• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2013 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "Daltonizer.h"
18 #include <ui/mat4.h>
19 
20 namespace android {
21 
Daltonizer()22 Daltonizer::Daltonizer() :
23     mType(deuteranomaly), mMode(simulation), mDirty(true) {
24 }
25 
~Daltonizer()26 Daltonizer::~Daltonizer() {
27 }
28 
setType(Daltonizer::ColorBlindnessTypes type)29 void Daltonizer::setType(Daltonizer::ColorBlindnessTypes type) {
30     if (type != mType) {
31         mDirty = true;
32         mType = type;
33     }
34 }
35 
setMode(Daltonizer::Mode mode)36 void Daltonizer::setMode(Daltonizer::Mode mode) {
37     if (mode != mMode) {
38         mDirty = true;
39         mMode = mode;
40     }
41 }
42 
operator ()()43 const mat4& Daltonizer::operator()() {
44     if (mDirty) {
45         mDirty = false;
46         update();
47     }
48     return mColorTransform;
49 }
50 
update()51 void Daltonizer::update() {
52     // converts a linear RGB color to the XYZ space
53     const mat4 rgb2xyz( 0.4124, 0.2126, 0.0193, 0,
54                         0.3576, 0.7152, 0.1192, 0,
55                         0.1805, 0.0722, 0.9505, 0,
56                         0     , 0     , 0     , 1);
57 
58     // converts a XYZ color to the LMS space.
59     const mat4 xyz2lms( 0.7328,-0.7036, 0.0030, 0,
60                         0.4296, 1.6975, 0.0136, 0,
61                        -0.1624, 0.0061, 0.9834, 0,
62                         0     , 0     , 0     , 1);
63 
64     // Direct conversion from linear RGB to LMS
65     const mat4 rgb2lms(xyz2lms*rgb2xyz);
66 
67     // And back from LMS to linear RGB
68     const mat4 lms2rgb(inverse(rgb2lms));
69 
70     // To simulate color blindness we need to "remove" the data lost by the absence of
71     // a cone. This cannot be done by just zeroing out the corresponding LMS component
72     // because it would create a color outside of the RGB gammut.
73     // Instead we project the color along the axis of the missing component onto a plane
74     // within the RGB gammut:
75     //  - since the projection happens along the axis of the missing component, a
76     //    color blind viewer perceives the projected color the same.
77     //  - We use the plane defined by 3 points in LMS space: black, white and
78     //    blue and red for protanopia/deuteranopia and tritanopia respectively.
79 
80     // LMS space red
81     const vec3& lms_r(rgb2lms[0].rgb);
82     // LMS space blue
83     const vec3& lms_b(rgb2lms[2].rgb);
84     // LMS space white
85     const vec3 lms_w((rgb2lms * vec4(1)).rgb);
86 
87     // To find the planes we solve the a*L + b*M + c*S = 0 equation for the LMS values
88     // of the three known points. This equation is trivially solved, and has for
89     // solution the following cross-products:
90     const vec3 p0 = cross(lms_w, lms_b);    // protanopia/deuteranopia
91     const vec3 p1 = cross(lms_w, lms_r);    // tritanopia
92 
93     // The following 3 matrices perform the projection of a LMS color onto the given plane
94     // along the selected axis
95 
96     // projection for protanopia (L = 0)
97     const mat4 lms2lmsp(  0.0000, 0.0000, 0.0000, 0,
98                     -p0.y / p0.x, 1.0000, 0.0000, 0,
99                     -p0.z / p0.x, 0.0000, 1.0000, 0,
100                           0     , 0     , 0     , 1);
101 
102     // projection for deuteranopia (M = 0)
103     const mat4 lms2lmsd(  1.0000, -p0.x / p0.y, 0.0000, 0,
104                           0.0000,       0.0000, 0.0000, 0,
105                           0.0000, -p0.z / p0.y, 1.0000, 0,
106                           0     ,       0     , 0     , 1);
107 
108     // projection for tritanopia (S = 0)
109     const mat4 lms2lmst(  1.0000, 0.0000, -p1.x / p1.z, 0,
110                           0.0000, 1.0000, -p1.y / p1.z, 0,
111                           0.0000, 0.0000,       0.0000, 0,
112                           0     ,       0     , 0     , 1);
113 
114     // We will calculate the error between the color and the color viewed by
115     // a color blind user and "spread" this error onto the healthy cones.
116     // The matrices below perform this last step and have been chosen arbitrarily.
117 
118     // The amount of correction can be adjusted here.
119 
120     // error spread for protanopia
121     const mat4 errp(    1.0, 0.7, 0.7, 0,
122                         0.0, 1.0, 0.0, 0,
123                         0.0, 0.0, 1.0, 0,
124                           0,   0,   0, 1);
125 
126     // error spread for deuteranopia
127     const mat4 errd(    1.0, 0.0, 0.0, 0,
128                         0.7, 1.0, 0.7, 0,
129                         0.0, 0.0, 1.0, 0,
130                           0,   0,   0, 1);
131 
132     // error spread for tritanopia
133     const mat4 errt(    1.0, 0.0, 0.0, 0,
134                         0.0, 1.0, 0.0, 0,
135                         0.7, 0.7, 1.0, 0,
136                           0,   0,   0, 1);
137 
138     const mat4 identity;
139 
140     // And the magic happens here...
141     // We construct the matrix that will perform the whole correction.
142 
143     // simulation: type of color blindness to simulate:
144     // set to either lms2lmsp, lms2lmsd, lms2lmst
145     mat4 simulation;
146 
147     // correction: type of color blindness correction (should match the simulation above):
148     // set to identity, errp, errd, errt ([0] for simulation only)
149     mat4 correction(0);
150 
151     switch (mType) {
152         case protanopia:
153         case protanomaly:
154             simulation = lms2lmsp;
155             if (mMode == Daltonizer::correction)
156                 correction = errp;
157             break;
158         case deuteranopia:
159         case deuteranomaly:
160             simulation = lms2lmsd;
161             if (mMode == Daltonizer::correction)
162                 correction = errd;
163             break;
164         case tritanopia:
165         case tritanomaly:
166             simulation = lms2lmst;
167             if (mMode == Daltonizer::correction)
168                 correction = errt;
169             break;
170     }
171 
172     mColorTransform = lms2rgb *
173         (simulation * rgb2lms + correction * (rgb2lms - simulation * rgb2lms));
174 }
175 
176 } /* namespace android */
177