• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ReaderWriter_3_2.h"
15 #include "legacy_bitcode.h"
16 #include "ValueEnumerator.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/Bitcode/BitstreamWriter.h"
19 #include "llvm/Bitcode/LLVMBitCodes.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/InlineAsm.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/ValueSymbolTable.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/Program.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <cctype>
33 #include <map>
34 using namespace llvm;
35 
36 static bool EnablePreserveUseListOrdering = false;
37 
38 /// These are manifest constants used by the bitcode writer. They do not need to
39 /// be kept in sync with the reader, but need to be consistent within this file.
40 enum {
41   CurVersion = 0,
42 
43   // VALUE_SYMTAB_BLOCK abbrev id's.
44   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
45   VST_ENTRY_7_ABBREV,
46   VST_ENTRY_6_ABBREV,
47   VST_BBENTRY_6_ABBREV,
48 
49   // CONSTANTS_BLOCK abbrev id's.
50   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
51   CONSTANTS_INTEGER_ABBREV,
52   CONSTANTS_CE_CAST_Abbrev,
53   CONSTANTS_NULL_Abbrev,
54 
55   // FUNCTION_BLOCK abbrev id's.
56   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
57   FUNCTION_INST_BINOP_ABBREV,
58   FUNCTION_INST_BINOP_FLAGS_ABBREV,
59   FUNCTION_INST_CAST_ABBREV,
60   FUNCTION_INST_RET_VOID_ABBREV,
61   FUNCTION_INST_RET_VAL_ABBREV,
62   FUNCTION_INST_UNREACHABLE_ABBREV,
63 
64   // SwitchInst Magic
65   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
66 };
67 
GetEncodedCastOpcode(unsigned Opcode)68 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
69   switch (Opcode) {
70   default: llvm_unreachable("Unknown cast instruction!");
71   case Instruction::Trunc   : return bitc::CAST_TRUNC;
72   case Instruction::ZExt    : return bitc::CAST_ZEXT;
73   case Instruction::SExt    : return bitc::CAST_SEXT;
74   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
75   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
76   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
77   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
78   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
79   case Instruction::FPExt   : return bitc::CAST_FPEXT;
80   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
81   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
82   case Instruction::BitCast : return bitc::CAST_BITCAST;
83   }
84 }
85 
GetEncodedBinaryOpcode(unsigned Opcode)86 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
87   switch (Opcode) {
88   default: llvm_unreachable("Unknown binary instruction!");
89   case Instruction::Add:
90   case Instruction::FAdd: return bitc::BINOP_ADD;
91   case Instruction::Sub:
92   case Instruction::FSub: return bitc::BINOP_SUB;
93   case Instruction::Mul:
94   case Instruction::FMul: return bitc::BINOP_MUL;
95   case Instruction::UDiv: return bitc::BINOP_UDIV;
96   case Instruction::FDiv:
97   case Instruction::SDiv: return bitc::BINOP_SDIV;
98   case Instruction::URem: return bitc::BINOP_UREM;
99   case Instruction::FRem:
100   case Instruction::SRem: return bitc::BINOP_SREM;
101   case Instruction::Shl:  return bitc::BINOP_SHL;
102   case Instruction::LShr: return bitc::BINOP_LSHR;
103   case Instruction::AShr: return bitc::BINOP_ASHR;
104   case Instruction::And:  return bitc::BINOP_AND;
105   case Instruction::Or:   return bitc::BINOP_OR;
106   case Instruction::Xor:  return bitc::BINOP_XOR;
107   }
108 }
109 
GetEncodedRMWOperation(AtomicRMWInst::BinOp Op)110 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
111   switch (Op) {
112   default: llvm_unreachable("Unknown RMW operation!");
113   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
114   case AtomicRMWInst::Add: return bitc::RMW_ADD;
115   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
116   case AtomicRMWInst::And: return bitc::RMW_AND;
117   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
118   case AtomicRMWInst::Or: return bitc::RMW_OR;
119   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
120   case AtomicRMWInst::Max: return bitc::RMW_MAX;
121   case AtomicRMWInst::Min: return bitc::RMW_MIN;
122   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
123   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
124   }
125 }
126 
GetEncodedOrdering(AtomicOrdering Ordering)127 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
128   switch (Ordering) {
129   case NotAtomic: return bitc::ORDERING_NOTATOMIC;
130   case Unordered: return bitc::ORDERING_UNORDERED;
131   case Monotonic: return bitc::ORDERING_MONOTONIC;
132   case Acquire: return bitc::ORDERING_ACQUIRE;
133   case Release: return bitc::ORDERING_RELEASE;
134   case AcquireRelease: return bitc::ORDERING_ACQREL;
135   case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
136   }
137   llvm_unreachable("Invalid ordering");
138 }
139 
GetEncodedSynchScope(SynchronizationScope SynchScope)140 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
141   switch (SynchScope) {
142   case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
143   case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
144   }
145   llvm_unreachable("Invalid synch scope");
146 }
147 
WriteStringRecord(unsigned Code,StringRef Str,unsigned AbbrevToUse,BitstreamWriter & Stream)148 static void WriteStringRecord(unsigned Code, StringRef Str,
149                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
150   SmallVector<unsigned, 64> Vals;
151 
152   // Code: [strchar x N]
153   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
154     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
155       AbbrevToUse = 0;
156     Vals.push_back(Str[i]);
157   }
158 
159   // Emit the finished record.
160   Stream.EmitRecord(Code, Vals, AbbrevToUse);
161 }
162 
163 // Emit information about parameter attributes.
WriteAttributeTable(const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)164 static void WriteAttributeTable(const llvm_3_2::ValueEnumerator &VE,
165                                 BitstreamWriter &Stream) {
166   const std::vector<AttributeSet> &Attrs = VE.getAttributes();
167   if (Attrs.empty()) return;
168 
169   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
170 
171   SmallVector<uint64_t, 64> Record;
172   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
173     const AttributeSet &A = Attrs[i];
174     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
175       Record.push_back(A.getSlotIndex(i));
176       Record.push_back(encodeLLVMAttributesForBitcode(A, A.getSlotIndex(i)));
177     }
178 
179     // This needs to use the 3.2 entry type
180     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY_OLD, Record);
181     Record.clear();
182   }
183 
184   Stream.ExitBlock();
185 }
186 
187 /// WriteTypeTable - Write out the type table for a module.
WriteTypeTable(const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)188 static void WriteTypeTable(const llvm_3_2::ValueEnumerator &VE,
189                            BitstreamWriter &Stream) {
190   const llvm_3_2::ValueEnumerator::TypeList &TypeList = VE.getTypes();
191 
192   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
193   SmallVector<uint64_t, 64> TypeVals;
194 
195   uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1);
196 
197   // Abbrev for TYPE_CODE_POINTER.
198   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
199   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
200   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
201   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
202   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
203 
204   // Abbrev for TYPE_CODE_FUNCTION.
205   Abbv = new BitCodeAbbrev();
206   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
207   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
208   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
209   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
210 
211   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
212 
213   // Abbrev for TYPE_CODE_STRUCT_ANON.
214   Abbv = new BitCodeAbbrev();
215   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
216   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
217   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
218   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
219 
220   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
221 
222   // Abbrev for TYPE_CODE_STRUCT_NAME.
223   Abbv = new BitCodeAbbrev();
224   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
225   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
226   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
227   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
228 
229   // Abbrev for TYPE_CODE_STRUCT_NAMED.
230   Abbv = new BitCodeAbbrev();
231   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
232   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
233   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
234   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
235 
236   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
237 
238   // Abbrev for TYPE_CODE_ARRAY.
239   Abbv = new BitCodeAbbrev();
240   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
241   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
242   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
243 
244   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
245 
246   // Emit an entry count so the reader can reserve space.
247   TypeVals.push_back(TypeList.size());
248   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
249   TypeVals.clear();
250 
251   // Loop over all of the types, emitting each in turn.
