 // Just repeat the same debug loc as last time.
1449 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1450 } else {
1451 MDNode *Scope, *IA;
1452 DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
1453
1454 Vals.push_back(DL.getLine());
1455 Vals.push_back(DL.getCol());
1456 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
1457 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
1458 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
1459 Vals.clear();
1460
1461 LastDL = DL;
1462 }
1463 }
1464
1465 // Emit names for all the instructions etc.
1466 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1467
1468 if (NeedsMetadataAttachment)
1469 WriteMetadataAttachment(F, VE, Stream);
1470 VE.purgeFunction();
1471 Stream.ExitBlock();
1472 }
1473
1474 // Emit blockinfo, which defines the standard abbreviations etc.
WriteBlockInfo(const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)1475 static void WriteBlockInfo(const llvm_3_2::ValueEnumerator &VE,
1476 BitstreamWriter &Stream) {
1477 // We only want to emit block info records for blocks that have multiple
1478 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other
1479 // blocks can defined their abbrevs inline.
1480 Stream.EnterBlockInfoBlock(2);
1481
1482 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1483 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1484 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1485 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1488 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1489 Abbv) != VST_ENTRY_8_ABBREV)
1490 llvm_unreachable("Unexpected abbrev ordering!");
1491 }
1492
1493 { // 7-bit fixed width VST_ENTRY strings.
1494 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1495 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1497 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1498 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1499 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1500 Abbv) != VST_ENTRY_7_ABBREV)
1501 llvm_unreachable("Unexpected abbrev ordering!");
1502 }
1503 { // 6-bit char6 VST_ENTRY strings.
1504 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1505 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1507 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1508 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1509 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1510 Abbv) != VST_ENTRY_6_ABBREV)
1511 llvm_unreachable("Unexpected abbrev ordering!");
1512 }
1513 { // 6-bit char6 VST_BBENTRY strings.
1514 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1515 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1517 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1518 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1519 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1520 Abbv) != VST_BBENTRY_6_ABBREV)
1521 llvm_unreachable("Unexpected abbrev ordering!");
1522 }
1523
1524
1525
1526 { // SETTYPE abbrev for CONSTANTS_BLOCK.
1527 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1528 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1530 Log2_32_Ceil(VE.getTypes().size()+1)));
1531 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1532 Abbv) != CONSTANTS_SETTYPE_ABBREV)
1533 llvm_unreachable("Unexpected abbrev ordering!");
1534 }
1535
1536 { // INTEGER abbrev for CONSTANTS_BLOCK.
1537 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1538 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1539 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1540 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1541 Abbv) != CONSTANTS_INTEGER_ABBREV)
1542 llvm_unreachable("Unexpected abbrev ordering!");
1543 }
1544
1545 { // CE_CAST abbrev for CONSTANTS_BLOCK.
1546 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1547 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1548 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
1549 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
1550 Log2_32_Ceil(VE.getTypes().size()+1)));
1551 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
1552
1553 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1554 Abbv) != CONSTANTS_CE_CAST_Abbrev)
1555 llvm_unreachable("Unexpected abbrev ordering!");
1556 }
1557 { // NULL abbrev for CONSTANTS_BLOCK.
1558 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1559 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1560 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1561 Abbv) != CONSTANTS_NULL_Abbrev)
1562 llvm_unreachable("Unexpected abbrev ordering!");
1563 }
1564
1565 // FIXME: This should only use space for first class types!
1566
1567 { // INST_LOAD abbrev for FUNCTION_BLOCK.
1568 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1569 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1571 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1572 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1573 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1574 Abbv) != FUNCTION_INST_LOAD_ABBREV)
1575 llvm_unreachable("Unexpected abbrev ordering!");
1576 }
1577 { // INST_BINOP abbrev for FUNCTION_BLOCK.
1578 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1579 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1583 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1584 Abbv) != FUNCTION_INST_BINOP_ABBREV)
1585 llvm_unreachable("Unexpected abbrev ordering!");
1586 }
1587 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1588 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1589 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1592 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1593 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1594 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1595 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1596 llvm_unreachable("Unexpected abbrev ordering!");
1597 }
1598 { // INST_CAST abbrev for FUNCTION_BLOCK.
1599 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1600 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
1602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
1603 Log2_32_Ceil(VE.getTypes().size()+1)));
1604 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1605 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1606 Abbv) != FUNCTION_INST_CAST_ABBREV)
1607 llvm_unreachable("Unexpected abbrev ordering!");
1608 }
1609
1610 { // INST_RET abbrev for FUNCTION_BLOCK.
1611 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1612 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1613 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1614 Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1615 llvm_unreachable("Unexpected abbrev ordering!");
1616 }
1617 { // INST_RET abbrev for FUNCTION_BLOCK.
1618 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1619 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1620 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1621 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1622 Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1623 llvm_unreachable("Unexpected abbrev ordering!");
1624 }
1625 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1626 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1627 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1628 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1629 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1630 llvm_unreachable("Unexpected abbrev ordering!");
1631 }
1632
1633 Stream.ExitBlock();
1634 }
1635
1636 // Sort the Users based on the order in which the reader parses the bitcode
1637 // file.
bitcodereader_order(const User * lhs,const User * rhs)1638 static bool bitcodereader_order(const User *lhs, const User *rhs) {
1639 // TODO: Implement.
