1 /*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 *
16 */
17
18 /*
19 * Hardware Composer stress test
20 *
21 * Performs a pseudo-random (prandom) sequence of operations to the
22 * Hardware Composer (HWC), for a specified number of passes or for
23 * a specified period of time. By default the period of time is FLT_MAX,
24 * so that the number of passes will take precedence.
25 *
26 * The passes are grouped together, where (pass / passesPerGroup) specifies
27 * which group a particular pass is in. This causes every passesPerGroup
28 * worth of sequential passes to be within the same group. Computationally
29 * intensive operations are performed just once at the beginning of a group
30 * of passes and then used by all the passes in that group. This is done
31 * so as to increase both the average and peak rate of graphic operations,
32 * by moving computationally intensive operations to the beginning of a group.
33 * In particular, at the start of each group of passes a set of
34 * graphic buffers are created, then used by the first and remaining
35 * passes of that group of passes.
36 *
37 * The per-group initialization of the graphic buffers is performed
38 * by a function called initFrames. This function creates an array
39 * of smart pointers to the graphic buffers, in the form of a vector
40 * of vectors. The array is accessed in row major order, so each
41 * row is a vector of smart pointers. All the pointers of a single
42 * row point to graphic buffers which use the same pixel format and
43 * have the same dimension, although it is likely that each one is
44 * filled with a different color. This is done so that after doing
45 * the first HWC prepare then set call, subsequent set calls can
46 * be made with each of the layer handles changed to a different
47 * graphic buffer within the same row. Since the graphic buffers
48 * in a particular row have the same pixel format and dimension,
49 * additional HWC set calls can be made, without having to perform
50 * an HWC prepare call.
51 *
52 * This test supports the following command-line options:
53 *
54 * -v Verbose
55 * -s num Starting pass
56 * -e num Ending pass
57 * -p num Execute the single pass specified by num
58 * -n num Number of set operations to perform after each prepare operation
59 * -t float Maximum time in seconds to execute the test
60 * -d float Delay in seconds performed after each set operation
61 * -D float Delay in seconds performed after the last pass is executed
62 *
63 * Typically the test is executed for a large range of passes. By default
64 * passes 0 through 99999 (100,000 passes) are executed. Although this test
65 * does not validate the generated image, at times it is useful to reexecute
66 * a particular pass and leave the displayed image on the screen for an
67 * extended period of time. This can be done either by setting the -s
68 * and -e options to the desired pass, along with a large value for -D.
69 * This can also be done via the -p option, again with a large value for
70 * the -D options.
71 *
72 * So far this test only contains code to create graphic buffers with
73 * a continuous solid color. Although this test is unable to validate the
74 * image produced, any image that contains other than rectangles of a solid
75 * color are incorrect. Note that the rectangles may use a transparent
76 * color and have a blending operation that causes the color in overlapping
77 * rectangles to be mixed. In such cases the overlapping portions may have
78 * a different color from the rest of the rectangle.
79 */
80
81 #include <algorithm>
82 #include <assert.h>
83 #include <cerrno>
84 #include <cmath>
85 #include <cstdlib>
86 #include <ctime>
87 #include <libgen.h>
88 #include <sched.h>
89 #include <sstream>
90 #include <stdint.h>
91 #include <string.h>
92 #include <unistd.h>
93 #include <vector>
94
95 #include <sys/syscall.h>
96 #include <sys/types.h>
97 #include <sys/wait.h>
98
99 #include <EGL/egl.h>
100 #include <EGL/eglext.h>
101 #include <GLES2/gl2.h>
102 #include <GLES2/gl2ext.h>
103
104 #include <ui/GraphicBuffer.h>
105
106 #define LOG_TAG "hwcStressTest"
107 #include <utils/Log.h>
108 #include <testUtil.h>
109
110 #include <hardware/hwcomposer.h>
111
112 #include <glTestLib.h>
113 #include "hwcTestLib.h"
114
115 using namespace std;
116 using namespace android;
117
118 const float maxSizeRatio = 1.3; // Graphic buffers can be upto this munch
119 // larger than the default screen size
120 const unsigned int passesPerGroup = 10; // A group of passes all use the same
121 // graphic buffers
122
123 // Ratios at which rare and frequent conditions should be produced
124 const float rareRatio = 0.1;
125 const float freqRatio = 0.9;
126
127 // Defaults for command-line options
128 const bool defaultVerbose = false;
129 const unsigned int defaultStartPass = 0;
130 const unsigned int defaultEndPass = 99999;
131 const unsigned int defaultPerPassNumSet = 10;
132 const float defaultPerSetDelay = 0.0; // Default delay after each set
133 // operation. Default delay of
134 // zero used so as to perform the
135 // the set operations as quickly
136 // as possible.