252   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
253     Type *T = TypeList[i];
254     int AbbrevToUse = 0;
255     unsigned Code = 0;
256 
257     switch (T->getTypeID()) {
258     default: llvm_unreachable("Unknown type!");
259     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
260     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
261     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
262     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
263     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
264     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
265     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
266     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
267     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
268     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
269     case Type::IntegerTyID:
270       // INTEGER: [width]
271       Code = bitc::TYPE_CODE_INTEGER;
272       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
273       break;
274     case Type::PointerTyID: {
275       PointerType *PTy = cast<PointerType>(T);
276       // POINTER: [pointee type, address space]
277       Code = bitc::TYPE_CODE_POINTER;
278       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
279       unsigned AddressSpace = PTy->getAddressSpace();
280       TypeVals.push_back(AddressSpace);
281       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
282       break;
283     }
284     case Type::FunctionTyID: {
285       FunctionType *FT = cast<FunctionType>(T);
286       // FUNCTION: [isvararg, retty, paramty x N]
287       Code = bitc::TYPE_CODE_FUNCTION;
288       TypeVals.push_back(FT->isVarArg());
289       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
290       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
291         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
292       AbbrevToUse = FunctionAbbrev;
293       break;
294     }
295     case Type::StructTyID: {
296       StructType *ST = cast<StructType>(T);
297       // STRUCT: [ispacked, eltty x N]
298       TypeVals.push_back(ST->isPacked());
299       // Output all of the element types.
300       for (StructType::element_iterator I = ST->element_begin(),
301            E = ST->element_end(); I != E; ++I)
302         TypeVals.push_back(VE.getTypeID(*I));
303 
304       if (ST->isLiteral()) {
305         Code = bitc::TYPE_CODE_STRUCT_ANON;
306         AbbrevToUse = StructAnonAbbrev;
307       } else {
308         if (ST->isOpaque()) {
309           Code = bitc::TYPE_CODE_OPAQUE;
310         } else {
311           Code = bitc::TYPE_CODE_STRUCT_NAMED;
312           AbbrevToUse = StructNamedAbbrev;
313         }
314 
315         // Emit the name if it is present.
316         if (!ST->getName().empty())
317           WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
318                             StructNameAbbrev, Stream);
319       }
320       break;
321     }
322     case Type::ArrayTyID: {
323       ArrayType *AT = cast<ArrayType>(T);
324       // ARRAY: [numelts, eltty]
325       Code = bitc::TYPE_CODE_ARRAY;
326       TypeVals.push_back(AT->getNumElements());
327       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
328       AbbrevToUse = ArrayAbbrev;
329       break;
330     }
331     case Type::VectorTyID: {
332       VectorType *VT = cast<VectorType>(T);
333       // VECTOR [numelts, eltty]
334       Code = bitc::TYPE_CODE_VECTOR;
335       TypeVals.push_back(VT->getNumElements());
336       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
337       break;
338     }
339     }
340 
341     // Emit the finished record.
342     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
343     TypeVals.clear();
344   }
345 
346   Stream.ExitBlock();
347 }
348 
getEncodedLinkage(const GlobalValue * GV)349 static unsigned getEncodedLinkage(const GlobalValue *GV) {
350   switch (GV->getLinkage()) {
351   case GlobalValue::ExternalLinkage:                 return 0;
352   case GlobalValue::WeakAnyLinkage:                  return 1;
353   case GlobalValue::AppendingLinkage:                return 2;
354   case GlobalValue::InternalLinkage:                 return 3;
355   case GlobalValue::LinkOnceAnyLinkage:              return 4;
356   case GlobalValue::ExternalWeakLinkage:             return 7;
357   case GlobalValue::CommonLinkage:                   return 8;
358   case GlobalValue::PrivateLinkage:                  return 9;
359   case GlobalValue::WeakODRLinkage:                  return 10;
360   case GlobalValue::LinkOnceODRLinkage:              return 11;
361   case GlobalValue::AvailableExternallyLinkage:      return 12;
362   }
363   llvm_unreachable("Invalid linkage");
364 }
365 
getEncodedVisibility(const GlobalValue * GV)366 static unsigned getEncodedVisibility(const GlobalValue *GV) {
367   switch (GV->getVisibility()) {
368   case GlobalValue::DefaultVisibility:   return 0;
369   case GlobalValue::HiddenVisibility:    return 1;
370   case GlobalValue::ProtectedVisibility: return 2;
371   }
372   llvm_unreachable("Invalid visibility");
373 }
374 
getEncodedThreadLocalMode(const GlobalVariable * GV)375 static unsigned getEncodedThreadLocalMode(const GlobalVariable *GV) {
376   switch (GV->getThreadLocalMode()) {
377     case GlobalVariable::NotThreadLocal:         return 0;
378     case GlobalVariable::GeneralDynamicTLSModel: return 1;
379     case GlobalVariable::LocalDynamicTLSModel:   return 2;
380     case GlobalVariable::InitialExecTLSModel:    return 3;
381     case GlobalVariable::LocalExecTLSModel:      return 4;
382   }
383   llvm_unreachable("Invalid TLS model");
384 }
385 
386 // Emit top-level description of module, including target triple, inline asm,
387 // descriptors for global variables, and function prototype info.
WriteModuleInfo(const Module * M,const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)388 static void WriteModuleInfo(const Module *M,
389                             const llvm_3_2::ValueEnumerator &VE,
390                             BitstreamWriter &Stream) {
391   // Emit various pieces of data attached to a module.
392   if (!M->getTargetTriple().empty())
393     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
394                       0/*TODO*/, Stream);
395   if (!M->getDataLayoutStr().empty())
396     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayoutStr(),
397                       0/*TODO*/, Stream);
398   if (!M->getModuleInlineAsm().empty())
399     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
400                       0/*TODO*/, Stream);
401 
402   // Emit information about sections and GC, computing how many there are. Also
403   // compute the maximum alignment value.
404   std::map<std::string, unsigned> SectionMap;
405   std::map<std::string, unsigned> GCMap;
406   unsigned MaxAlignment = 0;
407   unsigned MaxGlobalType = 0;
408   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
409        GV != E; ++GV) {
410     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
411     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
412     if (GV->hasSection()) {
413       // Give section names unique ID's.
414       unsigned &Entry = SectionMap[GV->getSection()];
415       if (!Entry) {
416         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
417                           0/*TODO*/, Stream);
418         Entry = SectionMap.size();
419       }
420     }
421   }
422   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
423     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
424     if (F->hasSection()) {
425       // Give section names unique ID's.
426       unsigned &Entry = SectionMap[F->getSection()];
427       if (!Entry) {
428         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
429                           0/*TODO*/, Stream);
430         Entry = SectionMap.size();
431       }
432     }
433     if (F->hasGC()) {
434       // Same for GC names.
435       unsigned &Entry = GCMap[F->getGC()];
436       if (!Entry) {
437         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
438                           0/*TODO*/, Stream);
439         Entry = GCMap.size();
440       }
441     }
442   }
443 
444   // Emit abbrev for globals, now that we know # sections and max alignment.
445   unsigned SimpleGVarAbbrev = 0;
446   if (!M->global_empty()) {
447     // Add an abbrev for common globals with no visibility or thread localness.
448     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
449     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
450     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
451                               Log2_32_Ceil(MaxGlobalType+1)));
452     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
453     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
454     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
455     if (MaxAlignment == 0)                                      // Alignment.
456       Abbv->Add(BitCodeAbbrevOp(0));
457     else {
458       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
459       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
460                                Log2_32_Ceil(MaxEncAlignment+1)));
461     }
462     if (SectionMap.empty())                                    // Section.
463       Abbv->Add(BitCodeAbbrevOp(0));
464     else
465       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
466                                Log2_32_Ceil(SectionMap.size()+1)));
467     // Don't bother emitting vis + thread local.
468     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
469   }
470 
471   // Emit the global variable information.
472   SmallVector<unsigned, 64> Vals;
473   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
474        GV != E; ++GV) {
475     unsigned AbbrevToUse = 0;
476 
477     // GLOBALVAR: [type, isconst, initid,
478     //             linkage, alignment, section, visibility, threadlocal,
479     //             unnamed_addr]
480     Vals.push_back(VE.getTypeID(GV->getType()));
481     Vals.push_back(GV->isConstant());
482     Vals.push_back(GV->isDeclaration() ? 0 :
483                    (VE.getValueID(GV->getInitializer()) + 1));
484     Vals.push_back(getEncodedLinkage(GV));
485     Vals.push_back(Log2_32(GV->getAlignment())+1);
486     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
487     if (GV->isThreadLocal() ||
488         GV->getVisibility() != GlobalValue::DefaultVisibility ||
489         GV->hasUnnamedAddr() || GV->isExternallyInitialized()) {
490       Vals.push_back(getEncodedVisibility(GV));
491       Vals.push_back(getEncodedThreadLocalMode(GV));
492       Vals.push_back(GV->hasUnnamedAddr());
493       Vals.push_back(GV->isExternallyInitialized());
494     } else {
495       AbbrevToUse = SimpleGVarAbbrev;
496     }
497 
498     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
499     Vals.clear();
500   }
501 
502   // Emit the function proto information.