1640 return true;
1641 }
1642
WriteUseList(const Value * V,const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)1643 static void WriteUseList(const Value *V, const llvm_3_2::ValueEnumerator &VE,
1644 BitstreamWriter &Stream) {
1645
1646 // One or zero uses can't get out of order.
1647 if (V->use_empty() || V->hasNUses(1))
1648 return;
1649
1650 // Make a copy of the in-memory use-list for sorting.
1651 unsigned UseListSize = std::distance(V->use_begin(), V->use_end());
1652 SmallVector<const User*, 8> UseList;
1653 UseList.reserve(UseListSize);
1654 for (Value::const_use_iterator I = V->use_begin(), E = V->use_end();
1655 I != E; ++I) {
1656 const Use &use = *I;
1657 UseList.push_back(use.getUser());
1658 }
1659
1660 // Sort the copy based on the order read by the BitcodeReader.
1661 std::sort(UseList.begin(), UseList.end(), bitcodereader_order);
1662
1663 // TODO: Generate a diff between the BitcodeWriter in-memory use-list and the
1664 // sorted list (i.e., the expected BitcodeReader in-memory use-list).
1665
1666 // TODO: Emit the USELIST_CODE_ENTRYs.
1667 }
1668
WriteFunctionUseList(const Function * F,llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)1669 static void WriteFunctionUseList(const Function *F,
1670 llvm_3_2::ValueEnumerator &VE,
1671 BitstreamWriter &Stream) {
1672 VE.incorporateFunction(*F);
1673
1674 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1675 AI != AE; ++AI)
1676 WriteUseList(AI, VE, Stream);
1677 for (Function::const_iterator BB = F->begin(), FE = F->end(); BB != FE;
1678 ++BB) {
1679 WriteUseList(BB, VE, Stream);
1680 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE;
1681 ++II) {
1682 WriteUseList(II, VE, Stream);
1683 for (User::const_op_iterator OI = II->op_begin(), E = II->op_end();
1684 OI != E; ++OI) {
1685 if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
1686 isa<InlineAsm>(*OI))
1687 WriteUseList(*OI, VE, Stream);
1688 }
1689 }
1690 }
1691 VE.purgeFunction();
1692 }
1693
1694 // Emit use-lists.
WriteModuleUseLists(const Module * M,llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)1695 static void WriteModuleUseLists(const Module *M, llvm_3_2::ValueEnumerator &VE,
1696 BitstreamWriter &Stream) {
1697 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
1698
1699 // XXX: this modifies the module, but in a way that should never change the
1700 // behavior of any pass or codegen in LLVM. The problem is that GVs may
1701 // contain entries in the use_list that do not exist in the Module and are
1702 // not stored in the .bc file.
1703 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1704 I != E; ++I)
1705 I->removeDeadConstantUsers();
1706
1707 // Write the global variables.
1708 for (Module::const_global_iterator GI = M->global_begin(),
1709 GE = M->global_end(); GI != GE; ++GI) {
1710 WriteUseList(GI, VE, Stream);
1711
1712 // Write the global variable initializers.
1713 if (GI->hasInitializer())
1714 WriteUseList(GI->getInitializer(), VE, Stream);
1715 }
1716
1717 // Write the functions.
1718 for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
1719 WriteUseList(FI, VE, Stream);
1720 if (!FI->isDeclaration())
1721 WriteFunctionUseList(FI, VE, Stream);
1722 }
1723
1724 // Write the aliases.
1725 for (Module::const_alias_iterator AI = M->alias_begin(), AE = M->alias_end();
1726 AI != AE; ++AI) {
1727 WriteUseList(AI, VE, Stream);
1728 WriteUseList(AI->getAliasee(), VE, Stream);
1729 }
1730
1731 Stream.ExitBlock();
1732 }
1733
1734 /// WriteModule - Emit the specified module to the bitstream.
WriteModule(const Module * M,BitstreamWriter & Stream)1735 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1736 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1737
1738 // Emit the version number if it is non-zero.
1739 if (CurVersion) {
1740 SmallVector<unsigned, 1> Vals;
1741 Vals.push_back(CurVersion);
1742 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1743 }
1744
1745 // Analyze the module, enumerating globals, functions, etc.
1746 llvm_3_2::ValueEnumerator VE(M);
1747
1748 // Emit blockinfo, which defines the standard abbreviations etc.
1749 WriteBlockInfo(VE, Stream);
1750
1751 // Emit information about parameter attributes.
1752 WriteAttributeTable(VE, Stream);
1753
1754 // Emit information describing all of the types in the module.
1755 WriteTypeTable(VE, Stream);
1756
1757 // Emit top-level description of module, including target triple, inline asm,
1758 // descriptors for global variables, and function prototype info.
1759 WriteModuleInfo(M, VE, Stream);
1760
1761 // Emit constants.
1762 WriteModuleConstants(VE, Stream);
1763
1764 // Emit metadata.