137 const float defaultEndDelay = 2.0; // Default delay between completion of
138 // final pass and restart of framework
139 const float defaultDuration = FLT_MAX; // A fairly long time, so that
140 // range of passes will have
141 // precedence
142
143 // Command-line option settings
144 static bool verbose = defaultVerbose;
145 static unsigned int startPass = defaultStartPass;
146 static unsigned int endPass = defaultEndPass;
147 static unsigned int numSet = defaultPerPassNumSet;
148 static float perSetDelay = defaultPerSetDelay;
149 static float endDelay = defaultEndDelay;
150 static float duration = defaultDuration;
151
152 // Command-line mutual exclusion detection flags.
153 // Corresponding flag set true once an option is used.
154 bool eFlag, sFlag, pFlag;
155
156 #define MAXSTR 100
157 #define MAXCMD 200
158 #define BITSPERBYTE 8 // TODO: Obtain from <values.h>, once
159 // it has been added
160
161 #define CMD_STOP_FRAMEWORK "stop 2>&1"
162 #define CMD_START_FRAMEWORK "start 2>&1"
163
164 #define NUMA(a) (sizeof(a) / sizeof(a [0]))
165 #define MEMCLR(addr, size) do { \
166 memset((addr), 0, (size)); \
167 } while (0)
168
169 // File scope constants
170 const unsigned int blendingOps[] = {
171 HWC_BLENDING_NONE,
172 HWC_BLENDING_PREMULT,
173 HWC_BLENDING_COVERAGE,
174 };
175 const unsigned int layerFlags[] = {
176 HWC_SKIP_LAYER,
177 };
178 const vector<unsigned int> vecLayerFlags(layerFlags,
179 layerFlags + NUMA(layerFlags));
180
181 const unsigned int transformFlags[] = {
182 HWC_TRANSFORM_FLIP_H,
183 HWC_TRANSFORM_FLIP_V,
184 HWC_TRANSFORM_ROT_90,
185 // ROT_180 & ROT_270 intentionally not listed, because they
186 // they are formed from combinations of the flags already listed.
187 };
188 const vector<unsigned int> vecTransformFlags(transformFlags,
189 transformFlags + NUMA(transformFlags));
190
191 // File scope globals
192 static const int texUsage = GraphicBuffer::USAGE_HW_TEXTURE |
193 GraphicBuffer::USAGE_SW_WRITE_RARELY;
194 static hwc_composer_device_1_t *hwcDevice;
195 static EGLDisplay dpy;
196 static EGLSurface surface;
197 static EGLint width, height;
198 static vector <vector <sp<GraphicBuffer> > > frames;
199
200 // File scope prototypes
201 void init(void);
202 void initFrames(unsigned int seed);
203 template <class T> vector<T> vectorRandSelect(const vector<T>& vec, size_t num);
204 template <class T> T vectorOr(const vector<T>& vec);
205
206 /*
207 * Main
208 *
209 * Performs the following high-level sequence of operations:
210 *
211 * 1. Command-line parsing
212 *
213 * 2. Initialization
214 *
215 * 3. For each pass:
216 *
217 * a. If pass is first pass or in a different group from the
218 * previous pass, initialize the array of graphic buffers.
219 *
220 * b. Create a HWC list with room to specify a prandomly
221 * selected number of layers.
222 *
223 * c. Select a subset of the rows from the graphic buffer array,
224 * such that there is a unique row to be used for each
225 * of the layers in the HWC list.