503   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
504     // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
505     //             section, visibility, gc, unnamed_addr]
506     Vals.push_back(VE.getTypeID(F->getType()));
507     Vals.push_back(F->getCallingConv());
508     Vals.push_back(F->isDeclaration());
509     Vals.push_back(getEncodedLinkage(F));
510     Vals.push_back(VE.getAttributeID(F->getAttributes()));
511     Vals.push_back(Log2_32(F->getAlignment())+1);
512     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
513     Vals.push_back(getEncodedVisibility(F));
514     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
515     Vals.push_back(F->hasUnnamedAddr());
516 
517     unsigned AbbrevToUse = 0;
518     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
519     Vals.clear();
520   }
521 
522   // Emit the alias information.
523   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
524        AI != E; ++AI) {
525     // ALIAS: [alias type, aliasee val#, linkage, visibility]
526     Vals.push_back(VE.getTypeID(AI->getType()));
527     Vals.push_back(VE.getValueID(AI->getAliasee()));
528     Vals.push_back(getEncodedLinkage(AI));
529     Vals.push_back(getEncodedVisibility(AI));
530     unsigned AbbrevToUse = 0;
531     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
532     Vals.clear();
533   }
534 }
535 
GetOptimizationFlags(const Value * V)536 static uint64_t GetOptimizationFlags(const Value *V) {
537   uint64_t Flags = 0;
538 
539   if (const OverflowingBinaryOperator *OBO =
540         dyn_cast<OverflowingBinaryOperator>(V)) {
541     if (OBO->hasNoSignedWrap())
542       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
543     if (OBO->hasNoUnsignedWrap())
544       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
545   } else if (const PossiblyExactOperator *PEO =
546                dyn_cast<PossiblyExactOperator>(V)) {
547     if (PEO->isExact())
548       Flags |= 1 << bitc::PEO_EXACT;
549   } else if (const FPMathOperator *FPMO =
550              dyn_cast<const FPMathOperator>(V)) {
551     // FIXME(srhines): We don't handle fast math in llvm-rs-cc today.
552     if (false) {
553       if (FPMO->hasUnsafeAlgebra())
554         Flags |= FastMathFlags::UnsafeAlgebra;
555       if (FPMO->hasNoNaNs())
556         Flags |= FastMathFlags::NoNaNs;
557       if (FPMO->hasNoInfs())
558         Flags |= FastMathFlags::NoInfs;
559       if (FPMO->hasNoSignedZeros())
560         Flags |= FastMathFlags::NoSignedZeros;
561       if (FPMO->hasAllowReciprocal())
562         Flags |= FastMathFlags::AllowReciprocal;
563     }
564   }
565 
566   return Flags;
567 }
568 
WriteMDNode(const MDNode * N,const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream,SmallVector<uint64_t,64> & Record)569 static void WriteMDNode(const MDNode *N,
570                         const llvm_3_2::ValueEnumerator &VE,
571                         BitstreamWriter &Stream,
572                         SmallVector<uint64_t, 64> &Record) {
573   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
574     if (N->getOperand(i)) {
575       Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
576       Record.push_back(VE.getValueID(N->getOperand(i)));
577     } else {
578       Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
579       Record.push_back(0);
580     }
581   }
582   unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
583                                            bitc::METADATA_NODE;
584   Stream.EmitRecord(MDCode, Record, 0);
585   Record.clear();
586 }
587 
WriteModuleMetadata(const Module * M,const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)588 static void WriteModuleMetadata(const Module *M,
589                                 const llvm_3_2::ValueEnumerator &VE,
590                                 BitstreamWriter &Stream) {
591   const llvm_3_2::ValueEnumerator::ValueList &Vals = VE.getMDValues();
592   bool StartedMetadataBlock = false;
593   unsigned MDSAbbrev = 0;
594   SmallVector<uint64_t, 64> Record;
595   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
596 
597     if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
598       if (!N->isFunctionLocal() || !N->getFunction()) {
599         if (!StartedMetadataBlock) {
600           Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
601           StartedMetadataBlock = true;
602         }
603         WriteMDNode(N, VE, Stream, Record);
604       }
605     } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
606       if (!StartedMetadataBlock)  {
607         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
608 
609         // Abbrev for METADATA_STRING.
610         BitCodeAbbrev *Abbv = new BitCodeAbbrev();
611         Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
612         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
613         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
614         MDSAbbrev = Stream.EmitAbbrev(Abbv);
615         StartedMetadataBlock = true;
616       }
617 
618       // Code: [strchar x N]
619       Record.append(MDS->begin(), MDS->end());
620 
621       // Emit the finished record.
622       Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
623       Record.clear();
624     }
625   }
626 
627   // Write named metadata.
628   for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
629        E = M->named_metadata_end(); I != E; ++I) {
630     const NamedMDNode *NMD = I;
631     if (!StartedMetadataBlock)  {
632       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
633       StartedMetadataBlock = true;
634     }
635 
636     // Write name.
637     StringRef Str = NMD->getName();
638     for (unsigned i = 0, e = Str.size(); i != e; ++i)
639       Record.push_back(Str[i]);
640     Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
641     Record.clear();
642 
643     // Write named metadata operands.
644     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
645       Record.push_back(VE.getValueID(NMD->getOperand(i)));
646     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
647     Record.clear();
648   }
649 
650   if (StartedMetadataBlock)
651     Stream.ExitBlock();
652 }
653 
WriteFunctionLocalMetadata(const Function & F,const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)654 static void WriteFunctionLocalMetadata(const Function &F,
655                                        const llvm_3_2::ValueEnumerator &VE,
656                                        BitstreamWriter &Stream) {
657   bool StartedMetadataBlock = false;
658   SmallVector<uint64_t, 64> Record;
659   const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues();
660   for (unsigned i = 0, e = Vals.size(); i != e; ++i)
661     if (const MDNode *N = Vals[i])
662       if (N->isFunctionLocal() && N->getFunction() == &F) {
663         if (!StartedMetadataBlock) {
664           Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
665           StartedMetadataBlock = true;
666         }
667         WriteMDNode(N, VE, Stream, Record);
668       }
669 
670   if (StartedMetadataBlock)
671     Stream.ExitBlock();
672 }
673 
WriteMetadataAttachment(const Function & F,const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)674 static void WriteMetadataAttachment(const Function &F,
675                                     const llvm_3_2::ValueEnumerator &VE,
676                                     BitstreamWriter &Stream) {
677   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
678 
679   SmallVector<uint64_t, 64> Record;
680 
681   // Write metadata attachments
682   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
683   SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
684 
685   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
686     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
687          I != E; ++I) {
688       MDs.clear();
689       I->getAllMetadataOtherThanDebugLoc(MDs);
690 
691       // If no metadata, ignore instruction.
692       if (MDs.empty()) continue;
693 
694       Record.push_back(VE.getInstructionID(I));
695 
696       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
697         Record.push_back(MDs[i].first);
698         Record.push_back(VE.getValueID(MDs[i].second));
699       }
700       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
701       Record.clear();
702     }
703 
704   Stream.ExitBlock();
705 }
706 
WriteModuleMetadataStore(const Module * M,BitstreamWriter & Stream)707 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
708   SmallVector<uint64_t, 64> Record;
709 
710   // Write metadata kinds
711   // METADATA_KIND - [n x [id, name]]
712   SmallVector<StringRef, 4> Names;
713   M->getMDKindNames(Names);
714 
715   if (Names.empty()) return;
716 
717   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
718 
719   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
720     Record.push_back(MDKindID);
721     StringRef KName = Names[MDKindID];
722     Record.append(KName.begin(), KName.end());
723 
724     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
725     Record.clear();
726   }
727 
728   Stream.ExitBlock();
729 }
730 
EmitAPInt(SmallVectorImpl<uint64_t> & Vals,unsigned & Code,unsigned & AbbrevToUse,const APInt & Val,bool EmitSizeForWideNumbers=false)731 static void EmitAPInt(SmallVectorImpl<uint64_t> &Vals,
732                       unsigned &Code, unsigned &AbbrevToUse, const APInt &Val,
733                       bool EmitSizeForWideNumbers = false
734                       ) {
735   if (Val.getBitWidth() <= 64) {
736     uint64_t V = Val.getSExtValue();
737     if ((int64_t)V >= 0)
738       Vals.push_back(V << 1);
739     else
740       Vals.push_back((-V << 1) | 1);
741     Code = bitc::CST_CODE_INTEGER;
742     AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
743   } else {
744     // Wide integers, > 64 bits in size.