1765 WriteModuleMetadata(M, VE, Stream);
1766
1767 // Emit metadata.
1768 WriteModuleMetadataStore(M, Stream);
1769
1770 // Emit names for globals/functions etc.
1771 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1772
1773 // Emit use-lists.
1774 if (EnablePreserveUseListOrdering)
1775 WriteModuleUseLists(M, VE, Stream);
1776
1777 // Emit function bodies.
1778 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
1779 if (!F->isDeclaration())
1780 WriteFunction(*F, VE, Stream);
1781
1782 Stream.ExitBlock();
1783 }
1784
1785 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1786 /// header and trailer to make it compatible with the system archiver. To do
1787 /// this we emit the following header, and then emit a trailer that pads the
1788 /// file out to be a multiple of 16 bytes.
1789 ///
1790 /// struct bc_header {
1791 /// uint32_t Magic; // 0x0B17C0DE
1792 /// uint32_t Version; // Version, currently always 0.
1793 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1794 /// uint32_t BitcodeSize; // Size of traditional bitcode file.
1795 /// uint32_t CPUType; // CPU specifier.
1796 /// ... potentially more later ...
1797 /// };
1798 enum {
1799 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1800 DarwinBCHeaderSize = 5*4
1801 };
1802
WriteInt32ToBuffer(uint32_t Value,SmallVectorImpl<char> & Buffer,uint32_t & Position)1803 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
1804 uint32_t &Position) {
1805 Buffer[Position + 0] = (unsigned char) (Value >> 0);
1806 Buffer[Position + 1] = (unsigned char) (Value >> 8);
1807 Buffer[Position + 2] = (unsigned char) (Value >> 16);
1808 Buffer[Position + 3] = (unsigned char) (Value >> 24);
1809 Position += 4;
1810 }
1811
EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> & Buffer,const Triple & TT)1812 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
1813 const Triple &TT) {
1814 unsigned CPUType = ~0U;
1815
1816 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
1817 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
1818 // number from /usr/include/mach/machine.h. It is ok to reproduce the
1819 // specific constants here because they are implicitly part of the Darwin ABI.
1820 enum {
1821 DARWIN_CPU_ARCH_ABI64 = 0x01000000,
1822 DARWIN_CPU_TYPE_X86 = 7,
1823 DARWIN_CPU_TYPE_ARM = 12,
1824 DARWIN_CPU_TYPE_POWERPC = 18
1825 };
1826
1827 Triple::ArchType Arch = TT.getArch();
1828 if (Arch == Triple::x86_64)
1829 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1830 else if (Arch == Triple::x86)
1831 CPUType = DARWIN_CPU_TYPE_X86;
1832 else if (Arch == Triple::ppc)
1833 CPUType = DARWIN_CPU_TYPE_POWERPC;
1834 else if (Arch == Triple::ppc64)
1835 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1836 else if (Arch == Triple::arm || Arch == Triple::thumb)
1837 CPUType = DARWIN_CPU_TYPE_ARM;
1838
1839 // Traditional Bitcode starts after header.
1840 assert(Buffer.size() >= DarwinBCHeaderSize &&
1841 "Expected header size to be reserved");
1842 unsigned BCOffset = DarwinBCHeaderSize;
1843 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
1844
1845 // Write the magic and version.
1846 unsigned Position = 0;
1847 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
1848 WriteInt32ToBuffer(0 , Buffer, Position); // Version.
1849 WriteInt32ToBuffer(BCOffset , Buffer, Position);
1850 WriteInt32ToBuffer(BCSize , Buffer, Position);
1851 WriteInt32ToBuffer(CPUType , Buffer, Position);
1852
1853 // If the file is not a multiple of 16 bytes, insert dummy padding.
1854 while (Buffer.size() & 15)
1855 Buffer.push_back(0);
1856 }
1857
1858 /// WriteBitcodeToFile - Write the specified module to the specified output
1859 /// stream.
WriteBitcodeToFile(const Module * M,raw_ostream & Out)1860 void llvm_3_2::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1861 SmallVector<char, 1024> Buffer;
1862 Buffer.reserve(256*1024);
1863
1864 // If this is darwin or another generic macho target, reserve space for the
1865 // header.
1866 Triple TT(M->getTargetTriple());
1867 if (TT.isOSDarwin())
1868 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
1869
1870 // Emit the module into the buffer.
1871 {
1872 BitstreamWriter Stream(Buffer);
1873
1874 // Emit the file header.
1875 Stream.Emit((unsigned)'B', 8);
1876 Stream.Emit((unsigned)'C', 8);
1877 Stream.Emit(0x0, 4);
1878 Stream.Emit(0xC, 4);
1879 Stream.Emit(0xE, 4);
1880 Stream.Emit(0xD, 4);
1881
1882 // Emit the module.
1883 WriteModule(M, Stream);
1884 }
1885
1886 if (TT.isOSDarwin())
1887 EmitDarwinBCHeaderAndTrailer(Buffer, TT);
1888
1889 // Write the generated bitstream to "Out".
1890 Out.write((char*)&Buffer.front(), Buffer.size());
1891 }
1892