226 *
227 * d. Prandomly fill in the HWC list with handles
228 * selected from any of the columns of the selected row.
229 *
230 * e. Pass the populated list to the HWC prepare call.
231 *
232 * f. Pass the populated list to the HWC set call.
233 *
234 * g. If additional set calls are to be made, then for each
235 * additional set call, select a new set of handles and
236 * perform the set call.
237 */
238 int
main(int argc,char * argv[])239 main(int argc, char *argv[])
240 {
241 int rv, opt;
242 char *chptr;
243 unsigned int pass;
244 char cmd[MAXCMD];
245 struct timeval startTime, currentTime, delta;
246
247 testSetLogCatTag(LOG_TAG);
248
249 // Parse command line arguments
250 while ((opt = getopt(argc, argv, "vp:d:D:n:s:e:t:?h")) != -1) {
251 switch (opt) {
252 case 'd': // Delay after each set operation
253 perSetDelay = strtod(optarg, &chptr);
254 if ((*chptr != '\0') || (perSetDelay < 0.0)) {
255 testPrintE("Invalid command-line specified per pass delay of: "
256 "%s", optarg);
257 exit(1);
258 }
259 break;
260
261 case 'D': // End of test delay
262 // Delay between completion of final pass and restart
263 // of framework
264 endDelay = strtod(optarg, &chptr);
265 if ((*chptr != '\0') || (endDelay < 0.0)) {
266 testPrintE("Invalid command-line specified end of test delay "
267 "of: %s", optarg);
268 exit(2);
269 }
270 break;
271
272 case 't': // Duration
273 duration = strtod(optarg, &chptr);
274 if ((*chptr != '\0') || (duration < 0.0)) {
275 testPrintE("Invalid command-line specified duration of: %s",
276 optarg);
277 exit(3);
278 }
279 break;
280
281 case 'n': // Num set operations per pass
282 numSet = strtoul(optarg, &chptr, 10);
283 if (*chptr != '\0') {
284 testPrintE("Invalid command-line specified num set per pass "
285 "of: %s", optarg);
286 exit(4);
287 }
288 break;
289
290 case 's': // Starting Pass
291 sFlag = true;
292 if (pFlag) {
293 testPrintE("Invalid combination of command-line options.");
294 testPrintE(" The -p option is mutually exclusive from the");
295 testPrintE(" -s and -e options.");
296 exit(5);
297 }
298 startPass = strtoul(optarg, &chptr, 10);
299 if (*chptr != '\0') {
300 testPrintE("Invalid command-line specified starting pass "
301 "of: %s", optarg);
302 exit(6);
303 }
304 break;
305
306 case 'e': // Ending Pass
307 eFlag = true;
308 if (pFlag) {
309 testPrintE("Invalid combination of command-line options.");
310 testPrintE(" The -p option is mutually exclusive from the");
311 testPrintE(" -s and -e options.");
312 exit(7);
313 }
314 endPass = strtoul(optarg, &chptr, 10);
315 if (*chptr != '\0') {
316 testPrintE("Invalid command-line specified ending pass "
317 "of: %s", optarg);
318 exit(8);
319 }
320 break;
321
322 case 'p': // Run a single specified pass
323 pFlag = true;
324 if (sFlag || eFlag) {
325 testPrintE("Invalid combination of command-line options.");
326 testPrintE(" The -p option is mutually exclusive from the");
327 testPrintE(" -s and -e options.");
328 exit(9);
329 }
330 startPass = endPass = strtoul(optarg, &chptr, 10);
331 if (*chptr != '\0') {
332 testPrintE("Invalid command-line specified pass of: %s",
333 optarg);
334 exit(10);
335 }
336 break;
337
338 case 'v': // Verbose
339 verbose = true;
340 break;
341
342 case 'h': // Help
343 case '?':
344 default:
345 testPrintE(" %s [options]", basename(argv[0]));
346 testPrintE(" options:");
347 testPrintE(" -p Execute specified pass");
348 testPrintE(" -s Starting pass");
349 testPrintE(" -e Ending pass");
350 testPrintE(" -t Duration");
351 testPrintE(" -d Delay after each set operation");
352 testPrintE(" -D End of test delay");
353 testPrintE(" -n Num set operations per pass");
354 testPrintE(" -v Verbose");
355 exit(((optopt == 0) || (optopt == '?')) ? 0 : 11);
356 }
357 }
358 if (endPass < startPass) {
359 testPrintE("Unexpected ending pass before starting pass");
360 testPrintE(" startPass: %u endPass: %u", startPass, endPass);