745     // We have an arbitrary precision integer value to write whose
746     // bit width is > 64. However, in canonical unsigned integer
747     // format it is likely that the high bits are going to be zero.
748     // So, we only write the number of active words.
749     unsigned NWords = Val.getActiveWords();
750 
751     if (EmitSizeForWideNumbers)
752       Vals.push_back(NWords);
753 
754     const uint64_t *RawWords = Val.getRawData();
755     for (unsigned i = 0; i != NWords; ++i) {
756       int64_t V = RawWords[i];
757       if (V >= 0)
758         Vals.push_back(V << 1);
759       else
760         Vals.push_back((-V << 1) | 1);
761     }
762     Code = bitc::CST_CODE_WIDE_INTEGER;
763   }
764 }
765 
WriteConstants(unsigned FirstVal,unsigned LastVal,const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream,bool isGlobal)766 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
767                            const llvm_3_2::ValueEnumerator &VE,
768                            BitstreamWriter &Stream, bool isGlobal) {
769   if (FirstVal == LastVal) return;
770 
771   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
772 
773   unsigned AggregateAbbrev = 0;
774   unsigned String8Abbrev = 0;
775   unsigned CString7Abbrev = 0;
776   unsigned CString6Abbrev = 0;
777   // If this is a constant pool for the module, emit module-specific abbrevs.
778   if (isGlobal) {
779     // Abbrev for CST_CODE_AGGREGATE.
780     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
781     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
782     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
783     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
784     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
785 
786     // Abbrev for CST_CODE_STRING.
787     Abbv = new BitCodeAbbrev();
788     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
789     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
790     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
791     String8Abbrev = Stream.EmitAbbrev(Abbv);
792     // Abbrev for CST_CODE_CSTRING.
793     Abbv = new BitCodeAbbrev();
794     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
795     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
796     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
797     CString7Abbrev = Stream.EmitAbbrev(Abbv);
798     // Abbrev for CST_CODE_CSTRING.
799     Abbv = new BitCodeAbbrev();
800     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
801     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
802     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
803     CString6Abbrev = Stream.EmitAbbrev(Abbv);
804   }
805 
806   SmallVector<uint64_t, 64> Record;
807 
808   const llvm_3_2::ValueEnumerator::ValueList &Vals = VE.getValues();
809   Type *LastTy = 0;
810   for (unsigned i = FirstVal; i != LastVal; ++i) {
811     const Value *V = Vals[i].first;
812     // If we need to switch types, do so now.
813     if (V->getType() != LastTy) {
814       LastTy = V->getType();
815       Record.push_back(VE.getTypeID(LastTy));
816       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
817                         CONSTANTS_SETTYPE_ABBREV);
818       Record.clear();
819     }
820 
821     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
822       Record.push_back(unsigned(IA->hasSideEffects()) |
823                        unsigned(IA->isAlignStack()) << 1 |
824                        unsigned(IA->getDialect()&1) << 2);
825 
826       // Add the asm string.
827       const std::string &AsmStr = IA->getAsmString();
828       Record.push_back(AsmStr.size());
829       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
830         Record.push_back(AsmStr[i]);
831 
832       // Add the constraint string.
833       const std::string &ConstraintStr = IA->getConstraintString();
834       Record.push_back(ConstraintStr.size());
835       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
836         Record.push_back(ConstraintStr[i]);
837       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
838       Record.clear();
839       continue;
840     }
841     const Constant *C = cast<Constant>(V);
842     unsigned Code = -1U;
843     unsigned AbbrevToUse = 0;
844     if (C->isNullValue()) {
845       Code = bitc::CST_CODE_NULL;
846     } else if (isa<UndefValue>(C)) {
847       Code = bitc::CST_CODE_UNDEF;
848     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
849       EmitAPInt(Record, Code, AbbrevToUse, IV->getValue());
850     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
851       Code = bitc::CST_CODE_FLOAT;
852       Type *Ty = CFP->getType();
853       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
854         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
855       } else if (Ty->isX86_FP80Ty()) {
856         // api needed to prevent premature destruction
857         // bits are not in the same order as a normal i80 APInt, compensate.
858         APInt api = CFP->getValueAPF().bitcastToAPInt();
859         const uint64_t *p = api.getRawData();
860         Record.push_back((p[1] << 48) | (p[0] >> 16));
861         Record.push_back(p[0] & 0xffffLL);
862       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
863         APInt api = CFP->getValueAPF().bitcastToAPInt();
864         const uint64_t *p = api.getRawData();
865         Record.push_back(p[0]);
866         Record.push_back(p[1]);
867       } else {
868         assert (0 && "Unknown FP type!");
869       }
870     } else if (isa<ConstantDataSequential>(C) &&
871                cast<ConstantDataSequential>(C)->isString()) {
872       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
873       // Emit constant strings specially.
874       unsigned NumElts = Str->getNumElements();
875       // If this is a null-terminated string, use the denser CSTRING encoding.
876       if (Str->isCString()) {
877         Code = bitc::CST_CODE_CSTRING;
878         --NumElts;  // Don't encode the null, which isn't allowed by char6.
879       } else {
880         Code = bitc::CST_CODE_STRING;
881         AbbrevToUse = String8Abbrev;
882       }
883       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
884       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
885       for (unsigned i = 0; i != NumElts; ++i) {
886         unsigned char V = Str->getElementAsInteger(i);
887         Record.push_back(V);
888         isCStr7 &= (V & 128) == 0;
889         if (isCStrChar6)
890           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
891       }
892 
893       if (isCStrChar6)
894         AbbrevToUse = CString6Abbrev;
895       else if (isCStr7)
896         AbbrevToUse = CString7Abbrev;
897     } else if (const ConstantDataSequential *CDS =
898                   dyn_cast<ConstantDataSequential>(C)) {
899       Code = bitc::CST_CODE_DATA;
900       Type *EltTy = CDS->getType()->getElementType();
901       if (isa<IntegerType>(EltTy)) {
902         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
903           Record.push_back(CDS->getElementAsInteger(i));
904       } else if (EltTy->isFloatTy()) {
905         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
906           union { float F; uint32_t I; };
907           F = CDS->getElementAsFloat(i);
908           Record.push_back(I);
909         }
910       } else {
911         assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
912         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
913           union { double F; uint64_t I; };
914           F = CDS->getElementAsDouble(i);
915           Record.push_back(I);
916         }
917       }
918     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
919                isa<ConstantVector>(C)) {
920       Code = bitc::CST_CODE_AGGREGATE;
921       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
922         Record.push_back(VE.getValueID(C->getOperand(i)));
923       AbbrevToUse = AggregateAbbrev;
924     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
925       switch (CE->getOpcode()) {
926       default:
927         if (Instruction::isCast(CE->getOpcode())) {
928           Code = bitc::CST_CODE_CE_CAST;
929           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
930           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
931           Record.push_back(VE.getValueID(C->getOperand(0)));
932           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
933         } else {
934           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
935           Code = bitc::CST_CODE_CE_BINOP;
936           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
937           Record.push_back(VE.getValueID(C->getOperand(0)));
938           Record.push_back(VE.getValueID(C->getOperand(1)));
939           uint64_t Flags = GetOptimizationFlags(CE);
940           if (Flags != 0)
941             Record.push_back(Flags);
942         }
943         break;
944       case Instruction::GetElementPtr:
945         Code = bitc::CST_CODE_CE_GEP;
946         if (cast<GEPOperator>(C)->isInBounds())
947           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
948         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
949           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
950           Record.push_back(VE.getValueID(C->getOperand(i)));
951         }
952         break;
953       case Instruction::Select:
954         Code = bitc::CST_CODE_CE_SELECT;
955         Record.push_back(VE.getValueID(C->getOperand(0)));
956         Record.push_back(VE.getValueID(C->getOperand(1)));
957         Record.push_back(VE.getValueID(C->getOperand(2)));
958         break;
959       case Instruction::ExtractElement:
960         Code = bitc::CST_CODE_CE_EXTRACTELT;
961         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
962         Record.push_back(VE.getValueID(C->getOperand(0)));
963         Record.push_back(VE.getValueID(C->getOperand(1)));
964         break;
965       case Instruction::InsertElement:
966         Code = bitc::CST_CODE_CE_INSERTELT;
967         Record.push_back(VE.getValueID(C->getOperand(0)));
968         Record.push_back(VE.getValueID(C->getOperand(1)));
969         Record.push_back(VE.getValueID(C->getOperand(2)));
970         break;
971       case Instruction::ShuffleVector:
972         // If the return type and argument types are the same, this is a
973         // standard shufflevector instruction.  If the types are different,
974         // then the shuffle is widening or truncating the input vectors, and
975         // the argument type must also be encoded.