361 exit(12);
362 }
363 if (argc != optind) {
364 testPrintE("Unexpected command-line postional argument");
365 testPrintE(" %s [-s start_pass] [-e end_pass] [-t duration]",
366 basename(argv[0]));
367 exit(13);
368 }
369 testPrintI("duration: %g", duration);
370 testPrintI("startPass: %u", startPass);
371 testPrintI("endPass: %u", endPass);
372 testPrintI("numSet: %u", numSet);
373
374 // Stop framework
375 rv = snprintf(cmd, sizeof(cmd), "%s", CMD_STOP_FRAMEWORK);
376 if (rv >= (signed) sizeof(cmd) - 1) {
377 testPrintE("Command too long for: %s", CMD_STOP_FRAMEWORK);
378 exit(14);
379 }
380 testExecCmd(cmd);
381 testDelay(1.0); // TODO - need means to query whether asyncronous stop
382 // framework operation has completed. For now, just wait
383 // a long time.
384
385 init();
386
387 // For each pass
388 gettimeofday(&startTime, NULL);
389 for (pass = startPass; pass <= endPass; pass++) {
390 // Stop if duration of work has already been performed
391 gettimeofday(¤tTime, NULL);
392 delta = tvDelta(&startTime, ¤tTime);
393 if (tv2double(&delta) > duration) { break; }
394
395 // Regenerate a new set of test frames when this pass is
396 // either the first pass or is in a different group then
397 // the previous pass. A group of passes are passes that
398 // all have the same quotient when their pass number is
399 // divided by passesPerGroup.
400 if ((pass == startPass)
401 || ((pass / passesPerGroup) != ((pass - 1) / passesPerGroup))) {
402 initFrames(pass / passesPerGroup);
403 }
404
405 testPrintI("==== Starting pass: %u", pass);
406
407 // Cause deterministic sequence of prandom numbers to be
408 // generated for this pass.
409 srand48(pass);
410
411 hwc_display_contents_1_t *list;
412 list = hwcTestCreateLayerList(testRandMod(frames.size()) + 1);
413 if (list == NULL) {
414 testPrintE("hwcTestCreateLayerList failed");
415 exit(20);
416 }
417
418 // Prandomly select a subset of frames to be used by this pass.
419 vector <vector <sp<GraphicBuffer> > > selectedFrames;
420 selectedFrames = vectorRandSelect(frames, list->numHwLayers);
421
422 // Any transform tends to create a layer that the hardware
423 // composer is unable to support and thus has to leave for
424 // SurfaceFlinger. Place heavy bias on specifying no transforms.
425 bool noTransform = testRandFract() > rareRatio;
426
427 for (unsigned int n1 = 0; n1 < list->numHwLayers; n1++) {
428 unsigned int idx = testRandMod(selectedFrames[n1].size());
429 sp<GraphicBuffer> gBuf = selectedFrames[n1][idx];
430 hwc_layer_1_t *layer = &list->hwLayers[n1];
431 layer->handle = gBuf->handle;
432
433 layer->blending = blendingOps[testRandMod(NUMA(blendingOps))];
434 layer->flags = (testRandFract() > rareRatio) ? 0
435 : vectorOr(vectorRandSelect(vecLayerFlags,
436 testRandMod(vecLayerFlags.size() + 1)));
437 layer->transform = (noTransform || testRandFract() > rareRatio) ? 0
438 : vectorOr(vectorRandSelect(vecTransformFlags,
439 testRandMod(vecTransformFlags.size() + 1)));
440 layer->sourceCrop.left = testRandMod(gBuf->getWidth());
441 layer->sourceCrop.top = testRandMod(gBuf->getHeight());
442 layer->sourceCrop.right = layer->sourceCrop.left
443 + testRandMod(gBuf->getWidth() - layer->sourceCrop.left) + 1;
444 layer->sourceCrop.bottom = layer->sourceCrop.top
445 + testRandMod(gBuf->getHeight() - layer->sourceCrop.top) + 1;
446 layer->displayFrame.left = testRandMod(width);
447 layer->displayFrame.top = testRandMod(height);
448 layer->displayFrame.right = layer->displayFrame.left
449 + testRandMod(width - layer->displayFrame.left) + 1;
450 layer->displayFrame.bottom = layer->displayFrame.top
451 + testRandMod(height - layer->displayFrame.top) + 1;
452
453 // Increase the frequency that a scale factor of 1.0 from
454 // the sourceCrop to displayFrame occurs. This is the
455 // most common scale factor used by applications and would
456 // be rarely produced by this stress test without this
457 // logic.