976         if (C->getType() == C->getOperand(0)->getType()) {
977           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
978         } else {
979           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
980           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
981         }
982         Record.push_back(VE.getValueID(C->getOperand(0)));
983         Record.push_back(VE.getValueID(C->getOperand(1)));
984         Record.push_back(VE.getValueID(C->getOperand(2)));
985         break;
986       case Instruction::ICmp:
987       case Instruction::FCmp:
988         Code = bitc::CST_CODE_CE_CMP;
989         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
990         Record.push_back(VE.getValueID(C->getOperand(0)));
991         Record.push_back(VE.getValueID(C->getOperand(1)));
992         Record.push_back(CE->getPredicate());
993         break;
994       }
995     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
996       Code = bitc::CST_CODE_BLOCKADDRESS;
997       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
998       Record.push_back(VE.getValueID(BA->getFunction()));
999       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
1000     } else {
1001 #ifndef NDEBUG
1002       C->dump();
1003 #endif
1004       llvm_unreachable("Unknown constant!");
1005     }
1006     Stream.EmitRecord(Code, Record, AbbrevToUse);
1007     Record.clear();
1008   }
1009 
1010   Stream.ExitBlock();
1011 }
1012 
WriteModuleConstants(const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)1013 static void WriteModuleConstants(const llvm_3_2::ValueEnumerator &VE,
1014                                  BitstreamWriter &Stream) {
1015   const llvm_3_2::ValueEnumerator::ValueList &Vals = VE.getValues();
1016 
1017   // Find the first constant to emit, which is the first non-globalvalue value.
1018   // We know globalvalues have been emitted by WriteModuleInfo.
1019   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1020     if (!isa<GlobalValue>(Vals[i].first)) {
1021       WriteConstants(i, Vals.size(), VE, Stream, true);
1022       return;
1023     }
1024   }
1025 }
1026 
1027 /// PushValueAndType - The file has to encode both the value and type id for
1028 /// many values, because we need to know what type to create for forward
1029 /// references.  However, most operands are not forward references, so this type
1030 /// field is not needed.
1031 ///
1032 /// This function adds V's value ID to Vals.  If the value ID is higher than the
1033 /// instruction ID, then it is a forward reference, and it also includes the
1034 /// type ID.
PushValueAndType(const Value * V,unsigned InstID,SmallVector<unsigned,64> & Vals,llvm_3_2::ValueEnumerator & VE)1035 static bool PushValueAndType(const Value *V, unsigned InstID,
1036                              SmallVector<unsigned, 64> &Vals,
1037                              llvm_3_2::ValueEnumerator &VE) {
1038   unsigned ValID = VE.getValueID(V);
1039   Vals.push_back(ValID);
1040   if (ValID >= InstID) {
1041     Vals.push_back(VE.getTypeID(V->getType()));
1042     return true;
1043   }
1044   return false;
1045 }
1046 
1047 /// WriteInstruction - Emit an instruction to the specified stream.
WriteInstruction(const Instruction & I,unsigned InstID,llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream,SmallVector<unsigned,64> & Vals)1048 static void WriteInstruction(const Instruction &I, unsigned InstID,
1049                              llvm_3_2::ValueEnumerator &VE,
1050                              BitstreamWriter &Stream,
1051                              SmallVector<unsigned, 64> &Vals) {
1052   unsigned Code = 0;
1053   unsigned AbbrevToUse = 0;
1054   VE.setInstructionID(&I);
1055   switch (I.getOpcode()) {
1056   default:
1057     if (Instruction::isCast(I.getOpcode())) {
1058       Code = bitc::FUNC_CODE_INST_CAST;
1059       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1060         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1061       Vals.push_back(VE.getTypeID(I.getType()));
1062       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1063     } else {
1064       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1065       Code = bitc::FUNC_CODE_INST_BINOP;
1066       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1067         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1068       Vals.push_back(VE.getValueID(I.getOperand(1)));
1069       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1070       uint64_t Flags = GetOptimizationFlags(&I);
1071       if (Flags != 0) {
1072         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1073           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1074         Vals.push_back(Flags);
1075       }
1076     }
1077     break;
1078 
1079   case Instruction::GetElementPtr:
1080     Code = bitc::FUNC_CODE_INST_GEP;
1081     if (cast<GEPOperator>(&I)->isInBounds())
1082       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
1083     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1084       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1085     break;
1086   case Instruction::ExtractValue: {
1087     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1088     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1089     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1090     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1091       Vals.push_back(*i);
1092     break;
1093   }
1094   case Instruction::InsertValue: {
1095     Code = bitc::FUNC_CODE_INST_INSERTVAL;
1096     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1097     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1098     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1099     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1100       Vals.push_back(*i);
1101     break;
1102   }
1103   case Instruction::Select:
1104     Code = bitc::FUNC_CODE_INST_VSELECT;
1105     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1106     Vals.push_back(VE.getValueID(I.getOperand(2)));
1107     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1108     break;
1109   case Instruction::ExtractElement:
1110     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1111     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1112     Vals.push_back(VE.getValueID(I.getOperand(1)));
1113     break;
1114   case Instruction::InsertElement:
1115     Code = bitc::FUNC_CODE_INST_INSERTELT;
1116     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1117     Vals.push_back(VE.getValueID(I.getOperand(1)));
1118     Vals.push_back(VE.getValueID(I.getOperand(2)));
1119     break;
1120   case Instruction::ShuffleVector:
1121     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1122     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1123     Vals.push_back(VE.getValueID(I.getOperand(1)));
1124     Vals.push_back(VE.getValueID(I.getOperand(2)));
1125     break;
1126   case Instruction::ICmp:
1127   case Instruction::FCmp:
1128     // compare returning Int1Ty or vector of Int1Ty
1129     Code = bitc::FUNC_CODE_INST_CMP2;
1130     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1131     Vals.push_back(VE.getValueID(I.getOperand(1)));
1132     Vals.push_back(cast<CmpInst>(I).getPredicate());
1133     break;
1134 
1135   case Instruction::Ret:
1136     {
1137       Code = bitc::FUNC_CODE_INST_RET;
1138       unsigned NumOperands = I.getNumOperands();
1139       if (NumOperands == 0)
1140         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1141       else if (NumOperands == 1) {
1142         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1143           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1144       } else {
1145         for (unsigned i = 0, e = NumOperands; i != e; ++i)
1146           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1147       }
1148     }
1149     break;
1150   case Instruction::Br:
1151     {
1152       Code = bitc::FUNC_CODE_INST_BR;
1153       const BranchInst &II = cast<BranchInst>(I);
1154       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1155       if (II.isConditional()) {
1156         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1157         Vals.push_back(VE.getValueID(II.getCondition()));
1158       }
1159     }
1160     break;
1161   case Instruction::Switch:
1162     {
1163       Code = bitc::FUNC_CODE_INST_SWITCH;
1164       const SwitchInst &SI = cast<SwitchInst>(I);
1165       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
1166       Vals.push_back(VE.getValueID(SI.getCondition()));
1167       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
1168       for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
1169            i != e; ++i) {
1170         Vals.push_back(VE.getValueID(i.getCaseValue()));
1171         Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
1172       }
1173     }
1174     break;
1175   case Instruction::IndirectBr:
1176     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1177     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1178     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1179       Vals.push_back(VE.getValueID(I.getOperand(i)));
1180     break;
1181 
1182   case Instruction::Invoke: {
1183     const InvokeInst *II = cast<InvokeInst>(&I);
1184     const Value *Callee(II->getCalledValue());
1185     PointerType *PTy = cast<PointerType>(Callee->getType());
1186     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1187     Code = bitc::FUNC_CODE_INST_INVOKE;
1188 
1189     Vals.push_back(VE.getAttributeID(II->getAttributes()));
1190     Vals.push_back(II->getCallingConv());
1191     Vals.push_back(VE.getValueID(II->getNormalDest()));
1192     Vals.push_back(VE.getValueID(II->getUnwindDest()));
1193     PushValueAndType(Callee, InstID, Vals, VE);
1194 
1195     // Emit value #'s for the fixed parameters.
1196     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1197       Vals.push_back(VE.getValueID(I.getOperand(i)));  // fixed param.
1198 
1199     // Emit type/value pairs for varargs params.
1200     if (FTy->isVarArg()) {
1201       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1202            i != e; ++i)
1203         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1204     }
1205     break;
1206   }
1207   case Instruction::Resume:
1208     Code = bitc::FUNC_CODE_INST_RESUME;
1209     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1210     break;
1211   case Instruction::Unreachable:
1212     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1213     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1214     break;
1215 
1216   case Instruction::PHI: {
1217     const PHINode &PN = cast<PHINode>(I);
1218     Code = bitc::FUNC_CODE_INST_PHI;
1219     Vals.push_back(VE.getTypeID(PN.getType()));
1220     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1221       Vals.push_back(VE.getValueID(PN.getIncomingValue(i)));
1222       Vals.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1223     }
1224     break;
1225   }
1226 
1227   case Instruction::LandingPad: {
1228     const LandingPadInst &LP = cast<LandingPadInst>(I);
1229     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
1230     Vals.push_back(VE.getTypeID(LP.getType()));
1231     PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
1232     Vals.push_back(LP.isCleanup());
1233     Vals.push_back(LP.getNumClauses());
1234     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
1235       if (LP.isCatch(I))
1236         Vals.push_back(LandingPadInst::Catch);
1237       else
1238         Vals.push_back(LandingPadInst::Filter);
1239       PushValueAndType(LP.getClause(I), InstID, Vals, VE);
1240     }
1241     break;
1242   }
1243 
1244   case Instruction::Alloca:
1245     Code = bitc::FUNC_CODE_INST_ALLOCA;
1246     Vals.push_back(VE.getTypeID(I.getType()));
1247     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1248     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1249     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1250     break;
1251 
1252   case Instruction::Load:
1253     if (cast<LoadInst>(I).isAtomic()) {
1254       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
1255       PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1256     } else {
1257       Code = bitc::FUNC_CODE_INST_LOAD;
1258       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1259         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1260     }
1261     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1262     Vals.push_back(cast<LoadInst>(I).isVolatile());
1263     if (cast<LoadInst>(I).isAtomic()) {
1264       Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
1265       Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
1266     }
1267     break;
1268   case Instruction::Store:
1269     if (cast<StoreInst>(I).isAtomic())
1270       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
1271     else
1272       Code = bitc::FUNC_CODE_INST_STORE;
1273     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1274     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
1275     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1276     Vals.push_back(cast<StoreInst>(I).isVolatile());
1277     if (cast<StoreInst>(I).isAtomic()) {
1278       Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
1279       Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
1280     }
1281     break;
1282   case Instruction::AtomicCmpXchg:
1283     Code = bitc::FUNC_CODE_INST_CMPXCHG;
1284     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1285     Vals.push_back(VE.getValueID(I.getOperand(1)));       // cmp.
1286     Vals.push_back(VE.getValueID(I.getOperand(2)));       // newval.
1287     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
1288     Vals.push_back(GetEncodedOrdering(
1289         cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
1290     Vals.push_back(GetEncodedSynchScope(
1291                      cast<AtomicCmpXchgInst>(I).getSynchScope()));
1292     break;
1293   case Instruction::AtomicRMW:
1294     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
1295     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1296     Vals.push_back(VE.getValueID(I.getOperand(1)));       // val.
1297     Vals.push_back(GetEncodedRMWOperation(
1298                      cast<AtomicRMWInst>(I).getOperation()));
1299     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
1300     Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
1301     Vals.push_back(GetEncodedSynchScope(
1302                      cast<AtomicRMWInst>(I).getSynchScope()));
1303     break;
1304   case Instruction::Fence:
1305     Code = bitc::FUNC_CODE_INST_FENCE;
1306     Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
1307     Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
1308     break;
1309   case Instruction::Call: {
1310     const CallInst &CI = cast<CallInst>(I);
1311     PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1312     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1313 
1314     Code = bitc::FUNC_CODE_INST_CALL;
1315 
1316     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1317     Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
1318     PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
1319 
1320     // Emit value #'s for the fixed parameters.
1321     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1322       Vals.push_back(VE.getValueID(CI.getArgOperand(i)));  // fixed param.
1323 
1324     // Emit type/value pairs for varargs params.
1325     if (FTy->isVarArg()) {
1326       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1327            i != e; ++i)
1328         PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
1329     }
1330     break;
1331   }
1332   case Instruction::VAArg:
1333     Code = bitc::FUNC_CODE_INST_VAARG;
1334     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1335     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1336     Vals.push_back(VE.getTypeID(I.getType())); // restype.
1337     break;
1338   }
1339 
1340   Stream.EmitRecord(Code, Vals, AbbrevToUse);
1341   Vals.clear();
1342 }
1343 
1344 // Emit names for globals/functions etc.
WriteValueSymbolTable(const ValueSymbolTable & VST,const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)1345 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1346                                   const llvm_3_2::ValueEnumerator &VE,
1347                                   BitstreamWriter &Stream) {
1348   if (VST.empty()) return;
1349   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1350 
1351   // FIXME: Set up the abbrev, we know how many values there are!
1352   // FIXME: We know if the type names can use 7-bit ascii.
1353   SmallVector<unsigned, 64> NameVals;
1354 
1355   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1356        SI != SE; ++SI) {
1357 
1358     const ValueName &Name = *SI;
1359 
1360     // Figure out the encoding to use for the name.
1361     bool is7Bit = true;
1362     bool isChar6 = true;
1363     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1364          C != E; ++C) {
1365       if (isChar6)
1366         isChar6 = BitCodeAbbrevOp::isChar6(*C);
1367       if ((unsigned char)*C & 128) {
1368         is7Bit = false;
1369         break;  // don't bother scanning the rest.
1370       }
1371     }
1372 
1373     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1374 
1375     // VST_ENTRY:   [valueid, namechar x N]
1376     // VST_BBENTRY: [bbid, namechar x N]
1377     unsigned Code;
1378     if (isa<BasicBlock>(SI->getValue())) {
1379       Code = bitc::VST_CODE_BBENTRY;
1380       if (isChar6)
1381         AbbrevToUse = VST_BBENTRY_6_ABBREV;
1382     } else {
1383       Code = bitc::VST_CODE_ENTRY;
1384       if (isChar6)
1385         AbbrevToUse = VST_ENTRY_6_ABBREV;
1386       else if (is7Bit)
1387         AbbrevToUse = VST_ENTRY_7_ABBREV;
1388     }
1389 
1390     NameVals.push_back(VE.getValueID(SI->getValue()));
1391     for (const char *P = Name.getKeyData(),
1392          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1393       NameVals.push_back((unsigned char)*P);
1394 
1395     // Emit the finished record.
1396     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1397     NameVals.clear();
1398   }
1399   Stream.ExitBlock();
1400 }
1401 
1402 /// WriteFunction - Emit a function body to the module stream.
WriteFunction(const Function & F,llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)1403 static void WriteFunction(const Function &F, llvm_3_2::ValueEnumerator &VE,
1404                           BitstreamWriter &Stream) {
1405   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1406   VE.incorporateFunction(F);
1407 
1408   SmallVector<unsigned, 64> Vals;
1409 
1410   // Emit the number of basic blocks, so the reader can create them ahead of
1411   // time.