458 if (testRandFract() <= freqRatio) {
459 // Only change to scale factor to 1.0 if both the
460 // width and height will fit.
461 int sourceWidth = layer->sourceCrop.right
462 - layer->sourceCrop.left;
463 int sourceHeight = layer->sourceCrop.bottom
464 - layer->sourceCrop.top;
465 if (((layer->displayFrame.left + sourceWidth) <= width)
466 && ((layer->displayFrame.top + sourceHeight) <= height)) {
467 layer->displayFrame.right = layer->displayFrame.left
468 + sourceWidth;
469 layer->displayFrame.bottom = layer->displayFrame.top
470 + sourceHeight;
471 }
472 }
473
474 layer->visibleRegionScreen.numRects = 1;
475 layer->visibleRegionScreen.rects = &layer->displayFrame;
476 }
477
478 // Perform prepare operation
479 if (verbose) { testPrintI("Prepare:"); hwcTestDisplayList(list); }
480 hwcDevice->prepare(hwcDevice, 1, &list);
481 if (verbose) {
482 testPrintI("Post Prepare:");
483 hwcTestDisplayListPrepareModifiable(list);
484 }
485
486 // Turn off the geometry changed flag
487 list->flags &= ~HWC_GEOMETRY_CHANGED;
488
489 // Perform the set operation(s)
490 if (verbose) {testPrintI("Set:"); }
491 for (unsigned int n1 = 0; n1 < numSet; n1++) {
492 if (verbose) { hwcTestDisplayListHandles(list); }
493 list->dpy = dpy;
494 list->sur = surface;
495 hwcDevice->set(hwcDevice, 1, &list);
496
497 // Prandomly select a new set of handles
498 for (unsigned int n1 = 0; n1 < list->numHwLayers; n1++) {
499 unsigned int idx = testRandMod(selectedFrames[n1].size());
500 sp<GraphicBuffer> gBuf = selectedFrames[n1][idx];
501 hwc_layer_1_t *layer = &list->hwLayers[n1];
502 layer->handle = (native_handle_t *) gBuf->handle;
503 }
504
505 testDelay(perSetDelay);
506 }
507
508 hwcTestFreeLayerList(list);
509 testPrintI("==== Completed pass: %u", pass);
510 }
511
512 testDelay(endDelay);
513
514 // Start framework
515 rv = snprintf(cmd, sizeof(cmd), "%s", CMD_START_FRAMEWORK);
516 if (rv >= (signed) sizeof(cmd) - 1) {
517 testPrintE("Command too long for: %s", CMD_START_FRAMEWORK);
518 exit(21);
519 }
520 testExecCmd(cmd);
521
522 testPrintI("Successfully completed %u passes", pass - startPass);
523
524 return 0;
525 }
526
init(void)527 void init(void)
528 {
529 srand48(0); // Defensively set pseudo random number generator.
530 // Should not need to set this, because a stress test
531 // sets the seed on each pass. Defensively set it here
532 // so that future code that uses pseudo random numbers
533 // before the first pass will be deterministic.
534
535 hwcTestInitDisplay(verbose, &dpy, &surface, &width, &height);
536
537 hwcTestOpenHwc(&hwcDevice);
538 }
539
540 /*
541 * Initialize Frames
542 *
543 * Creates an array of graphic buffers, within the global variable
544 * named frames. The graphic buffers are contained within a vector of
545 * vectors. All the graphic buffers in a particular row are of the same
546 * format and dimension. Each graphic buffer is uniformly filled with a
547 * prandomly selected color. It is likely that each buffer, even
548 * in the same row, will be filled with a unique color.
549 */
initFrames(unsigned int seed)550 void initFrames(unsigned int seed)
551 {
552 int rv;
553 const size_t maxRows = 5;
554 const size_t minCols = 2; // Need at least double buffering
555 const size_t maxCols = 4; // One more than triple buffering
556
557 if (verbose) { testPrintI("initFrames seed: %u", seed); }
558 srand48(seed);
559 size_t rows = testRandMod(maxRows) + 1;
560
561 frames.clear();
562 frames.resize(rows);
563
564 for (unsigned int row = 0; row < rows; row++) {
565 // All frames within a row have to have the same format and
566 // dimensions. Width and height need to be >= 1.
567 unsigned int formatIdx = testRandMod(NUMA(hwcTestGraphicFormat));
568 const struct hwcTestGraphicFormat *formatPtr
569 = &hwcTestGraphicFormat[formatIdx];
570 int format = formatPtr->format;
571
572 // Pick width and height, which must be >= 1 and the size
573 // mod the wMod/hMod value must be equal to 0.
574 size_t w = (width * maxSizeRatio) * testRandFract();
575 size_t h = (height * maxSizeRatio) * testRandFract();
576 w = max(size_t(1u), w);
577 h = max(size_t(1u), h);
578 if ((w % formatPtr->wMod) != 0) {
579 w += formatPtr->wMod - (w % formatPtr->wMod);
580 }
581 if ((h % formatPtr->hMod) != 0) {
582 h += formatPtr->hMod - (h % formatPtr->hMod);
583 }
584 if (verbose) {
585 testPrintI(" frame %u width: %u height: %u format: %u %s",
586 row, w, h, format, hwcTestGraphicFormat2str(format));
587 }
588
589 size_t cols = testRandMod((maxCols + 1) - minCols) + minCols;
590 frames[row].resize(cols);
591 for (unsigned int col = 0; col < cols; col++) {
592 ColorFract color(testRandFract(), testRandFract(), testRandFract());
593 float alpha = testRandFract();
594
595 frames[row][col] = new GraphicBuffer(w, h, format, texUsage);
596 if ((rv = frames[row][col]->initCheck()) != NO_ERROR) {
597 testPrintE("GraphicBuffer initCheck failed, rv: %i", rv);
598 testPrintE(" frame %u width: %u height: %u format: %u %s",
599 row, w, h, format, hwcTestGraphicFormat2str(format));
600 exit(80);
601 }
602
603 hwcTestFillColor(frames[row][col].get(), color, alpha);
604 if (verbose) {
605 testPrintI(" buf: %p handle: %p color: %s alpha: %f",
606 frames[row][col].get(), frames[row][col]->handle,
607 string(color).c_str(), alpha);
608 }
609 }
610 }
611 }
612
613 /*
614 * Vector Random Select
615 *
616 * Prandomly selects and returns num elements from vec.
617 */
618 template <class T>
vectorRandSelect(const vector<T> & vec,size_t num)619 vector<T> vectorRandSelect(const vector<T>& vec, size_t num)
620 {
621 vector<T> rv = vec;
622
623 while (rv.size() > num) {
624 rv.erase(rv.begin() + testRandMod(rv.size()));
625 }
626
627 return rv;
628 }
629
630 /*
631 * Vector Or
632 *
633 * Or's togethen the values of each element of vec and returns the result.
634 */
635 template <class T>
vectorOr(const vector<T> & vec)636 T vectorOr(const vector<T>& vec)
637 {
638 T rv = 0;
639
640 for (size_t n1 = 0; n1 < vec.size(); n1++) {
641 rv |= vec[n1];
642 }
643
644 return rv;
645 }
646