1412   Vals.push_back(VE.getBasicBlocks().size());
1413   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1414   Vals.clear();
1415 
1416   // If there are function-local constants, emit them now.
1417   unsigned CstStart, CstEnd;
1418   VE.getFunctionConstantRange(CstStart, CstEnd);
1419   WriteConstants(CstStart, CstEnd, VE, Stream, false);
1420 
1421   // If there is function-local metadata, emit it now.
1422   WriteFunctionLocalMetadata(F, VE, Stream);
1423 
1424   // Keep a running idea of what the instruction ID is.
1425   unsigned InstID = CstEnd;
1426 
1427   bool NeedsMetadataAttachment = false;
1428 
1429   DebugLoc LastDL;
1430 
1431   // Finally, emit all the instructions, in order.
1432   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1433     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1434          I != E; ++I) {
1435       WriteInstruction(*I, InstID, VE, Stream, Vals);
1436 
1437       if (!I->getType()->isVoidTy())
1438         ++InstID;
1439 
1440       // If the instruction has metadata, write a metadata attachment later.
1441       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1442 
1443       // If the instruction has a debug location, emit it.
1444       DebugLoc DL = I->getDebugLoc();
1445       if (DL.isUnknown()) {
1446         // nothing todo.
1447       } else if (DL == LastDL) {
1448         // Just repeat the same debug loc as last time.
1449         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1450       } else {
1451         MDNode *Scope, *IA;
1452         DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
1453 
1454         Vals.push_back(DL.getLine());
1455         Vals.push_back(DL.getCol());
1456         Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
1457         Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
1458         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
1459         Vals.clear();
1460 
1461         LastDL = DL;
1462       }
1463     }
1464 
1465   // Emit names for all the instructions etc.
1466   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1467 
1468   if (NeedsMetadataAttachment)
1469     WriteMetadataAttachment(F, VE, Stream);
1470   VE.purgeFunction();
1471   Stream.ExitBlock();
1472 }
1473 
1474 // Emit blockinfo, which defines the standard abbreviations etc.
WriteBlockInfo(const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)1475 static void WriteBlockInfo(const llvm_3_2::ValueEnumerator &VE,
1476                            BitstreamWriter &Stream) {
1477   // We only want to emit block info records for blocks that have multiple
1478   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1479   // blocks can defined their abbrevs inline.
1480   Stream.EnterBlockInfoBlock(2);
1481 
1482   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1483     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1484     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1485     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1486     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1487     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1488     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1489                                    Abbv) != VST_ENTRY_8_ABBREV)
1490       llvm_unreachable("Unexpected abbrev ordering!");
1491   }
1492 
1493   { // 7-bit fixed width VST_ENTRY strings.
1494     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1495     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1496     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1497     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1498     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1499     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1500                                    Abbv) != VST_ENTRY_7_ABBREV)
1501       llvm_unreachable("Unexpected abbrev ordering!");
1502   }
1503   { // 6-bit char6 VST_ENTRY strings.
1504     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1505     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1506     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1507     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1508     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1509     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1510                                    Abbv) != VST_ENTRY_6_ABBREV)
1511       llvm_unreachable("Unexpected abbrev ordering!");
1512   }
1513   { // 6-bit char6 VST_BBENTRY strings.
1514     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1515     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1516     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1517     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1518     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1519     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1520                                    Abbv) != VST_BBENTRY_6_ABBREV)
1521       llvm_unreachable("Unexpected abbrev ordering!");
1522   }
1523 
1524 
1525 
1526   { // SETTYPE abbrev for CONSTANTS_BLOCK.
1527     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1528     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1529     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1530                               Log2_32_Ceil(VE.getTypes().size()+1)));
1531     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1532                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
1533       llvm_unreachable("Unexpected abbrev ordering!");
1534   }
1535 
1536   { // INTEGER abbrev for CONSTANTS_BLOCK.
1537     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1538     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1539     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1540     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1541                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
1542       llvm_unreachable("Unexpected abbrev ordering!");
1543   }
1544 
1545   { // CE_CAST abbrev for CONSTANTS_BLOCK.
1546     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1547     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1548     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1549     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1550                               Log2_32_Ceil(VE.getTypes().size()+1)));
1551     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1552 
1553     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1554                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
1555       llvm_unreachable("Unexpected abbrev ordering!");
1556   }
1557   { // NULL abbrev for CONSTANTS_BLOCK.
1558     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1559     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1560     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1561                                    Abbv) != CONSTANTS_NULL_Abbrev)
1562       llvm_unreachable("Unexpected abbrev ordering!");
1563   }
1564 
1565   // FIXME: This should only use space for first class types!
1566 
1567   { // INST_LOAD abbrev for FUNCTION_BLOCK.
1568     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1569     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1570     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1571     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1572     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1573     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1574                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
1575       llvm_unreachable("Unexpected abbrev ordering!");
1576   }
1577   { // INST_BINOP abbrev for FUNCTION_BLOCK.
1578     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1579     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1580     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1581     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1582     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1583     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1584                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
1585       llvm_unreachable("Unexpected abbrev ordering!");
1586   }
1587   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1588     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1589     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1590     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1591     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1592     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1593     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1594     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1595                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1596       llvm_unreachable("Unexpected abbrev ordering!");
1597   }
1598   { // INST_CAST abbrev for FUNCTION_BLOCK.
1599     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1600     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1601     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1602     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1603                               Log2_32_Ceil(VE.getTypes().size()+1)));
1604     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1605     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1606                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
1607       llvm_unreachable("Unexpected abbrev ordering!");
1608   }
1609 
1610   { // INST_RET abbrev for FUNCTION_BLOCK.
1611     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1612     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1613     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1614                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1615       llvm_unreachable("Unexpected abbrev ordering!");
1616   }
1617   { // INST_RET abbrev for FUNCTION_BLOCK.
1618     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1619     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1620     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1621     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1622                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1623       llvm_unreachable("Unexpected abbrev ordering!");
1624   }
1625   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1626     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1627     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1628     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1629                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1630       llvm_unreachable("Unexpected abbrev ordering!");
1631   }
1632 
1633   Stream.ExitBlock();
1634 }
1635 
1636 // Sort the Users based on the order in which the reader parses the bitcode
1637 // file.
bitcodereader_order(const User * lhs,const User * rhs)1638 static bool bitcodereader_order(const User *lhs, const User *rhs) {
1639   // TODO: Implement.
1640   return true;
1641 }
1642 
WriteUseList(const Value * V,const llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)1643 static void WriteUseList(const Value *V, const llvm_3_2::ValueEnumerator &VE,
1644                          BitstreamWriter &Stream) {
1645 
1646   // One or zero uses can't get out of order.
1647   if (V->use_empty() || V->hasNUses(1))
1648     return;
1649 
1650   // Make a copy of the in-memory use-list for sorting.
1651   unsigned UseListSize = std::distance(V->use_begin(), V->use_end());
1652   SmallVector<const User*, 8> UseList;
1653   UseList.reserve(UseListSize);
1654   for (Value::const_use_iterator I = V->use_begin(), E = V->use_end();
1655        I != E; ++I) {
1656     const Use &use = *I;
1657     UseList.push_back(use.getUser());
1658   }
1659 
1660   // Sort the copy based on the order read by the BitcodeReader.
1661   std::sort(UseList.begin(), UseList.end(), bitcodereader_order);
1662 
1663   // TODO: Generate a diff between the BitcodeWriter in-memory use-list and the
1664   // sorted list (i.e., the expected BitcodeReader in-memory use-list).
1665 
1666   // TODO: Emit the USELIST_CODE_ENTRYs.
1667 }
1668 
WriteFunctionUseList(const Function * F,llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)1669 static void WriteFunctionUseList(const Function *F,
1670                                  llvm_3_2::ValueEnumerator &VE,
1671                                  BitstreamWriter &Stream) {
1672   VE.incorporateFunction(*F);
1673 
1674   for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1675        AI != AE; ++AI)
1676     WriteUseList(AI, VE, Stream);
1677   for (Function::const_iterator BB = F->begin(), FE = F->end(); BB != FE;
1678        ++BB) {
1679     WriteUseList(BB, VE, Stream);
1680     for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE;
1681          ++II) {
1682       WriteUseList(II, VE, Stream);
1683       for (User::const_op_iterator OI = II->op_begin(), E = II->op_end();
1684            OI != E; ++OI) {
1685         if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
1686             isa<InlineAsm>(*OI))
1687           WriteUseList(*OI, VE, Stream);
1688       }
1689     }
1690   }
1691   VE.purgeFunction();
1692 }
1693 
1694 // Emit use-lists.
WriteModuleUseLists(const Module * M,llvm_3_2::ValueEnumerator & VE,BitstreamWriter & Stream)1695 static void WriteModuleUseLists(const Module *M, llvm_3_2::ValueEnumerator &VE,
1696                                 BitstreamWriter &Stream) {
1697   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
1698 
1699   // XXX: this modifies the module, but in a way that should never change the
1700   // behavior of any pass or codegen in LLVM. The problem is that GVs may
1701   // contain entries in the use_list that do not exist in the Module and are
1702   // not stored in the .bc file.
1703   for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1704        I != E; ++I)
1705     I->removeDeadConstantUsers();
1706 
1707   // Write the global variables.
1708   for (Module::const_global_iterator GI = M->global_begin(),
1709          GE = M->global_end(); GI != GE; ++GI) {
1710     WriteUseList(GI, VE, Stream);
1711 
1712     // Write the global variable initializers.
1713     if (GI->hasInitializer())
1714       WriteUseList(GI->getInitializer(), VE, Stream);
1715   }
1716 
1717   // Write the functions.
1718   for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
1719     WriteUseList(FI, VE, Stream);
1720     if (!FI->isDeclaration())
1721       WriteFunctionUseList(FI, VE, Stream);
1722   }
1723 
1724   // Write the aliases.
1725   for (Module::const_alias_iterator AI = M->alias_begin(), AE = M->alias_end();
1726        AI != AE; ++AI) {
1727     WriteUseList(AI, VE, Stream);
1728     WriteUseList(AI->getAliasee(), VE, Stream);
1729   }
1730 
1731   Stream.ExitBlock();
1732 }
1733 
1734 /// WriteModule - Emit the specified module to the bitstream.
WriteModule(const Module * M,BitstreamWriter & Stream)1735 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1736   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1737 
1738   // Emit the version number if it is non-zero.
1739   if (CurVersion) {
1740     SmallVector<unsigned, 1> Vals;
1741     Vals.push_back(CurVersion);
1742     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1743   }
1744 
1745   // Analyze the module, enumerating globals, functions, etc.
1746   llvm_3_2::ValueEnumerator VE(M);
1747 
1748   // Emit blockinfo, which defines the standard abbreviations etc.
1749   WriteBlockInfo(VE, Stream);
1750 
1751   // Emit information about parameter attributes.
1752   WriteAttributeTable(VE, Stream);
1753 
1754   // Emit information describing all of the types in the module.
1755   WriteTypeTable(VE, Stream);
1756 
1757   // Emit top-level description of module, including target triple, inline asm,
1758   // descriptors for global variables, and function prototype info.
1759   WriteModuleInfo(M, VE, Stream);
1760 
1761   // Emit constants.
1762   WriteModuleConstants(VE, Stream);
1763 
1764   // Emit metadata.
1765   WriteModuleMetadata(M, VE, Stream);
1766 
1767   // Emit metadata.
1768   WriteModuleMetadataStore(M, Stream);
1769 
1770   // Emit names for globals/functions etc.
1771   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1772 
1773   // Emit use-lists.
1774   if (EnablePreserveUseListOrdering)
1775     WriteModuleUseLists(M, VE, Stream);
1776 
1777   // Emit function bodies.
1778   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
1779     if (!F->isDeclaration())
1780       WriteFunction(*F, VE, Stream);
1781 
1782   Stream.ExitBlock();
1783 }
1784 
1785 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1786 /// header and trailer to make it compatible with the system archiver.  To do
1787 /// this we emit the following header, and then emit a trailer that pads the
1788 /// file out to be a multiple of 16 bytes.
1789 ///
1790 /// struct bc_header {
1791 ///   uint32_t Magic;         // 0x0B17C0DE
1792 ///   uint32_t Version;       // Version, currently always 0.
1793 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1794 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1795 ///   uint32_t CPUType;       // CPU specifier.
1796 ///   ... potentially more later ...
1797 /// };
1798 enum {
1799   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1800   DarwinBCHeaderSize = 5*4
1801 };
1802 
WriteInt32ToBuffer(uint32_t Value,SmallVectorImpl<char> & Buffer,uint32_t & Position)1803 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
1804                                uint32_t &Position) {
1805   Buffer[Position + 0] = (unsigned char) (Value >>  0);
1806   Buffer[Position + 1] = (unsigned char) (Value >>  8);
1807   Buffer[Position + 2] = (unsigned char) (Value >> 16);
1808   Buffer[Position + 3] = (unsigned char) (Value >> 24);
1809   Position += 4;
1810 }
1811 
EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> & Buffer,const Triple & TT)1812 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
1813                                          const Triple &TT) {
1814   unsigned CPUType = ~0U;
1815 
1816   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
1817   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
1818   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
1819   // specific constants here because they are implicitly part of the Darwin ABI.
1820   enum {
1821     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1822     DARWIN_CPU_TYPE_X86        = 7,
1823     DARWIN_CPU_TYPE_ARM        = 12,
1824     DARWIN_CPU_TYPE_POWERPC    = 18
1825   };
1826 
1827   Triple::ArchType Arch = TT.getArch();
1828   if (Arch == Triple::x86_64)
1829     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1830   else if (Arch == Triple::x86)
1831     CPUType = DARWIN_CPU_TYPE_X86;
1832   else if (Arch == Triple::ppc)
1833     CPUType = DARWIN_CPU_TYPE_POWERPC;
1834   else if (Arch == Triple::ppc64)
1835     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1836   else if (Arch == Triple::arm || Arch == Triple::thumb)
1837     CPUType = DARWIN_CPU_TYPE_ARM;
1838 
1839   // Traditional Bitcode starts after header.
1840   assert(Buffer.size() >= DarwinBCHeaderSize &&
1841          "Expected header size to be reserved");
1842   unsigned BCOffset = DarwinBCHeaderSize;
1843   unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
1844 
1845   // Write the magic and version.
1846   unsigned Position = 0;
1847   WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
1848   WriteInt32ToBuffer(0          , Buffer, Position); // Version.
1849   WriteInt32ToBuffer(BCOffset   , Buffer, Position);
1850   WriteInt32ToBuffer(BCSize     , Buffer, Position);
1851   WriteInt32ToBuffer(CPUType    , Buffer, Position);
1852 
1853   // If the file is not a multiple of 16 bytes, insert dummy padding.
1854   while (Buffer.size() & 15)
1855     Buffer.push_back(0);
1856 }
1857 
1858 /// WriteBitcodeToFile - Write the specified module to the specified output
1859 /// stream.
WriteBitcodeToFile(const Module * M,raw_ostream & Out)1860 void llvm_3_2::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1861   SmallVector<char, 1024> Buffer;
1862   Buffer.reserve(256*1024);
1863 
1864   // If this is darwin or another generic macho target, reserve space for the
1865   // header.
1866   Triple TT(M->getTargetTriple());
1867   if (TT.isOSDarwin())
1868     Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
1869 
1870   // Emit the module into the buffer.
1871   {
1872     BitstreamWriter Stream(Buffer);
1873 
1874     // Emit the file header.
1875     Stream.Emit((unsigned)'B', 8);
1876     Stream.Emit((unsigned)'C', 8);
1877     Stream.Emit(0x0, 4);
1878     Stream.Emit(0xC, 4);
1879     Stream.Emit(0xE, 4);
1880     Stream.Emit(0xD, 4);
1881 
1882     // Emit the module.
1883     WriteModule(M, Stream);
1884   }
1885 
1886   if (TT.isOSDarwin())
1887     EmitDarwinBCHeaderAndTrailer(Buffer, TT);
1888 
1889   // Write the generated bitstream to "Out".
1890   Out.write((char*)&Buffer.front(), Buffer.size());
1891 }
1892